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This chapter studies the problem of time-series classification and presents
an overview of recent developments in the area of feature extraction and
information fusion. In particular, a recently proposed feature extraction
algorithm, namely symbolic dynamic filtering (SDF), is reviewed. The
SDF algorithm generates low-dimensional feature vectors using proba-
bilistic finite state automata that are well-suited for discriminative tasks.
The chapter also presents the recent developments in the area of sparse-
representation-based algorithms for multimodal classification. This in-
cludes the joint sparse representation that enforces collaboration across
all the modalities as well as the tree-structured sparsity that provides a
flexible framework for fusion of modalities at multiple granularities. Fur-
thermore, unsupervised and supervised dictionary learning algorithms
are reviewed. The performance of the algorithms are evaluated on a set
of field data that consist of passive infrared and seismic sensors.

1. Introduction

Unattended ground sensor (UGS) systems have been extensively used to

monitor human activities for border security and target classification. Typ-

ical sensors used for this purpose are Seismic and Passive Infrared (PIR)

sensors which are commonly used for target detection. Nevertheless dis-

crimination of different types of targets from footstep signals is still a chal-

lenging problem due to environmental noise sources and locality of the

sensors.1 This study deals with the problem of target classification, and

more generally time-series classification, in two main directions, feature

extraction and information fusion.

1
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Several feature extraction methods have been proposed to generate dis-

criminative patterns from time-series data. This includes kurtosis algo-

rithm,2 Fourier and Wavelet analysis.3–5 Recently, a symbolic dynamic

filtering (SDF) algorithm has been proposed for feature extraction from

time-series data and has shown promising results in several applications in-

cluding robot motion classification and target classification.6–8 In the SDF

algorithm, the time series data are first converted into symbol sequences,

and then probabilistic finite-state automata (PFSA) are constructed from

these symbol sequences to compress the pertinent information into low-

dimensional statistical patterns.9 The advantage of the SDF algorithm is

that it captures the local information of the signal and it is capable of mit-

igating noise. In this chapter, the SDF algorithm is briefly reviewed and is

subsequently used for feature extraction from PIR and Seismic sensors.

This chapter also studies information fusion algorithms which is then

utilized to integrate the information of the PIR and Seismic modalities.

As it has been widely studied, information fusion often results in better

situation awareness and decision making.10,11 For this purpose, several

sparsity models are discussed which provide a framework for feature-level

fusion. Feature level fusion12 is relatively less-studied topic compared to

the decision level fusion,13,14 mainly due to the difficulty in fusing hetero-

geneous feature vectors. However, as it will be shown, structured sparsity

priors can be used to overcome this difficulty and result in state-of-the art

performance. In particular, the joint sparse representation15 is presented

which enforces collaboration across all the modalities. The tree-structured

sparse representation16,17 is also presented that allows fusion of different

modalities at multiple granularities. Moreover, unsupervised and super-

vised dictionary learning algorithms are discussed to train more compact

dictionaries which are optimized for reconstructive or discriminative tasks,

respectively.18,19

The rest of this chapter is organized as follows. Section 2 briefly de-

scribes the SDF-based feature extraction. Section 3 succinctly discusses

the sparsity-based models for single-modal and multi-modal classification

and Section 4 presents the dictionary learning algorithms. Section 5 pro-

vides a comparitive study on the performance of the discussed algorithm

for the application of target classification, which is followed by conclusion

and recommendations for future research in Section 6.
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2. Symbolic dynamic filtering for feature extraction from

time-series data

An important step for time-series classification is feature extraction from

sensor signals. This step can be performed using different signal processing

tools including principal component analysis,20 Cepstrum,21 wavelet anal-

ysis,22 and SDF.6,23 It has recently been shown that SDF can result in

improved classification performance by compressing the information within

a time-series window into a low-dimensional feature space while preserv-

ing the discriminative pattern of the data in several applications including

target detection & classification9,24 and prediction of lean blowout phe-

nomena in confined combustion.25 The detailed information and different

versions of SDF can be found in earlier publications,23,26 and this section

briefly reviews a version of this algorithm which is used later for feature

extraction.

The algorithm consists of a few steps. The signal space, which is ap-

proximated by the training samples, is first partitioned into a finite number

of cells that are labeled as symbols. Then, PFSA are formed to represent

different combinations of blocks of symbols on the symbol sequence. Fi-

nally, for a given time-series data, the state transition probability matrix

is generated and the SDF feature is extracted. The pertinent steps of this

procedure are described below.

Let {u1, . . . ,uN} be the set of N training time-series where uj ∈
R1×M , j = 1, . . . , N , consists of M consecutive data points. Let Σ be a

set of finitely many symbols, also known as alphabet, and its cardinality

denoted as |Σ|. In the partitioning step, the ensemble of training samples

is divided into |Σ| mutually exclusive and exhaustive cells. Each disjoint

region forms a cell in the partitioning and is labeled with a symbol from

the alphabet Σ. Consequently, each sample of a time-series is located in a

particular cell and is coded with the corresponding symbol, which results in

a string of symbols representing the (finite-length) time-series. There are at

least two ways for performing the partitioning task: the maximum entropy

partitioning and uniform partitioning.26 The maximum entropy partition-

ing algorithm maximizes the entropy of the generated symbols and results

in (approximately) equal number of data points in each region. Therefore,

the information-rich cells of a data set are partitioned finer and those with

sparse information are partitioned coarser. On the other hand, the uniform

partitioning method results in equal-sized cells. Maximum entropy parti-

tioning is adopted here. The choice of alphabet size |Σ| largely depends on
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the specific data set and can be set using cross-validation algorithms. A

smaller alphabet size results in a more compressed feature vector which is

more robust to the time-series noise at the cost of more information loss.

In the next step, a PFSA is used to capture the information of a given

time-series. The PFSA states represent different combinations of blocks of

symbols on the symbol sequence where the transition between a state to

another state is governed by a transition probability matrix. Therefore, the

“states” denote all possible symbol blocks within a window of certain length.

For both algorithmic simplicity and computational efficiency, the D-Markov

machine structure6 has been adopted for construction of PFSA. It is noted

that D-Markov machines form a proper subclass of hidden Markov models

(HMM) and have been experimentally validated for applications in various

fields of research (e.g., anomaly detection and robot motion classification8).

A D-Markov chain is modeled as a statistically locally stationary stochastic

process S = · · · s−1s0 · · · s1 · · · , where the probability of occurrence of a new

symbol depends only on the last D symbols, i.e.,

P [sn | · · · sn−D · · · sn−1] = P [sn | sn−D · · · sn−1].

Words of length D on a symbol string are treated as the states of the

D-Markov machine before any state-merging is executed. The set of all

possible states is denoted as Q = {q1, q2, . . . , q|Q|} and |Q| is the number of

(finitely many) states and |Q| ≤ |Σ|D. Here, a D-Markov Machine with the

symbol block length of each state D = 1 is used, i.e., |Q| = |Σ|. In this case,

the number of states are equal to the number of symbols, i.e., |Q| = |Σ|,
where the set of all possible states is denoted as Q = {q1, q2, . . . , q|Q|} and

|Q| is the number of (finitely many) states. The transition probabilities are

defined as:

P (qk | ql) =
S (ql, qk)∑

i=1,2,...,|Q| S (ql, qi)
,∀qk, ql ∈ Q (1)

where S (ql, qk) is the total count of events when qk occurs adjacent to ql
in the direction of motion. Consequently, the state transition probability

matrix of the PFSA is given as

Π =

P (q1 | q1) . . . P
(
q|Q| | ql

)
...

. . .
...

P
(
q1 | q|Q|

)
· · · P

(
q|Q| | q|Q|

)
 . (2)

By appropriate choice of partitioning, the stochastic matrix Π is irreducible

and the Markov chain is ergodic, i.e., the probability of every state being
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reachable from any other state within finitely many transitions must be

strictly positive under statistically stationary conditions.27

For a given time-series window, the SDF features is then constructed as

the left eigenvector p corresponding to the unity eigenvalue of the stochastic

matrix Π. It should be noted that Π is guaranteed to have unique unity

eigenvalue. The extracted feature vector is indeed the stationary state

probability vector.

3. Sparse representation for classification (SRC)

The SRC algorithm has been recently introduced28 and has shown promis-

ing results in several classification applications such as robust face recogni-

tion,28 visual tracking,29 and transient acoustic signal classification.30 Here

the SRC algorithm is reviewed. Consider a C-class classification problem

with N training samples from C different classes. Let Nc, c ∈ {1, . . . , C} ,
be the number of training samples for the cth class and n be the di-

mension of the feature vector. Here n is equal to the the SDF alpha-

bet size |Σ|. Also let xc,j ∈ Rn denotes the jth training sample of the

cth class where j ∈ {1, . . . , Nc}. In the SRC algorithm, a dictionary

X , [X1X2 . . .XC ] ∈ Rn×N is constructed by stacking the training sam-

ples where sub-dictionary Xc = [xc,1,xc,2, . . . ,xc,Nc
] ∈ Rn×Nc consists of

the training samples for the cth class, and N =
∑C

c=1Nc is the total num-

ber of train samples. Given a test sample p ∈ Rn, it is classified based

on the minimum reconstruction error of it using the different classes. The

underlying assumption of SRC is that a test sample from the cth class lies

(approximately) within the subspace formed by the training samples of the

cth class and can be represented using a linear combination of a few train-

ing samples in Xc. In other words, the test sample p from the cth class can

be represented as

p = Xα+ e, (3)

where α is the coefficient vector whose entries have value 0’s ex-

cept for some of the entries associated with the cth class, i.e. α =[
0T , . . . ,0T ,αT

c ,0
T , . . . ,0T

]T
, and e is a small error/noise term due to

the imperfectness of the test and training samples. For this reason the al-

gorithm seek to obtain the sparse coefficient vector α through the following

`1 optimization problem:

α∗ = argmin
α
‖p−Xα‖`2 + λ‖α‖`1 , (4)
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with `1-norm defined as ‖α‖`1 =
∑N

j=1|αj | and λ is a regularization pa-

rameter. The solution of the above optimization problem is sparse pro-

vided that the regularization parameter λ is chosen sufficiently large. Af-

ter the solution of the optimization problem is found, the test sample p

is classified by comparing the reconstruction errors of different classes.

For this purpose, let δc(α) ∈ RN be a vector whose only non-zero ele-

ments are those entries in α that are associated with class c in X, i.e.

δc(α) =
[
0T , . . . ,0T ,αT

c ,0
T , . . . ,0T

]T
. The label of the test data is then

predicted using

c∗ = argmin
c
‖p−Xδc(α

∗)‖`2 . (5)

3.1. Joint sparse representation classification

In many applications including target classification, there are several

sources of information that should be fused to make an optimal classification

decision. It is well-known that information fusion of sensors can generally

result in better situation awareness and decision making.10 Many algo-

rithms have been proposed for sensor fusion in the classification problem.

These methods can generally be categorized in two sets, feature fusion12

and classifier fusion 14 algorithms. Classifier fusion algorithms aggregate

the decisions from different classifiers which are individually built based

on different sources. Different methods of decision fusion include majority

vote,31 fuzzy logic32 and statistical inference.11 For example, in the context

of the sparse representation classification for target classification, the recon-

struction error generated by using PIR and Seismic features individually

can be combined, after proper normalization, for a fused decision. This is

also known as holistic sparse representation classification (HSRC).33 While

classifier fusion is a well-studied topic, feature level fusion is a relatively

less-studied, specifically for fusing heterogeneous source of information due

to the incompatibility of feature sets.34 Feature level fusion using sparse

representation has also been recently introduced and has shown promising

results.35–38

Among different sparsity based algorithms for information fusion, joint

sparse representation classification (JSRC) is probably the most cited ap-

proach.21,30,39 In JSRC, multiple observations of a pattern using different

modalities are simultaneously represented by a few training samples. Con-

sider the C-class classification problem and let S , {1, . . . , S} be a finite set

of available modalities. Similar to the previous section, let N =
∑C

c=1Nc
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be the number of the training samples from each modalities, where Nc is

the number of training samples in the cth class. Also let ns, s ∈ S, be the di-

mension of the feature vector for the sth modality and xs
c,j ∈ Rns

denote the

jth sample of the sth modality that belongs to the cth class, j ∈ {1, . . . , Nc}.
In JSRC, S dictionaries Xs , [Xs

1X
s
2 . . .X

s
C ] ∈ Rns×N , s ∈ S, are con-

structed from the (normalized) training samples, where the class-wise sub-

dictionary Xs
c ,

[
xs
c,1,x

s
c,2, . . . ,x

s
c,Nc

]
∈ Rns×Nc consists of samples from

the cth class and sth modality.

Given a multimodal test sample {ps}, where ps ∈ Rns

, s ∈ S, the

assumption is that the test sample ps from the cth class lies approximately

within the subspace formed by the training samples of the cth class and can

be approximated (or reconstructed) from a few number of training samples

in Xs
c ,28 similar to the SRC algorithm. In other words, if the test sample

ps belongs to the cth class, it is represented as:

ps = Xsαs + e, (6)

where αs ∈ RN is a coefficient vector whose entries are mostly 0’s ex-

cept for some of the entries associated with the cth class, i.e., αs =[
0T , . . . ,0T ,αT

c ,0
T , . . . ,0T

]T
, and e is a small error term due to imper-

fectness of the samples. In addition, JSRC recognizes the relation between

different modalities representing the same event and enforces collaboration

among them to make a joint decision. This is achieved by constraining

the coefficient vectors from different modalities to have the same sparsity

pattern. Consequently, the same training samples from different modalities

are used to reconstruct the test data. To illustrate the idea, consider the

target classification application with PIR and Seismic sensors. Let p1 and

p2 be the feature vectors extracted from PIR and Seismic sensors, respec-

tively. Also let the multimodal test sample belongs to the cth class. Using

the idea of sparse representation discussed in previous Section, test samples

can be reconstructed using a linear combination of atoms in X1 and X2,

i.e., p1 = X1α1 + e1,p2 = X2α2 + e2, where α1 and α2 are the coef-

ficient vectors whose entries have value 0’s except for some of the entries

associated with the cth class, and e1 and e2 are small error terms. Let I1
and I2 be two index sets corresponding to non-zero rows of α1 and α2,

respectively. In JSRC algorithm, it is further assumed that p1 and p2 can

be reconstructed from the same training samples corresponding to dictio-

naries X1 and X2 with possibly different coefficients because they belong

to the same event and therefore I1 = I2. In other words, A =
[
α1,α2

]
is

a row-sparse matrix with only a few non-zeros rows. In general, the coeffi-
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cient matrix A =
[
α1, . . . ,αS

]
∈ RN×S , where αs is the sparse coefficient

vector for reconstructing ps, is recovered by solving the following `1/`2 joint

optimization problem:

argmin
A=[α1,...,αS ]

f(A) + λ‖A‖`1/`q , (7)

where f(A) , 1
2

∑S
s=1 ‖ps −Xsαs‖2`2 is the reconstruction error, λ > 0

is a regularization parameter, and `1/`2 norm is defined as ‖A‖`1/`2 =∑N
j=1 ‖aj‖`2 in which aj ’s are row vectors of A. The above optimization

problem encourages sharing of patterns across related observations which

results in the solution A to have a common support at the column level.21

The solution can be obtained by using the efficient alternating direction

method of multipliers.40

Again let δc(α) ∈ RN be a vector indication function in which the rows

corresponding to cth class are retained and the rest are set to zeros. Similar

to the SRC algorithm, the test data is classified using the class-specific

reconstruction errors as:

c∗ = argmin
c

S∑
s=1

‖ps −Xsδc(α
s∗)‖2`2 , (8)

where αs∗’s are optimal solutions of (7).

3.2. Tree-structured sparse representation classification

The joint sparsity assumption of JSRC may be too stringent for applica-

tions in which not all the different modalities are equally important for

classification. Recently tree-structured sparsity16,17 is proposed to provide

a flexible framework for information fusion. It uses the prior knowledge

in grouping different modalities by encoding them in a tree and allows

different modalities to be fused at multiple granularity. Th leaf nodes rep-

resent individual modalities in the tree and the internal nodes represent

different grouping of the modalities. A tree-structured groups of modalities

G ⊆
(
2S \ ∅

)
is defined as a collection of subsets of the set of modalities S

such that
⋃

g∈G g = S and ∀g, g̃ ∈ G, (g ∩ g̃ 6= ∅) ⇒ ((g ⊆ g̃) ∨ (g̃ ⊆ g)). It

is assumed here that G is ordered according to relation 4 which is defined

as (g 4 g̃)⇒ ((g ⊆ g̃) ∨ (g ∩ g̃ = ∅)).
Given a tree-structured collection G of groups and a multimodal

test sample {ps}, the tree-structured sparse representation classification
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(TSRC) solves the following optimization problem:

argmin
A=[α1,...,αS ]

f(A) + λ Ω (A) , (9)

where f(A) is defined the same as in Eq. (7), and the tree-structured spar-

sity prior Ω (A) is defined as:

Ω (A) ,
N∑
j=1

∑
g∈G

ωg‖ajg‖`2 . (10)

In Eq. (10), ωg is a positive weight for group g and ajg is a (1×S) row vector

whose coordinates are equal to the jth row of A for indices in the group g,

and 0 otherwise. An accelerated algorithm can be used to efficiently solve

the optimization problem.17

The above optimization problem results in A∗ that has a common sup-

port at the group level and the resulting sparsity is dependent on the rel-

ative weights ωg of different groups.16 In the special case where G consists

of only one group, containing all modalities, then Eq. (9) reduces to that

of JSRC in Eq. (7). On the other hand, if G consists of only singleton sets

of individual modalities, no common sparsity pattern is sought across the

modalities and the optimization problem of Eq. (9) reduces to S separate

`1 optimization problems. The tree-structured sparsity prior provides flex-

ibility in the expense of the need to apiori select the weights ωg, g ∈ G,

which will be discussed in more details in the next section.

4. Dictionary learning

In the discussed sparsity based classification algorithms, SRC, JSRC and

TSRC, the dictionary is constructed by stacking the training samples. In

contrast to the conventional classification algorithms, above algorithms do

not have a“training” step and most of the computation is performed at the

test time, i.e., an optimization problem needs to be solved for each test

sample. These results in at least two difficulties. First, the computational

cost of the optimization problem becomes more and more expensive as the

number of training samples increases. Second, the dictionary constructed

by stacking the training samples is not optimal neither for the reconstruc-

tive tasks41 nor the discriminative tasks.18 Recently it has been shown that

dictionary learning can overcome the above limitations and significantly im-

prove the performance in several applications including image restoration,42

face recognition43 and object recognition.44,45 In contrast to principal com-

ponent analysis and its variants, dictionary learning algorithms generally
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do not impose orthogonality condition and are more flexible allowing to

be well-tuned to the training data. Moreover, the size of the learned dic-

tionaries are usually smaller than the number of training samples46,47 and

are more appropriated for real-time applications. Dictionary learning al-

gorithms can generally be categorized into two groups: unsupervised and

supervised which are discussed in the following sections.

4.1. Unsupervised dictionary learning

Let X = [x1,x2, . . . ,xN ] ∈ Rn×N be the collection of N (normalized)

training samples. In an unsupervised setting, the dictionary D ∈ Rn×d is

obtained irrespective of the class labels of the training samples by minimiz-

ing of the following reconstructive cost:43

gN (D) ,
1

N

N∑
i=1

lu (xi,D) , (11)

over the regularizing convex set D , {D ∈ Rn×d|‖dk‖`2 ≤ 1,∀k =

1, . . . , d}, where dk is the kth column, or atom, of the dictionary. The

loss lu is defined as

lu (x,D) , min
α∈Rd

‖x−Dα‖2`2 + λ‖α‖`1 , (12)

which is the optimal value of the sparse coding problem. It is usually

preferred to find the dictionary by minimizing an expected risk, rather

than the perfect minimization of the empirical cost for the generalization

purpose.48 A parameter-free online algorithm has also been proposedd41

to find the dictionary D as the minimizer of the following stochastic cost

over the convex set D:

g (D) , Ex [lu (x,D)] , (13)

where it is assumed that the data x is drawn from a finite probability

distribution. The trained dictionary can then be integrated into the SRC

algorithm.

The trained dictionary can also be used for feature extraction. In this

setting, the sparse code α?, generated as a solution of (12), is used as a

latent feature vector representing the input signal x in the classical expected

risk optimization for training a classifier:19

min
w∈W

Ey,x [l (y,w,α?)] +
ν

2
‖w‖2`2 , (14)
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where y is the ground truth class label associated with the input x, w is the

classifier parameters, ν is a regularizing parameter, and l is a convex loss

function that measures how well one can predict y given α? and w. Note

that in Eq. 14, the dictionary D is optimized independent of the classifier

and class label.

4.2. Supervised dictionary learning

The dictionary trained in the unsupervised setting is not optimal for clas-

sification. In a supervised formulation, the class labels can be used to train

a discriminative dictionary. In the most straightforward extension from

the unsupervised setting, the dictionary D∗ can instead be obtained by

learning class-specific sub-dictionaries D∗c , c = 1, . . . , C, in a C-class classi-

fication problem using the formulation of Eq. (13) by sampling the input

from the corresponding c-th class population. The overall dictionary is then

constructed as D∗ = [D∗1 . . .D
∗
C ].43 The C different sub-dictionaries are

trained independently and some of the sub-dictionaries can possibly share

similar atoms that may adversely affect the discrimination performance.

An incoherence term has been proposed to be added to the cost function to

make the derived dictionaries independent.49 In another formulation, a dis-

criminative term is added to the reconstruction error and the overall cost is

minimized.18,50 More recently, it has been shown that better performance

can be obtained by learning the dictionary in a task-driven formulation.19

In the task-driven dictionary learning, the optimal dictionary and classi-

fier parameters are obtained jointly by solving the following optimization

problem:19

min
D∈D,w∈W

Ey,x [lsu (y,w,α?(x,D))] +
ν

2
‖w‖2`2 . (15)

The learned task-driven dictionary has been shown to result in a supe-

rior performance compared to the unsupervised setting.19 In this setting,

the sparse codes are indeed the optimized latent features for the classifier.

While the above dictionary learning algorithms are mostly developed for

single-modal scenarios, it has been shown that learning multimodal dictio-

naries under structured sparsity priors can be beneficial.51,52

5. Results

This section presents the results of target classification on a real data set,

which was generated from field data using one passive infrared (PIR) and
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three seismic sensors. The time-series are classified to predict two targets:

(i) human walking alone, and (ii) animal led by a walking human. These

targets moved along an approximately 150 meters long trail and returned

along the same trail to the starting point; all targets passed by the sensor

sites at a distance of approximately 5 meters. Signals from both PIR and

seismic sensors were acquired at a sampling frequency of 10 kHz and each

test was conducted over a period of approximately 50 seconds. The subset

of data used here consists of two days data. Day 1 includes 47 human targets

and 35 animal-led-by-human targets while the corresponding numbers for

Day 2 are 32 and 34, respectively. A two-way cross-validation is used to

assess the performance of the classification algorithms, i.e., Day 1 data is

used for training and Day 2 is used as test data and vice versa. The reported

results are the average of the results on two different test data sets.

The alphabet size |Σ| for the SDF feature extraction algorithm is chosen

to be 30 as has been reported optimal for target classification in previous

study.9 The regularization parameters, and the dictionary size in cases

where dictionary learning is used, are chosen based on minimizing the clas-

sifications cost on a small validation set.

For TSRC, the tree-structured set of groups is selected to be G =

{g1, g2, g3, g4, g5, g6} = {{1}, {2}, {3}, {1, 2, 3}, {4}, {1, 2, 3, 4}} where 1, 2

and 3 refer to the seismic channels and 4 refers to the PIR channel. The

relative weights for different groups are chosen to satisfy ωg1 = ωg2 = ωg3 =

ωg5 = 0.001ωg4 and ωg6 = 10ωg4 . This leaves the tuning to be done using

only one parameter ωg3 which is selected using validation set. The un-

derlying assumption is that the three seismic channels are correlated and

therefore, the weight for group g4 is selected to be relatively big compared

to the weights for individual seismic sources to encourage joint sparsity

between the three seismic channels. However, the weight for g6 is the

biggest one which encourages collaboration among all sources. Although

the value of correlation between different modalities are different, but the

tree-structured sparsity allows collaboration at different granularities. Af-

ter the relative relations of different weights are selected apriori, the value

of ωg3 is chosen using cross validation. It is noted that the results of the

tree-structured sparsity is not sensitive to the exact values of the weights

and similar results are obtained with different set of weights as long as the

underlying prior information is correctly formulated.

A straightforward way of utilizing the unsupervised and supervised

(single-modal) dictionary learning algorithms for multimodal classification

is to train independent dictionaries and classifiers for each modality and



February 8, 2015 16:49 World Scientific Review Volume - 9in x 6in ”time-series classification” page 13

Sparse Representation for Time-Series Classification 13

then combine the individual scores for a fused decision. The corresponding

algorithms are referred as UDL and SDL. This way of fusion is equivalent

to using the `11 norm on A, instead of `12 norm, in Eq. (7) which does not

enforce row sparsity in the sparse coefficients and is a decision-level fusion

algorithm. The number of dictionary atoms for UDL and SDL is chosen to

be 20, 10 per class, and the quadratic cost19 is used. The dictionaries for

JSRC and JDSRC are constructed using all available training samples.

The performances of the presented classification algorithms under dif-

ferent sparsity priors are also compared with those of the several state-of-

the-art decision-level and feature-level fusion algorithms. For decision level

fusion algorithms linear support vector machine (SVM)20 and logistic re-

gression (LR)20 classifiers are trained on individual modalities and the fused

decision is obtained by combining the score of individual modalities. These

approaches are abbreviated as SVM-Sum and LR-Sum, respectively. The

performance of the algorithms are also compared with feature-level fusion

methods including the holistic sparse representation classifier (HSRC),33

the joint dynamic sparse representation classifier (JDSRC),33 relaxed col-

laborative representation (RCR),38 and multiple kernel learning (MKL).53

The HSRC is a simple modification of SRC for multimodal classification

in which the feature vectors from different sources are concatenated into

a longer feature vector and SRC is applied on the concatenated feature

vectors. JDSRC and RCR are also recently applied to a number of applica-

tions with better performance than JSRC. For the MKL algorithm, linear,

polynomial, and RBF kernels are used.

Table 1 summarizes the average human detection rate (HDR), human

false alarm rate (HFAR), and correct classification rates (CCR) obtained

using different multimodal classification algorithms. As seen, the sparsity

based feature-level fusion algorithm, JDSRC, JSRC, and TSRC have re-

sulted in better performances than the competing algorithms with TSRC

achieving the best classification result. Moreover, it is seen that the struc-

tured sparsity prior has indeed resulted in improved performance compared

to the HSRC algorithm. While the SDL algorithm result in similar perfor-

mance compared to the counterpart HSRC algorithm, it should be noted

that SDL enjoys more compact dictionaries. Developing multimodal dictio-

naries using structured sparsity51 can potentially improve the results which

is a topic of future research.
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HDR HFAR CCR

SVM-Sum 0.94 0.13 91.22%
LR-Sum 0.97 0.13 92.57%

RCR 0.94 0.12 91.22%
MKL 0.94 0.08 93.24%
HSRC 0.96 0.10 93.24%
JSRC 1.00 0.12 94.59%

JDSRC 0.97 0.08 94.59%
TSRC 1.00 0.09 95.65%
UDL 0.92 0.13 89.86%
SDL 0.94 0.08 93.24%

6. Conclusions

This chapter has presented an overview of symbolic dynamic filtering as a

feature extraction algorithm for time-series data. The recent developments

in the area of sparse representation for multimodal classification have also

been presented. For this purpose, structured sparsity priors, which enforce

collaboration across different modalities, are studies. In particular, the tree-

structured sparsity model allows extraction of cross-correlated information

among multiple modalities at different granularities. Finally, unsupervised

and supervised dictionary learning algorithms were reviewed. The perfor-

mances of the discussed algorithms are evaluated for the application of

target classification. The results show that the feature fusion algorithms

using sparsity models achieve superior performance as compared to the

counter-part decision-fusion algorithms. An interesting topic of future re-

search includes development of multimodal dictionary learning algorithms

under different structured sparsity priors.
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