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Abstract Sensor measurements of the state of a system are affected by natural and
man-made operating conditions that are not accounted for in the definition of
system states. It is postulated that these conditions, called contexts, are such that the
measurements from individual sensors are independent conditioned on each pair of
system state and context. This postulation leads to kernel-based unsupervised
learning of a measurement model that defines a common context set for all different
sensor modalities and automatically takes into account known and unknown con-
textual effects. The resulting measurement model is used to develop a
context-aware sensor fusion technique for multi-modal sensor teams performing
state estimation. Moreover, a symbolic compression technique, which replaces raw
measurement data with their low-dimensional features in real time, makes the
proposed context learning approach scalable to large amounts of data from
heterogeneous sensors. The developed approach is tested with field experiments for
multi-modal unattended ground sensors performing human walking style
classification.
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15.1 Introduction

In realistic scenarios with data-driven systems, sensor measurements and their
interpretation are affected by various environmental factors and operational con-
ditions, which we call contexts [1–3]. For example, factors that determine ground
conditions—such as the soil type, moisture content, permeability, and porosity—
form the set of contexts for seismic sensor measurements, because they affect the
propagation of surface and sub-surface seismic waves [4]. A reliable,
high-performance inference engine for pattern recognition, state estimation, etc.,
must therefore be based on a sensor measurement model that takes into account the
effects of the context. For example, in dynamic data-driven application systems
(DDDAS) [5], modeling context helps not only in the information fusion as a part
of the forward problem, but it is also relevant for obtaining the value of information
for selecting relevant sources of information in the inverse problem. However, it is
an often onerous and arbitrary task to identify the context set for every sensing
modality in a multi-sensor team or to develop a physics-based measurement model
that accounts for all contextual effects. This chapter focuses on the forward problem
of multi-modal sensor fusion in the DDDAS framework, and develops a systematic
machine learning method for the context.

The notion of context is task-specific in nature, and often differs across sensing
modalities. For example, research in image processing generally assumes the visual
scene to be the context for object recognition [6]; for natural language processing
tasks such as speech recognition, handwriting recognition, and machine translation,
the intended meaning of an ambiguous word might depend on the text which
precedes the word in question, thus the preceding text would be considered as
context [7]; and, for ubiquitous or mobile computing, the context set consists of the
user location as well as activity attributes [8]. In a multi-sensor operational envi-
ronment, involving both hard and soft sensing modalities, a broad unified notion of
context is needed. This notion should characterize situations in the physical,
electronic, and tactical environments that affect the acquisition and interpretation of
heterogeneous sensor data for machine perception and adaptation. Furthermore, it is
often necessary to iteratively update the belief about the spatio-temporal context
automatically and treat it as a latent variable to be estimated.

Different clustering techniques [1, 9] and mixture modeling methods [10] were
previously developed and used to identify the context set from measurements. In
[1], the authors presented a supervised context learning technique via finding all
maximal cliques from an undirected graph [11, 12]. An unsupervised context
learning approach using the concept of community detection as in social networks
[13] was also presented in [1]. These approaches, however, push the burdensome
task of characterizing the size of the context set to the user, the resulting context set
is different for each modality in the system, and the context model is not suitable for
sequential decision-making and multi-modal fusion problems [3].

The main focus of this chapter is to present an unsupervised context-learning
approach that addresses, or mitigates, the aforementioned issues. This approach is
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based on the postulation that the context of a system, along with the system state,
completely conditions sensor measurements. That is, extending the common, but
often incorrect, assumption that the measurements are conditionally independent
given the system state, we hypothesize that the sensor measurements are inde-
pendent conditioned on the state-context pair. This postulation allows for a defi-
nition of context that is application-specific, and yet uniform across different sensor
modalities. Moreover, the arbitrary nature of clustering and mixture modeling
approaches is avoided through a kernel-based unsupervised context learning, where
the context set and a context-aware measurement model are automatically generated
by the machine. In particular, the machine-generated measurement model auto-
matically guarantees the required conditional independence of sensor measure-
ments, which is crucial for tractable sequential inference.

Aside from sequential inference and multi-modal sensor fusion with heteroge-
neous sensor teams, the developed context-aware measurement model finds
application in the problem of in situ measurement system adaptation for improved
state estimation performance [3]. In addition to cheap, persistent sources of infor-
mation, it allows more expensive, higher-fidelity sensors to be activated and added
to a team of active sensors in a sequential manner. Changes in the sensor team are
tantamount to adjusting decision boundaries in accordance with the contextual
interpretation of data, and to exploiting the expected complementarity between
available and new sensor measurements, in order to optimally trade off the accuracy
of situation assessment against the cost of sensor activation. Realistic scenarios in
multi-modal surveillance, health monitoring, target localization, etc., can employ
these context-aware techniques for improved system performance. In this work, the
context-aware decision-making framework in which the forward process leads to
state estimation and the inverse process involves measurement system adaptation
was developed as a dynamic data-driven application system (DDDAS) [5] and a
schematic view of the system is shown in Fig. 15.1.

In order for the overall system to handle large amounts of data from multiple
sources in real time, raw measurements are normally replaced with their

Fig. 15.1 Schematic of a dynamic data-driven application system (DDDAS) with in situ,
context-aware, sequential decision-making
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low-dimensional features, which are in the form of probabilistic finite state auto-
mata (PFSA) and their synchronous compositions and cross machines; otherwise,
the context learning algorithm and resulting measurement model remain valid.
A realistic numerical example verifies the effectiveness of the context learning and
context-aware sensor fusion approaches in combination with the PFSA feature
extraction technique.

The organization of this chapter is as follows. Section 15.2 mathematically
formalizes the notion of context, presents an approach to automatically identify the
context set from heterogeneous sensor data, and shows a context-aware technique
that can be used for sequential and multi-modal information fusion and decision
adaptation. Section 15.3 presents powerful tools for extracting, refining, and
combining features from data. These tools enable the application of the
context-aware approach in Sect. 15.2 to realistic situations. A realistic numerical
example in Sect. 15.4 assesses the performance of the proposed approach. Lastly,
concluding remarks are made in Sect. 15.5.

15.2 Context Learning

Existing context modeling techniques [1, 9, 10] do not guarantee that the mea-
surement sequences from a single or multiple sensors are conditionally independent
given the system state and context pair. The inability to guarantee conditional
independence of measurements limits the applicability of these techniques in
sequential analysis and decision-making. In this section, we mathematically for-
malize the notion of context and present a context-learning approach that auto-
matically guarantees conditional independence of measurements.

15.2.1 Mathematical Formalization of Context

Let S be a nonempty finite set of sensors, possibly with different modalities, and let
X be the random system state that takes values in a finite set X . For each sensing
modality s 2 S, let Y(s) be the random measurement, or the feature vector obtained
as in Sect. 15.3, associated with the observation of the system state X from sensor
s. Before introducing a modality-independent context notion suitable for unsuper-
vised, machine-generation of the context set, let us present a modality-specific
context definition, and context types (i.e., intrinsic and extrinsic contexts), that are
suitable for supervised learning.

Definition 1 (Context Elements) For each s 2 S, let LðsÞ be a nonempty finite set
of labels. Each element of LðsÞ is called a context element. Every context element is
a natural or man-made physical phenomenon, which is relevant to the sensing
modality s used to observe the system state. It is assumed that the context elements
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are enumerated in LðsÞ in such a way that no two elements can occur
simultaneously.

The assumption in this definition is not restrictive. If it is possible for two
context elements l and m to occur simultaneously, then a new context element
k representing l and m occurring together can be added to LðsÞ. For s 2 S and
l 2 LðsÞ, let p Y sð ÞjX; lð Þ be the probability density of sensor measurements of
modality s for the state X under a given context element l.

Definition 2 (Extrinsic and Intrinsic Subsets of Contexts) For s 2 S, a nonempty
set ~C�LðsÞ is called extrinsic relative to the state X ¼ x and its measurement
Y sð Þ ¼ y if

pðyjx; lÞ ¼ pðyjx;~lÞ for all l;~l 2 ~C:

Otherwise, the set ~C is called intrinsic relative to the state X = x and its mea-
surement Y(s) = y.

It is sometime impractical to precisely distinguish extrinsic context elements
from intrinsic ones. If the observation densities are overlapping and very close to
each other under different context elements, then it is deduced that these context
elements have nearly the same effect on the sensor data. Thus, an alternative
approach is to obtain sets of context elements that are approximately indistin-
guishable for a given threshold parameter ɛ > 0 and a metric d(·,·) on the space of
observation densities, and let them define contexts.

Definition 3 (Modality-Specific Context and Context Set) For s 2 S and x 2 X , let
Cðs; xÞ be a set cover of LðsÞ. Then, the collection Cðs; xÞ is called a context set and
each (nonempty) set cðs; xÞ 2 Cðs; xÞ is called a context provided that c s; xð Þ is a
maximal set satisfying the following condition:

dðpðYðsÞ j x; lÞ; pðYðsÞ j x;mÞÞ\e for all l; m 2 cðs; xÞ:

In order to obtain a context set Cðs; xÞ based on Definition 3, the set LðsÞ of all
context elements must be known a priori, in which case a supervised context
modeling approach [1] can be used to reduce the problem of context learning to that
of finding all maximal cliques in an undirected graph [11]. However, in many cases,
the set LðsÞ is unknown, and thus unsupervised context modeling techniques must
be used to directly obtain Cðs; xÞ from the data. In [1], a fast community detection
algorithm for social networks [13] was used for unsupervised extraction of context.
The resulting context sets are modality-specific as in Definition 3.

The rest of this subsection is aimed at presenting an alternative definition of
contexts, which facilitates learning a unified, modality-independent, context set
from a multi-modal sensor set [14]. This approach of context learning does not need
a defined set of context elements and thus it is an unsupervised way of context
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modeling. Let Y1 ¼ Y s1ð Þ and Y2 ¼ Y s2ð Þ be random measurements of the state
X from sensors s1, s2 2 S. Let p Y1; Y2jXð Þ denote the joint likelihood function of
the pair Y1; Y2ð Þ. For i ¼ 1; 2; let pi YijXð Þ denote the marginal likelihood function
of Yi. A common practice in sequential, statistical inference tasks is to assume, for
the sake of convenience, that the measurements are statistically independent con-
ditioned on the state [15]. Clearly, this assumption is incorrect unless the state
X completely determines all factors that condition the measurements. That is, in
general, we have

pðY1; Y2 jXÞ 6¼ p1ðY1 jXÞp2ðY2 jXÞ:

For example, two seismic sensor measurements in binary location testing are
expected to be correlated, even if they are conditioned on the true location of a
target, because the location alone does not specify the target type, soil conditions
(e.g., moisture and porosity), etc., that affect seismic sensor measurements.

Therefore, we define the context as a parameter that, together with the system
state, completely conditions the measurements.

Definition 4 (Context and Context Set) Suppose that the measurements Y1 and Y2
take values in Y1 and Y2, respectively. Suppose that the state X takes values from a
finite set X . Then, a nonempty finite set CðXÞ is called the context set and each
element c 2 CðXÞ of the set is called a context, if the measurements Y1 and Y2 are
mutually independent conditioned on the state-context pair x; cð Þ for all x 2 X and
for all c 2 CðXÞ.

According to this definition, the following relation holds:

pðY1; Y2 jX; cÞ ¼ p1ðY1 jX; cÞp2ðY2 jX; cÞ for all c 2 CðXÞ: ð15:1Þ

Here, the left-hand side of (15.1) denotes the conditional density of (Y1; Y2) given
(X; c), and the right-hand side gives the product of conditional densities of Y1 and
Y2 given (X; c). It is now of interest to generate a context set CðxÞ for each x 2 X , so
that (15.1) holds.

15.2.2 Learning Context-Aware Measurement Models

A novel machine learning approach to identifying contexts and determining their
prior probabilities (which reflect one’s prior knowledge about the true context) in a
modality-independent manner is described in this subsection (See [14] for more
details). The resulting model treats the context as a random variable and explicitly
takes into account the effect of contexts on sensor measurements. The task of
identifying all contexts is done by the machine in an unsupervised setting, and thus
the extracted contexts need not have a human-understandable meaning associated
with them.
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15.2.2.1 Mathematical Formulation

Let p(Y1, Y2 | X) denote the joint density of the pair (Y1, Y2) conditioned on the state
X; for i = 1, 2, let pi(Yi | X) denote the marginal density of Yi conditioned on X. The
measurement modeling problem that we are concerned with is to estimate these
conditional densities, called likelihood functions, based on a training sample con-
sisting of realizations of the triple (Y1, Y2, X). In view of Definition 4, a
context-aware measurement model gives a likelihood function of the form

pðY1; Y2jXÞ ¼
X

c2CðXÞ
pcðXÞpðY1; Y2jX; cÞ

¼
X

c2CðXÞ
pcðXÞp1ðY1jX; cÞp2ðY2jX; cÞ;

ð15:2Þ

where πc(X) is the prior probability that, conditioned on the state X, the true context
is c. It is immediate from (15.2) that the marginal likelihoods are given as

piðYijXÞ ¼
X

c2CðXÞ
pcðXÞpiðYijX; cÞ for i ¼ 1; 2:

In general, it is a difficult task to identify a nontrivial context set and a probability
distribution on it, so that the prior information about all possible contexts is cor-
rectly represented by the measurement model. This task is addressed using a special
type of mixture models, where each component density is a product of marginal
component densities. For example, Gaussian mixture models with block diagonal
covariance matrices are of this type. More specifically, we propose that mixture
models of the form (15.2) be used conditioned on the state X, where the context set
CðxÞ is finite for all x 2 X :

CðXÞ ¼ f1; 2; . . .;NðXÞg: ð15:3Þ

Conditioned on the state X, the latent variable plays the role of a machine-defined
context variable C that takes values in CðXÞ and satisfies the conditional inde-
pendence requirement (15.1) by construction. Here, N(X) is the cardinality of the
finite context set CðXÞ.

15.2.2.2 Kernel-Based Approach

If the marginal component densities pi(Yi | X, C) are assumed Gaussian, then the
expectation maximization algorithm [16] or the variational Bayesian method [17]
can be used to obtain a mixture model of the form (2). In this case, the number of
contexts N(x) may be determined for each state value x 2 X based on a model
selection criterion such as the Akaike and Bayesian information criteria [18, 19].
Alternatively, a Dirichlet process prior can be put over N(X) and then a Gaussian
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mixture density model can be estimated together with the optimal number of
component densities [20]. However, these parametric estimation approaches do not
scale up to high-dimensional measurement spaces, especially with small sample
sizes, and also their applicability is limited to Gaussian component densities.

We suggest that a kernel-based nonparametric method be used to overcome this
limitation. A kernel function defines an inner product on an implicit, possibly
infinite-dimensional, feature space. The standard topology of such a feature space is
that of the reproducing kernel Hilbert space induced by a (continuous) Mercer
kernel [21, 22]. On the other hand, it is shown in [23] that, if one uses a discon-
tinuous kernel, the resulting feature space can be taken to be the space l2 (of
square-summable sequences) endowed with its weak topology [24]. Let K :

ðY1 � Y2Þ2 ! R be a kernel function of the form

K
s1
s2

� �
;

y1
y2

� �� �
¼ K1ðs1; y1ÞK2ðs2; y2Þ; ð15:4Þ

with Z
Yi

Kiðsi; ziÞdzi ¼ 1 for i ¼ 1; 2 and si; yi 2 Yi: ð15:5Þ

Then, conditioned on the state X, a support-vector regression method [25, 26] with
the kernel K leads to a mixture model of the form

pðY1; Y2jXÞ ¼
XNðXÞ
c¼1

pcðXÞK1ðsðcÞ1 ðXÞ; Y1ÞK2ðsðcÞ2 ðXÞ; Y2Þ ð15:6Þ

where (s1
(c)(X), s2

(c)(X)), c = 1, …, N(X), are the support vectors chosen by the
machine from the available data, and the number of support vectors N(X) can be
controlled by tuning the underlying insensitivity factor [27]. Note that, with (15.3)
and

KiðsðCÞi ðXÞ; YiÞ ¼ piðYi jX;CÞ for i ¼ 1; 2; ð15:7Þ

the kernel-based model (15.6) leads to a mixture model of the desired form (15.2)
and the support vectors can be taken to be the machine-defined contexts, provided
that the following extra constraints are satisfied in addition to (15.4) and (15.5):

XNðXÞ
c¼1

pcðXÞ ¼ 1; pcðXÞ� 0; c ¼ 1; . . .;NðXÞ: ð15:8Þ

410 N. Virani et al.



15.2.2.3 Support Vector Density Estimation

For the purpose of learning a context-aware measurement model, support vector
regression has a clear advantage over other nonparametric approaches like the
Parzen density estimation method [28]. Depending on the insensitivity factor uti-
lized in support vector regression, it is possible that only a few key data points
contribute to the density estimate and become the support vectors, resulting in a
sparse representation without much loss in accuracy. Support vector density esti-
mation (SVDE) [29, 30] is a version of the support vector regression method
appropriate for our purpose. Since the cumulative distribution of (Y1, Y2) condi-
tioned on X is unknown at the outset, one cannot directly estimate the likelihood
function. Instead, one approximates the cumulative distribution function with its
empirical approximation formed by the sample of measurements
(y1

(1), y2
(1)), …, (y1

(L), y2
(L)) available for the given value of X [29]. For example, if

Y1 ¼ Y2 ¼ R, then the true distribution F and the empirical distribution eF are

Fðy1; y2jXÞ ¼
Zy1
�1

Zy2
�1

pðz1; z2jXÞdz1dz2;

eFðy1; y2jXÞ ¼ 1
L

XL
j¼1

hðy1 � yðjÞ1 Þhðy2 � yðjÞ2 Þ;

where h(·) is the unit step function. In order for the empirical distribution to be a
consistent estimator of the true distribution (i.e., for the convergence of eF to F as
the sample size L tends to infinity), it is assumed in the literature that the available
data (y1

(1), y2
(1)), …, (y1

(L), y2
(L)) form an i.i.d. sample of the pair (Y1, Y2) conditioned

on X [29]. Note that this assumption is a reasonable one even if Y1 and Y2 are
correlated conditioned on X.

For simplicity, assume Y1 ¼ Y2 ¼ R. Let G = (Gij) be a matrix whose entry
(i, j) is

Gij ¼ K1ðyðiÞ1 ; yðjÞ1 ÞK2ðyðiÞ2 ; yðjÞ2 Þ

for i, j = 1, …, L. Let

eFi ¼ eFðyðiÞ1 ; yðiÞ2 jXÞ;

Kij ¼
ZyðiÞ1
�1

ZyðiÞ2
�1

K1ðyðjÞ1 ; z1ÞK2ðyðjÞ2 ; z2Þdz1dz2
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for i, j = 1, …, L. Then, taking note of the extra constraint (15.8), and introducing
an insensitivity factor σ > 0, our SVDE problem is translated to the following
constrained optimization problem:

Minimize the cost

pTGp

over column vectors π = (πi) subject to the constraints

eFi �
XL
j¼1

pjKij

�����
������ r;

pi � 0;
XL
j¼1

pj ¼ 1; i ¼ 1; . . .; L:

Matrix G is symmetric and positive definite, and thus this is a convex opti-
mization problem with a quadratic cost function and affine constraints. If the
problem is feasible, then a unique solution is guaranteed. If there are a few kernel
parameters to be tuned, then the admissible set of these parameters is identified by
checking the feasibility of the problem. One can perform a grid search over this
admissible set to find the parameters that minimize the cost function. Conditioned
on X, the set of support vectors obtained by solving the above optimization problem
is the context set. The product form of the kernel guarantees conditional inde-
pendence of Y1 and Y2 given X for each support vector.

15.2.2.4 Extension to Multiple Measurements

It is straightforward to extend the proposed approach to the case of M( > 2) sensor
measurements. In this case, the context-aware measurement model (15.2) becomes

pðY1; . . .; YM jXÞ ¼
X

c2CðXÞ
pcðXÞpðY1; . . .; YM jX; cÞ

¼
X

c2CðXÞ
pcðXÞ

YM
k¼1

pkðYk jX; cÞ;

and its kernel-based approximation (15.6) will be of the form

pðY1; . . .; YM jXÞ ¼
XNðXÞ
c¼1

pcðXÞ
YM
k¼1

KkðsðcÞk ðXÞ; YkÞ:

As in the case of M = 2, these equations are related via (15.3) and (15.7).
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15.2.3 Context-Aware In Situ Decision Adaptation

In this subsection, an in situ decision adaptation scheme with multi-modal sensor
fusion and sensor selection is proposed as a major application of the context-aware
measurement model. The key enabler of the proposed application system is that the
measurement model guarantees the conditional independence of sensor measure-
ments given the state and context of the system.

15.2.3.1 Context-Aware Sensor Fusion for Multi-Sensor Teams

In the context-aware sensor fusion approach, the following relation holds for
multi-sensor teams with M (possibly heterogeneous) measurements:

pðY1; . . .; YM jX;CÞ ¼
YM
i¼1

piðYi jX;CÞ:

If the state space X is finite, then the following sequential update rule for the
posterior distribution of the state-context pair (X, C) is used:

PðX;CjY1; . . .; Yi�1; YiÞ ¼ piðYijX;CÞPðX;CjY1; . . .; Yi�1ÞP
x2X
P

c2CðxÞ piðYijx; cÞPðx; cjY1; . . .; Yi�1Þ ð15:9aÞ

for i = 2, 3, …, M, where

PðX;C j Y1Þ ¼ p1ðY1jX;CÞpCðXÞPðXÞP
x2X
P

c2CðxÞ p1ðY1jx; cÞpcðxÞPðxÞ
: ð15:9bÞ

This update rule plays a crucial role in sequential inference and decision-making
problems. In a sequential state estimation problem, for instance, one keeps track of
the posterior probability of the state-context pair P(X, C | Y1, …, Yi), updates it to
PðX;CjY1; . . .; Yi; Yiþ 1Þ as a new sensor measurement Yi+1 becomes available, and
marginalizes out the context variable to obtain the posterior probability of the state
PðX j Y1; . . .; Yi; Yiþ 1Þ, from which an updated state estimate can be deduced.

15.2.3.2 Multi-Modal Context-Aware Sensor Team Formation

Suppose now that a set of sensors of possibly different modalities are available for
the purpose of sequential state estimation, where the state space X is finite. Some of
these sensors are of high fidelity and generate quality measurements under most
contexts, but are costly and need more computational power for operation. On the
other hand, some of the sensors are inexpensive to operate, but yield relatively poor
measurements. Sensor fidelity, however, is a relative measure. Under some
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contexts, low-cost sensor measurements can be effective and show good reliability;
likewise, sensors that are generally of high quality can be cost-ineffective and/or
unreliable depending on the context. For example, while an inexpensive acoustic
sensor on a calm summer day can give good human-vehicle classification results, an
expensive camera may not be very useful in poor visibility conditions.

A dynamic sensor team formation framework was proposed in [3]. It integrates
the aforementioned contextual effects and their impact on hypothesis testing per-
formance in a systematic manner using dynamic programming. In this framework,
the number and types of selected sensors are determined in a data-driven fashion in
order to achieve an optimal compromise over estimation performance, cost effec-
tiveness, and contextual awareness. The state as well as the context is assumed to be
fixed and unknown and the aim of the sensor team is to estimate the state. The
dynamic sensor selection framework enables us to sequentially select sensors and
sample their measurements until either sufficient information about the state is
gathered or adding an additional sensor is deemed too costly. What makes this
framework unique is that the measurement model avoids, without significantly
increasing computational burden, the often incorrect assumption that the mea-
surements are independent conditioned on the state. Further details beyond the early
conference presentation in [3] are currently being developed and will appear
elsewhere.

15.3 Semantic Information Representation
of Multi-Modal Signals

This section develops an efficient approach to extract low-dimensional features
from heterogeneous signals. This approach facilitates the real-time applicability of
the context-aware measurement and fusion models introduced in the previous
section. PFSA, along with their Hilbert space framework, form the basis for the
approach.

15.3.1 Structure of Probabilistic Finite State Automata

The generative, low-dimensional model to be discussed in this section is the
probabilistic finite state automaton (PFSA). The rationale for having the PFSA
structure as a semantic model, as opposed to other models such as hidden Markov
models (HMM) [31], is that, in general, PFSA is easier to learn and may also
perform better in practice. For example, experimental results [32] show that the
usage of a PFSA structure could make learning of a pronunciation model for spoken
words to be 10–100 times faster than a corresponding HMM, and yet the perfor-
mance of PFSA is slightly better. Rao et al. [33] and Bahrampour et al. [34] have
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shown that the performance of PFSA-based tools for feature extraction in statistical
pattern recognition is comparable, and often superior, to that of other existing tools
such as Bayesian filters, artificial neural networks, and principal component anal-
ysis. This leads to a very wide usage of PFSA in many areas such as pattern
classification [35, 36] and anomaly detection [37, 38].

In formal language theory, an alphabet Σ is a (non-empty finite) set of symbols.
A string s over Σ is a finite-length sequence of symbols in Σ. The length of a string
s, denoted by |s|, represents the number of symbols in s. The Kleene closure of Σ,
denoted by RI, is the set of all finite-length strings including the null string ɛ; the
cardinality of RI is ℵ0. The set Σω denotes the set of all strictly infinite-length
strings over Σ; the cardinality of Σω is ℵ1. See [39, 40] for more details. The
following is a formal definition of the PFSA.

Definition 5 (PFSA) A probabilistic finite state automaton is a tuple
G = (Q, Σ, δ, q0, Π), where

• Q is a (nonempty) finite set, called the set of states;
• Σ is a (nonempty) finite set, called the input alphabet;
• δ : Q × Σ → Q is the state transition function;
• q0 ∊ Q is the start state;
• π : Q × Σ → [0, 1] is an output mapping which is known as a probability morph

function and satisfies the condition
P

r2R pðqj; rÞ ¼ 1 for all qj ∊ Q. The morph
function π has a matrix representation Π, called the (probability) morph matrix
Πij = π(qi, σj), qi ∊ Q, σj ∊ Σ.

Note that Π is a |Q|-by-|Σ| stochastic matrix; i.e., each element of Π is non-
negative and each row sum of Π is equal to 1. While the morph matrix defines how
a state sequence leads to a string of symbols, a PFSA gives rises to another
stochastic matrix that defines how state sequences are formed. That is, every PFSA
induces a Markov chain.

Definition 6 (State Transition Probability Matrix) Associated with every PFSA
G = (Q, Σ, δ, qi, Π) is a |Q|-by-|Q| stochastic matrix P, called the state transition
(probability) matrix, which is defined as follows:

Pjk ¼
X

r:dðqj;rÞ¼qk

pðqj; rÞ:

We are only interested in PFSA where all states are reachable (or accessible)
from the initial state q0. In particular, we focus on the following class of PFSA:

A ¼ fðQ;R; d; q0;PÞ : pðq; rÞ[ 0 for all q 2 Q and for all r 2 Rg:
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We say that two PFSA are structurally similar if their graph representations have
the same connectivity. Structurally similar PFSA only differ in the probabilities on
the directed edges.

Definition 7 (Structural Similarity) Two PFSA Gi ¼ ðQi;R; di; q
ðiÞ
0 ;PiÞ

2 A; i ¼ 1; 2, are said to be structurally similar if Q1 = Q2, q0
1 = q0

2, and
δ1(q, σ) = δ2(q, σ) for all q ∊ Q1 and for all σ ∊ Σ.

One can always bring two arbitrary PFSA into the common structure without
loss of information by composing the two PFSA in a time-synchronous manner.

Definition 8 (Synchronous Composition) [35] The synchronous composition

G1 ⊗ G2 of two PFSA Gi ¼ ðQi;R; di; q
ðiÞ
0 ;PiÞ 2 A; i ¼ 1; 2, is defined as

G1 � G2 ¼ ðQ1 � Q2;R; d
0; ðqð1Þ0 ; qð2Þ0 Þ;P0Þ;

where

d0ððqi; qjÞ; rÞ ¼ ðd1ðqi; rÞ; d2ðqj; rÞÞ;
P0ððqi; qjÞ; rÞ ¼ P1ðqi; rÞ

for all qi ∊ Q1, qj ∊ Q2, and σ ∊ Σ.
It was shown in [35] that G1 ⊗ G2 and G2 ⊗ G1 describe the same stochastic

process as G1 and G2, respectively, and yet G1 ⊗ G2 and G2 ⊗ G1 are structurally
similar. Synchronous composition is an efficient procedure for fusing the infor-
mation contents of individual PFSA into a single PFSA representation. It is,
however, limited to PFSA sharing a common alphabet.

15.3.2 Hilbert Space Construction

This subsection describes the construction of a PFSA Hilbert space, which allows
algebraic manipulations and comparison of PFSA. The space A of PFSA is a
vector space with vector addition ⊕ and scalar multiplication 	 defined as follows.

Definition 9 [40] For Gi ¼ ðQ;R; d; q0;PiÞ 2 A; i ¼ 1; 2 and for k 2 R, define
operations ⊕ and 	 as

• G1 
 G2 ¼ Q;R; d; q0;Pð Þwhere

pðq; rÞ ¼ p1ðq; rÞp2ðq; rÞP
a2R p1ðq; aÞp2ðq; aÞ

; ð15:10aÞ

• k 	 G1 ¼ ðQ;R; d; q0;P0Þ where
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p0ðq; rÞ ¼ ðp1ðq; rÞÞkP
a2Rðp1ðq; aÞÞk

: ð15:10bÞ

Theorem 1 [40] The triple ðA;
;	Þ forms a vector space over the real field R.
In addition, the space RI is measurable. A probability measure on RI leads to a

definition of inner product.

Definition 10 (Measure μ) [40] The triple ðRI; 2R
I

; lÞ forms a measure space,

where l : 2R
I ! ½0; 1� is a finite measure satisfying the following:

• lðRIÞ ¼ 1;
• lðS1

k¼1 skf gÞ ¼P1
k¼1 l fskgð Þ for all sk 2 RI:

For each PFSA G ¼ ðQ;R; d; q0;PÞ 2 A, denote the row vector of the morph
matrix Π for a particular state qi by Πi, so that Πi is a probability vector with |Σ|
components. Denote the componentwise natural logarithm of Πi by

f ðPiÞ ¼ logPi1 � � � logPijRj
� �

for i ¼ 1; . . .; jQj:

Define g : RjRj ! R
jRj�1 by

gðxÞ ¼ x� 1
jRj
XjRj
i¼1

xi

 !
1jRj for x 2 R

jRj;

where 1|Σ| denotes the vector in R
jRj whose components are all equal to 1. Then,

overload the composition F ¼ g � f on the stochastic matrix as

FðPÞ ¼
FðP1Þ

..

.

FðPjQjÞ;

264
375

and define the set

H ¼ fðQ;R; d; q0;KÞ : ðQ;R; d; q0;PÞ 2 A;K ¼ FðPÞg:

It is readily seen that the sets H and A are isomorphic to each other. According to
(10), the linear operations on A involve normalization steps. We can avoid these
steps if we work on H instead. The space H turns out to be a Hilbert space with
inner product defined as follows.
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Proposition 1 For any hi ¼ ðQ;R; d; q0;KiÞ 2 H, i = 1, 2, we have

• h1 þ h2 ¼ ðQ;R; d; q0;K1 þK2Þ;
• k � h1 ¼ Q;R; d; q0; kK1ð Þ:

Proposition 2 The function h�; �i : H�H ! R defined by

hh1; h2i ¼
XjQj
j¼1

lðqjÞhK1
j ;K

2
j i for hi ¼ ðQ;R; d; q0;KiÞ 2 H; i ¼ 1; 2;

is an inner product on H.
The Hilbert space–structure of the space of PFSA makes it possible to speak of

comparison, reduction, refinement, etc., of PFSA, which are essential operations for
ensuring the scalability of PFSA-based features to data size.

15.3.3 Extension to Cross Machines

The construction in the previous subsection naturally extends to cross machines.
Cross machines are obtained from two symbol sequences s1 and s2 associated with
two different sensors, possibly of different modalities, and capture the symbol-level
cross-dependence of sensor measurements.

Definition 11 (Cross Machine) The cross machine of two sensor measurements is
defined as Q;R1;R2; d; q0;Wð Þ; where
• Q is a (nonempty) finite set, called the set of states;
• R1 is a (nonempty) finite set, called the alphabet of sensor 1;
• R2 is a (nonempty) finite set, called the alphabet of sensor 2;
• d : Q� R1 ! Q is the state transition function;
• q0 2 Q is the start state;
• w : Q� R2 ! 0; 1½ � is the output morph function satisfying the conditionP

r2R2
wðqj; rÞ ¼ 1 for all qj ∊ Q. The output morph function ψ has a matrix

representation Ψ, called the output (probability) morph matrix
Wij ¼ w qi; rj

	 

; qi 2 Q; rj 2 R2:

One can define a Hilbert space of cross machines as well. Define

R ¼ fR ¼ ðQ;R1;R2; d; q0;WÞ : wðq; rÞ[ 0 for all q 2 Q and all r 2 R2g:

We will focus on the cross machines in R.

Definition 12 (Synchronous Composition) The synchronous composition R1 � R2

of two cross machines Rj ¼ ðQj;R1;R2; dj; q
ðjÞ
0 ;WjÞ 2 R; j ¼ 1; 2; is defined as

418 N. Virani et al.



R1 � R2 ¼ ðQ1 � Q2;R1;R2; d
0; ðqð1Þ0 ; qð2Þ0 Þ;W0Þ;

where

d0ððqi; qjÞ; rÞ ¼ ðd1ðqi; rÞ; d2ðqj; rÞÞ
W0ððqi; qjÞ; sÞ ¼ W1ðqi; sÞ

for all qi ∊ Q1, qj ∊ Q2, σ ∊ Σ1, and τ ∊ Σ2.
This definition ensures that R1 ⊗ R2 is a non-minimal realization of R1, and that

R1 ⊗ R2 and R2 ⊗ R1 describe the same process. This also implies that, without loss
of generality, we can consider structurally similar cross machines that only differ in
their output morph matrices. As in Sect. 3.2, one can obtain a space H isomorphic
to R by considering a mapping Ψ ↦ K that involves the logarithm of the output
morph matrix, and then by defining the inner product of two cross machines as in
Propositions 3.2 and 3.2. See [39, 40] for more details.

15.3.4 PFSA Feature Extraction: Construction
of D-Markov Machine

This subsection briefly describes the procedure for constructing PFSA features from
time series data. More details can be found in [38, 41].

15.3.4.1 Symbolization of Time Series

Time series data, generated from a physical system or its dynamical model, are
symbolized by using a partitioning tool—e.g., maximum entropy partitioning
(MEP)—based on an alphabet Σ whose cardinality |Σ| is finite. MEP maximizes the
entropy of the generated symbols, where the information-rich portions of a data set
are partitioned finer and those with sparse information are partitioned coarser. That
is, each cell contains (approximately) equal number of data points under MEP. The
choice of |Σ| largely depends on the specific data set and the trade-off between the
loss of information and computational complexity.

15.3.4.2 D-Markov Machine Construction

A D-Markov Machine is a special class of PFSA [38], where a state is solely
dependent on the most recent history of at most D symbols, where the positive
integer D is called the depth of the machine. That is, each state of a D-Markov
Machine is a string of D symbols, or less, in alphabet Σ. In general, we have |
Q| = |Σ| when D = 1, and |Q| ≤ |Σ||D| for D ≥ 1.
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The construction procedure for D-Markov Machines consists of two major steps;
namely, state splitting and state merging. In general, state splitting increases the
number of states to achieve more precision in representing the information content
in the time series. Conceptually, state splitting should reduce the entropy rate,
thereby, focusing on the critical states (i.e., those states that carry more informa-
tion). On the other hand, state merging is the process of combining the states, often
resulting from state splitting, that describe similar statistical behavior. The simi-
larity of two states, q; q0 2 Q, is measured in terms of the conditional probabilities
of future symbol generation. A combination of state splitting and state merging is
performed in order to trade off information content against feature complexity, and

leads to the final form of the D-Markov Machine, possibly with jQj
 jRjjDj.

15.3.4.3 Feature Extraction

Once a D-Markov Machine is constructed based on quasi-stationary time series
data, the associated state probability vector is computed by frequency counting. Let
N(q) be the number of times state q ∊ Q occurs in the state sequence associated with
the constructed D-Markov Machine. Then the probability of state q is estimated as

bPðqÞ ¼ 1þNðqÞ
jQj þ P

q02Q
Nðq0Þ for all q 2 Q:

The resulting vectors bPðqjÞ can be used as stationary features representing the
sensor measurements for statistical inference and decision-making purposes. These
feature vectors serve the role of low-dimensional versions of raw data. That is, they
replace all the sensor measurements Y1,…, YM (in the case of a team of M sensors)
that appear in Sect. 15.2.

15.4 Experiments and Results

The methods presented in Sect. 15.2 for context learning, and in Sect. 15.3 for
multi-modal feature extraction, were validated using a binary target classification
scenario. The details are presented in this section.

15.4.1 Experimental Scenario and Data Collection

The experiment aims to identify the walking gait of a human target and classify it as
normal walking or stealthy walking. The dataset used in this work was collected in
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a field experiment conducted with the U.S. Army Research Lab. There were in total
160 observations, each collected at 4 kHz for 10 s; i.e., 40,000 data points in a time
series. For each observation, the following 4 sensors recorded measurements at
different locations: one passive infrared (PIR) sensor, one acoustic sensor, and two
seismic sensors. These sensors are shown in Fig. 15.2.

Out of total 160 observations, there were 80 observations under each hypothesis.
Hypothesis 1 (i.e., X = 1) corresponds to the event of a human walking with a
normal gait, and hypothesis 2 (i.e., X = 2) corresponds to a human walking with a
stealthy gait. Typical signals from the 4 sensors under each hypothesis are shown in
Fig. 15.3. Out of the 80 samples for each hypothesis, 40 samples were collected in a
region which had moist soil, and 40 samples in another region which had gravel
soil. The response of the seismic sensors was affected by different soil conditions. If
soil conditions at the sensor deployment site are unknown at the outset, then context
estimation and context-aware pattern classification become important tools for
measurement system modeling.

15.4.2 Data Preprocessing and Feature Extraction

In the signal preprocessing step, each time-series signal is down-sampled by a
factor of 4 to give a time series of 10,000 data points. The DC component (i.e., the
constant offset) of a seismic signal was eliminated by subtracting the average value,
resulting in a zero mean signal. Then, the signal was partitioned using the MEP
approach with a symbol size of 7. The maximum number of allowable states was
varied, and the classification performance on a validation test set was found under
each hypothesis using individual sensors. This process was repeated three times to
obtain average error. The number of states was then chosen to be 10 for the PIR
sensor and 14 for other sensors, as these numbers resulted in the minimum average
error. After partitioning, symbolization was done and the feature vectors were
extracted as explained in Sect. 15.3. The feature vectors constructed in this fashion
replace the (down-sampled) raw sensor measurements for the purpose of target
classification.

Fig. 15.2 Sensors used in the experiment. a PIR, b acoustic and c seismic
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15.4.3 Performance Assessment

We now compare the following two approaches:

1. Naïve Bayes approach. This is the usual approach, where the sequential mea-
surements are assumed to be independent conditioned on the state.

2. Context-aware approach. This is the proposed approach, where the sequential
measurements are assumed to be independent conditioned on the state-context
pair and the context is allowed to be dependent on the state.

The naïve Bayes approach assumes

pðY1; . . .; YM jXÞ ¼
YM
i¼1

piðYi jXÞ;

and so, as new measurements are being sampled sequentially, updates the posterior
distribution of X via the standard update rule given by

Fig. 15.3 Typical signals from the sensors used in the experiment
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PðX j Y1Þ ¼ p1ðY1 jXÞPðXÞP1
x¼0 p1ðY1 j xÞPðxÞ

and

PðX j Y1; . . .; Yi�1; YiÞ ¼ piðYi jXÞPðX j Y1; . . .; Yi�1ÞP1
x¼0 piðYi j xÞPðx j Y1; . . .; Yi�1Þ

for i = 2, 3, M, where P(x) is the prior probability that X = x. The marginal
likelihood pi(Yi | X) for each i is estimated by computing the sample mean and
sample covariance from the available data.

The context-aware approach fuses the information from sequential multi-modal
measurements using the context-aware sensor fusion rule given in (15.9a, b). The
context set CðXÞ; as given in Definition 4, is constructed from Sect. 15.2.2.3.
The SVDE approach has one user-defined parameter σ > 0 and also the kernel
parameters can be chosen suitably. It was found that the results were sensitive to the
choice of kernel parameters and the results shown here are not for the optimal
choice of these parameters. The dataset was partitioned into randomly drawn
training (75 %) and test (25 %) sets. The partitioning of the dataset was repeated 10
times and the overall classification performance is reported below. The D-Markov
Machine construction-based feature extraction technique, as shown in Sect. 15.3.4,
was used for extracting features from the sensor time-series data. Assuming that the
D-Markov Machine feature vector from each modality has a multi-variate Gaussian
distribution, the context-aware approach shows a 10.98 % error and the naïve Bayes
approach gives 14.39 % error. Thus, the context-aware approach yields a 24 %
reduction in classification error over that of the naïve Bayes approach. See
Table 15.1 for a summary of the result.

Table 15.1 Confusion
matrix result for target
walking-type classification

(a) Naïve Bayes approach (Acc: 85.61 %)

X 1 2

1 191 50

2 9 160

(b) Context-aware approach σ = 0.01, γ = 0.01
(Acc: 89.02 %)

X 1 2

1 184 29

2 16 181

(c) Context-aware approach σ = 0.01, γ = 0.05
(Acc: 88.29 %)

X 0 1

0 179 27

1 21 183
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15.5 Summary and Conclusions

In this chapter, the notion of context in the multi-modal sensor framework is
mathematically formalized, and then a novel, kernel-based context learning
approach is presented. Based on the resulting context-aware measurement model, a
multi-modal sensor fusion approach for sequential statistical inference is discussed.
A powerful feature extraction technique results in a low-dimensional feature of
sensor measurements in the form of PFSA (or, in particular, the D-Markov
Machine), which replaces the raw data set and yet captures the information from,
and the dynamics of, the heterogeneous sensor system. The superior performance of
the context learning approach is validated on a real-world sensor data set, whose
feature is extracted through a D-Markov Machine.

Our major innovation consists of two sets of algorithms. One set of algorithms is
for unsupervised learning of the context and for context-aware multi-modal sensor
fusion. The context-learning algorithm is based on a kernel machine that yields an
estimate of the joint density of multi-modal measurements, so that the support
vectors serve the role of machine-generated contexts, and that the conditional
independence of sensor measurements given the state-context pair, which is crucial
for sequential inference, is automatically satisfied. The algorithm for context-aware
sensor fusion suggests the potential of the proposed context-aware approach in
realistic scenarios. The other set of algorithms is for symbolic compression–based
feature extraction, which yields an attractive and scalable low-dimensional PFSA
features. These features are attractive because they are endowed with a
Hilbert-space structure, which enables us to replace the raw measurement data with
their low-complexity features and carry out feature comparison (i.e., inner product),
reduction (i.e., state merging), and refinement (i.e., state splitting) operations.
Owing to these operations defined on the space of PFSA (and, in particular, the D-
Markov Machine–based features), PFSA features are, in principle, scalable to any
desired level of description.

A research direction in the immediate future is to fully develop the proposed
sensor fusion and decision-making system, and demonstrate it in a scenario more
complicated than those of binary hypothesis testing. The experimental validation
described in Sect. 15.4 used a limited amount of data, which was obtained from a
test performed by the Army Research Lab. A border-control testbed being set up at
Penn State would allow collection of much larger amounts of data from several
heterogeneous sensors and enable a more detailed and systematic validation of the
presented techniques. Other future research paths include optimizing the proposed
kernel machine for the purpose of unsupervised context learning (in terms of
sparsity, generalization ability, etc.), and developing a method that unifies the
context learning and feature extraction steps, which are currently separate and
hence suboptimal.
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