units
Norton Tables 1-4 and 1-5
hardness
Norton Table 2-3
material properties
Norton Appendix A-1 general EG $\nu \rho$
Norton Appendices A-2 and A-3 aluminum
Norton Appendix A-9 steel

6-32 UNC bolts $\quad \mathrm{A}_{\mathrm{T}}=0.0091 \mathrm{in}^{2} \quad$ Norton Table 15-1
guess 1010 cold rolled steel $\quad S_{U T}=53 \mathrm{ksi}$ Norton Table A-9
$F_{\text {BOLT }} r=F_{\text {GRIP }} R \quad \quad F_{\text {BOLT }}=F_{\text {GRIP }} R / r \quad \tau \approx \frac{\mathrm{~F}_{\text {BOLT }}}{\mathrm{A}_{\mathrm{T}}}=\frac{\mathrm{F}_{\text {GRIP }} \mathrm{R}}{\mathrm{r} \mathrm{A}_{\mathrm{T}}}$
von Mises $\quad \sigma^{\prime}=\sqrt{3} \tau=\frac{\sqrt{3} \mathrm{~F}_{\text {GRIP }} \mathrm{R}}{\mathrm{r} \mathrm{A}_{\mathrm{T}}}$
at failure assume $S_{U T}=\sigma^{\prime}$
$\mathrm{F}_{\text {GRIP }}=\frac{\mathrm{r} \mathrm{A}_{\mathrm{T}} \mathrm{S}_{\mathrm{UT}}}{\sqrt{3} \mathrm{R}}=\frac{(0.55 \mathrm{in})\left(0.0091 \mathrm{in}^{2}\right)}{\sqrt{3}(6 \mathrm{in})}\left(\frac{53000 \mathrm{lbf}}{\mathrm{in}^{2}}\right)=25.53 \mathrm{lbf}$
σ normal stress
direct tension/compression $\sigma>0$ tensile $\sigma<0$ compressive
bending
contact
direct load bearing
Hertzian contact
τ shear stress
direct shear
torsional shear
pull-out shear
beam shear

Mohr's circle
σ^{\prime} von Mises equivalent stress

S strength
yield
ultimate
fatigue
$\mathrm{N}=\mathrm{S} / \sigma^{\prime} \quad$ factor of safety
ε strain
units [μ inch per inch]
normal stress
axial tension or compression (Section 4.7 Norton)
uniform across cross-section, uniform along length, independent of cross section shape
$\sigma=\mathrm{P} / \mathrm{A} \quad \delta=\frac{\mathrm{PL}}{\mathrm{AE}}$

normal stress
simple cantilever bending (Sections 4.9 and 4.10 Norton)
zero at neutral axis, maximum at top and bottom, linear along length
$\sigma=\frac{\mathrm{M} \mathrm{c}}{\mathrm{I}} \quad \delta=\frac{\mathrm{P} \mathrm{L}^{3}}{3 \mathrm{E} \mathrm{I}}$
$\mathrm{c}_{\text {MAX }}$ at top and bottom $\quad \mathrm{M}_{\text {MAX }}=\mathrm{P} \mathrm{L}$ at fixed end
circular $\quad \mathrm{c}_{\mathrm{MAX}}=\mathrm{D} / 2 \quad \mathrm{I}=\pi \mathrm{D}^{4} / 64$
rectangular

$$
\mathrm{c}_{\mathrm{MAX}}=\mathrm{h} / 2 \quad \mathrm{I}=\mathrm{b} \mathrm{~h}^{3} / 12
$$

normal stress
direct contact compression (Section 4.8 Norton)
$\sigma=\mathrm{P} / \mathrm{A} \quad$ projected area \quad tight fit $\mathrm{A}=\mathrm{D} t \quad$ loose fit $\mathrm{A}=\pi \mathrm{Dt} / 4$

shear stress
direct shear (Section 4.8 Norton)
uniform across cross-section
$\tau=\mathrm{P} / \mathrm{A}$
(dual direct shear for clevis pins)

(a) Pivot in single shear (less than ideal)

(b) Pivot in double shear (preferred)
shear stress
direct shear for key
uniform across cross-section
$\mathrm{T}=\mathrm{W}_{\mathrm{t}} \mathrm{r} \quad \tau=\mathrm{W}_{\mathrm{t}} / \mathrm{A} \quad \mathrm{A}=\mathrm{w} \mathrm{L}$

shear stress
torsional shear (Section 4.12 Norton)
zero at center, maximum outside, uniform along length
$\tau=\frac{\mathrm{Tc}}{\mathrm{J}}=\frac{16 \mathrm{~T}}{\pi \mathrm{D}^{3}} \quad \delta_{\theta}=\frac{\mathrm{T} \mathrm{L}}{\mathrm{J} G} \quad$ only for circular cross-section
$c_{\text {max }}$ at outside $\quad \mathrm{T}$ constant along length
circular $\quad \mathrm{c}_{\mathrm{MAX}}=\mathrm{D} / 2 \quad \mathrm{~J}=\pi \mathrm{D}^{4} / 32$

shear stress
pullout shear (Section 4.8 Norton)
uniform across cross-sections

$$
\tau=\mathrm{P} / \mathrm{A} \quad \mathrm{~A}=2 \mathrm{ht} \quad \mathrm{~h}=\sqrt{\mathrm{R}_{\mathrm{o}}{ }^{2}-\mathrm{R}_{\mathrm{i}}{ }^{2}}
$$

(2)

(b) Tearout failure
shear stress
beam shear (Section 4.9 Norton)
maximum at neutral axis, zero at top and bottom, varies along length

$$
\tau=\frac{\mathrm{V} \mathrm{Q}}{\mathrm{Ib}} \quad \mathrm{Q}=\int_{\mathrm{y} 1}^{\mathrm{c}} \mathrm{y} \mathrm{dA}
$$

circular $\quad \tau_{\mathrm{MAX}}=\frac{4 \mathrm{~V}}{3 \mathrm{~A}}$
rectangular $\quad \tau_{\mathrm{MAX}}=\frac{3 \mathrm{~V}}{2 \mathrm{~A}}$
bending is maximum at top and bottom, zero at neutral axis

moment diagram
combined stress
thin wall pressure vessel (Section 4.17 Norton)
$\mathrm{r}=$ nominal radius $\quad \mathrm{t}=$ wall thickness $\quad \mathrm{L}=$ length $\quad \mathrm{p}=$ pressure
$\mathrm{t}<\mathrm{r} / 10$
tangential (hoop) $\quad \sigma_{\mathrm{T}}=\frac{\mathrm{p}(2 \mathrm{r} \mathrm{L})}{2 \mathrm{Lt}}=\frac{\mathrm{pr}}{\mathrm{t}} \quad$ (sidewalls only)
axial $\quad \sigma_{\mathrm{A}}=\frac{\mathrm{p}\left(\pi \mathrm{r}^{2}\right)}{2 \pi \mathrm{rt}}=\frac{\mathrm{pr}}{2 \mathrm{t}}$

also valid for hemispherical ends

combined stress
torsion bar

