Brinell hardness tester

steel ball of diameter D pressed into flat plate with constant force F
measure size of circular indentation
steel $\mathrm{F}=3000 \mathrm{kgf} \quad \mathrm{D}=10 \mathrm{~mm}$
aluminum $\mathrm{F}=500 \mathrm{kgf} \quad \mathrm{D}=10 \mathrm{~mm}$
calculate subsurface stress for testing aluminum
steel ball on flat aluminum plate
$\mathrm{F}=500 \mathrm{kgf}=4905 \mathrm{~N} \quad 1 \mathrm{kgf}=9.81 \mathrm{~N}$
steel ball $\quad \mathrm{R}_{1}=5 \mathrm{~mm} \quad \mathrm{E}_{1}=206.8 \mathrm{GPa} \quad v_{1}=0.28 \quad$ Norton Table A-1
aluminum plate $\quad \mathrm{R}_{2}=\infty \quad \mathrm{E}_{2}=71.7 \mathrm{GPa} \quad \nu_{2}=0.34 \quad$ Norton Table A-1
$\mathrm{m}_{1}=\frac{1-\mathrm{v}_{1}{ }^{2}}{\mathrm{E}_{1}}=\frac{1-(0.28)^{2}}{206.8 \mathrm{GPa}}\left(\frac{\mathrm{GPa}}{10^{3} \mathrm{MPa}}\right)\left(\frac{\mathrm{MPa.mm}^{2}}{\mathrm{~N}}\right)=4.4565 \times 10^{-6} \frac{\mathrm{~mm}^{2}}{\mathrm{~N}} \quad$ Norton Eq. 7.9a

$B=\frac{1}{2}\left(\frac{1}{\mathrm{R}_{1}}+\frac{1}{\mathrm{R}_{2}}\right)=\frac{1}{2}\left(\frac{1}{5 \mathrm{~mm}}+\frac{1}{\infty}\right)=0.1 \mathrm{~mm}^{-1} \quad$ Norton Eq. 7.9 b
$\mathrm{a}^{3}=0.375 \frac{\mathrm{~m}_{1}+\mathrm{m}_{2}}{\mathrm{~B}} \mathrm{~F}=0.375 \frac{(4.4565+12.335)}{0.1 \mathrm{~mm}^{-1}}\left(\frac{10^{-6} \mathrm{~mm}^{2}}{\mathrm{~N}}\right) 4905 \mathrm{~N}=0.3089 \mathrm{~mm}^{3} \quad$ Eq. 7.9d
$\mathrm{a}=0.6760 \mathrm{~mm}$
$\mathrm{p}_{\mathrm{MAX}}=\frac{3}{2} \frac{\mathrm{~F}}{\pi \mathrm{a}^{2}}=\frac{3}{2} \frac{(4905 \mathrm{~N})}{\pi(0.6760 \mathrm{~mm})^{2}}=5126 \mathrm{MPa} \quad$ Norton Eq. 7.8b
$\tau_{\mathrm{MAX}}=\frac{\mathrm{p}_{\mathrm{MAX}}}{2}\left[\frac{(1-2 v)}{2}+\frac{2}{9}(1+v) \sqrt{2(1+v)}\right] \quad$ Norton Eq. 7.12b
aluminum plate $\quad v_{2}=0.34 \quad \tau_{\max }=0.3237 \mathrm{p}_{\max }=1659 \mathrm{MPa} \quad$ Eq. 7.12 b
von Mises $\quad \sigma^{\prime}=\sqrt{3} \tau_{\text {MAX }}=2874 \mathrm{MPa}$
strongest aluminum in Norton Table A-2 7075 heat treated $\mathrm{S}_{\mathrm{Y}}=503 \mathrm{MPa}$
Brinell tester will dent strongest aluminum $\quad \sigma^{\prime}>S_{Y}$

FIGURE 3.7 Contours of maximum shear stress normalized by Hertz stress p_{0}, beneath nominal circular point contact of radius a in material with $v=0.3$.

A ball and socket joint uses a 10 mm DIA steel ball (4340 with HB 430) inside a 10.1 mm DIA phosphor bronze socket (CA510 with HRB 95). Determine factor of safety for the ball and for the socket in static yield at a load of 2000 N .

Table A-1 for E and $v \quad$ Table A-10 for 4340 Table A-4 for phosphor bronze
steel ball (convex) $\quad \mathrm{R}_{1}=+5 \mathrm{~mm} \quad v_{1}=0.28 \quad \mathrm{E}_{1}=206.8 \mathrm{GPa} \quad \mathrm{S}_{\mathrm{Y}}=1365 \mathrm{MPa}$
phosphor bronze socket (concave) $\quad \mathrm{R}_{2}=-5.05 \mathrm{~mm} \quad \mathrm{v}_{2}=0.33 \quad \mathrm{E}_{2}=110.3 \mathrm{GPa} \quad \mathrm{S}_{\mathrm{Y}}=552 \mathrm{MPa}$
$m_{1}=\left(1-v_{1}^{2}\right) / \mathrm{E}_{1}=0.004456 \mathrm{GPa}^{-1} \quad$ Eq. 7.9 a
$\mathrm{m}_{2}=\left(1-v_{2}^{2}\right) / \mathrm{E}_{2}=0.008079 \mathrm{GPa}^{-1}$
$B=\left(1 / R_{1}+1 / R_{2}\right) / 2=0.0009901 \mathrm{~mm}^{-1} \quad$ Eq. $7.9 b$
$\mathrm{a}^{3}=0.375 \frac{\mathrm{~m}_{1}+\mathrm{m}_{2}}{\mathrm{~B}} \mathrm{~F} \quad$ Eq. 7.9d
$\mathrm{a}^{3}=0.375\left(\frac{\left(0.004456+0.008079 \mathrm{~m}^{2}\right.}{10^{9} \mathrm{~N}}\right)\left(\frac{1000 \mathrm{~mm}}{\mathrm{~m}}\right)^{2}\left(\frac{\mathrm{~mm}}{0.0009901}\right)(2000 \mathrm{~N}) \quad$ Eq. 7.9 d
$\mathrm{a}=2.118 \mathrm{~mm}$
$\mathrm{p}_{\max }=\frac{3}{2} \frac{\mathrm{~F}}{\pi \mathrm{a}^{2}}=\left(\frac{3}{2}\right) \frac{2000 \mathrm{~N}}{\pi(2.118 \mathrm{~mm})^{2}}=212.9 \mathrm{MPa}$
Eq. 7.8b
ball
$v_{1}=0.28 \quad \tau_{\max }=\frac{\mathrm{p}_{\text {max }}}{2}\left(\frac{1-2 v_{1}}{2}+\frac{2}{9}\left(1+v_{1}\right) \sqrt{2\left(1+v_{1}\right)}\right)=0.3376 \mathrm{p}_{\max }=71.88 \mathrm{MPa}$
$\sigma^{\prime}=\sqrt{3} \tau=124.5 \mathrm{MPa} \quad \mathrm{N}_{\mathrm{FS}}=\mathrm{Sy} / \sigma^{\prime}=10.96$
socket
$v_{2}=0.33 \quad \tau_{\max }=\frac{\mathrm{p}_{\text {max }}}{2}\left(\frac{1-2 v_{2}}{2}+\frac{2}{9}\left(1+v_{2}\right) \sqrt{2\left(1+v_{2}\right)}\right)=0.3260 \mathrm{p}_{\max }=69.4 \mathrm{MPa}$
Eq. 7.12 b
$\sigma^{\prime}=\sqrt{3} \tau=120.2 \mathrm{MPa} \quad \mathrm{N}_{\mathrm{FS}}=\mathrm{Sy} / \sigma^{\prime}=4.59$

Sixteen steel balls (0.156 inch DIA, S-5 steel with HRC 59) are used in torque adjusters for cordless electric drills. The balls are stacked in pairs inside eight axial holes within a $6 / 6$ nylon ring spacer and compressed between two flat steel disks (4340 steel with HB 430) by a compression spring as shown below. The axial holes in the nylon ring do not constrain axial motion of the balls. Determine factor of safety in the balls and in the plates for compressive load $\mathrm{P}=30 \mathrm{lbf}$. The eight pairs of balls share load P equally.

AXIAL VIEW
contact between two steel spheres

RADIAL VIEW
$\mathrm{S}_{\mathrm{Y}}=280 \mathrm{ksi}$
Table A-10
$\mathrm{d}=0.156$ in $\quad \mathrm{F}=\mathrm{P} / 8=3.75 \mathrm{lbf}$
$\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{d} / 2=0.078$ in steel $\quad \mathrm{v}_{1}=\mathrm{v}_{2}=0.28 \quad \mathrm{E}_{1}=\mathrm{E}_{2}=30 \times 10^{6} \mathrm{psi}$
$\mathrm{m}_{1}=\mathrm{m}_{2}=\left(1-v^{2}\right) / \mathrm{E}=3.072 \times 10^{-8} \mathrm{in}^{2} / \mathrm{lbf} \quad$ Eq. 7.9 a
$B=\left(1 / \mathrm{R}_{1}+1 / \mathrm{R}_{2}\right) / 2=12.82 \mathrm{in}^{-1}$
Eq. 7.9b
$\mathrm{a}^{3}=0.375 \frac{\mathrm{~m}_{1}+\mathrm{m}_{2}}{\mathrm{~B}} \mathrm{~F}=0.375\left(\frac{6.144 \times 10^{-8} \mathrm{in}^{2}}{\mathrm{lbf}}\right)\left(\frac{\mathrm{in}}{12.82}\right)(3.75 \mathrm{lbf})$
Eq. 7.9d
$\mathrm{a}=0.001889$ in
$\mathrm{p}_{\max }=\frac{3}{2} \frac{\mathrm{~F}}{\pi \mathrm{a}^{2}}=\left(\frac{3}{2}\right) \frac{3.75 \mathrm{lbf}}{\pi(0.001889 \mathrm{in})^{2}}=501.8 \mathrm{ksi}$
Eq. 7.8b
$\tau_{\max }=\frac{\mathrm{p}_{\max }}{2}\left(\frac{1-2 v}{2}+\frac{2}{9}(1+v) \sqrt{2(1+v)}\right)=0.3376 \mathrm{p}_{\max }=169.4 \mathrm{ksi}$
$\sigma^{\prime}=\sqrt{3} \tau=293.4 \mathrm{ksi}$
sphere on sphere $\quad N_{F S}=S_{Y} / \sigma^{\prime}=0.95$
contact between steel sphere and steel plate

$$
\begin{aligned}
& \mathrm{R}_{1}=0.078 \text { in } \quad \mathrm{R}_{2}=\infty \quad v_{1}=v_{2}=0.28 \quad \mathrm{E}_{1}=\mathrm{E}_{2}=30 \times 10^{6} \mathrm{psi} \\
& \mathrm{~m}_{1}=\mathrm{m}_{2}=\left(1-v^{2}\right) / \mathrm{E}=3.072 \times 10^{-8} \mathrm{in}^{2} / \mathrm{lbf} \quad \text { Eq. } 7.9 \mathrm{a} \\
& \mathrm{~B}=\left(1 / \mathrm{R}_{1}+1 / \mathrm{R}_{2}\right) / 2=6.4103 \mathrm{in}^{-1} \quad \text { Eq. } 7.9 \mathrm{~b} \\
& \mathrm{a}^{3}=0.375 \frac{\mathrm{~m}_{1}+\mathrm{m}_{2}}{\mathrm{~B}} \mathrm{~F} \quad \text { Eq. } 7.9 \mathrm{~d} \\
& \mathrm{a}=0.002380 \text { in }
\end{aligned}
$$

$$
\mathrm{p}_{\max }=\frac{3}{2} \frac{\mathrm{~F}}{\pi \mathrm{a}^{2}}=316.1 \mathrm{ksi} \quad \text { Eq. } 7.8 \mathrm{~b}
$$

$$
\tau_{\max }=\frac{\mathrm{p}_{\max }}{2}\left(\frac{1-2 v}{2}+\frac{2}{9}(1+v) \sqrt{2(1+v)}\right)=0.3376 \mathrm{p}_{\max }=106.7 \mathrm{ksi}
$$

$\sigma^{\prime}=\sqrt{3} \tau=184.8 \mathrm{ksi}$
sphere on flat plate sphere \quad S-5 HRC $59 \quad S_{Y}=280 \mathrm{ksi} \quad$ Table A-10
$\mathrm{N}_{\mathrm{FS}}=\mathrm{S}_{\mathrm{Y}} / \sigma^{\prime}=1.52$
sphere on flat plate plate 4340 with HB $486 \quad \mathrm{~S}_{\mathrm{Y}}=230 \mathrm{ksi} \quad$ Table A-10
$\mathrm{N}_{\mathrm{FS}}=\mathrm{S}_{\mathrm{Y}} / \sigma^{\prime}=1.24$

A steel railway car wheel with 33 inch DIA rolls on a steel rail whose top surface has a cross section radius of 12 inches as shown below. The wheel load on the rail is $25,000 \mathrm{lbf}$. Assume width of the rail is 6 inches and ignore the curvature of the rail cross section. Determine width of the contact patch and maximum von Mises stress in the rail and wheel.

$\mathrm{R}_{1}=16.5$ in $\quad \mathrm{R}_{2}=\infty \quad$ steel $\quad \mathrm{v}_{1}=\mathrm{v}_{2}=0.28 \quad \mathrm{E}_{1}=\mathrm{E}_{2}=30 \times 10^{6} \mathrm{psi}$
$\mathrm{m}_{1}=\mathrm{m}_{2}=\left(1-v^{2}\right) / \mathrm{E}=3.072 \times 10^{-8} \mathrm{in}^{2} / \mathrm{lbf}$
Eq. 7.9a
$B=\left(1 / R_{1}+1 / R_{2}\right) / 2=0.0303$ in $^{-1} \quad$ Eq. $7.9 b$
$\mathrm{a}=\sqrt{\frac{2}{\pi}\left(\frac{\mathrm{~m}_{1}+\mathrm{m}_{2}}{\mathrm{~B}}\right)\left(\frac{\mathrm{F}}{\mathrm{L}}\right)}=\sqrt{\frac{2}{\pi}\left(\frac{3.072 \times 10^{-8} \mathrm{in}^{2}+3.072 \times 10^{-8} \mathrm{in}^{2}}{\mathrm{lbf}}\right)\left(\frac{\mathrm{in}}{0.0303}\right)\left(\frac{25,000 \mathrm{lbf}}{6 \mathrm{in}}\right)}$
$\mathrm{a}=0.0733$ in \quad Eq. 7.15 b
width $=2 \mathrm{a}=0.1467 \mathrm{in}$
rectangular contact area $=2 \mathrm{a} \mathrm{L}=0.8802 \mathrm{in}^{2}$

$$
\mathrm{p}_{\max }=\frac{2 \mathrm{~F}}{\pi \mathrm{a} \mathrm{~L}}=\frac{2(25,000 \mathrm{lbf})}{\pi(0.0733 \mathrm{in})(6 \mathrm{in})}=36.19 \mathrm{ksi}
$$

$\tau_{\max }=0.304 \mathrm{p}_{\max }=11.0 \mathrm{ksi} \quad$ Eq. 7.17 b steel
cylinder on flat plate $\quad \sigma^{\prime}=\sqrt{3} \tau=19.06 \mathrm{ksi}$

include radius of rail cross section - General Contact Section 7.10

steel

$$
v_{1}=v_{2}=0.28
$$

$$
\mathrm{E}_{1}=\mathrm{E}_{2}=30 \times 10^{6} \mathrm{psi}
$$

$\mathrm{m}_{1}=\mathrm{m}_{2}=\left(1-v^{2}\right) / \mathrm{E}=3.072 \times 10^{-8} \mathrm{in}^{2} / \mathrm{lbf}$ Eq. 7.9a
crossed cylinders
$\mathrm{R}_{1}=16.5$ in $\quad \mathrm{R}_{1}{ }^{\prime}=\infty$ in $\quad \mathrm{R}_{2}=12$ in $\quad \mathrm{R}_{2}{ }^{\prime}=\infty$ in $\quad \theta=90^{\circ}$

$$
\mathrm{A}=\frac{1}{2}\left(\frac{1}{\mathrm{R}_{1}}+\frac{1}{\mathrm{R}_{1}{ }^{\prime}}+\frac{1}{\mathrm{R}_{2}}+\frac{1}{\mathrm{R}_{2}{ }^{\prime}}\right)=0.07197 \mathrm{in}^{-1}
$$

$\mathrm{B}=\frac{1}{2} \sqrt{\left(\frac{1}{\mathrm{R}_{1}}-\frac{1}{\mathrm{R}_{1}{ }^{\prime}}\right)^{2}+\left(\frac{1}{\mathrm{R}_{2}}-\frac{1}{\mathrm{R}_{2}{ }^{\prime}}\right)^{2}+2\left(\frac{1}{\mathrm{R}_{1}}-\frac{1}{\mathrm{R}_{1}{ }^{\prime}}\right)\left(\frac{1}{\mathrm{R}_{2}}-\frac{1}{\mathrm{R}_{2}{ }^{\prime}}\right) \cos 2 \theta}=0.01136 \mathrm{in}^{-1}$
Eq. $7.19 b$
$\cos \phi=\frac{\mathrm{B}}{\mathrm{A}} \quad \phi=80.92^{\circ} \quad$ Eq. 7.19c
$\mathrm{a}=\mathrm{k}_{\mathrm{a}} \sqrt[3]{\frac{3 \mathrm{~F}\left(\mathrm{~m}_{1}+\mathrm{m}_{2}\right)}{4 \mathrm{~A}}}=0.2812$ in \quad Eq. 7.19d $\quad \mathrm{k}_{\mathrm{a}}=1.1157 \quad$ interpolated Table 7-5
$\mathrm{b}=\mathrm{k}_{\mathrm{b}} \sqrt[3]{\frac{3 \mathrm{~F}\left(\mathrm{~m}_{1}+\mathrm{m}_{2}\right)}{4 \mathrm{~A}}}=0.2274$ in
Eq. 7.19d $\quad k_{b}=0.9024 \quad$ interpolated Table 7-5
elliptic contact area $=\pi \mathrm{ab}=0.2009 \mathrm{in}^{2}$
$\mathrm{p}_{\mathrm{MAX}}=\frac{3}{2} \frac{\mathrm{~F}}{\pi \mathrm{ab}}=\frac{3}{2} \frac{(25,000 \mathrm{lbf})}{\pi(0.2812 \mathrm{in})(0.2274 \mathrm{in})}=186.7 \mathrm{ksi}$
Eq. 7.18 b
$\tau_{\max } \sim 0.34 \mathrm{p}_{\max }=63.48 \mathrm{ksi} \quad$ page 482 Norton $5^{\text {th }}$ edition
crossed cylinders $\quad \sigma^{\prime}=\sqrt{3} \tau=110.0 \mathrm{ksi}$

