determine p_{d} (or m) and ϕ for unknown gear
count the number of teeth N
measure OD [inch] - better for even number of teeth, not as accurate for odd number of teeth
assume full depth involute profile $\quad \mathrm{a}=\frac{1}{\mathrm{p}_{\mathrm{d}}}$
$\mathrm{p}_{\mathrm{d}}=\frac{\mathrm{N}}{\mathrm{d}} \quad \mathrm{OD}=\mathrm{d}+2 \mathrm{a}=\frac{\mathrm{N}}{\mathrm{p}_{\mathrm{d}}}+\frac{2}{\mathrm{p}_{\mathrm{d}}} \quad \mathrm{p}_{\mathrm{d}}=\frac{\mathrm{N}+2}{\mathrm{OD}}$
p_{d} must be standard value from Table 12-2
if not, convert to module $\quad \mathrm{m}=\frac{\mathrm{d}}{\mathrm{N}}=\frac{1}{\mathrm{p}_{\mathrm{d}}} \quad$ and check Table 12-3
measure tooth tip thickness t_{a} at addendum with calipers or image analysis use "gear_AGMA.xlsx" or "gear_metric.xlsx" to calculate t_{t} for $\phi=14.5^{\circ}, 20^{\circ}$ and 25°
example
larger Boston gear $\quad \mathrm{N}=64 \quad \mathrm{OD}=4.117$ inch $\quad \mathrm{p}_{\mathrm{d}}=\frac{\mathrm{N}+2}{\mathrm{OD}} \approx 16.03 \quad$ use $\mathrm{p}_{\mathrm{d}}=16$
$t_{a_{-} \text {calipers }}=0.07$ inch $\quad t_{a-14.5^{\circ}}=0.0612$ inch $\quad t_{a _2} 20^{\circ}=0.0493$ inch $t_{a _25^{\circ}}=0.0371$ inch
smaller Boston gear

$$
\mathrm{N}=16 \quad \mathrm{OD}=1.117 \text { inch } \quad \mathrm{p}_{\mathrm{d}}=\frac{\mathrm{N}+2}{\mathrm{OD}} \approx 16.11 \quad \text { use } \mathrm{p}_{\mathrm{d}}=16
$$

design a spur gear reducer for 125 HP at 1000 rpm input with $\mathrm{N}_{\mathrm{FS}}>2$ for 10 years life $\mathrm{C} \approx 6.65$ in $\quad \omega_{\mathrm{P}} / \omega_{\mathrm{G}} \approx 2.5$
$\begin{array}{clllllll}\text { choose } & N_{\mathrm{P}} & \mathrm{N}_{\mathrm{G}} & \mathrm{p}_{\mathrm{d}} & \phi & \mathrm{F} & \mathrm{Q}_{\mathrm{V}} & \text { material }\end{array}$
choose $\phi=25^{\circ}$ heavy load
$p_{d}=\mathrm{N} / \mathrm{d} \quad \mathrm{d}=\mathrm{N} / \mathrm{p}_{\mathrm{d}} \quad \mathrm{r}=\mathrm{N} / 2 \mathrm{p}_{\mathrm{d}} \quad \rho=\omega_{\mathrm{p}} / \omega_{\mathrm{g}}=\mathrm{N}_{\mathrm{g}} / \mathrm{N}_{\mathrm{p}} \quad \mathrm{N}_{\mathrm{g}}=\rho \mathrm{N}_{\mathrm{p}}$
$C=r_{p}+r_{g}=N_{p} / 2 p_{d}+N_{g} / 2 p_{d}=\left(N_{p}+N_{g}\right) / 2 p_{d} \quad 2 p_{d} C=N_{p}+N_{g}=(1+\rho) N_{p p}$
$\mathrm{N}_{\mathrm{p}}=2 \mathrm{p}_{\mathrm{d}} \mathrm{C} /(1+\rho) \quad \mathrm{N}_{\mathrm{g}}=\rho \mathrm{N}_{\mathrm{p}}$

p_{d}	$\sim \mathrm{N}_{\mathrm{p}}$	$\sim \mathrm{N}_{\mathrm{g}}$
3	11.40	28.50
4	15.20	38.00
5	19.00	47.50
6	22.80	57.00
8	30.40	76.00

p_{d}	N_{p}	N_{g}	ρ	r_{p}	r_{g}	C	Table 12-12
3	11	28	2.545	1.833	4.666	6.500	J not available
3	11	29	2.636	1.833	4.833	6.667	J not available
4	15	38	2.533	1.875	4.750	6.625	
5	19	47	2.474	1.900	4.700	6.600	
5	19	48	2.526	1.900	4.800	6.700	
6	23	57	2.478	1.917	4.750	6.667	
8	30	76	2.533	1.875	4.750	6.625	

all OK for no tip interference using gear_AGMA.xls
$\mathrm{p}_{\mathrm{d}}=8$ are same size gears but smaller teeth than $\mathrm{p}_{\mathrm{d}}=4$
choose $\mathrm{p}_{\mathrm{d}}=6 \quad \mathrm{~N}_{\mathrm{p}}=23 \quad \mathrm{~N}_{\mathrm{g}}=57 \quad \mathrm{r}_{\mathrm{p}}=1.917$ in
N_{p} and N_{g} both odd provides hunting tooth effect
$\omega_{\mathrm{P}}=\left(\frac{1000 \mathrm{rev}}{\mathrm{min}}\right)\left(\frac{\mathrm{min}}{60 \mathrm{sec}}\right)\left(\frac{2 \pi \mathrm{rad}}{\mathrm{rev}}\right)=104.72 \mathrm{rad} / \mathrm{sec}$
$\mathrm{P}=\mathrm{T} \omega \quad \mathrm{T}_{\mathrm{p}}=\mathrm{P} / \omega_{\mathrm{p}}=125 \mathrm{HP}\left(\frac{\mathrm{sec}}{104.72 \mathrm{rad}}\right)\left(\frac{550 \mathrm{ft} . \mathrm{lbf}}{\mathrm{HP} \cdot \mathrm{sec}}\right)\left(\frac{12 \mathrm{in}}{\mathrm{ft}}\right)=7878 \mathrm{in} . \mathrm{lbf}$
$\mathrm{T}=\mathrm{W}_{\mathrm{t}} \mathrm{r} \quad \mathrm{W}_{\mathrm{t}}=\mathrm{T}_{\mathrm{p}} / \mathrm{r}_{\mathrm{p}}=4110 \mathrm{lbf} \quad \mathrm{W}_{\mathrm{r}}=\mathrm{W}_{\mathrm{t}} \tan \phi=1917 \mathrm{lbf}$
$\mathrm{V}_{\mathrm{t}}=\mathrm{r}_{\mathrm{p}} \omega_{\mathrm{p}}=1.917 \mathrm{in}\left(\frac{104.72 \mathrm{rad}}{\mathrm{sec}}\right)\left(\frac{60 \mathrm{sec}}{\min }\right)\left(\frac{\mathrm{ft}}{12 \mathrm{in}}\right)=1004 \mathrm{ft} / \mathrm{min}$
recommend $\mathrm{Q}_{\mathrm{v}} \geq 8$ Table 12-7 Norton
choose $Q_{v}=8$
choose $\mathrm{F} \approx 12 / \mathrm{p}_{\mathrm{d}}=2$ in page 746 Norton 5th ed $\left(8 / \mathrm{p}_{\mathrm{d}}<\mathrm{F}<16 / \mathrm{p}_{\mathrm{d}}\right)$
$\sigma_{\mathrm{b}}=\frac{\mathrm{W}_{\mathrm{t}} \mathrm{p}_{\mathrm{d}}}{\mathrm{F} \mathrm{J}} \frac{\mathrm{K}_{\mathrm{a}} \mathrm{K}_{\mathrm{m}}}{\mathrm{K}_{\mathrm{v}}} \mathrm{K}_{\mathrm{s}} \mathrm{K}_{\mathrm{B}} \mathrm{K}_{\mathrm{I}} \quad$ Eq 12.15us Norton

	$\mathrm{N}_{\mathrm{p}}=21$	23	26
$\mathrm{~N}_{\mathrm{g}}=55$	0.31		0.33
57		0.32	
135	0.31		0.33

$\mathrm{J}_{\mathrm{p}}=0.32$ for $\phi=25^{\circ}$, tip loading, standard addendum
Table 12-12 Norton
$B=\left(12-Q_{\mathrm{v}}\right)^{2 / 3} / 4=0.6300 \quad E q 12.17 b$ Norton
$A=50+56(1-B)=70.722 \quad E q$ 12.17a Norton
$K_{v}=\left(\frac{\mathrm{A}}{\mathrm{A}+\sqrt{\mathrm{V}_{\mathrm{t}}}}\right)^{\mathrm{B}}=0.7920 \quad$ Eq 12.16us Norton
$\mathrm{K}_{\mathrm{m}}=1.6$ Table 12-16 Norton
$K_{a}=1.0 \quad$ assume uniform driver, uniform driven Table 12-17 Norton
$K_{s}=1.0$ not yet defined by AGMA page 747 Norton
$K_{B}=1.0 \quad$ solid pinion \quad Eq. 12-20b Norton
$K_{I}=1.0$ not an idler page 747 Norton
$\sigma_{b \mathrm{p}}=\frac{\mathrm{W}_{\mathrm{t}} \mathrm{p}_{\mathrm{d}}}{\mathrm{F} \mathrm{J}_{\mathrm{P}}} \frac{\mathrm{K}_{\mathrm{a}} \mathrm{K}_{\mathrm{m}}}{\mathrm{K}_{\mathrm{v}}} \mathrm{K}_{\mathrm{s}} \mathrm{K}_{\mathrm{B}} \mathrm{K}_{\mathrm{I}}=\frac{(4110 \mathrm{lbf})\left(6 \mathrm{in}^{-1}\right)(1)(1.6)}{(2 \mathrm{in})(0.32)(0.7920)}(1)(1)(1)=77.84 \mathrm{ksi}$
choose AISI 4140 nitrided steel $\quad \mathrm{S}_{\mathrm{fb}}{ }^{\prime}=37 \mathrm{ksi}$ (mean value) Table 12-20 Norton

$$
\begin{aligned}
& \mathrm{S}_{\mathrm{fb}}=\frac{\mathrm{K}_{\mathrm{L}}}{\mathrm{~K}_{\mathrm{T}} \mathrm{~K}_{\mathrm{R}}} \mathrm{~S}_{\mathrm{fb}}{ }^{\prime} \quad \text { Eq 12.24 Norton } \\
& \mathrm{N}=\left(\frac{1000 \text { rev }}{\mathrm{min}}\right)(10 \text { years })\left(\frac{60 \mathrm{~min}}{\text { hour }}\right)\left(\frac{24 \text { hour }}{\text { day }}\right)\left(\frac{365 \text { day }}{\text { year }}\right)=5.256 \times 10^{9} \text { revolutions } \\
& \mathrm{K}_{\mathrm{L}}=1.3558 \mathrm{~N}^{-0.0178}=0.9103 \text { assume commerical use } \quad \text { Figure 12-24 Norton } \\
& \mathrm{K}_{\mathrm{T}}=1.0 \quad \text { assume } \mathrm{T}<250^{\circ} \mathrm{F} \\
& \mathrm{~K}_{\mathrm{R}}=1.0 \quad \text { assume reliability }=99 \% \quad \text { Table 12-19 Norton } \\
& \mathrm{S}_{\mathrm{fb}}=\frac{\mathrm{K}_{\mathrm{L}}}{\mathrm{~K}_{\mathrm{T}} \mathrm{~K}_{\mathrm{R}}} \mathrm{~S}_{\mathrm{fb}}{ }^{\prime}=\frac{0.9103}{(1)(1)}(37 \mathrm{ksi})=33.68 \mathrm{ksi} \\
& \mathrm{~N}_{\mathrm{FS}}=\mathrm{S}_{\mathrm{fb}} / \sigma_{\mathrm{b}}=0.43 \\
& \text { change } F=8 \text { in } \\
& \text { new } \quad K_{m}=1.766 \quad \text { Table 12-16 Norton } \\
& \text { new } \quad \sigma_{b p}=\frac{W_{t} p_{d}}{\mathrm{~F} \mathrm{~J}_{\mathrm{P}}} \frac{\mathrm{~K}_{\mathrm{a}} \mathrm{~K}_{\mathrm{m}}}{\mathrm{~K}_{\mathrm{v}}} \mathrm{~K}_{\mathrm{s}} \mathrm{~K}_{\mathrm{B}} \mathrm{~K}_{\mathrm{I}}=\frac{(4110 \mathrm{lbf})\left(6 \mathrm{in}^{-1}\right)(1)(1.766)}{(8 \mathrm{in})(0.32)(0.7920)}(1)(1)(1)=21.48 \mathrm{ksi} \\
& \text { new } \quad \mathrm{N}_{\mathrm{FS}}=1.57 \\
& \text { change } \mathrm{p}_{\mathrm{d}}=4 \quad \mathrm{~N}_{\mathrm{P}}=15 \quad \mathrm{~N}_{\mathrm{G}}=38 \quad \mathrm{r}_{\mathrm{P}}=1.875 \text { in } \quad \mathrm{r}_{\mathrm{g}}=4.750 \text { in } \quad \rho=2.533 \quad \mathrm{~F}=6 \text { in } \\
& \mathrm{r}_{\mathrm{P}}=3.750 \text { in } \quad \mathrm{r}_{\mathrm{g}}=9.500 \text { in } \mathrm{C}=6.625 \text { in } \\
& \text { keep } \phi=25^{\circ} \quad \mathrm{Qv}=8 \quad \text { AISI } 4140 \text { nitrided steel } \\
& \text { new } \quad \mathrm{W}_{\mathrm{t}}=4202 \mathrm{lbf} \quad \mathrm{~V}_{\mathrm{t}}=981.7 \mathrm{fpm}
\end{aligned}
$$

$\mathrm{J}_{\mathrm{p}}=0.35$ for $\phi=25^{\circ}$, tip loading, standard addendum
Table 12-12 Norton
same $\quad B=0.6300 \quad A=70.722 \quad E q 12.17 a$ and 12.17b Norton
new $\quad K_{v}=0.7934$
Eq 12.16us Norton
new $\quad \mathrm{K}_{\mathrm{m}}=1.7 \quad$ Table 12-16 Norton
new $\quad \sigma_{b p}=\frac{W_{t} p_{d}}{\mathrm{~F} \mathrm{~J}_{\mathrm{P}}} \frac{\mathrm{K}_{\mathrm{a}} \mathrm{K}_{\mathrm{m}}}{\mathrm{K}_{\mathrm{v}}} \mathrm{K}_{\mathrm{s}} \mathrm{K}_{\mathrm{B}} \mathrm{K}_{\mathrm{I}}=\frac{(4202 \mathrm{lbf})\left(4 \mathrm{in}^{-1}\right)(1)(1.7)}{(6 \mathrm{in})(0.35)(0.7934)}(1)(1)(1)=17.15 \mathrm{ksi}$
new $\quad \mathrm{N}_{\mathrm{FS}}=1.96 \quad \mathrm{OK}$
$+++$
assume gear load split equally between two ball bearings on each side of pinion
$\mathrm{W}_{\mathrm{r}}=\mathrm{W}_{\mathrm{t}} \tan \phi=1959 \mathrm{lbf}$
$\mathrm{W}=\sqrt{\mathrm{W}_{\mathrm{t}}^{2}+\mathrm{W}_{\mathrm{r}}^{2}}=4636 \mathrm{lbf}$
assume no axial load
$\mathrm{P}=\mathrm{W} / 2=2318 \mathrm{lbf}$
$\mathrm{N}=5.256 \times 10^{9}$ revolutions from above
$\mathrm{L}_{10}=5256$ millions of revolutions
$\mathrm{C}=\mathrm{P}\left(\mathrm{L}_{10}\right)^{1 / 3}=40,302 \mathrm{lbf}$
use two 6328 bearings with $\mathrm{C}=44,000 \mathrm{lbf}$
++
surface stress based on design above
use $p_{d}=4 \quad N_{P}=15 \quad N_{G}=38 \quad r_{p}=1.875$ in $\quad r_{g}=4.750$ in $\rho=2.533 \quad \mathrm{~F}=6$ in
use $d_{p}=3.750$ in $d_{g}=9.500$ in $\quad C=6.625$ in $\quad W_{t}=4202 \mathrm{lbf} \quad V_{t}=981.7 \mathrm{fpm}$
use $\phi=25^{\circ} \quad \mathrm{Q}_{\mathrm{v}}=8 \quad$ AISI 4140 nitrided steel $\mathrm{N}=5.256 \times 10^{9}$ revolutions
$\sigma_{\mathrm{cp}}=\mathrm{C}_{\mathrm{P}} \sqrt{\frac{\mathrm{W}_{\mathrm{t}}}{\text { FId }} \frac{\mathrm{C}_{\mathrm{a}} \mathrm{C}_{\mathrm{m}}}{\mathrm{C}_{\mathrm{v}}} \mathrm{C}_{\mathrm{s}} \mathrm{C}_{\mathrm{f}}}$
Eq 12.21 Norton
use upper sign external gearset in Eqs. 12.22a and 12.22b Norton p. 750
use $\quad x_{p}=0 \quad$ full depth teeth in Eq. 12.22b \quad Norton p. 750
$\rho_{\mathrm{p}}=\sqrt{\left(\mathrm{r}_{\mathrm{p}}+\frac{1+\mathrm{x}_{\mathrm{p}}}{\mathrm{p}_{\mathrm{d}}}\right)^{2}-\left(\mathrm{r}_{\mathrm{p}} \cos \phi\right)^{2}}-\frac{\pi}{\mathrm{p}_{\mathrm{d}}} \cos \phi$
$=0.5641$ in Eq 12.22b Norton
$=\sqrt{\left(1.875 \text { in }+\frac{\text { in }}{4}\right)^{2}-\left((1.875 \mathrm{in}) \cos 25^{\circ}\right)^{2}}-\frac{\pi \text { in }}{4} \cos 25^{\circ}$
$\rho_{\mathrm{g}}=\mathrm{C} \sin \phi \mp \rho_{\mathrm{p}}=(6.625$ in $) \sin 25^{\circ}-0.5641$ in $=2.2357$ in \quad Eq 12.22 b Norton
$\mathrm{I}=\frac{\cos \phi}{\left(1 / \rho_{\mathrm{p}} \pm 1 / \rho_{\mathrm{g}}\right) \mathrm{d}_{\mathrm{p}}}=\frac{\cos 25^{\circ}}{(1 /(0.5641 \mathrm{in})+1 /(2.2357 \mathrm{in}))(3.750 \mathrm{in})}=0.1089$
Eq 12.22a Norton
steel $\quad E_{g}=E_{p}=30 \times 10^{6} \mathrm{psi} \quad v p=v g=0.28 \quad$ Table A-1 Norton
$\mathrm{C}_{\mathrm{p}}=\sqrt{\frac{1}{\pi\left[\left(\frac{1-\nu_{p}^{2}}{\mathrm{E}_{\mathrm{p}}}\right)+\left(\frac{1-v_{g}^{2}}{\mathrm{E}_{\mathrm{g}}}\right)\right]}}=\sqrt{\frac{1}{\pi\left[\left(\frac{1-(0.28)^{2}}{30 \times 10^{6} \mathrm{psi}}\right)+\left(\frac{1-(0.28)^{2}}{30 \times 10^{6} \mathrm{psi}}\right)\right]}}=2276 \sqrt{\mathrm{psi}}$
$\mathrm{C}_{\mathrm{p}}=2300 \sqrt{\mathrm{psi}} \quad$ OK Table 12-18 Norton
$C_{f}=1$ not yet defined by AGMA page 751 Norton
$\mathrm{C}_{\mathrm{a}}=\mathrm{K}_{\mathrm{a}}=1.0 \quad \mathrm{C}_{\mathrm{m}}=\mathrm{K}_{\mathrm{m}}=1.6$
$\mathrm{C}_{\mathrm{v}}=\mathrm{K}_{\mathrm{v}}=0.7934 \quad \mathrm{C}_{\mathrm{S}}=\mathrm{K}_{\mathrm{S}}=1.0$
page 750 Norton
$\sigma_{\mathrm{cp}}=\mathrm{C}_{\mathrm{p}} \sqrt{\frac{\mathrm{W}_{\mathrm{t}}}{\mathrm{FId}} \frac{\mathrm{C}_{\mathrm{a}} \mathrm{C}_{\mathrm{m}}}{\mathrm{C}_{\mathrm{v}}} \mathrm{C}_{\mathrm{s}} \mathrm{C}_{\mathrm{f}}}=(2276 \sqrt{\mathrm{psi}}) \sqrt{\frac{4202 \mathrm{lbf}}{(6 \text { in })(0.1089)(3.375 \mathrm{in})} \frac{(1)(1.6)}{0.7934}(1)(1)}=141.1 \mathrm{ksi}$
$\mathrm{S}_{\mathrm{fc}}=\frac{\mathrm{C}_{\mathrm{L}} \mathrm{C}_{\mathrm{H}}}{\mathrm{C}_{\mathrm{T}} \mathrm{C}_{\mathrm{R}}} \mathrm{S}_{\mathrm{fc}}{ }^{\prime} \quad$ Eq 12.25 Norton
AISI 4140 nitrided steel $\quad \mathrm{S}_{\mathrm{fc}}{ }^{\prime}=167.5 \mathrm{ksi}$ (mean value) Table 12-27 Norton
$\mathrm{C}_{\mathrm{T}}=\mathrm{K}_{\mathrm{T}}=1.0 \quad \mathrm{C}_{\mathrm{R}}=\mathrm{K}_{\mathrm{R}}=1.0 \quad$ page 757 Norton
$\mathrm{C}_{\mathrm{L}}=1.4488 \mathrm{~N}^{-0.023}=0.8658 \quad$ assume commerical use
Figure 12-24 Norton
$C_{H}=1.0$ worst case page 758 Norton
$\mathrm{S}_{\mathrm{fc}}=\frac{\mathrm{C}_{\mathrm{L}} \mathrm{C}_{\mathrm{H}}}{\mathrm{C}_{\mathrm{T}} \mathrm{C}_{\mathrm{R}}} \mathrm{S}_{\mathrm{fc}}{ }^{\prime}=\frac{(0.8658)(1)}{(1)(1)}(167.5 \mathrm{ksi})=145.0 \mathrm{ksi} \quad$ Eq 12.25 Norton
$\mathrm{N}_{\mathrm{FS}}=\left(\frac{\mathrm{S}_{\mathrm{fc}}}{\sigma_{\mathrm{cp}}}\right)^{2}=\left(\frac{145.0 \mathrm{ksi}}{141.1 \mathrm{ksi}}\right)^{2}=1.06 \quad$ page 762 part 14. Norton $5^{\text {th }}$ edition
determine ω_{5} for $\omega_{2}=100 \mathrm{rpm} \mathrm{CW}$ and $\omega_{\mathrm{C}}=150 \mathrm{rpm} \mathrm{CCW}$ when viewed from right side

$$
\begin{aligned}
& \text { C }=\text { carrier }=\text { arm } \quad \text { use CCW }+ \text { viewed from right side } \\
& \frac{\omega_{5 / \mathrm{ARM}}}{\omega_{2 / \mathrm{ARM}}}=\left(\frac{\omega_{5 / \mathrm{ARM}}}{\omega_{4 / \text { ARM }}}\right)\left(\frac{\omega_{4 / \text { ARM }}}{\omega_{3 / \mathrm{ARM}}}\right)\left(\frac{\omega_{3 / \text { ARM }}}{\omega_{2 / \text { ARM }}}\right)=\left(-\frac{\mathrm{N}_{4}}{\mathrm{~N}_{5}}\right)(1)\left(-\frac{\mathrm{N}_{2}}{\mathrm{~N}_{3}}\right)=+\frac{\mathrm{N}_{2} \mathrm{~N}_{4}}{\mathrm{~N}_{3} \mathrm{~N}_{5}}=\frac{\left(\omega_{5}-\omega_{\mathrm{C}}\right)}{\left(\omega_{2}-\omega_{\mathrm{C}}\right)} \\
& \omega_{5}-\omega_{\mathrm{C}}=\frac{\mathrm{N}_{2} \mathrm{~N}_{4}}{\mathrm{~N}_{3} \mathrm{~N}_{5}} \omega_{2}-\frac{\mathrm{N}_{2} \mathrm{~N}_{4}}{\mathrm{~N}_{3} \mathrm{~N}_{5}} \omega_{\mathrm{C}} \\
& \omega_{5}=\frac{\mathrm{N}_{2} \mathrm{~N}_{4}}{\mathrm{~N}_{3} \mathrm{~N}_{5}} \omega_{2}+\left(1-\frac{\mathrm{N}_{2} \mathrm{~N}_{4}}{\mathrm{~N}_{3} \mathrm{~N}_{5}}\right) \omega_{\mathrm{C}} \\
& \omega_{5}=\frac{(18)(28)}{(30)(20)}(-100 \mathrm{rpm})+\left(1-\frac{(18)(28)}{(30)(20)}\right)(+150 \mathrm{rpm})=+60 \mathrm{rpm}
\end{aligned}
$$

