1) compression spring
squared and ground ends
$d=0.105$ in \quad OK preferred wire size Table 14-2 Norton
$\mathrm{OD}=0.755 \mathrm{in}$
$\mathrm{L}_{\mathrm{f}}=2.25$ in
$\mathrm{N}_{\mathrm{t}}=11.75$
assume A228 music wire
$\mathrm{N}_{\mathrm{a}}=\mathrm{N}_{\mathrm{t}}-2=9.75 \quad$ Fig. 14-9 Norton
$\mathrm{D}=\mathrm{OD}-\mathrm{d}=0.650$ in
$\mathrm{C}=\mathrm{D} / \mathrm{d}=6.1905 \quad$ Eq. 14-5
$\mathrm{G}=11.7 \times 10^{6} \mathrm{psi} \quad$ Table A-1 Norton
$\mathrm{k}=\frac{\mathrm{d}^{4} \mathrm{G}}{8 \mathrm{D}^{3} \mathrm{~N}_{\mathrm{a}}}=\frac{(0.105 \mathrm{in})^{4}}{8(0.650 \mathrm{in})^{3}(9.75)}\left(\frac{11.7 \times 10^{6} \mathrm{lbf}}{\mathrm{in}^{2}}\right)=66.39 \mathrm{lbf} / \mathrm{in} \quad$ Eq. 14.7 Norton
$\mathrm{S}_{\mathrm{ut}}=\mathrm{A} \mathrm{d}^{\mathrm{b}}=266.3 \mathrm{ksi} \quad \mathrm{A}=184649 \mathrm{psi} \quad \mathrm{b}=-0.1625 \quad$ Eq. 14.3 and Table 14-4 Norton
$\mathrm{S}_{\mathrm{ys}}=0.45 \mathrm{~S}_{\mathrm{ut}}=119.8 \mathrm{ksi} \quad$ Table 14-8 Norton
$\mathrm{K}_{\mathrm{W}}=\frac{4 \mathrm{C}-1}{4 \mathrm{C}-4}+\frac{0.615}{\mathrm{C}}=1.2438 \quad \tau_{\mathrm{MAX}}=\mathrm{K}_{\mathrm{w}} \frac{8 \mathrm{FD}}{\pi \mathrm{d}^{3}}<\mathrm{S}_{\mathrm{ys}} \quad$ Eq 14.8b Norton
$\mathrm{F}_{\mathrm{y}}<\frac{\pi \mathrm{d}^{3} \mathrm{~S}_{\mathrm{ys}}}{8 \mathrm{~K}_{\mathrm{w}} \mathrm{D}}=\frac{\pi(0.105 \mathrm{in})^{3}}{8(1.2438)(0.650 \mathrm{in})}\left(\frac{119.8 \times 10^{3} \mathrm{lbf}}{\mathrm{in}^{2}}\right)=67.36 \mathrm{lbf}$
$\mathrm{L}_{\mathrm{s}}=\mathrm{d} \mathrm{N}_{\mathrm{t}}=1.234$ in shut length (fully compressed) - squared and ground
$\mathrm{y}_{\mathrm{s}}=\mathrm{L}_{\mathrm{f}}-\mathrm{L}_{\mathrm{s}}=1.016$ in
$\mathrm{F}_{\mathrm{s}}=\mathrm{k} \mathrm{y}_{\mathrm{s}}=67.45 \mathrm{lbf}>\mathrm{F}_{\mathrm{y}} \quad$ will be VERY close to yield at shut length
$\rho=0.28 \mathrm{lbm} / \mathrm{in}^{3} \quad$ Table A-1 Norton
$\mathrm{w}=\rho\left(\pi \mathrm{d}^{2} / 4\right)(\pi \mathrm{D}) \mathrm{N}_{\mathrm{t}}=0.058 \mathrm{lbf}$
2) torsion spring garage door opener
rotating shaft crosses full width of door and has drums on each end three bearings for shaft - left, center, right steel cables connected to bottom of door (one on each side) are wound by drums to lift door two torsion springs - one RH and one LH springs fixed to front wall of garage above door at center springs connected to rotating shaft by clamps with two set screws at rotating end

$\mathrm{d}=0.242$ in \quad not a preferred wire size Table 14-2 Norton
$\mathrm{OD}=2.484 \mathrm{in}$
$\mathrm{N}_{\mathrm{a}}=143$
7 turns of preload when door closed
assume A229 oil tempered wire
$\mathrm{D}=\mathrm{OD}-\mathrm{d}=2.242$ in
$\mathrm{C}=\mathrm{D} / \mathrm{d}=9.2645$
Eq. 14-5
$\mathrm{E}=30 \times 10^{6} \mathrm{psi} \quad$ Table A-1 Norton
$\mathrm{k}_{\theta}=\frac{\mathrm{d}^{4} \mathrm{E}}{10.8 \mathrm{D} \mathrm{N}_{\mathrm{a}}}=\frac{(0.242 \mathrm{in})^{4}}{10.8(2.484 \mathrm{in})(143)}\left(\frac{30 \times 10^{6} \mathrm{lbf}}{\mathrm{in}^{2}}\right)=26.82 \mathrm{in.lbf} / \mathrm{rev}$
Eq. 14.29 Norton
$\theta=7 \mathrm{rev}$
$\mathrm{M}=\mathrm{k}_{\mathrm{T}} \theta=187.7 \mathrm{in} . \mathrm{lbf}=15.65 \mathrm{ft} . \mathrm{lbf}$
$\mathrm{r}_{\text {DRUM }}=2$ in radius of drum for cable to lift door
each turn of drum lifts door $2 \pi \mathrm{r}_{\text {DRUM }}=12.57 \mathrm{in}$
$\mathrm{F}_{\text {CABLE }}=\mathrm{M} / \mathrm{r}_{\text {DRUM }}=93.87 \mathrm{lbf} \quad$ force in cable to lift door (one cable on each side of door)
static at inside of coil $\quad \mathrm{K}_{\mathrm{bi}}=\frac{4 \mathrm{C}^{2}-\mathrm{C}-1}{4 \mathrm{C}(\mathrm{C}-1)}=1.0875$
Eq. 14.32a Norton
$\sigma_{\mathrm{imax}}=\mathrm{K}_{\mathrm{bi}} \frac{32 \mathrm{M}}{\pi \mathrm{d}^{3}}=(1.0875) \frac{32(187.7 \mathrm{in} . \mathrm{lbf})}{\pi(0.242 \mathrm{in})^{3}}=146.7 \mathrm{ksi}$
Eq. 14.33a Norton
$\mathrm{S}_{\mathrm{ut}}=\mathrm{A} \mathrm{d}^{\mathrm{b}}=190.4 \mathrm{ksi} \quad \mathrm{A}=146780 \mathrm{psi} \quad \mathrm{b}=-0.1833$
Eq. 14.3 and Table 14-4 Norton
$\mathrm{S}_{\mathrm{y}}=0.85 \mathrm{~S}_{\mathrm{ut}}=161.8 \mathrm{ksi} \quad$ Table 14-15 Norton
$\mathrm{N}_{\mathrm{FS}}=\mathrm{S}_{\mathrm{y}} / \sigma_{\mathrm{imax}}=1.10$
