

6 inch ID pipe with flanges 1040 cold rolled steel 1000 psi pressure
12 bolts around flange $\quad 1 / 2-20$ UNF Grade 8 threaded into flange
application factor of safety $\mathrm{N}_{\mathrm{AFS}}=2$ to prevent blow-by
$\mathrm{F}_{\text {TOTAL }}=($ pressure $) \frac{\pi}{4}\left(\mathrm{D}_{\text {BORE }}\right)^{2}=28,274 \mathrm{lbf}$
$\mathrm{F}_{\text {BOLT }}=\mathrm{F}_{\text {TOTAL }} / 12$ bolts $=2356 \mathrm{lbf}$
$\mathrm{P}_{\mathrm{i}}=\mathrm{N}_{\mathrm{AFS}} \mathrm{F}_{\text {BOLT }}=4712 \mathrm{lbf}$
pre-load torque
Norton Table 15-11 $\mathrm{k}_{\mathrm{i}}=0.21$
$\mathrm{T}_{\mathrm{i}}=\mathrm{k}_{\mathrm{i}} \mathrm{P}_{\mathrm{i}} \mathrm{d}=494.8$ in.lbf $=41.2 \mathrm{ft} . \mathrm{lbf} \quad$ Norton Eq. 15.23 d
1/2-20 UNF Grade $8 \quad$ Norton Table 15-2 and 15-6
$\mathrm{d}=0.50$ in
$\mathrm{d}_{\mathrm{r}}=0.4350$ in
$\mathrm{A}_{\mathrm{t}}=0.1600 \mathrm{in}^{2}$
$\mathrm{p}=1 / 20 \mathrm{in}=0.05 \mathrm{in}$
$\mathrm{S}_{\mathrm{PR}}=120 \mathrm{ksi}$
$\mathrm{S}_{\mathrm{UT}}=150 \mathrm{ksi}$
tension in bolt
$\sigma^{\prime}=\mathrm{P}_{\mathrm{i}} / \mathrm{A}_{\mathrm{t}}=29.46 \mathrm{ksi}$
$\mathrm{N}_{\mathrm{PR}}=\mathrm{S}_{\mathrm{PR}} / \sigma^{\prime}=4.07$
strip one thread in bolt $\quad W_{i}=0.80 \quad$ Norton Table 15-5
$\mathrm{A}_{\mathrm{S}}=\pi \mathrm{d}_{\mathrm{r}} \mathrm{p} \mathrm{w}_{\mathrm{i}}=0.05467 \mathrm{in}^{2} \quad$ Norton Eq 15.8a
shear area for three threads $\quad A_{3 S}=0.1640$ in 2
$\tau=\mathrm{P}_{\mathrm{i}} / \mathrm{A}_{3 \mathrm{~S}}=28.73 \mathrm{ksi}$
$\sigma^{\prime}=\sqrt{3} \tau=49.77 \mathrm{ksi}$
$\mathrm{N}_{\text {3S_BOLT }}=\mathrm{S}_{\mathrm{UT}} / \sigma^{\prime}=3.01$
strip one thread in flange (nut) $\quad \mathrm{w}_{\mathrm{o}}=0.88 \quad$ Norton Table 15-5
$\mathrm{A}_{\mathrm{S}}=\pi \mathrm{dp} \mathrm{w}_{\mathrm{o}}=0.06911 \mathrm{in}^{2} \quad$ Norton Eq 15.8b
shear area for three threads $\quad A_{3 S}=0.2073 \mathrm{in}^{2}$
$\tau=\mathrm{P}_{\mathrm{i}} / \mathrm{A}_{3 \mathrm{~S}}=22.73 \mathrm{ksi}$
$\sigma^{\prime}=\sqrt{3} \tau=39.37 \mathrm{ksi}$
Norton Table A-9 1040 cold-rolled $\quad S_{U T}=85 \mathrm{ksi}$

$$
\mathrm{N}_{3 \mathrm{~S}_{-} \mathrm{FLANGE}}=\mathrm{S}_{\mathrm{UT}} / \sigma^{\prime}=2.16
$$

this is very close to $\mathrm{N}_{\mathrm{AFS}}$
RECOMMEND
use coarse threads OR drill through second flange and use Grade 8 nuts \quad N $_{3 \text { S_Nut }}>$ N $_{3 \text { S_Bolt }}$

1/2-13 UNC Grade $8 \quad$ Norton Table 15-2, 15-5 15-6
$\mathrm{d}=0.50$ in
$\mathrm{d}_{\mathrm{r}}=0.4001 \mathrm{in}$
$\mathrm{A}_{\mathrm{t}}=0.1419 \mathrm{in}^{2}$
$\mathrm{p}=1 / 13 \mathrm{in}=0.07692$ in
tension in bolt
$\sigma^{\prime}=P_{i} / A_{t}=33.21 \mathrm{ksi}$
$\mathrm{N}_{\mathrm{PR}}=\mathrm{S}_{\mathrm{PR}} / \sigma^{\prime}=3.61$
strip three threads in bolt $\quad \mathrm{w}_{\mathrm{i}}=0.80 \quad$ Norton Table 15-5
$\mathrm{A}_{3 \mathrm{~S}}=3 \pi \mathrm{~d}_{\mathrm{r}} \mathrm{p} \mathrm{w}_{\mathrm{i}}=0.2321 \mathrm{in}^{2} \quad$ Norton Eq 15.8a
$\tau=\mathrm{P}_{\mathrm{i}} / \mathrm{A}_{3 \mathrm{~S}}=20.31 \mathrm{ksi}$
$\mathrm{N}_{3 \mathrm{~S}_{-} \text {BOLT }}=\frac{\mathrm{S}_{\mathrm{UT}}}{\sqrt{3} \tau}=4.26$
strip three threads in nut $\quad \mathrm{w}_{\mathrm{o}}=0.88 \quad$ Norton Table 15-5
$\mathrm{A}_{3 \mathrm{~S}}=3 \pi \mathrm{dp} \mathrm{w}_{\mathrm{o}}=0.3189 \mathrm{in}^{2} \quad$ Norton Eq 15.8 b
$\tau=\mathrm{P}_{\mathrm{i}} / \mathrm{A}_{3 \mathrm{~S}}=14.77 \mathrm{ksi}$
$\mathrm{N}_{\text {3S_BOLT }}=\frac{\mathrm{S}_{\mathrm{UT}}}{\sqrt{3} \tau}=5.86$

