Use generalized coordinates $\{q\}$ and joint constraints $\{\Phi\}$ for the slider crank shown below.

$$\{q\} = \begin{cases} x_{2} \\ y_{2} \\ \phi_{2} \\ x_{3} \\ y_{3} \\ \phi_{3} \\ x_{4} \\ y_{4} \\ \phi_{4} \end{cases} = \begin{cases} \{r_{2}\} \\ \phi_{2} \\ \{r_{3}\} \\ \phi_{3} \\ \{r_{4}\} \\ \phi_{4} \end{cases}$$

$$\{\Phi\} = \begin{cases} \{r_{2}\}^{A} - \{r_{1}\}^{A} \\ \{r_{3}\}^{B} - \{r_{2}\}^{B} \\ \{r_{4}\}^{C} - \{r_{3}\}^{C} \\ \phi_{4} \\ y_{4} \\ \phi_{2} - \omega_{2}t \end{cases}$$

AB = R = 0.985 inchBC = L = 4.33 inch $BG_3 = 1.1$ inch G₂ is at A₂ (balanced crank) G₃ is on centerline of link 3 G₄ is at C₄ (simple piston model) x₂ axis along centerline of link 2 x₃ axis along centerline of link 3 $\omega_2 = 1000 \text{ rpm CCW constant}$

$$\{s_{2}\}^{A} = \{0\}$$
 $\{s_{2}\}^{B} = \{0\}$ $\{s_{4}\}^{C} = \{0\}$ $\{r_{1}\}^{A} = \{0\}$

example for B3
$$\{r_3\}^B = \{r_3\} + [A_3]\{s_3\}^{\prime B} \qquad [A_3] = \begin{bmatrix} \cos \phi_3 & -\sin \phi_3 \\ \sin \phi_3 & \cos \phi_3 \end{bmatrix}$$

1) Evaluate residuals $\{\Phi\}$ for rough estimates of generalized coordinates $\{q\}$ at t=0.005 sec shown below. Comment on the relative precision of $\{\Phi\}$ versus $\{q\}$.

$$\left\{q\right\} = \left\{ \begin{array}{c} 0 \text{ inch} \\ 0 \text{ inch} \\ 0.4363 \text{ rad } (25^\circ) \\ 2.0 \text{ inch} \\ 0.5 \text{ inch} \\ -0.1745 \text{ rad } (-10^\circ) \\ 5.0 \text{ inch} \\ 0 \text{ inch} \\ 0 \text{ rad } (0^\circ) \end{array} \right\} = \left\{ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \right.$$

2) Use geometric equations to determine better estimates for $\{q\}$ at time t=0.005 sec. Then evaluate new residuals. Comment on precision of $\{q\}$ and $\{\Phi\}$ between parts 1) and 2).

$$\{q\} = \begin{cases} 0 \text{ inch} \\ 0 \text{ inch} \\ \omega_2 t = \underline{\hspace{1cm}} \\ \hline 0 \text{ inch} \\ 0 \text{ rad } (0^\circ) \end{cases} \qquad \{\Phi\} = \begin{cases} \underline{\hspace{1cm}} \\ \underline{$$

3) Evaluate the Jacobian $\left[\Phi_{_{q}}\right]$ for your better estimate of $\{q\}$ at t=0.005 sec.

$\left[\Phi_{q}\right] = 0$	 	 	 	 	

4) Use your code to perform a Newton-Raphson position solution at t = 0.010 sec. Calculate piston position x_4 and determinant of the Jacobian. Validate with geometric equations.

 x_4 (Newton-Raphson) _____ det $\left[\Phi_q\right]$ _____

x₄ (geometric) _____

5) Compute piston velocity \dot{x}_4 and acceleration \ddot{x}_4 at t = 0.010 sec using a matrix solution with right-hand-side (RHS) vectors $\{v\}$ and $\{\gamma\}$. Validate with geometric equations.

 \dot{x}_4 (matrix) _____ \ddot{x}_4 (matrix) _____

 \dot{x}_4 (geometric) _____ \ddot{x}_4 (geometric) _____

EXTRA CREDIT

Place a loop around your solution for part 5) using $0 \le t \le 0.06$ sec and provide MATLAB graphs for piston position x_4 , velocity \dot{x}_4 and acceleration \ddot{x}_4 as functions of crank angle ϕ_2 . Validate using results from geometric equations on the same MATLAB graphs.

EXTRA EXTRA CREDIT

Modify your slider crank code for part 5) to analyze the four bar in Notes_04_05. This should only require modifying the last three rows in your constraint vector, your Jacobian matrix and your acceleration RHS vector.

use $\phi_2 = 65^{\circ}$ $\dot{\phi}_2 = 10 \text{ rad/sec CW}$ $\ddot{\phi}_2 = 2 \text{ rad/sec}^2 \text{ CCW}$

validation $\varphi_3 = 13.151^\circ \qquad \dot{\varphi}_3 = \underline{\hspace{1cm}} \ddot{\varphi}_3 = +7.0627 \ rad/sec^2$

 $\phi_4 = -65.173^{\circ}$ $\dot{\phi}_4 = -5.3533 \text{ rad/sec}$ $\ddot{\phi}_4 =$