- 1) Modify your Working Model (WM) slider crank simulation as detailed below.
 - a) Change the motor that drives the crank to apply constant torque of 20 ft-lbf.
 - b) Place a large block so that the piston cannot move all the way to TDC.
 - c) Select <u>World</u> then <u>Accuracy</u> and set <u>Animation Step</u> to 0.0001 sec. You may also need to select <u>World</u> then <u>Accuracy</u> then <u>More Choices</u> and set <u>Overlap Error</u> smaller.
 - d) Left-click on the piston to highlight it. Hold down the Shift Key and left-click on the block to highlight it also. Select <u>Object</u> then <u>Collide</u> to enable collision between the two objects. Select <u>Measure</u> then <u>Contact Force</u> to measure piston force.
 - e) Move the block to three different positions and record piston force in the table below.
 - f) Validate your simulation with the closed-form force-torque equation derived in class.
 - g) Attach a screen shot of your WM mechanism.

Crank angle [deg]	Conn-rod angle [deg]	Crank torque [in.lbf]	WM piston force [lbf]	Equation piston force [lbf]
31.373	6.812	240	391.410	391.3519
85.882	13.118	240	240.255	240.2545
130.766	9.921	240	378.828	378.8317

$$T_{12} = \frac{P R \sin(\theta + \phi)}{\cos \phi}$$
 $P = \frac{T_{12} \cos \phi}{R \sin(\theta + \phi)}$

EXTRA CREDIT

Develop a WM simulation to slowly move the block back and forth. Export WM data and read into MATLAB. Provide validation plots of WM piston force and closed-form equation piston force on the same MATLAB graph as a function of crank angle. Attach a screen shot of your WM mechanism.

2) Determine motor torque T_{12} required to push needle link 6 down with 0.5 N at the position shown below. The mechanism is drawn to scale full size. Neglect friction and dynamic effects.

Show your work.

T₁₂ 7.36 N.mm CW instant centers
7.69 N.mm CW WM
7.603 N.mm CW Newtonian

from H05

 $\omega_2 = 4 \text{ rev/sec} = 8 \pi \text{ rad/sec}$

actual power

 $T_{12} \circ \omega_2 + F_{NEEDLE} \circ V_{G6} = 0$

graphical instant centers

 $V_{G6} = 370 \text{ mmps}$ down

 $T_{12} = 7.36 \text{ N.mm CW}$

Working Model - gravity OFF

 T_{12} = -7690 N.mm, F_{NEEDLE} = 499.98 N

 $T_{12} = -769 \text{ N.mm}, F_{NEEDLE} = 50.0 \text{ N}$

 $T_{12} = -76.9 \text{ N.mm}, F_{NEEDLE} = 5.00 \text{ N}$

 $T_{12} = -7.69 \text{ N.mm}, F_{NEEDLE} = 0.50 \text{ N}$

remove each slider and replace with pin-in-slot

assume no friction

$$\Sigma$$
F on 2 right + $F_{12}^{x} + F_{32}^{E} = 0$
 Σ F on 2 up + $F_{12}^{y} + F_{32}^{F} = 0$

$$\begin{array}{lll} \Sigma F \text{ on 2 up} + & + F_{12}{}^y + F_{32}{}^F = 0 \\ \Sigma M \text{ on 2 about A CCW} + & - F_{32}{}^E & A E^y + F_{32}{}^F & A F^x + T_{12} = 0 \end{array}$$

$$\begin{array}{lll} \textbf{\Sigma} F \text{ on 3 right} + & + F_{23}{}^{E} + F_{13}{}^{x} = 0 \\ \textbf{\Sigma} F \text{ on 3 up} + & + F_{23}{}^{F} + F_{NEEDLE} = 0 \\ \textbf{\Sigma} M \text{ on 3 about G CCW} + & - F_{23}{}^{E} & GE^{y} + F_{23}{}^{F} & GF^{x} = 0 \end{array}$$

using graphical measurements from drawing

$$AE^y = 20.6 \text{ mm}$$
 $AF^x = GF^x = 21.1 \text{ mm}$ $GE^y = 62.3 \text{ mm}$

 $F_{NEEDLE} = 0.5 N$

$$\begin{array}{lll} \text{from } \mathbf{\Sigma} \mathbf{F} \text{ on 3 y} & F_{23}{}^{F} = -0.5 \ N \\ \text{from } \mathbf{\Sigma} \mathbf{M} \text{ on 3} & F_{23}{}^{E} = -0.169 \ N \end{array} \qquad \begin{array}{ll} F_{32}{}^{F} = +0.5 \ N \\ F_{32}{}^{E} = +0.169 \ N \end{array}$$

from ΣM on 2 $T_{12} = -7.068$ N.mm

using exact measurements computed in H05

$$\{r\}^{E} = \begin{cases} 10\\19.9279 \end{cases} \qquad \{r\}^{F} = \begin{cases} 22.5473\\10 \end{cases} \qquad \{r\}^{G} = \begin{cases} 0\\-41.2603 \end{cases}$$

$$AE^{y} = 19.9279 \text{ mm} \qquad AF^{x} = GF^{x} = 22.5473 \text{ mm} \qquad GE^{y} = 61.1882 \text{ mm}$$

from SM on 3
$$F_{23}^E = -0.1842 \ N$$
 $F_{32}^E = +0.1842 \ N$

from ΣM on 2 $T_{12} = -7.6029$ N.mm


```
\mbox{\%} h09 ec.m - ME 481 H09 - read WM data for slider crank and validate
% HJSIII, 11.03.14
% general constants
d2r = pi / 180;
% mechanism constants
R = 1.97 / 2;
                        % crank length [inch]
L = 4.33;
                         % conn-rod length [inch]
T12 = 240;
                         % crank torque [in.lbf]
\mbox{\%} load WM data - note angles in degrees
load hw09 ec cut.txt;
t = hw09 ec cut(:,1);
th_deg = hw09_ec_cut(:,2);
phi deg = -hw09 ec cut(:,4);
P_{WM} = -hw09_{ec_{ut}(:,6)};
% crank information
th = th_deg * d2r;
% geometric equations
phi = asin(R*sin(th) / L);
P geo = T12 * cos(phi) /R ./sin(th+phi);
% plot results
figure(1)
 plot( th_deg,P_WM,'ro', th_deg,P_geo,'b' )
% axis([0 360 0 6])
xlabel('Crank angle [deg]')
ylabel('Piston force [lbf]')
 legend( 'Working Model', 'Geometric equations' )
title( 'Crank torque = 240 in.lbf' )
% manual check
th_deg_manual = [ 31.373 85.882 130.766 ];
phi_deg_manual = [ 6.812 13.118 9.921 ];
th = th_deg_manual * d2r;
phi = phi_deg_manual * d2r;
P_{\text{manual}} = T12 * cos(phi) / R ./sin(th+phi)
% bottom of hw09 ec.m
```