
 Notes_10_04 1 of 20

Collision Detection for Polygonal Objects

given global location { }ir and attitude iφ for all bodies at time t

given { } P

i 's for all vertices on all bodies (constants)

polygons must not be self-crossing

polygons must not have holes

{ } 1P
ir

{ } 2P
ir

{ } 3P
ir

{ } 4P
ir

'x i
'yi

{ } 2P
jr

 { } 3P
jr

{ } 1P
jr

'x j

'y j

 Notes_10_04 2 of 20

Bounding Circle - quick check

before the simulation, find maximum radius { }()P

ii 'snormmax=ρ over all vertices for each
body (one constant scalar value per body that may be computed a priori)

at each time t, compute center distance ij j id norm r r between all pairs of bodies

if ij i jd then no collision can occur between bodies i and j

if ij i jd then bodies i and j are candidates for collision detection

does not require calculation of { }P

ir for any vertices on any bodies

works best for centroidal origins and objects with low aspect ratios

'x i

'yi
iρ

ijd

'x j

'y j

jρ

 Notes_10_04 3 of 20

Axis Aligned Bounding Box (AABB) - quick check

at each time t, calculate { }P

ir for all vertices on all bodies

find AABB for each body MIN

i
MAX

i
MIN

i
MAX

i yyxx

test between all pairs of bodies

() () () ()MIN

i
MAX

j
MIN

j
MAX

i
MIN

i
MAX

j
MIN

j
MAX

i yyANDyyANDxxANDxx ≥≥≥≥

if true, then AABBs intersect and bodies i and j are candidates for collision detection

if false, then AABBs do not intersect and collision cannot occur between bodies i and j

works best for objects with low aspect ratios

MIN
i

MAX
j yy >

'x i

'yi

'x j

'y j

MIN
j

MAX
i yy >

 Notes_10_04 4 of 20

Point in Polygon

must check if any vertices on body j are inside body i AND check if any vertices on body i
are inside body j

computational complexity O(ni x nj) for convex objects and O(2 ni x nj) for ray casting

point in polygon does not always work for thin bodies (may need edge intersection)

 Notes_10_04 5 of 20

Point in Polygon – Convex Objects

vertices must be ordered CW around polygon

at each time t, calculate { }P

ir for all points on all bodies that are candidates for collision

select one point { }P

jr on body j and test if it is to the right or to the left of edge { } { }P
i

Q
i rr − on

body i

external normal { } []{ } { }()()P

i
Q

i rrRunitn̂ −= to the left of current edge

if { } { }() { } 0n̂rr

TP
i

P
j >− , the point is to the left of the edge, is outside the polygon and the search

across edges may be terminated for that point

if { } { }() { } 0n̂rr

TP
i

P
j =− , the point is on the edge and may be inside the polygon

if { } { }() { } 0n̂rr

TP
i

P
j <− , the point is to the right of the edge and may be inside the polygon

expand { } { }() []{ } { }() ()() ()()P

i
Q

i
P

i
P

j
P

i
Q

i
P

i
P

j
P

i
Q

i

TP
i

P
j yyxxxxyyrrRrr −−−−−=−−

point { }P

jr must be to the right of ALL edges to be inside body i

computational complexity O(ni x nj /2) because may terminate search early

does not work for bodies with concavities or holes

 Notes_10_04 6 of 20

Point in Polygon – Ray Casting

at each time t, calculate { }P

ir for all points on all bodies that are candidates for collision

select one point { }P

jr on body j and test if it is inside body i

cast an infinite ray in any direction from { }P

jr and compute intersections with all edges on body i

an infinite ray to the right from { }P

jr intersects edge { } { }Q P
i ir r− if () ()0dAND1d0 ji ≥<≤

() ()P
i

P
ji

P
i

Q
ijP

i
Q

i

P
i

P
j

i xxdxxd
yy

yy
d −−−=

−

−
=

if there are an even number of intersections, { }P

jr is not inside body i

if there are an odd number of intersections, { }P

jr is inside body i

computational complexity O(ni x nj)

works for concavities, holes and self-crossing and is independent of CW versus CCW boundary

special case when { }P

jr is on an edge or vertex of body i

algorithm used by MATLAB “inpolygon”

2

3

4

2

4

3

2

1

0

 Notes_10_04 7 of 20

% t_inpolygon.m - test inpolygon
% HJSIII, 11.4.13

clear

% vertices for body i - bounded 0 to 1
ni = 5;
ri = rand(2,ni);
ri = [ri ri(:,1)]; % close the boundary

% points for j
nj = 500;
rj = rand(2,nj);

% which are inside?
% points j vertices i
in = inpolygon(rj(1,:),rj(2,:), ri(1,:),ri(2,:));
figure(1)
 clf
 plot(ri(1,:),ri(2,:),'b', rj(1,in),rj(2,in),'.r', rj(1,~in),rj(2,~in),'.g')

% bottom of t_inpolygon

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 Notes_10_04 8 of 20

Edge Intersection

must check every edge on body i for intersection with every edge on body j

{ } { } { }() { } { } { }()P

j
Q

jj
P

j
P

i
Q

ii
P

i rrdrrrdr −+=−+ intersect if 1d0 i ≤≤ and 1d0 j ≤≤

{ } { }() { } { }()[] { } { }()P
i

P
j

j

iP
j

Q
j

P
i

Q
i rr

d
d

rrrr −=

−−−

()() ()()
()() ()()P

j
Q

j
P

i
Q

i
P

i
Q

i
P

j
Q

j

P
i

P
j

P
j

Q
j

P
i

P
j

P
j

Q
j

i yyxxyyxx

xxyyyyxx
d

−−−−−

−−−−−
=

()() ()()
()() ()()P

j
Q

j
P

i
Q

i
P

i
Q

i
P

j
Q

j

P
i

P
j

P
i

Q
i

P
i

P
j

P
i

Q
i

j yyxxyyxx

xxyyyyxx
d

−−−−−

−−−−−
=

if denominator = 0, segments are parallel

must check if they are coincident { } { }() []{ } { }() 0rrRrr P

i
Q

i

TP
i

P
j =−−

expand ()() ()() 0yyxxxxyy P

i
Q

i
P

i
P

j
P

i
Q

i
P

i
P

j =−−−−−

computational complexity O(ni x nj)

edge intersection does not always work if one body is completely inside the other (may need
point in polygon)

{ }Q
jr

{ }P
jr

{ }Q
ir

{ }P
ir

id

jd

 Notes_10_04 9 of 20

% t_polyxpoly - test polyxpoly
% HJSIII, 18.04.30

clear

% rectangle - CW closed curve
xbox = [3 3 13 13 3];
ybox = [2 8 8 2 2];

% two-part polyline - open curve with gap
xline = [0 6 4 8 8 10 14 10 14 NaN 4 4 6 9 15];
yline = [4 6 10 11 7 6 10 10 6 NaN 0 3 4 3 6];

% find edge intersections
[xi, yi, ii] = polyxpoly(xline, yline, xbox, ybox);

% list results
fprintf('line edge box edge\n')
for i = 1 : length(ii),
 fprintf('%10d', ii(i,1))
 fprintf('%10d\n', ii(i,2))
end

% show results
figure(1)
 clf
 plot(xline,yline,'r', xbox,ybox,'g', xi,yi,'bo')

% bottom of t_polyxpoly

**

>> t_polyxpoly
 line edge box edge
 1 1
 2 2
 4 2
 6 2
 8 2
 8 3
 14 3
 11 4

0 5 10 15
0

2

4

6

8

10

12

 Notes_10_04 10 of 20

Separating Axis Theorem (SAT)

vertices must be ordered CW around polygon

before the simulation, select one edge { } { }P

i
Q

i 's's − on body i and compute external normal
{ } []{ } { }()()P

i
Q

i 's'sRunitn̂ −=

compute the projection R

ip for all points { }R
i 's onto the normal and store the minimum value

MIN
ip (one scalar constant per edge that may be computed a priori)

{ } { }() []{ } { }()()P

i
Q

i
TP

i
R

i
R

i 's'sRunit's'sp −−=

at each time t, calculate { }P

ir for all points on all bodies that are candidates for collision

select edge { } { }P

i
Q

i rr − on body i and compute external normal { } []{ } { }()()P
i

Q
i rrRunitn̂ −=

called the separating axis

select point { }P

jr on body j and compute its projection P
jp onto the separating axis

{ } { }() { }n̂rrp

TP
i

P
j

P
j −=

compute the projection P

jp onto the separating axis for all other points on body j and store the

maximum MAX
jp and minimum MIN

jp values

check for overlap of projections onto the separating axis

() ()MIN

i
MAX

j
MIN

j ppANDp0 ≥≥

if false, the projections do not overlap, there can be no collision and the test may be terminated

if true, the projections overlap and must continue checking all other edges { } { }P

i
Q

i rr −

does not work for bodies with concavities or holes

very similar to convex body point in polygon however do not need to check (i in j) and (j in i)

computational complexity O(ni x nj / 2) because may terminate search early AND do not need to
check body i against body j

 Notes_10_04 11 of 20

{ }n̂

{ }P
ir

{ }Q
ir

{ }P
jr { }R

ir

separating
axis

pi
MIN

pj
MAX

pj
MIN

 Notes_10_04 12 of 20

Classification of Contacts

 Body i

vertices
in j

Body i
edge

intersections

Body j
vertices

in i

Body j
edge

intersections

Contact
points

vertex-edge 0 1 1 2 3
edge-edge 1 2 1 2 4
multiple vertex-edge 0 1 ≥2 2 5
multiple edge-edge 1 2 ≥2 2 5

i

j

i

j

i

j

i

j

vertex-edge

edge-edge

multiple vertex-edge multiple edge-edge

 Notes_10_04 13 of 20

 Interpolating Time of Collision (vertex-edge)

given candidate vertex { }P
tjr on body j that collides with body i at time t

given candidate edge { } { }P

ti
Q
ti rr − on body i that has two edge intersections with body j at time t

must know position and velocity for all three points at time t-h (time step h)

Constant velocity predictor

predict position of all three points at local time ht0 ≤∆≤ using vales from t-h

{ } { } { } ()trrr P

hti
P

hti
P

i ∆+= −−

{ } { } { } ()trrr Q

hti
Q

hti
Q

i ∆+= −−

{ } { } { } ()trrr P

htj
P

htj
P

j ∆+=
−−

when vertex { }P

jr intersects edge { } { }P
i

Q
i rr − { } { }() []{ } { }() 0rrRrr P

i
Q

i

TP
i

P
j =−−

substituting position equations and collecting similar terms

() () 0ctbta 2 =+∆+∆

{ } { }() []{ } { }()P

hti
Q

hti

TP
hti

P
htj rrRrra −−−−

−−=

{ } { }() []{ } { }() { } { }() []{ } { }()P
hti

Q
hti

TP
hti

P
htj

P
hti

Q
hti

TP
hti

P
htj rrRrrrrRrrb −−−−−−−−

−−+−−=

{ } { }() []{ } { }()P
hti

Q
hti

TP
hti

P
htj rrRrrc −−−−

−−=

{ }Q
ir { }P

ir

{ }P
jr

 Notes_10_04 14 of 20

a2
ac4bbt

2 −±−
=∆

must check ht0 ≤∆≤ and it must not be imaginary

if not true, then that vertex did not actually collide with that edge

Constant acceleration predictor

predict position of all three points at local time ht0 ≤∆≤ measured from t-h

{ } { } { } () { } ()2P

hti2
1P

hti
P

hti
P

i trtrrr ∆+∆+= −−−

{ } { } { } () { } ()2Q

hti2
1Q

hti
Q

hti
Q

i trtrrr ∆+∆+= −−−

{ } { } { } () { } ()2P

htj2
1P

htj
P

htj
P

j trtrrr ∆+∆+=
−−−

substituting position equations and collecting similar terms

() () () () 0ctctctctc 01
2

2
3

3
4

4 =+∆+∆+∆+∆

{ } { }() []{ } { }()P
hti

P
hti

TP
hti

P
htj4

1
4 rrRrrc −−−−

−−=

{ } { }() []{ } { }() { } { }() []{ } { }()P
hti

Q
hti

TP
hti

P
htj2

1P
hti

Q
hti

TP
hti

P
htj2

1
3 rrRrrrrRrrc −−−−−−−−

−−+−−=

{ } { }() []{ } { }() { } { }() []{ } { }()
{ } { }() []{ } { }()P

hti
Q

hti

TP
hti

P
htj2

1

P
hti

Q
hti

TP
hti

P
htj

P
hti

Q
hti

TP
hti

P
htj2

1
2

rrRrr

rrRrrrrRrrc

−−−−

−−−−−−−−

−−+

−−+−−=

{ } { }() []{ } { }() { } { }() []{ } { }()P

hti
Q

hti

TP
hti

P
htj

P
hti

Q
hti

TP
hti

P
htj1 rrRrrrrRrrc −−−−−−−−

−−+−−= (same as b above)

relative motion of body j with
respect to body i

{ }Q
ir { }P

ir

{ }P
jr

 Notes_10_04 15 of 20

{ } { }() []{ } { }()P

hti
Q

hti

TP
hti

P
htj0 rrRrrc −−−−

−−= (same as c above)

use root finding algorithm for t∆ (e.g. MATLAB “roots”)

must check ht0 ≤∆≤ and it must not be imaginary

 Notes_10_04 16 of 20

Three-dimensional Collision Detection

Quick checks

Bounding spheres and AABB both work well

Point in polyhedron – convex bodies

at each time t, calculate { }P

ir for all points on all bodies that are candidates for collision

select one point { }P

jr on body j and test if it is outside or inside a facet on body i defined by

external normal { }n̂ and any vertex { }P
ir on the facet

if { } { }() { } 0n̂rr

TP
i

P
j >− , the point is outside the polyhedron and the search across facets may be

terminated for that point

if { } { }() { } 0n̂rr

TP
i

P
j =− , the point is on the facet and may be inside the polyhedron

if { } { }() { } 0n̂rr

TP
i

P
j <− , the point is inside the facet and may be inside the polyhedron

point { }P

jr must be inside of ALL facets to be inside body i

point in polygon does not always work for thin bodies (may need edge intersection)

Point in polyhedron – ray casting

at each time t, calculate { }P

ir for all points on all bodies that are candidates for collision

select one point { }P

jr on body j and test if it is inside body i

cast an infinite ray in any direction from { }P

jr and compute intersections with all facets on body i

if there are an even number of intersections, { }P

jr is not inside body i

if there are an odd number of intersections, { }P

jr is inside body i

works for concavities, holes and self-crossing and is independent of CW versus CCW boundary

 Notes_10_04 17 of 20

ray-facet intersection is similar to edge-facet intersection described below

point in polygon does not always work for thin bodies (may need edge intersection)

Triangular facet intersection (MATLAB code available)

vertices for facet on body i P Q R

i i ir r r

vertices for facet on body j P Q R

j j jr r r

edges on body i Q P Q P R Q R Q P R P R

i i i i i i i i is r r s r r s r r

edges on body j Q P Q P R Q R Q P R P R

j j j j j j j j js r r s r r s r r

unit normal for facet i R Q Q P

i i in unit s s

unit normal for facet j R Q Q P

j j jn unit s s

unit vector for line of intersection of planes through facets i ju unit n n

equation for plane through facet i T T P

i i in x n r

equation for ray on facet j along edge Q-P from P P Q PQ P

j j jx r d s

directed distance from P on body j to plane for facet i

PT P
i i j

Q P
j Q PT

i j

n r r
d

n s

three directed distances on facet i that pierce plane for facet j

T P P
j j i

Q P
i T Q P

j i

n r r
d

n s

T P Q
j j i

R Q
i T R Q

j i

n r r
d

n s

T P R
j j i

P R
i T P R

j i

n r r
d

n s

three directed distances on facet j that pierce plane for facet i

 Notes_10_04 18 of 20

PT P
i i j

Q P
j Q PT

i j

n r r
d

n s

QT P
i i j

R Q
j R QT

i j

n r r
d

n s

RT P
i i j

P R
j P RT

i j

n r r
d

n s

only use directed distances that are bounded 0 d 1

there must be two valid directed distances on body i and two on body j for intersection

otherwise there is no intersection

use the ray equation to find the two piercing points for facet i and the two for body j

 A BA B

i i j jr r r r

directed distances from first piercing point along line of intersection

T A A T B AA B
i i i i i i

A BT 1 T AA B
j j i j j i

h u r r 0 h u r r

h u r r h u r r

sort piercing points by directed distances A B A B

i i j jh h h h along line of intersection

if first two piercing points belong to the same body, there is no intersection

otherwise the intersection segment runs from the second to third sorted piercing points

General facet intersection

check if edges for a given facet on body j intersect facet on body i

establish local coordinate frame with origin at the first vertex for facet on i, local x axis along
first edge and local y defined by second edge (CCW vertex sequence around facet i)

local z axis will be parallel to external normal

transform vertices for facet i and facet j into local coordinates and perform all following
computations in local coordinates

test where edge { } { }P

j
Q

j rr − intersects facet i

use ()P

j
Q

j
P

j
P

j zz/zd −−= and check 1d0 P
j ≤≤

 Notes_10_04 19 of 20

if false, that edge does not intersect the facet and proceed to check next edge on j for same facet i

if true that edge intersects the plane of the facet at { } { } { } { }()P

j
Q

j
P

j
P

j rrdrr −+=

use planar point in polygon test if x,y components of { }r are inside x,y components of facet i

if false, the edge intersects the plane of the facet outside its boundary

if true, the edge intersects the facet inside its boundary

must also check if edges for same facet on body i intersect same facet on body j

facet intersection does not always work if one body is completely inside the other (may need
point in polygon)

 Notes_10_04 20 of 20

Handling Collision

Physical simulators differ in the way they react to a collision. Some use the softness of the
material to calculate a force, which will resolve the collision in the following time steps like it is
in reality. Due to the low softness of some materials this is very CPU intensive.

Other simulators estimate the time of collision by interpolation, roll back the simulation, and
calculate the exact time of collision. This may require several iterations.

After an inelastic collision, special states of sliding are often imposed. For example, an open
pin-in-slot constraint is added for a vertex-edge intersection to force that vertex to slide on the
edge rather than penetrate it. The Open Dynamics Engine uses this approach.

http://en.wikipedia.org/wiki/Open_Dynamics_Engine

	Collision Detection for Polygonal Objects
	given global location and attitude for all bodies at time t
	given for all vertices on all bodies (constants)
	polygons must not be self-crossing
	polygons must not have holes
	point in polygon does not always work for thin bodies (may need edge intersection)
	Edge Intersection
	must check every edge on body i for intersection with every edge on body j
	point in polygon does not always work for thin bodies (may need edge intersection)
	point in polygon does not always work for thin bodies (may need edge intersection)
	check if edges for a given facet on body j intersect facet on body i
	must also check if edges for same facet on body i intersect same facet on body j
	Handling Collision

