Three-Dimensional Vector and Matrix Notation

- $\{r_i\}$ global position of the origin of reference frame attached to body i
- $\{r_i\}^P$ global position of point P attached to body i

example
$${\mathbf{r}_4}^{\mathrm{B}} = \begin{cases} {\mathbf{x}_4}^{\mathrm{B}} \\ {\mathbf{y}_4}^{\mathrm{B}} \\ {\mathbf{z}_4}^{\mathrm{B}} \end{cases}$$
 global position of point B attached to body 4

- $\{\dot{r}_i\}$ global velocity of the origin of the reference attached to body i
- $\left\{\dot{r}_{i}\right\}^{P}$ global velocity of point P attached to body i
- ${\{\ddot{r}_i\}}$ global acceleration of the origin of the reference attached to body i
- ${\left\{ {{\ddot r_i}} \right\}^P}$ global acceleration of point P attached to body i
- $\{\ddot{r}_i\}$ global jerk of the origin of the reference attached to body i
- $\{\ddot{r}_i\}^P$ global jerk of point P attached to body i
- {s_i}' ^P position of point P on body i relative to the reference frame for body i measured in local body-fixed directions

example $\{s_4\}' = \begin{cases} x_4' \\ y_4' \\ z_4' \\ z_4' \end{cases}$ location of point B on body 4 relative to the reference frame for

body 4 measured in local body-fixed directions for body 4

 ${s_i}^P$ position of point P on body i relative to the reference frame for body i but measured in global directions

 $\{d_{ij}\}$ relative location between two points on bodies i and j measured in global directions

example $\{d_{ij}\} = \{r_4\}^Q - \{r_3\}^P$ relative location of point Q on body 4 with respect to point P on body 3 measured in global directions

 $\{p_i\}$ Euler parameters to describe attitude for body i

$\{\omega_i\}$	angular velocity of body i measured in global directions		
$\{\omega_i\}'$	angular velocity of body i measured in local body-fixed directions		
$\left\{ \dot{\omega}_{i} \right\}$	angular acceleration of body i measured in global directions		
$\{\dot{\omega}_i\}'$	angular acceleration of body i measured in local body-fixed directions		
$\left\{ {{\ddot \omega }_i} \right\}$	angular jerk of body i measured in global directions		
$\{\ddot{\omega}_i\}'$	angular jerk of body i measured in local body-fixed directions		
$\left[A_{i}\right]$	orthonormal rotation matrix that describes global attitude of body i		
examı	ble $\{s_i\}^P = [A_i] \{s_i\}^P$ rotation matrix converts information in local body-fixed directions into global directions		
$\left\{ {{{{\hat f}}_i}} \right\}$	global direction of unit vector along local x axis attached to body i		
$\{\hat{g}_i\}$	global direction of unit vector along local y axis attached to body i		
$\left\{ \hat{\mathbf{h}}_{i} \right\}$	global direction of unit vector along local z axis attached to body i		
$\{ \hat{\mathbf{f}}_i \}$	local direction of unit vector along local x axis attached to body i $\{\hat{\mathbf{f}}_i\}' = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^T$		
$\{\hat{g}_i\}'$	local direction of unit vector along local y axis attached to body i $\{\hat{g}_i\}' = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix}^T$		
$\left\{ \hat{\mathbf{h}}_{i} \right\}$	local direction of unit vector along local z axis attached to body i $\{\hat{\mathbf{h}}_i\} = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}^T$		
example $\left[A_i \right] = \left[\left\{ \hat{f}_i \right\} \left\{ \hat{g}_i \right\} \left\{ \hat{h}_i \right\} \right]$ global unit directions for local axes attached to body i			
$[C_i]'^P$	orthonormal rotation matrix that describes relative attitude of joint frame at point P on body i measured in local body-fixed directions		
$\left[C_{i}\right]^{P}$	orthonormal rotation matrix that describes global attitude of joint frame at point P on body i		
examj	ble $[C_i]^P = [A_i][C_i]^P$ rotation matrix converts information in local body-fixed directions into global directions		

 $\left\{ \hat{f}_{i} \right\}^{P}$ global direction of unit vector along x axis at joint frame for P on body i $\{\hat{\mathbf{g}}_i\}^{\mathrm{P}}$ global direction of unit vector along y axis at joint frame for P on body i $\left\{ \hat{h}_{i} \right\}^{P}$ global direction of unit vector along z axis at joint frame for P on body i $\left|C_{i}\right|^{P} = \left|\left\{\hat{f}_{i}\right\}^{P} \quad \left\{\hat{g}_{i}\right\}^{P} \quad \left\{\hat{h}_{i}\right\}^{P}\right|$ global unit directions for local axes at joint frame example for P on body i ${\{\hat{f}_i\}}^{P}$ local direction of unit vector along x axis at joint frame for P on body i $\{\hat{g}_i\}^{P}$ local direction of unit vector along y axis at joint frame for P on body i ${\{\hat{h}_i\}'}^P$ local direction of unit vector along y axis at joint frame for P on body i $[C_i]'^P = [\{\hat{f}_i\}'^P \{\hat{g}_i\}'^P \{\hat{h}_i\}'^P]$ global unit directions for local axes at joint example frame for P on body i $\{\hat{f}_i\}^{{}_{\rm T}}{}^P$ joint frame direction of unit vector along x axis at joint frame for P on body i $\{\hat{f}_i\}^{"P} = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^{T}$

 $\{\hat{g}_i\}^{"P}$ joint frame direction of unit vector along y axis at joint frame for P on body i $\{\hat{g}_i\}^{"P} = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix}^T$

 $\begin{cases} \hat{h}_i \end{cases}^{\text{"P}} & \text{ joint frame direction of unit vector along z axis at joint frame for P on body i} \\ & \left\{ \hat{h}_i \right\}^{\text{"P}} = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}^{\text{T}}$

 ${F_{on i}}^{P}$ force on body i acting through point P measured in global directions ${F_{on i}}^{P}$ force on body i acting through point P measured in local body-fixed directions ${T_{on i}}$ torque on body i measured in global directions $\{T_{on i}\}'$ torque on body i measured in local body-fixed directions

Numbering and lettering

Bodies should be numbered consecutively beginning with 1. Body 1 is typically reserved for ground.

Points should be lettered.

Point G is typically reserved for the mass center of a body.

Point T is seldom used in that it causes confusion with the vector/matrix transpose operator.

Subscripts and superscripts outside vector/matrix brackets

Post-superscript prime outside vector brackets denotes information measured in local body-fixed directions.

Post-superscript letters outside vector brackets denote information related to a specific point.

Post-subscripts outside vector/matrix brackets are occasionally used for iteration or time indices.

Pre-superscripts and pre-subscripts are typically not used outside brackets.

Subscripts and superscripts inside vector/matrix brackets

Post-superscripts inside vector/matrix brackets are occasionally used for iteration or time indices.

Post-subscript numerals inside vector/matrix brackets are typically used for body numbers. Post-subscript variables inside vector/matrix brackets denote partial derivative operators.

Pre-superscripts and pre-subscripts are typically not used inside brackets.

General vector/matrix operations

$\{\}^{\mathrm{T}}, []^{\mathrm{T}}$	vector/matrix transpose
$\begin{bmatrix} \end{bmatrix}^{-1}$	matrix inverse
det[]	determinant of matrix
tr[]	trace of matrix (sum of diagonal elements)
{diag[]}	diagonal elements of matrix rearranged into column vector
$[diag\{\}]$	elements of vector placed into a diagonal matrix
[] ⁿ	matrix to power n
norm{ }	scalar norm of vector (magnitude)
{â}	unit vector
$\left[\mathbf{I}_{n}\right]$	identity matrix of order n
{0},[0]	vector/matrix of zeros
[ã]	skew- symmetric operator for cross products
$\left\{a\right\} = \left\{\begin{matrix}a_{x}\\a_{y}\\a_{z}\end{matrix}\right\}$	$\begin{bmatrix} \tilde{a} \end{bmatrix} = \begin{bmatrix} 0 & -a_{z} & a_{y} \\ a_{z} & 0 & -a_{x} \\ -a_{y} & a_{x} & 0 \end{bmatrix}$