Three-Dimensional Vector and Matrix Notation

$\left\{r_{i}\right\}$ global position of the origin of reference frame attached to body i
$\left\{r_{i}\right\}^{P} \quad$ global position of point P attached to body i
example $\quad\left\{r_{4}\right\}^{B}=\left\{\begin{array}{l}x_{4}{ }^{B} \\ y_{4}{ }_{4} \\ z_{4}{ }^{B}\end{array}\right\}$ global position of point B attached to body 4
$\left\{\dot{r}_{i}\right\}$ global velocity of the origin of the reference attached to body i
$\left\{\dot{r}_{\mathrm{i}}\right\}^{\mathrm{P}} \quad$ global velocity of point P attached to body i
$\left\{\ddot{r}_{i}\right\}$ global acceleration of the origin of the reference attached to body i
$\left\{\ddot{r}_{i}\right\}^{P} \quad$ global acceleration of point P attached to body i
$\{\dddot{\mathrm{r}}\}$ global jerk of the origin of the reference attached to body i
$\{\dddot{i}\}_{i}^{P} \quad$ global jerk of point P attached to body i
$\left\{\mathrm{S}_{\mathrm{i}}\right\}^{\mathrm{P}}$ position of point P on body i relative to the reference frame for body i measured in local body-fixed directions
example $\left\{s_{4}\right\}^{\prime B}=\left\{\begin{array}{l}x_{4}{ }^{\prime B} \\ y_{4}{ }^{\prime B} \\ z_{4}{ }^{\prime B}\end{array}\right\}$ location of point B on body 4 relative to the reference frame for body 4 measured in local body-fixed directions for body 4
$\left\{s_{i}\right\}^{P} \quad$ position of point P on body i relative to the reference frame for body i but measured in global directions
$\left\{\mathrm{d}_{\mathrm{ij}}\right\}$ relative location between two points on bodies i and j measured in global directions
example $\quad\left\{d_{\mathrm{ij}}\right\}=\left\{\mathrm{r}_{4}\right\}^{Q}-\left\{\mathrm{r}_{3}\right\}^{P}$ relative location of point Q on body 4 with respect to point P on body 3 measured in global directions
$\left\{p_{i}\right\} \quad$ Euler parameters to describe attitude for body i
$\left\{\omega_{i}\right\} \quad$ angular velocity of body i measured in global directions
$\left\{\omega_{\mathrm{i}}\right\}^{\prime} \quad$ angular velocity of body i measured in local body-fixed directions
$\left\{\dot{\omega}_{i}\right\} \quad$ angular acceleration of body i measured in global directions
$\left\{\dot{\omega}_{i}\right\}^{\prime} \quad$ angular acceleration of body i measured in local body-fixed directions
$\left\{\ddot{\omega}_{i}\right\} \quad$ angular jerk of body i measured in global directions
$\left\{\ddot{\omega}_{i}\right\}^{\prime} \quad$ angular jerk of body i measured in local body-fixed directions
$\left[A_{i}\right]$ orthonormal rotation matrix that describes global attitude of body i
example $\quad\left\{\mathrm{s}_{\mathrm{i}}\right\}^{\mathrm{P}}=\left\lfloor\mathrm{A}_{\mathrm{i}}\right\rfloor\left\{\mathrm{s}_{\mathrm{i}}\right\}^{\prime, \mathrm{P}}$ rotation matrix converts information in local body-fixed directions into global directions
$\left\{\hat{f}_{i}\right\}$ global direction of unit vector along local x axis attached to body i
$\left\{\hat{\mathrm{g}}_{\mathrm{i}}\right\}$ global direction of unit vector along local y axis attached to body i
$\left\{\hat{h}_{i}\right\}$ global direction of unit vector along local z axis attached to body i
$\left\{\hat{f}_{i}\right\} ' \quad$ local direction of unit vector along local x axis attached to body i $\quad\left\{\hat{f}_{i}\right\}^{\prime}=\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]^{\mathrm{T}}$
$\left\{\hat{\mathrm{g}}_{\mathrm{i}}\right\}^{\prime} \quad$ local direction of unit vector along local y axis attached to body $\mathrm{i} \quad\left\{\hat{\mathrm{g}}_{\mathrm{i}}\right\}^{\prime}=\left[\begin{array}{lll}0 & 1 & 0\end{array}\right]^{\mathrm{T}}$
$\left\{\hat{\mathrm{h}}_{\mathrm{i}}\right\}^{\prime} \quad$ local direction of unit vector along local z axis attached to body $\mathrm{i} \quad\left\{\hat{h}_{i}\right\}^{\prime}=\left[\begin{array}{lll}0 & 0 & 1\end{array}\right]^{\mathrm{T}}$
example $\quad\left\lfloor A_{i}\right\rfloor=\left\{\begin{array}{ll}\hat{f}_{i}\end{array}\right\} \quad\left\{\hat{\mathrm{g}}_{\mathrm{i}}\right\} \quad\left\{\hat{h}_{i}\right\}$ global unit directions for local axes attached to body i
$\left[\mathrm{C}_{\mathrm{i}}\right]^{\mathrm{P}} \quad$ orthonormal rotation matrix that describes relative attitude of joint frame at point P on body i measured in local body-fixed directions
$\left[\mathrm{C}_{\mathrm{i}}\right]^{\mathrm{P}} \quad$ orthonormal rotation matrix that describes global attitude of joint frame at point P on body i
example $\quad\left[\mathrm{C}_{\mathrm{i}}\right]^{\mathrm{P}}=\left[\mathrm{A}_{\mathrm{i}}\right]\left[\mathrm{C}_{\mathrm{i}}\right]^{\text {P }}$ rotation matrix converts information in local body-fixed directions into global directions
$\left\{\hat{\mathrm{f}}_{\mathrm{i}}\right\}^{\mathrm{P}} \quad$ global direction of unit vector along x axis at joint frame for P on body i
$\left\{\hat{\mathrm{g}}_{\mathrm{i}}\right\}^{\mathrm{P}}$ global direction of unit vector along y axis at joint frame for P on body i
$\left\{\hat{\mathrm{h}}_{\mathrm{i}}\right\}^{\mathrm{P}}$ global direction of unit vector along z axis at joint frame for P on body i
example $\quad\left\langle C_{i}\right]^{p}=\left[\left\{\hat{\mathrm{f}}_{\mathrm{i}}\right\}^{\mathrm{P}} \quad\left\{\hat{\mathrm{g}}_{\mathrm{i}}\right\}^{\mathrm{P}} \quad\left\{\hat{\mathrm{h}}_{\mathrm{i}}\right\}^{\mathrm{P}}\right]$ global unit directions for local axes at joint frame for P on body i
$\left\{\hat{f}_{i}\right\}^{\prime P}$ local direction of unit vector along x axis at joint frame for P on body i
$\left\{\hat{g}_{i}\right\}^{\prime P}$ local direction of unit vector along y axis at joint frame for P on body i
$\left\{\hat{h}_{i}\right\}^{\prime P}$ local direction of unit vector along y axis at joint frame for P on body i
 frame for P on body i
$\left\{\hat{\mathrm{f}}_{\mathrm{i}}\right\}^{\mathrm{P}}$ point frame direction of unit vector along x axis at joint frame for P on body i

$$
\left\{\hat{\mathrm{f}}_{\mathrm{i}}\right\}^{"^{\mathrm{P}}}=\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right]^{\mathrm{T}}
$$

$\left\{\hat{\mathrm{g}}_{\mathrm{i}}\right\}^{\text {" }^{P}}$ joint frame direction of unit vector along y axis at joint frame for P on body i
$\left\{\hat{h}_{i}\right\}^{P} \quad$ joint frame direction of unit vector along z axis at joint frame for P on body i
$\left\{\mathrm{F}_{\text {on } i}\right\}$ \} force on body i acting through point P measured in global directions
$\left.\left\{\mathrm{F}_{\text {on }}\right\}\right\}^{\mathrm{P}}$ force on body i acting through point P measured in local body-fixed directions
$\left\{\mathrm{T}_{\text {on } \mathrm{i}}\right\}$ torque on body i measured in global directions
$\left\{\mathrm{T}_{\text {on i }}\right\}$ ' torque on body i measured in local body-fixed directions

Numbering and lettering
Bodies should be numbered consecutively beginning with 1 . Body 1 is typically reserved for ground.
Points should be lettered.
Point G is typically reserved for the mass center of a body.
Point T is seldom used in that it causes confusion with the vector/matrix transpose operator.

Subscripts and superscripts outside vector/matrix brackets

Post-superscript prime outside vector brackets denotes information measured in local body-fixed directions.
Post-superscript letters outside vector brackets denote information related to a specific point.
Post-subscripts outside vector/matrix brackets are occasionally used for iteration or time indices.

Pre-superscripts and pre-subscripts are typically not used outside brackets.

Subscripts and superscripts inside vector/matrix brackets

Post-superscripts inside vector/matrix brackets are occasionally used for iteration or time indices.
Post-subscript numerals inside vector/matrix brackets are typically used for body numbers. Post-subscript variables inside vector/matrix brackets denote partial derivative operators.

Pre-superscripts and pre-subscripts are typically not used inside brackets.

General vector/matrix operations

vector/matrix transpose
[] ${ }^{-1}$ matrix inverse
$\operatorname{det}[$] determinant of matrix
$\operatorname{tr}[$] trace of matrix (sum of diagonal elements)
\{diag[]\} diagonal elements of matrix rearranged into column vector
$[\operatorname{diag}\}] \quad$ elements of vector placed into a diagonal matrix
[] ${ }^{\mathrm{n}} \quad$ matrix to power n
norm $\{$ \} scalar norm of vector (magnitude)
\{â\} unit vector
$\left[I_{n}\right] \quad$ identity matrix of order n
$\{0\},[0] \quad$ vector/matrix of zeros
[ã] skew- symmetric operator for cross products
$\{a\}=\left\{\begin{array}{l}a_{x} \\ a_{y} \\ a_{z}\end{array}\right\} \quad[\tilde{a}]=\left[\begin{array}{ccc}0 & -a_{z} & a_{y} \\ a_{z} & 0 & -a_{x} \\ -a_{y} & a_{x} & 0\end{array}\right]$

