Three-Dimensional Generalized Forces

Moment about local origin

$$\left\{T\right\} = \left\{s_{_{i}}\right\}^{P} \times \left\{F_{_{on\,i}}\right\}^{P} = \left[\widetilde{s}_{_{i}}\right]^{P} \left\{F_{_{on\,i}}\right\}^{P} \quad \text{global directions}$$

$$\left\{T\right\}' = \left\{s_{_{i}}\right\}'^{_{P}} \times \left\{F_{_{on\,i}}\right\}'^{_{P}} = \left[\widetilde{s}_{_{i}}\right]'^{_{P}} \left\{F_{_{on\,i}}\right\}'^{_{P}} = \left[\widetilde{s}_{_{i}}\right]'^{_{P}} \left[A_{_{i}}\right]^{T} \left\{F_{_{on\,i}}\right\}^{_{P}} \quad local\ directions$$

Generalized force on body i about local origin

$$\left\{Q_{\text{on i}}\right\} = \left\{\begin{cases} F_{\text{on i}} \\ T_{\text{on i}} \end{cases}\right\}$$
 note that force is in global directions and torque is in local directions

Pure force

$$\left\{ \! Q_{\text{on }i} \right\} \! = \! \left\{ \! \begin{bmatrix} \left\{ \! F_{\text{on }i} \right\}^{\!P} \\ \left[\widetilde{s}_{i} \right]^{_{1P}} \left[A_{_{i}} \right]^{\!T} \left\{ \! F_{\text{on }i} \right\}^{_{P}} \right\}$$

Pure moment

$$\left\{ Q_{\text{on i}} \right\} = \left\{ \begin{cases} \left\{ 0_{3x1} \right\} \\ \left\{ T_{\text{on i}} \right\} \end{cases} \right\}$$

Translational spring-damper-actuator often with cylindrical or prismatic

$${d_{ij}} = {r_j}^P - {r_i}^P$$

$$\left\{ \! \dot{\boldsymbol{d}}_{ij} \! \right\} \! = \! \left\{ \! \dot{\boldsymbol{r}}_{i} \right\}^{\! P} - \! \left\{ \! \dot{\boldsymbol{r}}_{i} \right\}^{\! P}$$

$$\left\{ \ddot{d}_{ij} \right\} \!=\! \left\{ \ddot{r}_{j} \right\}^{P} \!-\! \left\{ \ddot{r}_{i} \right\}^{P}$$

$$\ell^2 = \left\{ d_{ij} \right\}^T \left\{ d_{ij} \right\}$$

$$2\ell\dot{\ell} = 2\left\{\!d_{ij}\right\}^{\!T} \left\{\!\dot{d}_{ij}\right\}$$

$$\dot{\ell} = \! \left\{ \! d_{ij} \right\}^{\! T} \! \left\{ \! \dot{d}_{ij} \right\} \! / \, \ell$$

$$f = k(\ell - \ell_o) + c \dot{\ell} + f_F sign(\dot{\ell}) + f_{ACT}(\ell, \dot{\ell}, t)$$

$$\left\{F_{\text{on }i}\right\}\!=\!\frac{f}{\ell}\!\left\{d_{ij}\right\} \qquad \left\{Q_{\text{on }i}\right\}\!=\!\left\{\!\!\!\left[\tilde{\boldsymbol{s}}_{i}\right]^{,P}\!\left[\boldsymbol{A}_{i}\right]^{T}\!\left\{\boldsymbol{F}_{\text{on }i}\right\}\!\right\}$$

$$\left\{F_{\text{on j}}\right\} = -\frac{f}{\ell} \left\{d_{ij}\right\} \qquad \left\{Q_{\text{on j}}\right\} = \left\{\begin{bmatrix}F_{\text{on j}}\\ \left[\tilde{s}_{j}\right]^{\text{'P}} \left[A_{j}\right]^{\text{T}} \left\{F_{\text{on j}}\right\}\right\}$$

$$\ddot{\ell} = \left(\left\{ d_{ij} \right\}^{T} \left\{ \ddot{d}_{ij} \right\} + \left\{ \dot{d}_{ij} \right\}^{T} \left\{ \dot{d}_{ij} \right\} - \dot{\ell}^{2} \right) / \ell$$

$$\dot{f} = k\dot{\ell} + c \; \ddot{\ell} + \dot{f}_{ACT} \left(\ell,\dot{\ell},\ddot{\ell},t\right)$$

$$\left\{\dot{F}_{on\,i}\right\} = \left(\dot{f}\,\,\ell\left\{d_{ij}\right\} + f\,\,\ell\left\{\dot{d}_{ij}\right\} - f\,\,\dot{\ell}\left\{d_{ij}\right\}\right)/\,\ell^2$$

$$\left\{\dot{Q}_{\text{on }i}\right\} = \left\{ \begin{bmatrix} \left\{\dot{F}_{\text{on }i}\right\} \\ \left[\widetilde{s}_{i}\right]^{\text{P}}\left[A_{i}\right]^{\text{T}}\left\{\dot{F}_{\text{on }i}\right\} - \left[\widetilde{s}_{i}\right]^{\text{P}}\left[\widetilde{\omega}_{i}\right]^{\text{T}}\left\{A_{i}\right]^{\text{T}}\left\{F_{\text{on }i}\right\} \right\}$$

$$\left\{\dot{F}_{\text{on j}}\right\} = -\left(\dot{f}~\ell\left\{d_{ij}\right\} + f~\ell\left\{\dot{d}_{ij}\right\} - f~\dot{\ell}\left\{d_{ij}\right\}\right)/~\ell^{2}$$

$$\left\{\dot{Q}_{\text{on }j}\right\} = \left\{ \begin{bmatrix} \left\{\dot{F}_{\text{on }j}\right\} \\ \left[\tilde{s}_{j}\right]^{\text{'P}} \left[A_{j}\right]^{\text{T}} \left\{\dot{F}_{\text{on }j}\right\} - \left[\tilde{s}_{j}\right]^{\text{'P}} \left[\tilde{\omega}_{j}\right]^{\text{'}} \left[A_{j}\right]^{\text{T}} \left\{F_{\text{on }j}\right\} \right\} \right\}$$

Rotational spring-damper-actuator about revolute, cylindrical or screw joint

 θ measured +CCW about $\left\{ \! \hat{h}_{i} \right\}^{\! p}$ along axis of rotation

$$\dot{\boldsymbol{\theta}} = \left(\left\{ \hat{\boldsymbol{h}}_{i} \right\}^{P} \right)^{T} \left(\left\{ \boldsymbol{\omega}_{j} \right\} - \left\{ \boldsymbol{\omega}_{i} \right\} \right) = \left(\left\{ \hat{\boldsymbol{h}}_{i} \right\}^{P} \right)^{T} \left(\left[\boldsymbol{A}_{j} \right] \left\{ \boldsymbol{\omega}_{j} \right\} - \left[\boldsymbol{A}_{i} \right] \left\{ \boldsymbol{\omega}_{i} \right\} \right)$$

$$T = k_{\theta} \big(\theta - \theta_{o} \big) + c_{\theta} \, \, \dot{\theta} + T_{F} sign \Big(\dot{\theta} \Big) + T_{ACT} \Big(\theta, \dot{\theta}, t \Big)$$

$$\left\{Q_{\text{on }j}\right\} = -\left\{\frac{\left\{0_{3x1}\right\}}{T\left[A_{j}\right]^{T}\left\{\hat{h}_{i}\right\}^{P}}\right\} \quad \text{use } \left[A_{j}\right] \text{ but not } \left\{\hat{h}_{j}\right\}^{P} \text{ just in case } \left\{\hat{h}_{j}\right\}^{P} = -\left\{\hat{h}_{i}\right\}^{P}$$

$$\ddot{\theta} = \frac{d}{dt} \Biggl(\Biggl(\Bigl\{ \hat{\boldsymbol{h}}_i \Bigr\}^P \Bigr)^T \left(\bigl\{ \boldsymbol{\omega}_j \bigr\} - \bigl\{ \boldsymbol{\omega}_i \bigr\} \right) \Biggr) = \frac{d}{dt} \Biggl(\Biggl(\Bigl\{ \hat{\boldsymbol{h}}_i \Bigr\}^P \Bigr)^T \left(\bigl[\boldsymbol{A}_j \bigr] \bigl\{ \boldsymbol{\omega}_j \bigr\} ' - \bigl[\boldsymbol{A}_i \bigr] \bigl\{ \boldsymbol{\omega}_i \bigr\} ' \right) \Biggr)$$

$$\dot{T} = k_{\theta} \dot{\theta} + c_{\theta} \ddot{\theta} + T_{ACT} (\theta, \dot{\theta}, \ddot{\theta}, t)$$

$$\left\{\dot{Q}_{\text{on }i}\right\}\!=\!$$

$$\left\{\dot{Q}_{\text{on } j}\right\}\!=\!$$

Axial Coulomb friction in cylindrical or prismatic joints

- 1) Start with coefficient of friction $\mu = 0$
- 2) Use $\left\{\hat{h}_i\right\}^{P}$ along axis of translation
- 3) Compute constraint force $\left\{\lambda\right\}$ and find all components of $\left\{F_{_{on\,i}}\right\}^{_{I^{P}}}$ in local directions
- 4) Determine normal force $F_{NORMAL} = \sqrt{(F_X^{P})^2 + (F_Y^{P})^2}$
- 5) Compute $f_F = \mu F_{NORMAL}$
- 6) repeat steps 3) through 5) until convergence by relaxation

Torsional Coulomb friction in revolute or cylindrical joints

- 1) Start with coefficients of friction $\,\mu=0\,$ and $\,\mu_{END}=0\,$
- 2) Use $\left\{ \hat{h}_{_{i}}\right\} ^{_{I}P}$ along axis of rotation
- 3) Compute constraint force $\{\lambda\}$ and find components all of $\left\{F_{_{on\,i}}\right\}^{_{I^{P}}}$ in local directions
- 4) Determine radial force $F_{RADIAL} = \sqrt{(F_X^{P})^2 + (F_Y^P)^2}$
- 5) Compute $T_F = \mu R F_{RADIAL}$ for cylindrical joint
- 6) Compute $T_F = \mu R F_{RADIAL} + \mu_{END} R_{END}$ abs $\left(F_Z^{P}\right)$ for revolute joint
- 7) repeat steps 3) through 6) until convergence by relaxation

Torsional Coulomb friction in spherical joint

1) Start with coefficient of friction $\mu = 0$

- 2) Use $\{\hat{u}\}= unit(\{\omega_j\}-\{\omega_i\})$ for axis of rotation (note global directions)
- 3) Compute constraint force $\{\lambda\}$ and find $\{F_{on_{-}i}\}_{TOTAL}$ (note global directions)
- 4) Determine axial force $F_{AXIAL} = \{\hat{\mathbf{u}}\}^T \{F_{on_i}\}_{TOTAL}$
- 5) Determine radial force $F_{RADIAL} = \sqrt{\left(norm\left\{F_{on_i}\right\}_{TOTAL}\right)^2 F_{AXIAL}^2}$
- 6) Compute $\{T_{\text{Fon_i}}\} = \mu R (F_{\text{RADIAL}} + \alpha F_{\text{AXIAL}}) \{\hat{u}\}$ for $\alpha \le 1$ (note global directions)
- 7) $\{T_{F \text{ on }_{-} j}\} = -\{T_{F \text{ on }_{-} i}\}$
- 8) repeat steps 2) through 5) until convergence by relaxation