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ABSTRACT

This work investigates the use of feedback controller
augmentation of driver inputs to achieve a desired vehicle
performance.  The vehicle performance is specified as a Reference
Model.  The driver maintains nominal control of the vehicle by direct
actuation of the front steering inputs.  The controller then determines
the appropriate rear steer inputs necessary for tracking the reference
model.  As a consequence the driver is able to specify, within limits,
the type of handling behavior required of the vehicle.  A strategy
based on yaw rate control is presented.  An appropriate vehicle model
is developed and a polynomial pole placement technique is used to
control the vehicle.  To account for vehicle model changes due to
variations in forward velocity, a continuous time Recursive Least
Squares approach is examined for on-line identification and adaptive
control.  The strategy and control designs are implemented
experimentally on the Illinois Roadway Simulator (IRS), a scale
vehicle testbed for vehicle dynamics and controls.  Results and
limitations are discussed.

1. INTRODUCTION

An interesting avenue of vehicle control research is assisting the
driver in his/her control of the vehicle, i.e. Driver Assisted Control
(DAC).  The control system would be used to provide stability and
performance while still allowing the driver to dictate the path of the
vehicle.  Parameters such as yaw angle, yaw rate, lateral velocity, and
lateral acceleration would be sensed or estimated to provide the
control with the necessary information to achieve desired transient
and steady state performance based on the driver’s input to the
vehicle.
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Figure 1:  DAC Schematic
Implementing such a system on a vehicle would give the driver a
“selectable” vehicle performance in some sense as well as providing
additional stability.  This type of controller can be equipped on a
vehicle by using the rear wheels as the control input, still allowing

the driver to steer the vehicle front wheels open loop as they are
accustomed to; see Figure 1 above.  A failure detection method can
also be used to lock the rear wheels at zero position if the control
becomes unstable for some reason.  All of these features are
advantages because they utilize the rear wheels as input to alter the
dynamic response of the vehicle while still allowing the driver to
dictate the vehicle path.

There is a wealth of literature on lateral vehicle dynamics
modeling and automatic 2WS and 4WS control designs.  The
interested reader is referred to the survey article by Tomizuka &
Hedrick (1995) and the extensive references therein.  Additionally,
there have been many studies done on 4WS approaches to change the
vehicle’s dynamics (Yamamoto, 1991, Sato, et al 1991, Lin, 1992,
Inoue & Sugasawa, 1993, Furukuwa & Abe, 1997).  Typically, the
strategies associated with 4WS can be categorized into feedforward
and feedback approaches (Inoue & Fugasawa, 1993).  The
feedforward approaches typically set the rear steer angles to be the
product of a gain and the front steer angles:

δ δr steer fK= ⋅
In this case the goal of the controller is simply to minimize the steady
state sideslip angle of the vehicle using a predefined gain as a
function of the vehicle speed.  Other feedforward approaches use a
filtered or delayed value:
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where the values of the constants may be determined via Linear
Optimal Control (Cho & Kim, 1995).  The goal of the filtering is
usually to alleviate the reverse vehicle sideslip during transient
responses.  There have been several feedback approaches to 4WS as
well.  The simplest ones have been straightforward extensions of the
feedforward strategies where the vehicle yaw rate was fed back to the
rear wheels.

δ δr steer f yawK K yaw rate= ⋅ + ⋅
The goal of the yaw rate feedback is to utilize a measurable variable
to provide additional side slip minimization at higher vehicle speeds.
Some investigators considered full state feedback but lateral velocity
states are inherently difficult to determine.

Many of 4WS control schemes consider the yaw rate regulation
as well as robustness to disturbances such as wind gusts.  However,
relatively few of the previous investigations attempt to actually make
the vehicle behave as if it had a different set of dynamics through
feedback.  Lee (1990) details work completed at General Motors
Research Labs on several different strategies: rear wheel assist, front
wheel and rear wheel assist, driver open loop (DOL), and driver in



the loop (DIL).  Several different combinations of feedback
parameters were tried as well:  yaw rate, sideslip, and lateral velocity.
Ackermann (1995) gives a generic form of a robust yaw angle control
method to assist the driver.  The potential drawback of this
implementation, as well as several of the controllers in Lee (1990), is
the use of the front wheels as the control augmenting the driver’s
commands.  A failure in the controller would not allow the driver to
stabilize the vehicle because his/her input is the front wheels as well.
The DAC strategies completed in the present work use the rear
wheels as the control input for this very reason.

The goals of this work were to develop models of experimental
vehicles as transfer functions from front and rear steer inputs to yaw
angle/rate outputs.  Then these models would be used to design DAC
strategies with rear wheels as the control input.  The motivations for
this type of controller are (i) to give the driver a “tuneable” vehicle in
terms of its handling performance and (ii) to give the vehicle a more
stable and predicable response at higher speeds.  The rest of the paper
is presented as follows.  Section 2 discusses the basic vehicle model
and the hardware used for DAC experimentation.  The Illinois
Roadway Simulator (IRS) (Brennan et al, 1998) is a small scale
vehicle dynamics testbed that is used to obtain experimental results.
Section 2 gives modeling results for the experimental vehicle’s yaw
dynamics from front and rear steer inputs.  Section 3 gives results for
DAC strategies based on a desired yaw angle/rate performance for
driver front steering input.  The DAC uses the rear wheels as the
control input while the driver steers the front wheels open loop.
Section 4 gives results of on-line yaw model parameter estimation for
DAC strategies.  A conclusion summarizes the main points, including
the benefits and limitations, as well as acknowledging future areas of
research to be investigated.

2.  VEHICLE DYNAMICS

Consider the standard planar “bicycle” vehicle model (Ellis,
1989).  Assuming the longitudinal velocity remains constant, the two
remaining degrees of freedom in the plane can be described by the
following equations:
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where:
m = mass of the vehicle
Iz = vehicle inertia about vertical axis at the center of gravity
U = vehicle forward velocity
Csf, Csr = front, rear cornering stiffnesses
a, b = distance from front, rear axle to the center of gravity
V = lateral velocity
r = yaw rate
δ f  = front steering angle
δ r = rear steering angle

From Equations (1) and (2), the transfer function from input steer
angle to vehicle yaw rate can be determined as:
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The principal difference between the two transfer functions is that the
response from rear steer input to yaw rate has a negative high
frequency gain.  Positive rear steer input produces a negative yaw
angle.

The dynamics presented in Equations (1) through (4) were used
to identify the dynamics of the scaled IRS vehicle pictured below.

Figure 2:  4WS Experimental Vehicle

Both frequency domain and time domain model fits were attempted
for the vehicle to develop as accurate a model as possible.  Since the
performance of the controller design presented in Section improves
with system model accuracy, an accurate system identification is
deemed beneficial.  The bicycle model given in Equations (1)-(4)
does not include many important aspects of Vehicle Dynamics
including the effects that weight transfer and roll angle have on the
steer dynamics.  Roll steer, tire dynamics, suspension bump steer and
a host of other factors will influence the vehicle beyond the simple 2
DOF model shown above.  However, the simple model has been
shown to be a very accurate representation of full size vehicles for
non-extreme driving conditions (LeBlanc, et al 1996).  Therefore,
this model is used as a basis for the controllers to be developed.  This
is particularly justified since the control goal is to provide a driver-
selectable variation in vehicle handling ‘feel’ and not an emergency
stabilization.  The data taken for system identification was done
under a simple proportional closed loop controller acting to regulate
the vehicle.
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Figure 3:  Closed Loop Frequency Response from Front Steer Angle
to Yaw Angle

(solid line = experimental; dashed line = model)

The input in the closed loop system identification was a change in the
reference.  The reason for this is that the open loop vehicle contains
free integrators and is therefore not stable.  The IRS has a limited
range of vehicle motion and so the identification was done under
closed loop to avoid unintended vehicle departure from the roadway.
Figure 3 shows the results of frequency domain identification for the
closed loop system with a vehicle speed of 1.2 m/s.  The transfer
function in Figure 3 is from steer input to yaw angle, not yaw rate.
The IRS sensor relied on encoder feedback that lacked the resolution
to performs satisfactory differentiation to obtain yaw rate.  This very
important hardware limitation will be addressed again in future
sections.  Figure 4 shows the time domain response for an arbitrary
reference signal.  As is evidenced by the figure, the time domain fit is
very good for the frequency domain model identified in Figure 3.
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Figure 4:  Closed Loop Time Response
(solid line = experimental; dashed line = simulated model)

The transfer function fit for the system in Figure 3 and 4 is given as
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The free integrator in Equation (5) indicates that the transfer function
is from steer input to yaw angle.  Equations (1)-(4) ignore actuator
dynamics and assume that the input to the system is the steer angles.
The model fits of Figures (3) and (4) are unobtainable without
including the dynamics of the actuator.  The steer actuator is actually
a rate limited 2nd order system as shown in the step responses of
Figure 5
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Figure 5 Actuator Dynamics:  Model (solid) and Experimental (dots)

However, to simplify the controller design the actuator is modeled as
a simple first order system.  The rationale being that most steer angle
commands will be small enough so that the rate limit is not
encountered and a single real pole dominates.
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Figure 6 and 7 show frequency and time domain identification for the
rear steer angle input.
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Figure 6:  Closed Loop Frequency Response from Rear Steer Angle
to Yaw Angle

(solid line = experimental; dashed line = model)

Similar to the front steer modeling, Figure 7 shows the time domain
response comparing the identified system model with the actual
experimental system for an arbitrary reference input.  With the
inclusion of the actuator dynamics, the performance of the identified
model closely resembles that of the actual system.
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Figure 7:  Closed Loop Time Response from Rear Steer Angle to
Yaw Angle

(solid line = experimental; dashed line = simulated model)

The identified transfer function from rear steer command to yaw
angle is given in Equation (7) where the actuator is assumed identical
to Equation (6).
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3.  VEHICLE CONTROLLER DESIGN

The control design that will be used for the Driver Assisted
Control (DAC) is Model Reference Control (MRC) which is a design
method by which desired closed loop characteristics can be
introduced into a system, i.e.  a pole placement method (Astrom &
Wittenmark, 1995).  This is a natural formulation for DAC since the
goal is to make the vehicle handle in some driver-prescribed fashion.
MRC has a systematic method for the controller design.  Assume the
plant can be modeled as a ratio of two linear polynomials:
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The polynomial A is assumed to be monic and of degree n.  B can be
non-monic and of degree less than or equal to n.  It is also assumed
that the polynomials are relatively prime, i.e. they have no common
factors.  The control law is given by

Ru t Tu t Sy tc( ) ( ) ( )= − (9)

where R, S, T are polynomials in the Laplace operator s.  The
controller consists of a feedforward term (T/R) and a feedback term
(S/R).  The idea behind the controller is to replace the unwanted
plant dynamics with the designer’s own desired dynamics.

To design the Laplace domain polynomials R, S, and T, it is
necessary to take a closer look at the closed loop system in question.
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To have the closed loop system performance be identical to the
desired reference model, the closed loop polynomials and the
reference model must be identical.
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Equation (11) implies pole/zero cancellations occur between BT and
AR+BS.  If B is separated into stable and well damped zeros (B+) and
unstable or poorly damped zeros (B-), B- must be a factor of Bm.  This
fact also means that B+ is canceled, so it must be a factor of AR+BS.
Am must also be a factor of AR+BS since it is the desired model
characteristic polynomial.  Therefore AR+BS must include Am, B+

and for causality conditions, the observer polynomial, Ao.  Finally,
since A and B are relatively prime and B+ is a factor of B and
AR+BS, B+ must also be a factor of R.  The polynomial R can then
be factored into:

R R B= ′ + (12)

To solve for R, S, and T, the logical steps just followed reduce the
closed loop polynomial matching to:

AR′ + B-S = AoAm (13)

     T = Ao Bm
' (14)

where      Bm = B- Bm
'

As long as A and B are relatively prime, Equation (13) has a solution.
For R, S, and T to be causal, the following conditions must be
satisfied:
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Because equation (13), called the Diophantine Equation, has infinite
solutions, it is simplest to implement a controller with the lowest
degree possible, i.e. the minimum degree solution.  This can be
completed by restricting

degree(Am) = degree(A)
degree(Bm) = degree(B)

degree(Ao) = degree(A) - degree(B+) - 1

            Bm = B- Bm
' (16)

This design can be modified to cancel all, some, or none of the zeros
by altering Bm, thus altering the MRC design.  A more detailed
discussion of this topic is given in Astrom and Wittenmark (1995).
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Figure 8: Rear Wheel DAC Yaw Angle/Rate MRC Implementation



The DAC implementation strategy is shown in Figure 8 for
driver front steer input to desired yaw angle/rate output.  The
controller design has a model reference controller form, but the
design has two distinct features which make it unique:
(1) the driver front steer input acts as a reference command to the
MRC of the rear steer model while at the same time
(2) the driver input acts as an output disturbance (front steer model)
to the MRC and is compensated for by an additional feedforward
term called the Correction Term in Figure 8.
The controller design follows these steps:
(1) Choose a desired reference model and observer polynomial for
front steer input to yaw angle/rate output.
(2) Use this reference model and the procedure described above to
design the Laplace polynomials R, S, and T for the rear steer input
model.
(3) augment the feedforward term T/R with the driver output
disturbance Correction Term:  -BfAr/BrAf.

The uniqueness of this model reference approach is that the effect of
the driver’s front steer input on the vehicle yaw angle/rate is
formulated as an output disturbance which should be rejected by the
controller governing the rear wheels.  Obviously, the front steer will
be aiding in the output yaw angle/rate tracking of the desired
reference model for much of the time.  Therefore, the controller’s rear
wheel steering will add only that incremental steer effort which is
deemed necessary.  Since the steady state gain of the yaw rate from
front steer input is a function of the vehicle’s understeer
gradient(Ellis, 1989), the choice of both transient and steady state
reference model performance completely dictates the vehicle’s
understeer gradient.  The same can also be said for the yaw angle
performance being a function of the understeer gradient.

Using the models for front and rear steer input with forward
velocity U = 1.2 m/s along with a desired front steer input to yaw
angle output reference model, the MRC was designed.  Equations
(17) to (21) give the resulting polynomials from the design.

R(s) = s3 + 70s2 + 1579s + 11310 (17)
S(s) = 2.19s3 + 147.22s2 + 3260.92s + 23676 (18)
T(s) = 3.788s3 + 227.29s2 + 4261.69s + 23676 (19)
Ao(s) = s2 + 50s + 625 (20)
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All polynomial transfer functions were digitally implemented as
controllable canonical form state space filters on 75MHz Pentium
PC’s with Analog Devices RTI DAQ boards.  Because of the
quantization in the encoder signals, the sensed yaw angle was run
through a 2nd order Butterworth lowpass filter with a 10 hertz cutoff
frequency, as given in Equation (22), before being used as the input
signal for the feedback transfer function [S(s)/R(s)] in Figure 8.
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For a square wave input, Figure 9 compares the output of the
Reference Model in Equation (21) with the open loop response of the
vehicle under front wheel steering; i.e. no DAC.  The Reference
Model was chosen to give fast, stable, transient response.
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Figure 9:  Reference Model vs. Driver Open Loop Yaw Angle

Figure 10 displays the results of front wheel steering with rear wheel
DAC.  The DAC strategy helps the driver to achieve the desired yaw
angle profile.  Error in the reference model following of Figure 10
can be accounted for by cumulative error from all three encoders
when calculating the yaw angle and a compounding problem from
steering actuator backlash.  Despite these factors, the resultant yaw
angle follows the desired reference model yaw angle for the given
driver front steer input.  The square wave driver front steer input was
predetermined off-line and implemented via digital computer.
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Figure 10:  Reference Model vs. Experimental DAC Yaw Angle

The same controller can be used on the scaled experimental
vehicle of Figure 2 with a human driver in the loop.  A steering
console, including a steering wheel and foot pedals, is interfaced to
be part of the IRS (Brennan et al, 1998).  By changing the steer angle
on the driver console a subject can directly send voltages, via the
intermediate computer interface, to the steer actuators.  Testing
completed by a human driver showed qualitatively that there was a
significant difference in the feel or handling of the vehicle with DAC
compared to driver open loop (DOL).  Due to the reference model
chosen, the vehicle ‘felt’ more stable and could make sudden changes
in heading without feeling a loss of control.

A yaw rate DAC was attempted experimentally using the
reference model given in equation (23).
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However, before experimental implementation could be tested, the
quantized yaw angle signal had to be differentiated to obtain a yaw
rate feedback signal.  The problem was alleviated by using a 4th order
Butterworth  lowpass filter with a cutoff frequency of 40 rad/sec.
The low pass filter was convolved with a zero at the origin to produce
a filtered yaw rate signal.
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Figure 11 shows the experimental results in comparison to the
desired reference trajectory.  The plot shows that the vehicle does not
track the desired yaw rate trajectory to an acceptable level.  Several
factors can account for this problem.  The most important factor is in
the filtering of the yaw angle signal to derive a filtered yaw rate.  The
signal is very noisy and not reliable as a method of acquiring yaw
rate.  The signal lags considerably due to the lowpass filter of
Equation (24), but without the filter the data is too noisy to be of any
use in a feedback scheme.  Finding an alternative means of
determining the yaw rate signal is an avenue of current research.
Initial tests in which the encoder sensors are replaced with
potentiometers have alleviated some of the problems associated with
quantization.
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Figure 11:  Reference Model vs. Experimental DAC for Yaw Rate

Implementation on an actual vehicle would necessitate the use of
some type of gyroscopic device for yaw rate feedback.  Additionally,
the controller would have to account for the variation of the system
models with forward speed.  One method would be to develop
several different controllers scheduled to the vehicle speed and
interpolate between them.  Another route would be to have the
vehicle models estimated on-line.  The second approach will be
examined in the following.

4 ON-LINE PARAMETER ESTIMATION FOR DAC

The parameters of the bicycle model given in Section 2 can
change significantly during normal vehicle operation.  The most
common source of the change in dynamics is the vehicle speed.  In
order to be able to adapt to changing vehicle parameters, particularly
vehicle speed, on-line parameter estimation of the yaw dynamics was
considered and experimentally tested.  The method of estimation used
was continuous time Recursive Least Squares (RLS) (Astrom and
Wittenmark, 1995).  The continuous time RLS estimator is
formulated as follows.  Assume the system to be estimated can be
described by the model

A s y t B s u t( ) ( ) ( ) ( )= (25)

where A(s) and B(s) are polynomials in the Laplace differential
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Because the RLS algorithm needs the derivatives of the input and
output of the system, a stable filter Hf  with a pole excess of n or more
is used on both the input and output before the RLS uses those
signals.  This filtering is written as:

y t H y tf f( ) ( )= ⋅ (28)

u t H u tf f( ) ( )= ⋅ (29)

The role of Hf is to provide a causal representation of the input and
output signal differentiations.  The system can now be written as:
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The vector θ is known as the parameter vector and φ is the regressor
vector.  The algorithm for continuous time RLS with exponential
forgetting (Astrom & Wittenmark, 1995) is given by:
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where P(t) is referred to as the covariance matrix and α is called the
forgetting factor.  To drive the parameter estimates to their true
values, a persistently exciting signal of order 2n is necessary.  A
summation of n sinusoidal inputs can be used for creating a
sufficiently rich input signal for estimation provided the physical
system actually satisfies the dynamics of Equations (26) & (27)

For the DAC approach given in Section 3, the transfer function
models of Equations (5) and (7) could be used.  These models,
including actuator dynamics, consist of a relative degree = 3 system
with one zero and four poles.  However, for the purposes of
implementing the RLS identification with the MRC DAC control, a
2nd order model, as given below in equation (34) was used.
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The motivation for a simpler approximation is the reduced
complexity, and increased feasibility, associated with the
implementation.  However, the use of this reduced order model can
be somewhat analytically justified from a pole/zero cancellation
perspective.  The previous modeling in Section 2 showed that the
heavily damped pole pair was close to the zero while being between
the pure integrator and the actuator pole; therefore some pole/zero
cancellation occurs.  Within the bandwidth relevant to this research,



the cancellation results in the system approximating a pure integrator
and a real pole which is slower than the actuator.

Experimental RLS was implemented on both the front and rear
models to estimate the two parameters for each.  The initial

conditions for the RLS were:  P(0) = 1000*I, α = 0, �Kf (0) = 45,

, �Kr (0) = -45, �af (0) = 10, �ar (0)=10, respectively.  The forgetting

factor was set to zero so as to increase the speed of convergence.
This estimation scheme was then used for a driver assisted control
(DAC) strategy similar to Section 3.  The procedure for the control is
as follows.  The vehicle was run to steady state at U = 1.2 m/s, the
front wheel model was estimated, the rear wheel model was
estimated, and then a controller was designed on-line and
implemented for a specified driver front steer input.  With the
experiment still running, the speed was increased to U = 1.6 m/s and
the same procedure was completed to show both parameter
adaptation and acceptable DAC yaw angle tracking.  The following
reference model was used for the R, S, T polynomials to be
formulated on-line using the estimated model parameters:

G s
s s

m( ) =
+ +

5

6 52
.     (35)

Figures 12 through 14 depict the results of the on-line RLS parameter
estimation and DAC.  The covariance matrix P(t), which is
tantamount to a gain on the parameter update, decreases in an
induced norm sense during the estimation.  In order to counteract
this, P(t) was reset to its initial value several times before the estimate
was used for control in order to assure good estimates
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Figure 12:  Front Steer Model Estimation for V = 1.2, 1.6 m/s
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Figure 13:  Rear Steer Model Estimation for V = 1.2, 1.6 m/s

More complex models (e.g. relative degree = 3) could be
developed for estimation and control but would probably need to use
digital control and estimation due to the need for additional
derivatives in the continuous RLS algorithm.  Increasing the number
of poles and zeros increases the size of the filters needed to maintain
causality, thereby increasing the complexity in implementation.
However, the increased complexity and digital formulation may be
necessary since higher vehicle speeds make the reduced order model
less accurate since the pole pair would not cancel out the zero.
Implementation on an actual vehicle would again use yaw rate as its
output parameter, but physical limitations due to quantization of the
yaw output caused this experimental work to be done with yaw angle.
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Figure 14: Model Reference Yaw Angle Tracking for DAC at U =
1.2, 1.6 m/s

CONCLUSIONS & DISCUSSION

This work has introduced a method for Driver Assisted Control
based on Model Reference Control.  The driver selects a desired
vehicle handling model and the controller uses rear steer input to
enable the vehicle to behave like the desired model.  The driver



maintains control of the front wheels, thus enabling a graceful
degradation of performance in the event of a controller failure.  The
DAC control strategy was implemented on a scale testbed (IRS) and
shown to be successful within sensor limitations.  The unavailability
of clean, accurate, yaw rate signals forced the implementation to be
done on yaw angle feedback.  The development of accurate yaw rate
sensing is the subject of current research.

The MRC relies on an accurate model of the plant.  In an effort
to make the control approach feasible across a range of parameter
variations, a continuous time RLS adaptive estimator was combined
with the original DAC.  The estimator operated on a reduced order
model of the vehicle.  The approach was shown to be successful for
the experimental IRS system and was able to account for vehicle
parameter changes due to increased speed

While some measure of success has been demonstrated in this
work, there are several limitations to the present approaches that
deserve mention.  While the adaptive control procedure was
successful in the laboratory, as shown in Section 4, it may not be
feasible in practice.  The proper parameter convergence for the front
and rear steer transfer functions required more Persistence of
Excitation than would probably be available in an actual vehicle.  In
a nominal driving condition which consists of relatively small driver
input, the identification scheme may not obtain enough PE to get
convergence to the actual parameters.  Moreover, the reduced order
model may not be accurate at higher speeds.  Consequently, it is
hereby suggested that a velocity scheduled control approach based on
vehicle models identified off-line may be more realistic in practice.
This avenue is also the subject of current research efforts.
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