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ABSTRACT

This paper presentsa novel testbed for vehicle control
experiments: The Illinois Roadway Simulator (IRS). This is a
scaled roadway suitable for easily visualizing preliminary
vehicle control studies. The concept of the IRS is given along
with the details of its design and construction. A review of
vehicle dynamics gives the standard Bicycle Model for linear
operating conditions. The parameters of the model are then
obtained for representative IRS vehicles. The resulting vehicle
dynamics are then compared with dynamics of full-scale
vehicles for dynamic similitude. The dynamic similitude
comparisonis thekey to gainingconfidencein thescaledtestbed
as an accuraterepresentationof actualvehicles. A series of
experimental verifications are used to match the identified
vehicle dynamics to the responses predicted by the standard
vehicle model with some additional augmentations.

1. INTRODUCTION& MOTIVATION

There are severat motivational factors that cause control
practitioners to experiment with scaled systems before making
suggestions for full-scale systems. One of the key motivators is
cost. Scaled systems are usually significantly less expensive
than their full scale counterparts. The impact of this is
particularly true in cases where resources are limited: e.g.
academic institutions or smaller companies. Another
motivational factor is safety. Usually, the scaled systems are
safer to operate than their full-sized counterparts and are much
more forgiving of mistakes. This allows for many novel and
radical control approaches to be tried out in art environment that
is relatively tolerant of failure. This is particularly important
because the new controllers may turn out to be unstable in their
initial implementation. Convenience is a third motivation.
Usually, scaled systems are easier to work with than full size
systems. Flexibility of the experimental apparatus will be the
final motivation given here, Since much of the control
electronics does not have to be embedded in the system, the
controllers can be implemented with common real-time software
running on personal computers. This allows for rapid alteration
of the control strategy thereby affording an easy comparison
between different controllers under consideration.

Much of the non-tmoswietarv, rmblished vehicle control
work to date has been limited to simulation because the use of a
till-size vehicle to test controllers is often prohibitively
expensive as well as dangerous. The focus of the research
presented in this work has been to develop a scale version of a
vehicle and a roadway for safe and economic testing of
controller strategies: the Illinois Roadway Simulator (IRS).
Previous investigations using scaled vehicles (Sampei et al
1995, Matsumoto & Tomizuka 1992, Kashroo et al, 1995) have
mostly involved moving the vehicles along some fixed surface.
This may incur a host of interfacing and sensing issues. The
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IRS is art experimental testbed consisting of scaled vehicles,
running on a simulated road surface, where the vehicles are held
fixed with respect to inertial space and the road surface moves
relative to the vehicle. The rest of the paper is organized as
follows. In Section 2, the physical system design is presented.
Section 3 details the system dynamics. This starts with an
idealized bicycle model and then gives the model parameters
identified for scaled vehicles. Section 4 presents experimental
data that is used to verify the approach taken in Section 3.
Section 5 then details the dynamic similitude analysis used to
verify the validity of using the scaled IRS system. Previous
studies by the authors (Breman et al, 1998) did not formally
address the dynamic similitude problem and simply relied on
identified I/O data to justify similarity based on eigenvalue
locations in the complex plane. Here we use the Buckingham Pi
theorem to perform a more formal analysis. It is shown that the
IRS system can be made to match most standard vehicles with a
high degree of dynamic similitude. A conclusion then
summarizes the main points of the paper.

2. THE ILLINOIS ROADWAY SIMULATOR

The IRS’s scaled roadway surface consists of a 4 x 8 ft.
treadmill capable of top speeds of 15 mph. Scale vehicles are
run on the treadmill via multiple wall-mounted transmitter
systems operating between 50 and 100 MHz. The remainder of
the IRS consists of a driver console, DSP and PC based interface
computers, A/D and D/A converters, a significant amount of
electronic interface equipment, several separate receiver
systems, a vehicle position sensor system, and the vehicles. The
vehicle controller hardware loop uses a reference signal that can
come either indirectly via the manual driver console or directly
from a computer-generated signal. If the signal is from the
manual driver console it is first input to a computer via an
Analog Devices RTI-815 Analog I/O board sampling at 1 kHz.
The computer then outputs analog voltage commands, via an
Analog Devices RTI 802 Analog Output board, to the vehicle’s
transmitter. This voltage signal is then converted to a FM
signal. The receiver system on the vehicle transforms the
transmitter’s FM signals into pulse-width modulated signals,
which are then sent to the vehicle actuators. Each actuator has a
built-in analog controller that converts the pulse-width-
modulated signals into reference commands.

The treadmill road surface regulates the vehicle position
with respect to an inertial reference point. The roadway speed is
monitored via an optical encoder. To maintain the vehicle on
the treadmill, a separate computer uses the vehicle’s inertial
position as feedback and sends an output voltage signal to the
treadmill. The treadmill uses an industrial motor controller that
converts the input voltage level to a reference speed, and adjusts
the DC drive motor current to match this speed accordingly.
Figures 1 and 2 give a representation of the entire system:
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As designed, the treadmill does not allow speed reversing.
Acceleration of the treadmill is accomplished by a DC motor
applying torque to the treadmill belt. Deceleration is
accomplished by allowing friction to slow the treadmill down.
The deceleration torque contributions due to viscous and sliding
friction values actually change with treadmill speed due to the
creation of an air bearing between the sliding treadmill surface
and the underlying supporting panel.

The feedback loop begins with a position sensor connecting
the vehicle with a known inertial reference point. The sensor
consists of a 3-bar linkage with encoders at each joint. The joint
angles are then used to determine the position and orientation of
the vehicle on the treadmill. Figure 3 shows a sensor arm, as
well as the angle and length conventions used to determine
vehicle position. The corresponding vehicle coordinates are
given as:

x = J . cose~ +12 . Cos(e, +92)
y= 11.sin91 +12 .sin(Ol +f3z) (1)

Y = (01‘%)+(O2 ‘82.)+(83 ‘83.)

where 1,, 12are the link lengths, 91,e2,e3 are the joint rotations
and e10,e20,e30are the reference positions calibrated to inertial
space. Initial experiments used potentiometers for the joint
angle sensors to enhance system robustness. However, after
several experimental design iterations, high-resolution encoders
are currently being used for their linearity and resistance to
wear. Custom mounted brackets were designed so that the
encoders themselves saw no side loading.

There are several vehicles in use on the IRS, each with
different operating capabilities. They range from a simple 2WD
front steer vehicle to a 4WS vehicle with independent drive
motors for each wheel shown in Figure 4.

Commercial off-the-shelf (COTS) transmitter systems were used
to send signals to the on-board motor and steer servo controllers.
This communication system induced a time delay in the control
loop. The COTS system was retained in the control loop
because of the simplicity involved with interfacing the
transmitters which used potentiometers to generate analog
control signals. It is possible to directly interface the on-vehicle
controllers and this will reduce or eliminate the delay. However,
this will greatly increase the system complexity.

All DAQ and control features are handled via Wincon, a
windows based control program that runs real-time code
generated by Matlab/Simulink’s Real Time Workshop toolbox.
Custom drivers were written in C to communicate with the
Analog Devices boards. This Wincon interface eliminated
lower level C-programming and allowed all functions to be
handled with a GUI type of Simulink interface. Additionally, it
provided for real-time viewing of data,

3. VEHICLE SYSTEM DYNAMICS

The well known Bicycle Model (Genta, 1997) was taken as an
initial estimate for the dynamics of the scaled IRS vehicle. The
Bicycle Model assumes a constant longitudinal velocity of the
vehicle and consists of two dynamic degrees of freedom, lateral
velocity and yaw rate. Define:

m = mass of the vehicle
1,= vehicle inertia about vertical axis at the e.g.
V = vehicle forward velocity
C,f, C,r = front, rear cornering stiffnesses
L1, ~ = distance from front, rear axle to the e.g.
L= Ll+~
d,= distance between sensor and e.g. along vehicle axis
Y~ = lateral distance measured from reference to sensor
af, 5, = front, rear steering angle
v = Yaw Angle
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The state space formulation (Peng & Tomizuka, 1993) is as
follows:

‘Ei=lti:t]”[i+[:ib’
H

Y,ef/C7YEf
Ym=[l O d, o]. ~ & (2)

1 /1
Jy

6s
where

*,= -(C,, +C,r) *,=(C,,. L,-C,, .Ll)

m’ m

C,f
Bl=— B2=~

*,=(C~r-L, -C,f .L1)m A,=-(C,,rnL12 +C,r Lz2],

IZ IZ

L, C,f –L2 . C,r
B3 =— B4 =

1= Iz

In Equation (2), the output equation measures the lateral
displacement at a point ahead of the e.g. similar to a AHS
configuration (Peng & Tomizuka, 1993). The transfer function
from front input steer angle to output lateral displacement is
given as:
Yin(s)—=
&(s)

C,[Vz(mL,d,+1. )s2+C,[C,,LV(d,+L2> +GGrLv2
IzmV2s4 + V(Iz(C,f + C,r) + m(C,fL1’+C,,LZ2))S3+mV2(C,,L2-C,fLj)+‘WW2S2

(3)
and the transfer function from front steer angle to yaw rate is:
W =
df(s)

C,fV2mLLs+C,fC,,LV
IzmV2s2+V(Iz(C,f+C,,)+ m(C,fL,’+C,,L2’))S+mV2(C,,L2-C,fL,)+C,fC,,L2

(4)
We can note that the above equation consists of many values
that are experimentally measurable, such as vehicle speed, mass,
and moment of inertia. If these values are measured and
substituted into the transfer function given above, then a
reasonable approximation of the vehicle’s transfer function
should be obtained. Although the measurement of the vehicle
mass is trivial, measuring the other values is not intuitively
obvious.
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The vehicle’s mass was determined simply by weighing it
on a standard balance scale. The center of gravity was
determined by balancing the vehicle and determining the
location where zero net gravitational moment acted. To
determine the z-axis moment of inertia, the vehicle was
suspended by a torsional spring shown in Figure 5, and the
period of oscillation about the z-axis was measured. For a mass
that is suspended by a spring whose force is proportional to
angle, the governing equation is given as:

z
M= =Izti =–~d–ke (5)

where ~ is a damping term [N*m*sec/rad], IZ is the z-axis
moment of inertia [kg-m2], and k is a spring constant [N*m/rad].
If we take the Laplace transform of the equation and consider a
free response situation, we obtain:

(IZs2+@+k~(s)=0 f3(t=O)=Oo (6)

If we solve fors, we obtain

PS=–—* 1[)&2_L
21, 21, 1,

(7)

If the system is underdamped, we can measure the exponential
decay term, -~ /(2”1.) = L, as well as the spring constant k and
the frequency of the response. From these measurements, we
note that

k
IZ=A2+”2

The following figure shows a sample of the time
well as the exponential fit to determine ~.
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L is approximately 0.051 rad/sec and the frequency of the
system can be identified as 0.965 radhc. Using the equation
above, the moment of inertia for this mrticular case is calculated
to be o



To determine the cornering stiffness of the tires, the special
test rig shown in Figure 7 was devised. With this test stand it is
possible to control both the slip angle and the normal force on
each tire. Figure 8 shows the results of testing a particular scale
tire at 3 different normal loads.

o 1 2 3 4

SlipAngle(degrees)

I&w-& Later~ Tire Forces

By determining the tangent line at zero slip angle it is possible to
determine the actual cornering stiffness for the tire. The
cornering stiffness characteristics will change with tire type.
Figure 9 below shows the cornering stiffness determined for a
low and high Ca tire.

k 1 -
+

0.5- L Ca=0.44N/deg -
0 I
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A summary of typical measured parameters is in the following
table:

I Vehicle #1 I Vehicle #2 I Vehicle #3 1

t JM 1.47 kg I 4.025 k I 2.33 kg
I ~,~a” ,.__2 I A ,*o,._!_2 0.052 kg m2 1

L1 “.. < ..- I “.. -, ...
Lz 0.15 m 0.189 m !

Cal 1.53 N/deg. \ 0.53 Nldeg. 1.53 N/deg.
i

UA4 Kg 111 I U.ll YK~IIl

tll’lrn

‘ “’”m=

I cd \ 1.53 N/deg. 1 0.53 N/deg. i 1.53 N/deg.

Although the system of Eq (2) uses the steer angle as the
input, for the IRS system the following dynamics occur between
the voltage steer command and the actual steer angle.

volt K I
‘ + “

8
e-sT

s2+2Qons+con2

time delay 2nd order dynamics rate limit

Figure 10: Steer Actuator Dynamics.
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There is a communication time delay of approximately 15 msec
from the D/A computer signal to the actuator’s reference signal.
The steer actuator is an electric motor controlled by an analog
feedback device. The rate limiter occurs due to the gearing in
the motor necessary for sufficient output torque.
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Fi~re 11: Steer Dynamics: Time& Freq. Domain,

Figure 11 shows the time and frequency domain characteristics
of two separate steer servos used on IRS vehicles. The slower
servo is in the left column. The responses are given at several
different operating amplitudes, The approximate bandwidth is 1
Hz for the slower servo and 8 Hz for the faster servo.

4. EXPERIMENTAL VERIFICATION

In this section, we examine the accuracy of the parameters
identified in Section 3. Figure 12 shows the frequency response
of the entire vehicle from input to yaw rate. Two measured,
experimental frequency responses are compared with a transfer
function obtained by directly substituting the identified
parameters for Vehicle #2 along with the fast steer servo model
of Figure 11 and the communication time delay.
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Fizure 12: Frequency domain model comparison,

Figure 13 shows the time response of the vehicle for a series of
lane change maneuvers. In the figure, the noisy experimental
yaw rate is closely matched by the smoother simulated yaw rate..-
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Time (seconds)
Fizure13:Timedomainmodelcomparison.

The system dynamics used in the model are:

@(s)—.
u(s)

90 s + 5.999 . e-(o.015)s (9)

S2 + 95.4s + 2809 S2 + 9.754s + 36.39 ~
~ ~ Communication

steer servo dynamics vehkle dynamics delay

where the yaw rate is in deg/sec and the input is in volts. Not
shown in Eq (9) is the rate limit of 340 deg/sec that is included
in the steer servo dynamics. As can be seen in the figures, the
tits in both the time and frequency domain are very good. The
tit could be made even better since the steer servo was identified
while the vehicle wasn’t actually running on the IRS and the
vehicle’s inertia and mass weren’t measured with the sensor arm
attached. By slightly tuning transfer function coefficients the
results of Figures 12 and 13 could be improved significantly.
However, these results validate the direct use of the off-line
parameter identification of Section 3. The results also provide
confidence in discussing the dynamic similitude comphson of
the IRS scaled vehicles with full-size vehicles.

5. DYNAMIC SIMILITUDE ANALYSIS
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If a solution to the differential equations in E@.(2) for the IRS
vehicles exists, then the vehicle lateral position will be a
function dependent on the scaled parameters:

Y= f@, czl,a2, m, Iz, Vx, Vy, L1,L2, Cal, Ca2, T,r ) (lo)

The Buckingham Pi theorem (Buckingham, 1914) states that any
function that cart be written in the above form can be rewritten
in a dimensionless form without changing the solution to the
differential equation. This rewriting is achieved by grouping the
parameters into (n – m) independent dimensionless parameters,
where n is the number of parameters and m is the dimension of
the unit space occupied by the parameters. The parameters,
along with their primary unit dimensions, are:

m=kg=[hf]

[1V. VX=Vy=m/s= * (11)
Y= L= Li=L2=m=[L]

c~=c~=[w=[a
‘.=[k’”m21=[ML21

Note that the angles such as the steer angle and slip angle are
unitless and thus form their own Pi groups. It is clear that the
basic unit dimensions are mass, length, and time. Thus, there
are 3 primary dimensions in the unit space, abbreviated M, L,
and T with 5 parameters in question. If we choose m, V, and L
as repeating parameters, we cart express the remaining 2
parameters as dimensionless groups, to create 2 additional Pi
groups. First, a dimensional equation is formed in powers of the
repeating parameters.

-[F][MF[+~[LF=[ML~l(I2)caf. ma.vb, Lc- ‘L

Equating the powers, three equations are obtained:
mass l+a=O

time -2-b=O (13)

length l+ b+c=O

Solving the equations gives a = -1, b = -2, and c = 1. Hence, the
firstPi groupis CalIJmV2. Solvingfor thesecond Pi group:

[ ] [T]
Iz. ma. vb. Lc= ML2 .[M~. kb. [LF=[MLTlO (14)

Equating the powers, three equations are obtained:
mass l+a=O

time -b=O (15)

length 2+ b+c=0
Solving the equations gives a = -1, b = O,and c = -2. Therefore,
the second Pi group is IJmL2. A summary of all the Pi grou13sis:

L1 L2 CtiL CmL ;Z
nl. T,n2– L–—, rr3. ~,n4=7, n5=T “(16)

mV mV mL
The Buckingham Pi theorem states that if two dynamic systems
are described by the same differential equations, then the
solution to these differential equations will be the same if the Pi
groups are the same. This becomes clear during non-
dimensionalization of the governing differential equations.

To determine the validity of the use of scaled vehicles on
the IRS, originally the pole locations of the scale vehicle were
compared to the full sized vehicles. These pole locations are
determined by the eigenvalues of the ‘A’ matrix for the bicycle
model in Eq. (2). Not includktg the double integrator, these
open loop eigenvalues are the solution to the equation:



[ (IzmV2s2+V Iz(C~ +Cm)+mxf2. C~ +Xr2. cm )}

+ Cd CmL2 2( r rzr)=o–mV xfCM+x C

[
(*S’2+ -&Cti+ca )+*%2%+X% ~

z

Lz

+ Cdcm —J(xfcd+xrcm)=o
IzmV2 I.

17)

18)

Note that thes term has units of (sec”l), so we may make a scale
transformation to non-dimensional coordinates:

[ )C LCaL# mLj Xf CdL+&c@L =0+af _
mV2 ~v2 1, 1, L ~v2 L ~v2

[
))- S*2+ (H3+ n4)+-#~n3 + n22n5 *

(21)

)+l(n~nd –nlnq -n2n4 =0
n5

Clearly, if the Pi groups agree between two systems governed by
the bicycle model, then the normahzed pole locations will be the
same. This will indicate a very high degree of dynamic
similitude between the two systems. To test this concept pole
locations and Pi groups were compiled for full-sized and IRS-
scale vehicles.

Vehicle #2 Avg. Full Size
Speed (m/s / mph) 316.52 23.8/51.8

Poles 0,0,-4.8+/- 3.5j 0,0,-4.6+/- 3.3j
Pi 1 0.4229 0.4203
Pi 2 -0.5771 -0.5797

Pi3* 0.2698 0.2698
Pi4* 0.2698 0.2622
Pi 5 0.2755 0.2593

* These two values can be matched by varying car speed

The average values of vehicle parameters were taken for 4
different mid-size vehicles (LeBlanc et al 1996, Reid et al 1981).
To summarize the results shown in the table, analysis shows
experimentally and theoretically that there can be good
agreement between scale and full sized vehicle dynamics. To
get the proper match between scale and full-size vehicles may
involve adjustments of vehicle parameters. For example, in the
table above, the inertia of the scaled vehicle was tuned to match
the Pi groups by adding and distributing weight to the front and
rear of the vehicle.

CONCLUSION

This paper has given a detailed exposition on a novel,
scaled testbed for vehicle control studies. The testbed is
intended to provide initial results on vehicle controllers in a
rapid manner. Additionally, the use of a physical experimental
system can provide easy visualization of actual control
performance. The components of the system were given
separately, including methods for measuring various system
parameters. The accuracy of the system dynamics identification

was given in both the time and frequency domains. The key to
the use of the IRS is the fact that the vehicles acting on it can be
made to have a high degr- of dynamic similitude with real
vehicles. The Buckingham Pi theorem was used to develop a
series of Pi groups that were then compared with the same Pi
groups for the average of a sample of real vehicles. The
matching of the scaled Pi groups with the full-sized Pi groups
should give confidence in the IRS dynamic similitude.

The Pi group matching that was done depends on the
system model used. In this case, the IRS is focused on matching
the planar vehicle dynamics. The dynamics of a system with
roll or pitch has not yet been investigated with this system.
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