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ABSTRACT

A temporal and spatial re-parameterization of the well-
known linear vehicle Bicycle Model is presented.  This
parameterization utilizes non-dimensional ratios of vehicle
parameters called pi-groups.  Investigation of these pi-
groups using compiled data from 44 published sets of
Vehicle Dynamics reveals that the data does not span the
pi-space, but instead follows a multi-dimensional line
through pi-space with a Guassian distribution about this
line.  This Guassian distribution suggests numerical values
for an ‘average’ vehicle as well a maximum perturbation
about the average.  Stability analysis in the pi-space is then
considered.  A state-feedback controller is designed that
utilizes the pi-space curve and the expected pi-perturbations
to robustly stabilize the class of all vehicles subject to the
distribution of vehicle parameters observed in the literature.
Experimental verification is obtained using a scaled vehicle.

I.  Motivation

The field of Robust Control made large advances in the
1980’s and a framework for formally dealing with system
uncertainty is fairly well understood (Zhou and others
1996).  However, in most of the approaches to Robust
Control, there has been little work done to utilize a specific
non-dimensional structure to the problem in order to define
plant deviations.  An example of a system where a specific
structure could be exploited is that of vehicle control.  With
extensive previous work that has been done on Automated
Highway systems or Intelligent Vehicles (Shladover 1995),
it has been found that repeated manipulation of the various
controllers is necessary to achieve adequate performance
for different vehicles.  This re-calibration of vehicle
controllers is expected since the actual vehicle plant is
changing from vehicle-to-vehicle.  In this work we consider
ways to design a controller that is robust to these variations
and is based on perturbations of a system plant around some
‘average’ vehicle.  Previous work (Brennan 1999) has
indicated that it is difficult to predict the variation
magnitudes in the system dynamics before a new vehicle is
built.  An additional but related problem is that the notion
of an ‘average’ vehicle is unclear.  Average parameters are
highly desirable in controlled vehicles to ensure appropriate
controller development, but a methodology to compare
systems based on their physical parameter dimensions has

not yet been formalized in the field of control.  The goal of
this paper is therefore two-fold: first, to develop a
numerically appropriate framework that allows parameter-
based comparisons between vehicles, and second to obtain
a controller that is robust to vehicle-to-vehicle parameter
variation.

What the control architecture often overlooks is the
fact that single physical parameters do not usually change
on a system independent of other parameters.  For instance,
if the mass of a vehicle is increased, the moment of inertia
will increase as well.  Although significant control theory
has been developed to describe the dynamic relationships of
a dynamical class of systems, this theory usually doesn’t
incorporate parametric trends introduced by the physical
design of similar systems.  In vehicle systems for instance,
this paper shows later that parameter interdependence can
be described quite well by a line through parameter space.

In control theory, plant variations or uncertainty are
usually resolved using two methods: robust control or
adaptive control.  Robust control seeks to design a
controller unresponsive to variations, while adaptive control
seeks to identify the model parameters and include the
identified variations into the control of the plant.  Examples
of adaptive approaches applied to vehicle control include
neural networks to identify and adapt to road friction
changes (Shiotsuka and others 1993).  Robust control to
address road friction variation and velocity variation are
presented in (Tagawa and others 1996), and road-friction
uncertainty robustness is presented in (Ono and others
1994).  Naturally, mixed approaches can be implemented;
for instance in (Horiuchi and others 1996), where adaptive
control is used to identify the vehicle model and robust
control is used to stabilize the vehicle in the presence of
expected model perturbations and disturbances.  In the
context of this research, the focus will be on categorizing
the uncertainty within a non-dimensional framework.
Therefore, the robust approach will be the tool used to
consider model variability.

A method to incorporate model variability was
suggested by first answering the question: what is the best
method to compare systems of different parameter
dimensions but that are likely described by the same
dynamics? This problem was examined in (Brennan 1999)
when attempting to compare published work between
several authors that have used differing vehicles.  A similar
problem was first addressed by Freude in 1850’s in the
study of ship design, and formalized solution was obtained



with the Buckingham Pi Theorem (Buckingham 1914) in
the early 1900’s.  This theorem determines the minimum
number of parameters, grouped into non-dimensional ratios,
needed to span the parameter space over which dynamics
are expected to operate.  The well-known Reynolds
number, Freude number, and Nusselt numbers are just a
few of the parameters identified for fluid/thermal systems
using this method.

The outline of the paper is as follows.  Section II
introduces the linear, planar vehicle model and the non-
dimensional counterpart.  Additionally, the concept of non-
dimensional comparisons are introduced.  Section III then
presents distributions of the non-dimensional parameters for
vehicles found in the literature and thus defines numerically
an ‘average’ vehicle.  To relate the use of the non-
dimensional parameters to common Vehicle Dynamics,
Section IV develops a classical expression for vehicle
stability and shows how this criterion is simplified further
using inferred non-dimensional relationships.  Section V
uses the distributions of Section III and develops a feedback
controller robust to vehicle-to-vehicle variation.
Furthermore, a sample implementation on a scaled test
vehicle is provided.  A Conclusions section summarizes the
main points of the paper.

II.  Vehicle Dynamics and Pi Analysis

The vehicle model considered in this paper describes
the planar vehicle dynamics when front wheel steering
inputs are applied.  For brevity, rear wheel steering inputs
and torque inputs are not considered in this paper, but the
following analysis is easily extended to these cases.  The
vehicle model is assumed to be linear, and described by the
well-known bicycle model (Alleyne 1997; Wong 1993) as
follows:
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For a Classical Controls perspective, the corresponding
transfer function from front steering input to yaw rate can
be written as:
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where the characteristic polynomial is:
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The vehicle parameters are defined as follows for a scaled
Illinois Roadway Simulator (IRS) (Brennan 1999; Brennan
and Alleyne 1999) vehicle used in the experimental results
of Section V.

m  = vehicle mass, kg (6.02),
Iz  = vehicle moment of inertia, kg-m2 (0.153),
V  = vehicle lateral velocity, m/s (1.98)
a = distance from C.G. to front axle, m (0.137)
b = distance from C.G. to rear axle, m (0.222)
L = vehicle length, a + b, m (0.359)
Cαf = front cornering stiffness (2 tires), N/rad (40)
Cαr = rear cornering stiffness (2 tires), N/rad (52)

The values in parentheses are the numerical values for
a typical scale vehicle used in confirmatory testing of the
controller later in this paper.  These parameters can be
grouped into the following non-dimensional units if all
length coordinates are normalized using the vehicle length,
and all time coordinates are normalized by the length of
time a vehicle needs to travel its own length at a velocity V,
or L/V.
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Noting that the Laplace variable ‘s’ and the yaw rate
measurement have units of [sec-1]; both can be normalized
to s* and Ψ& * by factoring the term (V/L).   The input is an
angle and is therefore already a non-dimensional term.
After substituting the Pi parameters, the Classical Control
transfer function of Equation (2) can be rewritten as:
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The state-space form presented previously can also be
normalized as follows:

  *xMx ⋅=    and   ( )
dt

dx
M

L

V

dt

xMd

dt

dx **
⋅⋅=

⋅
=

Therefore, Equation (1) can be rewritten as:

**

******
*

*

1

11

xCMMy

uBxAuBM
V

L
xAMM

V

L

dt

dx

⋅=

+=⋅+⋅=
−

−−     (5)

with   




=

L

V
VLdiagM 1



Equation (5) is simply a dimensional time-scaling
combined with a coordinate transformation.  The A* and
B* matrices can be rewritten in Pi-form as:
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Pi-analysis was originally developed to achieve
dynamic matching between systems.  When the pi-
parameters are the same for two systems with differing
dimensional parameters, but the same dynamical equations
of motion, the systems are said to be dynamically similar.
Examination of the non-dimensional characteristic equation
reveals that if the pi-parameters match between two systems
governed by the bicycle model, then the systems will have
identical dynamics.  Therefore, two systems are
dynamically ‘close’ if their numerical values for the pi-
parameters are all ‘close’ in the pi-space.

To demonstrate that controller design using the non-
dimensional coordinates is straightforward, consider
classical pole-placement on a full-sized vehicle.  The
following published (Alleyne 1997) vehicle parameters
were used: m = 1670 kg, Iz = 2100 kg-m2, a = 0.99 m, b =
1.7 m, Cαf = 123,190 N/rad, Cαr = 104,190 N/rad, and V =
15 m/s. The goal of this simple lateral positioning controller
is to place the closed-loop poles at [–10, -15, -20, –25]
[rad/sec] in the s-space, corresponding to [–1.79, -2.69, -
3.59, –4.48] [unitless] in normalized-s space.  The gain
obtained from performing non-dimensional pole placement
is K*, defined by the following relationship:

( ) MKKxMKxKuxKu ⋅=⇒⋅=⋅==⋅= **** (7)

The gain matrix obtained using traditional controller pole-
placement is: K = [7.62, 0.712, 5.70, –0.0856].  The gain
obtained by performing non-dimensional pole-placement is:
[20.5, 10.68, 5.70, –0.478].  Using the conversion in
Equation (7), the non-dimensional gain-matrix predicts that
the dimensional gain matrix should be K = [7.62, 0.712,
5.70, –0.0856], exactly as predicted.  It should therefore be
clear that whether the controller design is conducted in non-
dimensional space or in classical dimensional space, the
resulting gains are equivalent as long as the gains account
for dimensional and temporal conversions.

There are key advantages to designing a vehicle
controller in the pi-space versus dimensional space.  For a
given vehicle, the mass, moment of inertia, and length
parameters are approximately constant but the velocity and
cornering stiffness change significantly with driving
conditions.  Thus, all of the pi-parameters are, in general,

time invariant, except for 
3Π and 

4Π .  It is well known that

the vehicle dynamics change significantly with both
velocity and cornering stiffness.  Later in this paper it is
shown that for a given vehicle, 

4Π  is usually some fixed

ratio of 
3Π . Therefore, both velocity AND cornering

stiffness variations correspond to variations in a single
parameter:

3Π .  This is seen Figure 1 where the roots of the

Characteristic Polynomial of Equations (2) and (4) are
shown with respect to the two different parameters: velocity
(represented by ‘o’) and cornering stiffness (represented by
‘x’).  On the left is the classical vehicle representation, and
on the right the non-dimensional representation.  For the
variation of the system roots with respect to cornering
stiffness, the ratio of front to rear cornering stiffness was
assumed to remain the same.
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Figure 1.  Parameter root loci.

These plots, similar to a Root Locus for controller
design, hint that the effect of road-friction variations on the
underlying vehicle dynamics is somehow dual to the effect
of velocity variations.  Therefore, the traditional approach
of separately considering these two system parameter
variations may possibly be streamlined and combined.

III.  Trends in Published Pi Parameters

Section II demonstrates the possible utility of
considering the vehicle dynamics in a non-dimensional
setting.  To determine the expected dynamic variability
between vehicles, a distribution of pi parameters was
obtained by substituting published vehicle parameters from
44 different vehicles found in the literature.  All vehicles
were production passenger vehicles.  A velocity of 14.6 m/s
was used for these calculations, but any velocity could be
used: changing velocity simply re-scales the x-axis on the

3Π  and 
4Π  plots.  Note that the 

2Π  parameter is omitted

because this parameter is constrained physically by the 
1Π

parameter with the physical relationship 
1Π +

2Π  = 1.

Figure 2 shows the resulting distributions.  In addition,
Figure 2 indicates the values of the pi parameters for a



scaled vehicle (Brennan and Alleyne 1999) that will be
used in Section V to obtain experimental results.

Clearly, distinct distributions are present for each of the
pi-parameters. Considering that the practice of vehicle
design is an iterative and evolutionary process, vehicle
parameters are expected to eventually cluster toward ‘ideal’
parameters that best satisfy marketing, construction, and
driver constraints. An observed statistical distribution
suggests to a vehicle designer a particular vehicle ‘norm’.
Although the engineering reasons driving this trend are not
under discussion here, it is likely that vehicles with
parameters far from the mean may represent an of
anomalous vehicle.  For instance, plotting the pi parameters
for a grand-prix vehicle with the passenger vehicles in
Figure 2 would require a several-fold increase of the x-axis.
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Figure 2. Pi-group distribution.

In addition to providing clues toward vehicle design,
the pi distributions provide key information for subsequent
controller design.  An ‘average’ passenger vehicle would
likely have parameters located at the peaks of these
distributions.  All vehicles appear to lie about this average
with some standard deviation in each parameter.  Intuitively
then, the controller problem of stabilizing any passenger
vehicles now becomes a much simpler task of designing a
controller to stabilize the above ‘average’ vehicle in the
presence of non-dimensional parameter perturbations with
the same magnitude as the ‘spread’ seen in the Figure 2
distributions.

IV.  Vehicle Stability Analysis

Using the Routh Stability Criterion, the classical yaw-
rate stability limits of the open-loop system are easily
found.  The Routh criterion guarantees stability for
Equation (4) if the coefficients of the characteristic equation
are all greater than zero.  Noting that the Pi values are
always positive for vehicles due to physical constraints,
stability limits can therefore be found by setting the last
term in the denominator equal to zero.  The following
constraint then guarantees yaw-rate vehicle stability for the
linear bicycle model.
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Back substitution of the pi-values yields:
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This is simply the classical expression for the well-known
critical velocity above which an oversteer vehicle becomes
unstable.

Examination of the Pi inequality in Equation (8)
reveals that from a design standpoint the easiest way to
improve stability is to increase 

4Π  (note that 
2Π cannot be

changed independent of 
1Π ).  This parameter represents the

relative magnitude of the rear cornering stiffness of the
vehicle.  The inequality therefore suggests that rear tire
adhesion should not be compromised, as is well known for
preventing vehicle oversteer instability (Wong 1993).

The previous stability criterion can be simplified by
considering the information inherent in the parameter
distributions.  Knowing that 

2Π  = 1 – 
1Π  due to physical

constraints, a relationship is sought between 
3Π  and 

4Π
(the non-dimensional cornering stiffness parameters) that
simplifies the stability constraint of Equation (8); 

3Π  is

plotted versus 
4Π  in Figure 3.
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A general relationship was found to exist where Pi3 ≅
Pi4.  Noting the physical meaning of these parameters, his
indicates the rear cornering stiffness is about the same as
the front to a first approximation.  This is intuitive because
both tires are made from the same material and are driving
on the same road surface.  However, this data must be taken
with some question before accepting this relationship as
fact since front & rear tire characteristics can vary on a
vehicle.  Assuming that the front and rear cornering
stiffness are equal as a first approximation, the constraint on
vehicle stability can now be reduced to the expression:
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Which is simply a line dividing the 
1Π  vs. 

3Π  space.  A

plot of experimental values of 
1Π  versus 

3Π  is shown in

Figure 4 with the above stability line included.
From the inequality in Equation (11), it can be inferred

that the vehicles farthest away from this line would likely
be most stable.  To test this idea, the pole locations of the
closest and farthest vehicles are shown in Figure 4.  It was
confirmed that the vehicle with the most stable pole
locations was the vehicle farthest away from the above line.
The least stable vehicle, with pole locations closest to the
imaginary axis in the s-plane, was in fact the vehicle closest
to the above stability line.
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The previous Pi analysis has revealed a general linear
design criterion that may be used in the construction of a

vehicle to estimate open-loop stability.  This approach
demonstrates that accounting for parameter inter-
relationships can greatly simplify stability analysis.
Moreover, this can quickly and easily be done over a range
of different vehicle sizes and vehicle parameters.  The same
concept is now considered for specific use in controller
design.

V.  Robust Controller Design

The assumption in the following controller design is
that the distributions representing vehicle-to-vehicle
variations should serve as the robustness measure of the
controller.  A first approach to classify the system
uncertainty would be to note the possible variation in each
pi-parameter, and then obtain some uncertainty bound that
spans all possible permutations of the five pi-parameters,
thus creating a hyper-cube in parameter space.  A problem
with this approach is that it ignores parameter
interdependence.  Figure 3 shows that most experimental
vehicles would only exist in a small subset of such a space.
In the simplest case, the parameters would span the
parameter-space as a line.  Thus, measurement of one
parameter would allow the prediction of all other
parameters.  This will never happen with physical systems
due to true plant-to-plant variations and measurement error.
Thus, a Guassian distribution of experimental data about a
line through parameter space would be the reasonable
assumption for a relationship.  As will be shown in this
section, this is in fact the case for vehicle dynamics based
on the obtained vehicle distributions.

Although the non-dimensional system matrices in
Equation (6) are composed of nonlinear pi-parameter
functions, these functions can be approximated by using
experimental data to determine the best-fit line via simple
regression.  Additional perturbations are then added to each
line such that all experimental data are included in the
perturbation sector.  Thus, a realistic parameter bound is
obtained for the vehicle system. 

3Π  is chosen as the

independent variable because this variable has the most
variation due to velocity and cornering stiffness changes.
Note that 

4Π  undergoes the same variations, but as was

shown previously 
4Π  can be represented as a linear

function of 
3Π .

Each pi-function in the non-dimensional matrices of
Equation (6) is written as a function of 

3Π  and some

perturbation.  This function is approximated as a line with
slope m and intercept b, and a perturbation is included in
each function to span the error.  The state space system
matrices can be rewritten as:
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An example of the linear regression fit of function f5 is
shown in Figure 5. A normal probability plot of the
residuals of the regression fit is shown in Figure 6, where
clear normality trends are demonstrated by the fact that the
residuals are well-approximated by a line connecting the 25
and 75 percentiles, and zero bias is demonstrated by the fact
the line passes through the point (0,50%).
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Figure 5. Example parameter fit of function f 5.

-0.4 -0.2 0 0.2 0.4

0.01 

0.02 

0.05 

0.10 

0.25 

0.50 

0.75 

0.90 

0.95 

0.98 

0.99 

Residuals

P
ro

ba
bi

lit
y

Figure 6. Normal probability plot of residuals.

fi Slope
mi

Intercept
bI

∆i

Min
∆i

Max
Π3 1.000 0.000 N/A N/A
1 0.818 0.130 -0.198 0.209
2 0.069 0.048 -0.155 0.156
3 2.005 -0.091 -0.311 0.365
4 2.398 0.059 -0.726 0.891
5 -2.262 0.019 -0.574 0.453

Table1. Parameter regression results for each function fi.

Note that the system matrices A and B from equation
(6) now have a linear dependence on 

3Π and perturbation

terms. That is, both matrices can be written as a linear
polynomial dependent on 

3Π  and the perturbation terms.

For instance, the nondimensional matrix A can be rewritten
as:

( ) nnAAAAA ∆⋅+∆⋅+∆⋅+=∆∆Π ...,...,, 22110213
(13)

The matrix B can be rewritten in a similar manner.  By
substitution of each function, fi, from Table 1 into the
nondimensional matrices of Equation (6), the numerical
values of each Ai in Equation (13) can be found to form
nondimensional A and B matrices with linear parameter
dependence on 

3Π and perturbations. A system form with

this linear parameter dependence allows the use of
commercial convex LMI optimization routines to design the
control law (Gahinet and others 1995).  In this work, the
optimization returns a fixed-gain, state feedback controller.

Obtaining a single fixed gain controller that stabilizes
the vehicle model given in Equation (1) over a wide range
of velocities and road surface conditions is quite
challenging (Guldner and others 1996).  Quite often, a
reasonable approach is to schedule the controller with
respect to speed or road condition, if that can be known.  If
a very large range of parameter perturbations is to be
considered, it is quite possible that the LMI optimization
approach will fail to reach a solution because one will not
exist.  For the sake of computational feasibility, a
stabilizing controller was sought that stabilized the given
class of vehicles about a particular 

3Π  value in the presence

of 
3Π  perturbations.  In addition, closed loop pole-

placement constraints were imposed on the system.  To
obtain valid non-dimensional pole-placement regions, it
should be noted that the non-dimensional system will
always have the same phase angle as the dimensional
system.  This is because the mapping of the pole locations
from one domain to another requires only a temporal
modification, which corresponds only to changing the scale
of the s-plane axes.  To define the closed loop responses via
pole placement, we first impose damping constraints on the
system: i.e. the non-dimensional poles were made to lie in a
cone in the left-half s-plane with vertex on the origin and a
vertex angle of tan-1(3π/4) rad or ~67 degrees.  This
corresponds to a minimum damping ratio of 0.39, and a
maximum step response overshoot of 26.4%.  In addition,
the poles were sector bounded to be in the region –7 < s* <-
1, in order to impose some limit on the rise-time and system
bandwidth.

To demonstrate the variability in the vehicle dynamics
due to changing parameters, the pole locations of the open-
loop system corresponding to the Bicycle Model are shown
in Figure 7.  These pole locations correspond to the vertex
points of the perturbation hypercube in parameter space.



To show the similar structure between the two spaces, both
the non-dimensional and standard pole-plots are shown.
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Figure 7. The vertex open-loop pole locations.

The MATLAB LMI Toolbox (Gahinet and others
1995) was used to design a controller to meet the pole-
placement specifications about a fixed 

3Π  value of 0.63

with 
3Π  perturbations allowable up to 0.03, and all other

perturbations ranging over the values in Table 1.  This
controller should therefore stabilize any vehicle with 

3Π
values between 0.6 and 0.65 that is described by the
distributions of Figure 2.  The 

3Π  value corresponds to an

average, full-size vehicle driving at a speed of 15 m/s (35
mph), and a corresponding scale vehicle (Brennan and
Alleyne 1999) speed of 1.95 m/s.  The non-dimensional
gain matrix was found to be:

[ ]5499.07336.73391.61908.8* =K (14)

Using the vertex points of the perturbation hyper-cube,
the closed-loop pole locations were determined in both
dimensional and non-dimensional pole space.  The resulting
pole locations are shown in Figure 8.
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Figure 8. The vertex closed-loop pole locations.

The associated time-domain simulation plots of lateral
position and yaw rate are shown in Figure 9 for a series of
closed loop vehicle lateral step responses.  These responses
correspond to a 1.3 m step-change in lateral position.  Here,
each step response corresponds to a vehicle representing
one of the perturbation combinations providing the pole
locations show in Figures 7 and 8.  The closed loop
dynamics of these vehicles have characteristics

corresponding to a single fixed gain feedback operating at
each vertex of a pi-perturbation hyper-cube.
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Figure 9. Robust lateral position and yaw-responses.

To test the controller on an experimental vehicle, the
Illinois Roadway Simulator (IRS) was utilized.  The IRS is
a scaled vehicle testbed for Vehicle Dynamics and Controls
(Brennan and Alleyne 1999).  It has been shown previously
that the IRS vehicles do contain a high degree of dynamic
similitude with actual full size vehicles as illustrated in
Figure 2.  A picture of an IRS scale vehicle is given in
Figure 10 and a detailed description can be found in
(Brennan and Alleyne 1999).

Figure 10. IRS and scaled vehicle.

For this scaled vehicle, a controller gain was obtained
using the transformation of Equation (7).  The resulting
gain, after substitution of the vehicle parameter values with
length L = 0.359 m and velocity 1.95 m/s, is shown below
for the scale vehicle

[ ]1011.07336.72508.385.22=K (15)
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Figure 11. Closed loop lateral pos. and yaw responses.

Experimental lateral position and yaw-rate responses were
then obtained, as shown in Figure 11.  As can be seen in the
figures, both the lateral position and yaw angle responses



were within the bounds as predicted by the CL pole
locations and as predicted by the simulation step responses.

The controller could be redesigned for different values
of 

3Π  and different distributions.  However, as mentioned

earlier, under large variations in 
3Π  a solution to the

optimization problem may not be guaranteed.  Since 
3Π

varies primarily with cornering stiffness and vehicle speed,
it may be possible to schedule robust controller designs
with respect to vehicle velocity that can be readily
measured.  The robust controller would then be primarily
required to incorporate and accommodate vehicle-to-
vehicle structural variations in cornering stiffness.  Thus,
this controller approach may be quite useful as an initial
controller methodology for stabilizing a new and
unidentified vehicle.

Conclusions

The temporal and spatial re-parameterization of the
linear vehicle Bicycle Model was shown to have several
advantages over the traditional parameterization.  First, the
available model data have the appealing form of a Guassian
distribution about a line in the non-dimensional pi-space.
This data suggests an ‘average’ and a ‘standard deviation’
of vehicle parameters.  In addition, this allows vehicle-to-
vehicle comparisons and numerically defines a parameter
field over which a vehicle controller should be robust.

Second, a duality between velocity and cornering
stiffness variation effects on vehicle dynamics has been
suggested.  The cornering stiffness variation can be cast as
a road friction variation.  Much work has been conducted in
the vehicle controls community on each of these topics
separately, and this work suggests perhaps these efforts can
be unified in some manner.

Third, the non-dimensionalization approach was used
to discover physical relationships inherently present
between vehicle parameters.  As an example, the well-
known oversteer critical velocity was re-cast into the non-
dimensional framework. It was demonstrated that the
physical relationships between non-dimensional parameters
can be captured by simple functional forms such as lines.
In the case of vehicles, the pi-space is described fully by a
multi-dimensional line with experimental data appearing to
have a Guassian distribution about this line.

Finally, the approach was used to obtain a robust
controller where the perturbations were made with respect
to non-dimensional parameters.  Implementation of this
controller was performed both in simulation and on scaled
experiments.  Within the specified variations of the non-
dimensional parameters, closed loop performance
characteristics can be specified.

Future work in this research area will likely continue to
amass statistical information on published vehicle data with
a goal of precisely defining some of the appropriate
distributions.  Additionally, the extension of the non-

dimensional formulation to larger variations in system
parameters will also be investigated.

Acknowledgments

The authors wish to express their sincere gratitude to NSF
for providing the opportunity to conduct this research
through an NSF Graduate Fellowship.  In addition, the
authors wish to thank David Lynch for his assistance in
conducting vehicle tests.

References

1. Alleyne A. 1997. A Comparison of Alternative
Intervention Strategies for Unintended Roadway
Departure (URD) Control. Vehicle System Dynamics
27:157-186.

2. Brennan S. 1999. Modeling and Control Issues
Associated with Scaled Vehicles [Masters]: Univerisity
of Illinois at Urbana-Champaign. 179 p.

3. Brennan S, Alleyne A. 1999. A Scaled Testbed for
Vehicle Control: the IRS. Proc. of the 1999 IEEE
Conference on Control Applications:327-332.

4.  Buckingham E. 1914. On Physically Similar Systems;
Illustrations of the use of dimensional equations.
Physical Review 4:345-376.

5. Gahinet P, Nemirovski A, Laub AJ, Chilali M. 1995.
LMI Control Toolbox - For Use with MATLAB.
Natick, MA: Mathworks.

6. Guldner J, Tan HS, Patwardhan S. 1996. Analysis of
Automatic Steering Control for Highway Systems with
Look-Down Lateral Reference Systems. Vehicle
System Dynamics 26:243-269.

7. Horiuchi S, Yuhara N, Takei A. 1996. Two Degree of
Freedom H-infinity Controller Synthesis for Active
Four Wheel Steering Vehicles. Vehicle System
Dynamics Suppliment 25:275-292.

8. Ono E, Takanami K, Iwama N, Hayashi Y, Hirano Y,
Satoh Y. 1994. Vehicle Integrated Control for Steering
and Traction Systems by Mu-Synthesis. Automatica
30(11):1639-1647.

9. Shiotsuka T, Nagamatsu A, Yoshida K. 1993. Adaptive
Control of 4WS System by Using Neural Network.
Vehicle System Dynamics:411-424.

10. Shladover S. 1995. Review of the State of Development
of Advanced Vehicle Control Systems (AVCS).
Vehicle System Dynamics 24(6-7):551-595.

11. Tagawa Y, Ogata H, Morita K, Nagai M, Mori H. 1996.
Robust Active Steering System Taking Account of
Nonlinear Dynamics. Vehicle System Dynamics
Suppliment 25:668-681.

12. Wong JY. 1993. Theory of Ground Vehicles. New
York: J. Wiley & Sons.

13. Zhou K, Doyle J, Glover K. 1996. Robust and Optimal
Control. Upper Saddle River, NJ: Prentice Hall.


