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Abstract
Robust controller design techniques have been applied

to the field of vehicle control to achieve many different
performance measures: robust yaw rate control [1], robust
lateral positioning using one [2, 3] or more [4-6] driver
inputs, robust observer design, and so on.  A difficulty with
many published approaches is to obtain an adequate
description of the model uncertainty.  Most bounds on plant
frequency responses or parameter perturbations are based
on ad-hoc limits that rely primarily on the designer’s
personal choice.  The resulting controller design is therefore
often vehicle specific, and is suitable only for application to
a single design vehicle.  This work shows that (a) the
description of model uncertainty is not a design variable,
(b) meaningful bounds on model uncertainty can be
obtained from data and should be sought, and (c) these
bounds can be used to generate a single controller suitable
for any vehicle.

1. Previous Work and Problem Statement
Previous work [3] presented a robust lateral-position

controller useful for highway driving of any passenger
vehicle.  The system uncertainty was represented as matrix
element perturbations of the system matrices.  A Linear
Matrix Inequality (LMI) approach was then used to design
a state-feedback lateral position controller robust to
expected parameter variation between vehicles.  The
resulting controller therefore robustly stabilizes all vehicles
dynamically described by the bicycle model and which are
parametrically bounded by fixed bounds.  Unfortunately,
these bounds do not address dynamic uncertainty associated
with unmodeled dynamics, disturbances, or measurement
noise.  An important result of this previous work was the
conclusion that a state-feedback controller is not capable of
robust lateral vehicle positioning over wide variations in
velocity, at least not without some type of gain scheduling.

The controller presented in this work seeks to address
controller robustness in a more intuitive framework than
previous LMI representations. An H-infinity framework is
presented that account for both parametric uncertainty and
unmodeled dynamic uncertainty to achieve a robust
controller design.  A unique aspect of this work is the
representation of vehicle dynamics in a nondimensional
form that allows a generalized solution to the lateral control
problem.  Motivating this nondimensional representation is

the desire to develop controller implementations suitable to
any vehicle, not just a particular research vehicle under
study.

This paper is summarized as follows: Section 2
presents equations for the linear, lateral vehicle dynamics
with a fixed preview distance. These equations are
presented in both dimensional and nondimensional form,
with the nondimensional form governed by a new set of
unitless parameter groupings known as Π  groups.
Distributions of these Π  groups define an average vehicle
dynamic.  Section 3 defines the robustness criteria required
for generalized vehicle control: that a controller must
stabilize the average vehicle dynamics in the presence of
perturbations that generate the range of published vehicle
dynamics.   This range is numerically defined by bounding
the frequency-response difference between the average
vehicle and 50 other published vehicle dynamics.  It was
again found that no single controller is capable of robust
control over large variations in speed or friction.  Section 4
fixes the speed and friction, then develops a robust
controller design to demonstrate a single-velocity robust
controller implementation.  Section 5 then discusses gain-
scheduling approaches and limitations to robust control.
Finally, a conclusion summarizes the primary results.

2. Vehicle Dynamics
Motivating the nondimensional representation is the

desire to develop controller implementations suitable to any
vehicle.  Consequently, vehicle-to-vehicle variation is
addressed in a nondimensional framework that utilizes the
Buckingham Pi theorem [7].  The resulting representation
accommodates two modeling aspects previously ignored by
other researchers: first, parameter-to-parameter
interdependency clearly arises due to common vehicle
design; second, the individual parameter distributions show
a normal distributions in the nondimensional representation,
which specifically define a mean and standard deviation of
vehicle dynamics [3, 8].

Application of the Buckingham Pi theorem [7] to the
classical vehicle dynamics known as the Bicycle Model
yields groupings of parameters that collectively do not have
dimensions.  These dimensionless parameters are known as
Π  groups, and for the planar bicycle model these
parameters are:
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With:
m  = vehicle mass (5.451 kg)
Iz  = vehicle moment of inertia (0.1615 kgm2)
V  = vehicle longitudinal velocity (3.0 m/s)
a = distance from C.G. to front axle (0.1461 m)
b = distance from C.G. to rear axle (0.2191 m)
L = vehicle length, a + b (0.3652 m)
Cαf = cornering stiffness of front 2 tires (65 N/rad)
Cαr = cornering stiffness of rear 2 tires (110 N/rad)

The values in parenthesis are quite different from a typical
full-sized vehicle because they correspond to the measured
values for a 1/7-scale experimental scale used on the
Illinois Roadway Simulator, a treadmill/vehicle counterpart
to a wind tunnel/airplane testing system.  The similarity in
dynamics between this vehicle and full-sized vehicles was
proven via the Buckingham-Pi Theorem, and was the
original motivation for analyzing vehicle dynamics in a
nondimensional framework.  Derivation and explanations
of the vehicle Π  parameters are given in more detail in [8].

The Π  values of Equation (1) are readily available for
many vehicles by utilizing parameters published in the
literature for the standard bicycle model; thus far 50 sets of
parameters have been recorded in data set hereafter referred
to a V.  Each set member will be referred to as Vi.   A
relative distribution of vehicle Π  parameters for V is
shown in Fig. 1, with each vehicle traveling at 28 m/s (63
mph).  Clearly, a vehicle model described by
nondimensional parameters has reduced parametric
dimension, from 8 dimensional parameters to 5
nondimensional parameters. Further, 

2Π  is not independent

and can be obtained by definition:

2 11Π = − Π (2)
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Fig. 1: Distribution of Pi parameters

For this reason, 
2Π  is not plotted. From these distributions,

the average Π  parameters are obtained:

1 3 4 50.4373, 0.1534, 0.1725, 0.2341Π = Π = Π = Π = (3)

Note that 
3Π  and 

4Π  are dependent on velocity and

cornering stiffness, so these average values change with
chosen operating speed and road surface, with ratios given
by Equation (1).

The space description of vehicle dynamics is based on
the bicycle model [9] with the state vector [lateral position,
lateral velocity, yaw angle, yaw rate]:

 
Tdy d

y
dt dt

ψ
ψ ≡   

x (4)

and front steering input, T

fδ ≡  u , as the sole control

channel.  Note that all states are measured with respect to
the vehicle’s center-of-gravity.  The state space
representation (in path error coordinates) is:

,
d
dt

= ⋅ + ⋅ = ⋅
x

A x B u y C x (5)
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The non-dimensionalization transforms are obtained by a
state substitution that normalizes each state with respect to
distance, mass, and time.  The same approach was used to
generate the parameters of Equation (1), and not
surprisingly the nondimensional dynamics can be rewritten
entirely in terms of the same  Π  parameters.
Mathematically, this is shown via a variable substitution
defined by:

*= ⋅x M x (7)
The above state normalizations are combined with a time
normalization, *t t= ⋅S .  For the vehicle system, L

U
=S , and

M is defined as:

1
U

diag L U
L

 =   
M (8)

Giving:
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2 2
1 3 4 2 1 3 2 4 3 1 3 2 4, ,p p p= Π + Π = Π Π − Π Π = Π Π + Π Π

A similar nondimensionalization can be obtained in the
Laplace domain, generating transfer function dynamics
solely dependent on the vehicle Π  parameters.
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In the dimensional form of vehicle dynamics, many
authors have noted that additional feedback modifications,
such as error preview [10-12] or full-state feedback [3],
make the control problem more amenable.  In this work, an
error preview scheme is utilized, represented by a
modification of the C matrix as presented in [11].
Specifically:

[ ]1 0 0U Tp= ⋅C . (10)

with Tp being the preview time.  In the linear description,
the effect of preview is equivalent to adding yaw angle
feedback, and therefore preview is simply a special case of
state-feedback.

In the nondimensional form, the C* matrix becomes:

[ ]* 1 0 / 0U Tp L= ⋅C . (11)

with the term:

6 /U Tp LΠ = ⋅ . (12)

as a new Π  variable.  To pick the value of Tp, a wide range
of preview values were examined.   The performance effect
of increasing preview was primarily to increase the phase
margin deficiency caused by the two free integrators.  The
robustness effect of increasing preview was to somewhat
reduce high-frequency model uncertainty.  This is not very
helpful since the difficulty with vehicle robustness is a
problem governed generally by low-frequency uncertainty.
Rather than include preview as an additional unnecessary
design varaible, a fixed preview time of 2 seconds was
selected and is used hereafter.

To complete the vehicle model description, it is useful
to add additional scaling transforms to limit the largest
control effort, tracking error, and reference input to all have
unity 1-norms.  To do this, one uses a variable
transformation suggested by [13].  For the vehicle system,
reasonable signal norms are:

[ ] [ ]( )
[ ] [ ]( )
[ ]

0.1745 10

0.15 0.5  

0.15

max

max

max

u rad degrees

e m scalelanes

r m

= =

= =

=

(13)

Which become in the nondimensional space:
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With the signals normalized as above, the goal is to
maintain an output position within [-1,1], using control
inputs bounded by [-1,1], given a reference input that
remains within [-1,1].

3. Perturbation Description
As mentioned earlier, the robust controller problem is

not solvable if wide variations in longitudinal velocity or
road friction are allowed, both of which are completely

captured by variations the 
3Π  value (assuming 

4Π  is a fixed

multiple of 
3Π ).   Thus, a fixed 

3Π  must be chosen for

controller design and for uncertainty representation.  For
this work 

3Π  was fixed at 0.5, a value representing a full-

sized vehicle on average road surface at 50 mph.  Section 5
discusses extending this approach to velocity scheduling.

The goal of this section is to numerically bound the
model uncertainty caused by variations in Π  parameters.
This numerical bound is used afterward for a robust
controller design.  Whether a controller design is capable of
achieving robust performance depends primarily on the
measure of the model perturbation. A very poor method of
representing plant uncertainty would be to examine
frequency-domain perturbations caused by parameter-by-
parameter variations [3] because vehicle parameters are
highly interdependent.  A principal goal of this work is to
use a data-driven approach with an appropriate but simple
perturbation representation.

A key insight of this work is to utilize the observed
variations in Π  parameters in database V to describe the
expected variation of any vehicle controller.  The advantage
of this approach is that each set of parameters in the
database are correctly cross-correlated, thus avoiding the
conservatism of one-at-a-time variable manipulation.
Additionally, a controller design that is robust to the wide
variations in vehicles in V should be portable vehicle-to-
vehicle.

From the data in database V, we compare the relative
error between the average vehicle and each individual
database member.  The frequency-dependent error, e(jw),
between the average plant and the ith plant is given by:

( ) ( )
( )

1 5 1 5

1 5

, ,..., , ,...,
( )

, ,...,

i iG jw G jw
e jw

G jw

Π Π − Π Π
=

Π Π
 (15)

Where G(jw) represents the frequency response of the
vehicle bicycle model dependent on the Π  parameters. A
simple multiplicative uncertainty description is used to
describe this system variation, represented in block-diagram
form in Fig. 2.

+

+
G(s)

∆I

u

GP(s)
WI(s)

Fig. 2: Multiplicative uncertainty model

The plot of each plant deviation, calculated from (15)
for each Vi in the database V is shown in Fig. 3.  It is clear
that the maximum multiplicative uncertainty is
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approximately constant over nearly the entire frequency
range, a result that justifies a multiplicative representation.
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Fig. 3: Multiplicative uncertainty, by frequency

The weight representing system robustness, wI, is specified
by fitting the upper bound of all observed perturbations.  In
this case:

( ) 0.2 * 0.5
*

0.1 * 1I

s
w s

s
⋅ +

=
⋅ +

(16)

The high frequency gain was made slightly higher than
needed in order to account for possible unmodeled
dynamics that are unaccounted for by the bicycle model,
such as steering actuator dynamics, vehicle roll and pitch,
aerodynamics, etc.

Examining Fig. 3 above, the model uncertainty remains
below 1 at low frequencies, up to some crossover point at
w* ~ 0.7 rad/sec*.  Therefore, the system should be
robustly controllable up to this frequency.  In the case
where the frequency-dependent bound on the uncertainty,

Iw , is larger than unity, consider the possible plants that

must be controlled.  From Fig. 2, we see that in the case that

Iw  has greater than unit magnitude, a possibility exists that

the perturbed plant has zero gain and is for practical
purposes uncontrollable.  In these situations, no
performance can be realized.  Such situations arise at very
high velocities or low friction values, or at very low values
of 

3Π .  Limiting cases of this phenomenon are discussed in

Section 5.

4. Controller Synthesis
With the Π  values fixed as above, the nondimensional

transfer function for the nominal system is given by:

( )
( )

2

2 2

* * 1 19.8 * 26.08 * 1.201
* * * 2.240 * 1.6633f

y s s s
s s s sδ

⋅ + ⋅ +
=

+ ⋅ +
(17)

Note that s ⇒ s* because s has dimensions of 1/ t and must
also be normalized.  With signal normalization as described
in Equation (10), the transfer function becomes:

( )
( )

( )
( )

2

2 2

* * * * * 1 8.415 * 11.08 * 0.5102
* * * * * 2.240 * 1.6633

n max

f f max

y s y s u s s
s s e s s sδ δ

⋅ + ⋅ +
= ⋅ =

+ ⋅ +
(18)

Since the H-infinity system representation does not allow
unstable open-loop systems, the double integrator is
approximated with poles very close to the jw-axis:

( )
( ) ( )

2

2 2

* * 1 8.415 * 11.08 * 0.5102
* * 2.240 * 1.6633*

n

f

y s s s
s s ss Kδ

⋅ + ⋅ +
≈

+ ⋅ ++
(19)

with K = 0.0001.  The resulting high DC gain approximates
the integrator effect.

The H-infinity controller must balance the tradeoff
between three frequency domain criteria: performance
weighting, represented by 

Pw S⋅ ; control effort, represented

by 
uw KS⋅ ; and model uncertainty, represented by 

Iw T⋅ .

These three design goals are represented approximately by
minimization of the stacked H-infinity norm of [13]:

P

u

I

w S

N w KS

w T
∞

⋅

= ⋅
⋅

. (20)

While wI was defined in the previous section, the remaining
weights, wP  and wU, represent design variables.  For this
problem, these weights were chosen to be :

( )
2

2

(1/ * )
*

( * )
P BP

P

BP P

M s w
w s

s w A

⋅ +
=

+ ⋅
(21)

( )
2

2

(1/ * )
*

( * )
U BU

U

BU U

M s w
w s

s w A

⋅ +
=

+ ⋅
(22)

Where Mi is the high frequency gain, Ai is the steady-state
gain, and wBi is the approximate crossover bandwidth.  The
performance weighting function was chosen with MP = 1.5,
with AP = 0.0001, and wBP = 0.27 rad/sec*. The control
weighting was chosen with MU = 1/100, AU = 1, and wBU =
100 rad/sec*.

The H-infinity controlle r is obtained using standard
robust synthesis routines, which solve the control problem
by iterating through possible controller representations
seeking to minimize the norm of Equation (20).  A solution
was found with a norm of 0.8738, with a controller given
by:

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

2

2

2

* 2.2398 * 0.845* 272.66 * 10( *)

( *) * 180.67 s*+10.033 * 9.4986 * 33.823

* .14646 * 1.0009E-4 * 0.9991 4

* 1.2783 * 4.7767 2 * 5.4 3 * 7.29 6

s ss sU s

E s s s s

s s s E

s s E s E s E

+ ++ +
= ⋅

+ + +

+ + + −

+ + − + − + −

(23)
where E(s*) is the error between the reference signal and
previewed feedback. Examination reveals that this
controller is acting to perform to pseudo-inversion of the
plant and control weightings, a fact that will sharply limit
the performance due to the uncertainty of the system.  The
H-infinity controller synthesis with the previous weights
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achieved the following loop shapes, which show that all
specifications were met:
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Fig. 4: Controller loop shapes

Note that the above controller is designed in
nondimensional time and space.  For implementation in
‘true’ space, one must multiply by the correct time and
spatial factors.  In the vehicle case, the spatial correction is
obtained from (14) and is a constant:

*
*

max

max

u
Correction

e L
=

⋅
.

The temporal correction is obtained by dividing all pole
locations by the time factor S used in Equation (7).

Experimental testing of this H-infinity controller was
conducted in both simulation and experimental platforms.
The simulation was necessary to represent the full possible
range of vehicle plants, while the experimental vehicle is
used to introduce real-world plant variations including
nonlinearities, unmodeled dynamics, and disturbances that
are otherwise ignored in a simulation study.  For the
experimental vehicle to operate at a fixed 

3Π  value of 0.5,

it was driven at a speed of 3.0 m/s.  This speed
approximates an ‘average’ full-sized vehicle at a speed of
50 mph.

The vehicle responses from the experimental vehicle
are shown in Fig. 7 above as the vehicle attempts to track a
square wave.  The H-infinity controller is very
underdamped and low-gain, a result that should be expected
in consideration of essentially single-state feedback
combined with severe robustness constraints.   However,
there was no system identification outside of measurement
of basic parameters: vehicle mass, vehicle length, vehicle
velocity, and tire cornering stiffness.  The controller was
designed to be robust enough to operate nearly any vehicle,
so the effectiveness of the controller on this arbitrary
vehicle without identification is not surprising.  Such a
result greatly validates a methodology of utilizing
nondimensional robustness measures to achieve very
general controllers.
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Fig. 5: Experimental closed loop step responses

In terms of the tuning variables for the controller, the
key factor limiting the performance is the choice of
performance bandwidth, wBP, in Equation (21).  Improved
bandwidth can be obtained, but significant improvement is
obtained only by violating the norm criteria of Equation
(20).  For instance, increasing wBP to 0.5 gives a gamma
value of 1.1, a value of wBP of 1 gives a gamma of 1.5.
Further, plots of the controller loop shapes for this wBP
show possible violation of robustness constraints.  This
classic tradeoff between robustness and performance is well
known, and the exact choice of values depends on the intent
of the control designer.

5. Extensions to Velocity Scheduling
The previous result was presented for a fixed 

3Π  value,

which necessarily corresponds to a fixed velocity and
cornering stiffness (representative of fixed road friction). In
the case where some type of velocity gain scheduling is
desired, note that velocity enters the nondimensional form
of the bicycle model through the parameters of 

3Π  and 
4Π .

For a particular vehicle, Vi, we may fix the ratio of these
two parameters, so that 

4Π  is a constant function of

3Π without loss of generality.  Because friction and velocity

enter the dynamic equations through the same parameter,
we conclude that velocity gain scheduling must be used
cautiously, because appropriate scheduling of the 

3Π

requires very good knowledge of the road friction.  The
duality of friction scheduling and velocity scheduling is
discussed in more detail in [3].

At each velocity, the controller must still be robust to
model variation, and therefore bounds on the model
uncertainty must be recalculated at each operating
condition.  With a fixed preview of 2 seconds, the upper
bounds on uncertainty were calculated for many 

3Π  values,

and are shown in the figure below:

2538



10
- 2

10
- 1

10
0

10
1

10
- 1

10
0

Freq .  ( r ad )

M
a

g
 (

d
B

)
Pi3 = 0.1

Pi3 = 0.2

Pi3 = 0.3

Pi3 = 0.5

Pi3 = 0.7

Pi3 = 1

Pi3 = 1.5

Increasing Velocity 

 Fig. 6: Effect of velocity on uncertainty

Because the uncertainty cannot be larger than unity, there is
clearly some limiting 

3Π  value below which robust vehicle

lateral control is not achievable due to increasing system
uncertainty.  The limiting case corresponds to:

3, 0.27CRITICALΠ ≈ . (24)

From this information and Equation (1), one may back-
calculate the speed/cornering-stiffness relationship at which
generalized robust control is no longer feasible, which we
call the critical speed for robustness:

, 0.27C R
L C f

U
m

α⋅
≈

⋅
. (25)

Note that the vehicle mass, m, and length, L, are easy to
measure and remain approximately fixed for a given
vehicle.  For the vehicles in the database, V, the value of
UC,R ranges between extremes of 15 and 45 m/s (30 to 100
mph) because of differences in reported road friction.  The
majority of vehicles in V have critical robustness speeds of
25 m/s (about 55 mph).

The critical robustness speed has interesting
implications for vehicle control, as other researchers have
pointed out that significant modifications to control
approaches are needed to achieve high-speed lateral control
[10].  In the MIMO control case, the limiting case of
Equation (24) could be calculated using the maximum
singular values of the uncertainty model.  In either case, we
must conclude that severe limits exist to robust, high-speed
vehicle control algorithms.

6. Conclusions
The controller presented in this work addressed

controller robustness in a generalized nondimensional
framework that brings insight to the feasibility of a robust
controller design.  By parameterizing plant uncertainty
nondimensionally, normal distributions were obtained of
the plant parameters that defined an average plant.
Measured differences between a vehicle database and an
average plant motivated a multiplicative uncertainty
description.

An H-infinity methodology is then presented that
utilizes a stacked sensitivity approach.  While this approach
achieves robust control, it is only by sacrificing
performance.  Discussion is given to extensions of the work
to velocity scheduling, and a limiting speed/friction
relationship is encountered that defines operating regions
where robust control is and is not achievable.
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