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ABSTRACT
A significant amount of research has focused on model-

based identification of vehicle behavior using Kalman-filter
or similar approaches with sometimes complex, high-order
or nonlinear vehicle models to achieve estimation accuracy.
This work examines the model complexity versus accuracy
tradeoff with a bias toward greatly reducing the complexity of
the identification model even if this allows some identification
inaccuracy. By using the simplest model possible, but no
simpler, the goal is to achieve fast convergence. Model
simplification is obtained using a novel dimensionless method
that exposes explicit and implicit coupling between Bode
parameter sensitivities, a coupling that constrains the possible
parameter variations. To demonstrate this method, vehicle yaw
rate data is used to attempt to identify the cornering stiffness
parameter governing the tire-road interaction. Simulation
results and experimental implementation on a research vehicle
under changing road conditions are presented.

INTRODUCTION
On-board vehicle electronic systems are increasingly

using dynamic models of vehicle behavior rather than heuristic
or look-up-table methods. The growing list of model-based
systems is significant even considering just the area of chassis
control: anti-lock brake systems (ABS), traction control
systems (TCS), directional stability enhancements such as

∗Address all correspondence to this author.

direct yaw control systems (DYC) and electronic stability
programs (ESP) [1, 2], integrated roll-stability programs, and
fault-detection subsystems. These model-based controllers
require knowledge or approximation of dynamic models, which
in turn depend on a number of physical parameters whose values
must be measured off-line or determined during operation.
Because off-line identification may be difficult or impractical to
predict for every driving situation, on-line parameter estimation
is attractive. Consequently, a growing amount of research has
focused on on-line, and often real-time, estimation of chassis
parameters.

The task of identification is particularly difficult in chassis
dynamics because of the nature of the vehicle system. Even
with a linear model, it can be difficult or dangerous to provide
sufficiently exciting inputs. Most drivers would not intentionally
swerve - or tolerate excitation inputs - on an icy or friction-
compromised road solely to establish the exact value of a friction
parameter. Therefore, the identification algorithm must wait for
persistence of excitation (PE)conditions to be satisfied. The topic
of PE is beyond the scope of this discussion, and it will be
assumed in later testing that such conditions exist. However,
it should be clear that, given the potentially short duration of
driving situations that satisfy PE, the convergence time of any
identification algorithm must be minimized.

The ability to achieve fast estimation is related to the
assumed complexity of the model. In some research there is
a subtle assumption that if the identification model is more
complete and complex, then the estimated values will be

1 Copyright c© 2003 by ASME



closer to the true values [3], while others have questioned this
assumption [4, 5]. Considering the number of publications that
seek to simultaneously estimate a large number of parameters
using linear or nonlinear Kalman filter approaches [3, 6, 7], the
academic opinion may appear to be biased toward complexity.
Some identification algorithms applied to linearized models
have reported computational demands on the order of 104 to 106

computations per sample period [6]. Nonlinear models requiring
gradient methods suggest even slower convergence and higher
computational demand [3].

The problems of computation, system excitation, and
convergence time can be alleviated if only a very small number
of parameters are estimated. The identification approach
presented in this work is a much-simplified approach based on
using sensitivity invariants to extract the maximum amount of
available system information prior to identification. The result
is an identification algorithm whose computational demands are
simplified to the order of 101 to 102 floating-point calculations
per time step.

The remaining sections are summarized as follows: Section
2 presents the governing equations of motion for the vehicle
dynamics considered in this study. Section 3 introduces concepts
of sensitivity invariance that show explicit and implicit coupling
of Bode parameter sensitivities within the system model. Section
4 applies a temporal and spatial parametrization to the vehicle
equations that eliminates sensitivity invariants and produces
a dimensionless model representation. Section 5 develops
an identification model to specifically estimate tire properties
from the reduced parameter model based on measurement
of the vehicle’s yaw rate measurement. Section 6 presents
implementation results from simulations and from testing on an
experimental vehicle. Results of this testing are then discussed,
and conclusions then summarize the main points of this study.

VEHICLE DYNAMICS
The vehicle dynamic model used in this study is known as

the bicycle model because the dynamics conceptually model a
bicycle whose motion is constrained to planar maneuvers [8, 9].
The dynamic equations are obtained by fixing a coordinate
system to the center of gravity (CG) of the vehicle and solving
for the equations of motion. Roll, pitch, bounce, aerodynamics,
and deceleration dynamics are neglected to simplify the vehicle
motion to two degrees of freedom: the lateral position and
yaw angle. The model is further simplified by assuming that
each tire on an axle produces the same lateral forces. As
a coordinate system convention, the Society of Automotive
Engineers standard is used with the z-axis pointing into the road
surface as shown in Fig. 1.

Traditionally, the bicycle model is formulated in transfer-
function or state-space form using the front wheels as steering
inputs. Equations of motion are derived directly from Newtonian

Figure 1. VEHICLE COORDINATES.

dynamics, and all states are measured from the center-of-
gravity. The resulting transfer function from the bicycle model
correlating the vehicle yaw rate,̇ψ, to the front steering angle,
δ f , is given by:

ψ̇(s)
δ f (s)

= (1)

Cα f ·a
Iz
·s+ Cα f ·Cαr ·L

m·Iz·U

s2 +
(

Cα f +Cαr
m·U + Cα f ·a2+Cαr ·b2

Iz·U

)
·s+ Cα f ·Cαr ·L2

m·Iz·U2 − a·Cα f−b·Cαr
Iz

With the parameters given by:

m = vehicle mass (5.451kg)
Iz = vehicle moment o f inertia (0.1615kg·m2)
U = vehicle longitudinal velocity (4.0m/s)
a = distance f romC.G. to f ront axle (0.1461m)
b = distance f romC.G. to rear axle (0.2191m)
L = vehicle length, a+b (0.3652m)
Cα f = cornering sti f f ness, f ront 2tires (65N/rad)
Cαr = cornering sti f f ness, rear2tires (110N/rad)

(2)

The values in parenthesis correspond to the measured values
for the experimental scale vehicle used later to validate the
identification approach.

With regard to the underlying model, the only knowledge
of the tire-road interface is represented by the front and rear
cornering stiffness parameters,Cα f and Cαr . The bicycle
model does not account for nonlinear tire dynamics. The
cornering stiffness represents the slope at the origin of the
curve representing the lateral tire forces as a function of the
sliding angle of the tire with respect to the road. Although
the bicycle model is relatively simple, many investigations
have verified that it remains a good approximation for full-size
vehicle dynamics as long as accelerations are limited to 0.3
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g’s [10]. In the presence of changing road conditions at a known
velocity, the principle unknown variables in the bicycle model
are the cornering stiffness values. Estimation of these variables
is therefore a primary goal of this study.

The yaw-rate transfer function is presented because control
of yaw-rate offers a very direct way to assist the human driver.
On-board vehicle controllers often act under very restricted
preview - if any - of the road error. Under limited preview
conditions, human drivers appear to most correlate their steering
inputs to the yaw rate of the vehicle [11]. Therefore, a primary
task for many driver-assist programs is to maintain proper
correlation between human steering input and vehicle yaw-
rate despite disturbances or changing road conditions [1, 12].
While other states or states combinations could be used in this
identification study (with possibly better results), a yaw-rate
sensor is already packaged with many vehicle chassis control
systems.

SENSITIVITY INVARIANTS
The concepts of sensitivity invariance used in this work are

based on the results of two theorems. The first was developed
by Euler in the late 1700’s and is known as Euler’s Homogenous
Function Theorem (EHFT) [13]. It states that, given an arbitrary
function of the form:

y = f (x1,x2, . . . ,xn) (3)

that is made homogenous to the constants,A,B,C, when the
function is written as:

K ·y = f (K1 ·x1,K2 ·x2, . . . ,Kn ·xn) (4)

where the constantsK andKi are constrained by:

K = Aa ·Bb ·Cc . . . (5)

Ki = Aai ·Bbi ·Cci . . .

Then the functiony is also a solution to the following set of
equations:

a·y = a1 ·x1 ·
∂y
∂x1

+a2 ·x2 ·
∂y
∂x2

+ . . .+an ·xn ·
∂y
∂xn

(6)

b·y = b1 ·x1 ·
∂y
∂x1

+b2 ·x2 ·
∂y
∂x2

+ . . .+bn ·xn ·
∂y
∂xn

c·y = c1 ·x1 ·
∂y
∂x1

+c2 ·x2 ·
∂y
∂x2

+ . . .+cn ·xn ·
∂y
∂xn

...

While the above expression generally concludes the
mathematical presentation of the EHFT, it is better understood
in a modern systems context by rewriting it as:


a
b
c
...

 =


a1 a2 . . . an

b1 b2 . . . bn

c1 c2 . . . cn
...

...
...

...

 ·


Sy
x1

Sy
x2
...

Sy
xn

 (7)

where eachSy
xi represents the sensitivity of the output with

respect to the parameterxi , i.e. the sensitivity function of Bode
[14]. Each of the above rows represents an equation for a
sensitivity invariant, i.e. a coupling between parameter gradients
with regard to the system output.

The second theorem used in this work is known as the
Pi Theorem [15, 16]. It is based on the observation that
all true mathematical descriptions of physical systems are
mathematically homogenous when changes in the units of
length, mass, time, charge, temperature, or any consistently
applied unit system are applied. The Pi Theorem (not proven
here) states that:only systems descriptions whose parameters
and outputs are all dimensionless will minimize the parameter
sensitivities predicted by the EHFT. The pi-theorem further
suggests a very simple methodology of parameterizing system
models to form dimensionless system descriptions that eliminate
any sensitivity invariance predicted by the EHFT. Because the
application of the Pi Theorem is relatively novel in a system
identification context, it is presented in detail below for the
system identification task.

MODEL REPARAMETRIZATION
The author’s original use of the dimensionless approach was

motivated by the use of a scale-sized vehicle testbed and the
corresponding need to address size scaling in order to represent
the most average vehicle system possible. The method of the
Pi Theorem is summarized as follows: First, one chooses all
the parameters the may enter a mathematical representation (i.e.
system model). In the case of the vehicle dynamics the 7
parameters of the bicycle model of Eqn. (2) are the most obvious
choice. From these parameters, the dimensional span of the
parameters are then inferred by the units on the parameters (i.e.
a span of Length-Mass-Time for Newtonian systems, or Length-
Time for Kinematics, or Voltage-Current-Time for Circuits,
etc). Next, a small subset of the parameter set is chosen as a
new unit basis, and the remaining parameters are ‘measured’
with respect to these new ‘units’ to form a new dimensionless
parameterization. Under changes in the new unit bases, the
original model can always be rewritten in the dimensionless form
and will contain only pi parameters.
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An example illustration of the pi-theorem applied to the
vehicle system is now given. For vehicle dynamics, the unit
system spans the Mass-Length-Time dimensions. A natural
parameter-unit to measure mass is the vehicle’s mass,m, for
length would be the vehicle’s length,L, and for time would
be the time to traverse the vehicle length at a constant forward
velocity, U/L. Note that this time unit clocks at a constant
ratio to the wheel pulses from the anti-lock brake system.
The five remaining parameters in the bicycle model, namely
a,b,Cα f ,Cαr andIz, are then ‘measured’ in this new parameter-
unit system. This method re-measuring, while not intuitive in
an engineering sense, is very simple. For instance, an object
p weighing 1 kg remeasured in the vehicle system with a
vehicle weighingm= 1000 kg would then weigh,p/m= 0.001.
Note that the remeasured object now appears unitless in our
old system (insights from this observation by Buckingham and
others lead to the Pi Theorem). Symbolically, we can remeasure
any parameter by solving a dimensional equation that seeks to
produce dimensionless numbers. For instance, the cornering
stiffness has units of[M · Le · T−2] where M,Le,T represent
mass, length, and time scaling units. Brackets are used here as
an operator that extracts the dimension of the variables within
the brackets (in the remainder of this paper, it should be clear
by the context when brackets are meant to refer to dimensions
of variables or to matrix notation). To find how cornering
stiffness should be re-measured in the new vehicle unit system,
the dimensional equation becomes:

[
Cα f ·mi ·U j ·Lk

]
= (8)[(

M ·Le·T−2) · (M)i ·
(
Le·T−1) j · (Le)k

]
= [M ·Le·T]0

The variablesi, j,k denote integers. Equating powers to solve for
i, j,k, three equations are obtained:

1+ i = 0 (9)

−2− j = 0

1+ j +k = 0

Solving the equations givesi = −1, j = −2, andk = 1. The
corresponding equation for the new parameter in the vehicle unit
system is

Cα f ·L
m·U2 . In the early 1900’s, Buckingham denoted such

new parameters with the symbolπi , where the subscripti was
usually a number [13]. The name “pi parameter” eventually
became common to denote these types of parameters .

Repeating the previous calculations for the remaining four
parameters produces a total of five pi parameters:

π1 =
a
L

,π2 =
b
L

,π3 =
Cα f ·L
m·U2 ,π4 =

Cαr ·L
m·U2 ,π5 =

Iz
m·L2 . (10)

Figure 2. RELATIVE DISTRIBUTION OF π5.

Comparing the standard form to this new dimensionless form, the
standard model consists of 8 parameters while the dimensionless
model contains only 5 parameters. This fact already improves
excitation conditions and convergence rates considerably with
regard to identification. In the state-space form of the model,
a pi-parameterization is equivalent to a careful, parameter-based
choice in similarity transform and temporal scaling. A more
compelete discussion of this equivalence can be found in [17].

There are several advantages to the use of dimensionless
pi-parameters over traditional parameterizations. Generally,
and with the vehicle dynamics considered here, pi-parameters
are well-scaled, always positive, and should be well-scaled, i.e.
have magnitudes approximately equal to 1. While distributions
of standard vehicle parameters (mass, inertia, etc.) are not
shown due to space constraints, such attributes are not exhibited
by dimensioned vehicle parameters. Indeed, dimensioned
parameters may vary vehicle-to-vehicle by nearly an order of
magnitude. Pi parameters are very tightly grouped in pi space,
and so their frequency distributions are localized and generally
well-defined (see Fig. 2). Finally, the pi-parameters, because
they are dimensionless, are independent of the unit system used
(British Standard, SI, MKS, etc.) and thus are universal.

The true distribution and cause of the Gaussian-like fit
of the pi-parameters is unknown, but the assumption of a
normal distribution allows a numerical definition of an average
parameter set. Using pi-values from over 700 vehicles, the
average pi-values are calculated and shown in Eqn. (11). If these
are compared to previous reported values calculated when the
database was only 30 vehicles [18], the averages are seen to be
nearly identical:

π1 = 0.4431 (11)

π2 = 1−π1

π3 = 145.68/U2

π4 = 1.0977·π3
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π5 = 0.2510

While the pi-theorem method of parameterizing the system
model explicitly eliminates sensitivity invariance due to
dimensional scaling, other invariances may be present. Such
invariances may arise because similar systems (like passenger
vehicles) are often designed or evolved under very similar
constraints. Intuitively, their designs may tend to converge to an
optimal manifold in the pi space. Such sensitivity relationships
are hereafter referred to asimplicit sensitivity invariances
to distinguish them from the explicit sensitivity invariances
predicted by the EHFT.

Implicit sensitivity relationships can be found by numerical
pattern recognition, which in practice involves simply plotting
parameters against each other looking for relationships. In
many cases, very well-defined curves can be observed in the
form of simple lines or polynomials [17]. What appear to be
simple pi-relationships in the dimensionless parameter domain
often map to nonlinear and/or power-law relationships in the
standard domain, and such relationships are easily overlooked
when there is a nontrivial amount of scatter or measurement
error present. In the vehicle dynamics case, the relationship
between the third and fourth pi parameter is scattered normally
about a line,π4

∼= 1.0977· π3 [17]. Also, the first and second
pi parameters are related exactly by a line,π2 = 1− π1. The
first implicit invariance relationship is a mathematical statement
of the intuitive observation that the tire/road interaction the back
tires will generally be a constant multiple of the interaction of
the front tires. The second relationship represents the geometric
constraint (by definition) that the vehicle length is the sum of the
a and b parameters. While implicit sensitivity invariances require
analysis by the engineer developing the model, their discovery
can greatly simplify model representation. In the case of chassis
dynamics, they will be used to greatly simplify the identification
model.

DEVELOPMENT OF THE IDENTIFICATION MODEL
The transfer function representation of Eqn. (1) is

easily parameterized to a dimensionless form either by direct
substitution of the pi values or by simple remeasure of the time
and spatial units in the new unit system. One must exercise
caution with the time scaling, as the Laplace variable carries
units of inverse-time and must be scaled as well. The scaled
Laplace variable will be denoted hereafter by the symbol,s. The
yaw-rate transfer function, with bars representing time-units that
are scaled to dimensionless time, is as follows:

ψ̇(s)
δ f (s)

= (12)

π1·π3
π5

·s+ π3·π4
π5

s2 +
(

π3 +π4 + π2
1·π3+π2

2·π4
π5

)
·s+ π3·π4−π1·π3+π2·π4

π5

Examining this dimensionless model, we note that nearly all
the pi-parameters are constant and approximately given by the
average measurements of Eqn. (11), with the sole exception
being theπ3 parameter. This parameter remains the only varying,
unknown parameter with respect to either vehicle velocity or
road-tire interface (tire force). Explicitly extracting theπ3

variable from the transfer function, we obtain:

ψ̇(s)
δ f (s)

= (13)

p1
p5
·π3 ·s+ p4

p5
·π2

3

s2 +
(

1+ p4 + p2
1+(1−p1)2·p4

p5

)
·π3 ·s+ π2

3·p4−p1·π3+(1−p1)·p4·π3
p5

with p1 andp5 equal to 0.4431, 0.2510, i.e. the average values of
π1 andπ5. The value ofp4 is set to 1.0977, i.e. the slope of the
implicit π3-π4 relationship (not plotted in this work, see [18]). It
should be clear that plots of transfer function coefficients will be
nonlinear with respect to changes in theπ3 parameter.

If a discrete model of the system of Eqn. 13 is formed, and
the coefficients are plotted as a function ofπ3, the coefficients
are found to be almost perfectly linear in the parameters under
π3 variations. The discrete z-transform model was obtained from
a zero-order hold with a sample time (0.001 seconds).

ψ̇(z)
δ f (z)

=
b1 ·z−1 +b2 ·z−2

1+a1 ·z−1 +a2 ·z−2 (14)

The linear dependence of the discrete coefficientsb1,b2,a1

and a2 on the pi-parameter was unexpected, so the algebraic
conversion from the Laplace to the z-domain via a zero-order-
hold [19,20] was solved. Under the unrestrictive assumption that
T � πi , one obtains the following algebraic relationships for the
z-transfer function coefficients of Eqn. (14):

b1
∼= m1 ·π3 (15)

b2
∼= −b1

a1
∼= (−2+m2 ·T) ·π3

a2
∼= (1−m2 ·T) ·π3

m1 =
p1

p5
·T

m2 = 1+ p4 +
p2

1 +(1− p1)2 · p4

p5

The pi-parameterized system is well scaled numerically
compared to the standard representation, whose coefficients
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may vary over many orders of magnitude. This fact is utilized
along with the assumption thatT � πi to simplify the discrete
representation to the point of a linear coefficient dependence.
Thus, the approximations of Eqn. (15) appear to be suitable
over a wider range of road variations for vehicle dynamics
using the dimensionless parameterization than for standard
representations.

Substitution of the above relationships into the z-transfer
function representation yields the following relationship:

ψ̇(z)
δ f (z)

=
(m1 ·π3) ·z−1− (m1 ·π3) ·z−2

1+(−2+m2 ·π3) ·z−1 +(1−m2 · pi3) ·z−2 (16)

Note that the model is now parameterized explicitly in one
parameter, and the coefficients are all linear in this parameter.
To identify this function using standard identification algorithms,
the model is rewritten in difference-equation form:

ψ̇−2· ψ̇(z−1)+ ψ̇(z−2) = (17)

−m2 ·π3 · ψ̇(z−1)+m2 ·π3 · ψ̇(z−2)+
+m1 ·π3 ·δ f (z−1)−m1 ·π3 ·δ f (z−2)

Using the delay-operator notation, define the following:

y(q) = ψ̇−2· ψ̇(z−1)+ ψ̇(z−2) (18)

θT = π3

ϕT (q−1) = −m2 ·π3 · ψ̇(z−1)+m2 ·π3 · ψ̇(z−2)+
+m1 ·π3 ·δ f (z−1)−m1 ·π3 ·δ f (z−2)

These definitions then produce a one-parameter regression
model:

y(q) = ϕT (q−1) ·θ (19)

This linear, one-parameter form of the yaw-rate equation of
very well suited for recursive least-squares estimation (RLSE).
A standard RLSE algorithm with a forgetting factor is given by
Astrom and Wittenmark [21] as:

K(q) = P(q−1)ϕ(q−1) · (20)(
λ+ϕT(q−1)P(q−1)ϕ(q−1)

)−1

θ̂(q) = θ̂(q−1)+K (q) ·
(
y(q)−ϕT (q−1) · θ̂(q−1)

)
P(q) =

(
I −K (q)ϕT (q−1)

)
P(q−1)/λ

with the condition that the initial values of the parameter
estimate,θ̂(q0), and covariance matrix,P(q0), are specified by

the user. In the derivation of this algorithm, it is assumed that
the termΦT(q−1) ·Φ(q−1) is nonsingular for allq > q0, with
Φ(q−1) defined as:

Φ(q−1) =

 ϕT(1)
...

ϕT(q−1)

 (21)

The forgetting factor is given by the termλ. A step-by-step
derivation and explanation of this procedure is presented by
Astrom and Wittenmark [21].

The computational overhead of this simplified algorithm is
especially low, on the order of 10 floating point computations
per sample cycle. This simplicity allows the algorithm to
be implemented even on very basic and low-cost embedded
microprocessors. This computational simplicity, due again
to sensitivity invariance, stands in very sharp contrast to
the Kalman-filter and nonlinear gradient-based approaches
discussed earlier that are report per-time-step computations at
least three orders of magnitude higher. However, there is a
tradeoff in accuracy.

Because the discrete function to be identified is now
an approximation to an average continuous-time system
representation, which itself is an average approximation to
the specific vehicle, one should not expectexact matching
of the identified parameter to the the true parameter. The
possible mismatch is a tradeoff of accuracy for faster estimation.
For vehicle control, one might desire access to fast (real-
time) updates of the parameter estimate, very fast parameter
convergence, and very lax excitation conditions rather than
very accurate but very slow estimation of true parameters. A
quickly-updating but biased estimate may be very useful as an
indication of parameter variation and may be more useful to
crash prevention and controller scheduling than a very accurate
but slowly converging algorithm.

The procedure for identification can now be summarized in
the following steps:

1. Choose a sample time,Ts, to sample the yaw rate and front
steering inputs.

2. Calculate the corresponding dimensionless sampling time,
T, by multiplyingTs by the vehicle velocity and dividing by
the vehicle length.

3. Calculatem1 andm2 from Eqn. (15) using the average pi
values from Eqn.(11)

4. At each time instantTs, sample the yaw-rate and control
input, filter both using the appropriate filters and create
a dimensionless yaw rate by multiplying the dimensioned
measurement by the vehicle length and dividing by the
vehicle velocity (note that the control input is already
dimensionless, as it is in radians).
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5. Using the dimensionless yaw rate, calculate the valuesy(q)
andϕT(q−1) in Eqn. (18)

6. Update the parameter estimates using the desired algorithm,
in this case the RLSE of Eqn. (20).

TESTING AND IMPLEMENTATION OF THE
IDENTIFICATION ALGORITHM

Before discussion of implementation, it should be
mentioned that the discovery of sensitivity invariants by
the authors was serendipitous and the result of a novel and
experimental approach to vehicle studies [17]. In order to
study dangerous vehicle controllers in a safe and affordable
manner, a scale vehicle roadway simulator was developed where
autonomous and remotely-human-driven scale-sized vehicles
are driven on a large treadmill ‘roadway’ to simulate highway
driving [18, 22]. An analogy to this vehicle/treadmill system
would be the well-known aircraft/wind-tunnel testing system
in aerodynamic studies. The Pi Theorem method is commonly
used in the area of fluids and heat-transfer problems in order to
guarantee that research results will scale and compare correctly
with respect to changes in experimental setup. The the bicycle
model parameters presented in Eqn. (2) represent measurements
taken from a scale vehicle that is tested at a velocity,U , of 4.0
m/s. This corresponds approximately to a full-size vehicle at
63 m.p.h. These parameters were used for development of a
simulation study.

The identification method was tested in simulation as the
vehicle was made to follow a reference square wave of amplitude
0.06 meters to represent repeated, aggressive lane-changing
maneuvers in a full-size vehicle. The steering output of the
controller design was filtered with a 5 Hz, second-order filter
of unity gain and damping ratio of 0.707 to simulate a steering
actuator that will be present on the test vehicle. Every 10
seconds, the front and rear cornering stiffness are changed from
the nominal values of Eqn. (2) to a value of 50% nominal
to simulate a reduced road-friction situation. The instances of
friction change are indicated in Fig. 5 with vertical dashed lines
in each of the plots. The plant input (wheel angle in radians) and
plant output (simulated yaw rate in rad/sec) were sampled every
0.001 seconds. The sampled signals were then filtered digitally
with a 4th-order Bessell filter with lower and upper passband
edge frequencies of 40 and 150 rad/sec respectively. The purpose
of the lowpass effect is to remove high-frequency aliasing effects
due to sampling, while the purpose of the highpass effect is to
remove signal biases due to constant disturbances (such as slight
wheel misalignment). The forgetting factor was set to 0.99995
for both the simulation and experimental studies. This value was
chosen by manual tuning of the simulation until a ‘good’ tradeoff
between convergence rate and forgetting was achieved.

The top plot of Fig. 3 shows the lateral position of the
vehicle as it attempts to track the reference position (shown in

Figure 3. IDENTIFICATION ALGORITHM APPLIED TO THE

SIMULATED VEHICLE

dotted lines). The middle plot is the corresponding yaw-rate
measurement. The bottom plot is the estimatedπ3 parameter
using the identification algorithm previously described plotted
alongside measured values of theπ3 parameter.

Based on the good convergence exhibited by the simulation
study, an experimental investigation was implemented on the
actual test vehicle. While the bicycle model parameters of
the vehicle were measured off-line and are the same values as
reported in Eqn. (2), these values were recorded with a very
large uncertainty, especially in the inertia and cornering stiffness
measurements. The experimental vehicle is used to introduce
a real-world plant that exhibits nonlinearities, unmodeled
dynamics, and disturbances that are also present in passenger
vehicles that are otherwise ignored in a simulation study. For
the experimental vehicle, the defining length, mass, and velocity
correlate well to an ‘average’ full-sized vehicle at a speed of 63
mph [17,18].

To test the vehicle under a driving situation that exhibited
a severe change in road friction, the vehicle was driven on a
treadmill where one-half of the treadmill was dry and one half
was wetted. In off-line testing, the cornering stiffnesses appeared
to be reduced by a factor of approximately a half of the dry-road
value [22], a friction change more resembling an icy road for a
full-size test situation. The vehicle was made to follow a period
10 square-wave of amplitude 15 cm on the dry portion of the
treadmill. After 60 seconds, a reference change represented by
a steep ramp input up to an offset of 45 cm forced the vehicle
onto the wetted partition of the road for 20 seconds, after which
the vehicle was ramped back to the dry portion. The partition
between dry and wet road is shown in Fig. 4 top plot by the dotted
line at zero.
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Figure 4. IDENTIFICATION ALGORITHM APPLIED TO THE

EXPERIMENTAL VEHICLE

The implementation results from the experimental vehicle
testing are shown in Fig. 4. Again, the top plot shows the lateral
position of the vehicle on the road, the middle plot shows the
yaw-rate measurement, and the bottom plot shows the recursive
estimate of theπ3 parameter as a function of time, as well as the
dry-road value that was measured off-line beforehand.

The vehicle is seen to clearly have difficultly maintaining
tracking performance on the wetted road surface. Most untrained
human drivers would crash their vehicle in this situation, and the
autonomous steering controller was only barely able to maintain
vehicle directional control.

DISCUSSION
While the simulation results show correct convergence to

true parameters, it is difficult to evaluate the estimation accuracy
of experimental results because the definition of ‘true’ cornering
stiffness unknown. Cornering stiffness is very difficult to define
in practice as the strict definition of cornering stiffness is the
slope at the origin of the nonlinear curve relating lateral force
versus slip. The force is measured in the side (lateral force)
direction when the tire is sliding at different angles (slip) with
respect to the underlying surface. The cornering stiffness as
estimated in this work is a lumped, linear estimate of tire-road
interaction that best fits one output measure of chassis dynamics.
The tire may be operating at any location on the force-slip
curve. This experimental implementation was conducted on wet
treadmill similar to an icy roadway, which for short durations
will cause especially nonlinear tire behavior. Therefore, the
estimation algorithm at these times is not providing the correct
estimate of the actual tire cornering stiffness, but rather is

identifying the cornering stiffness that best matches the observed
vehicle behavior.

However, the tire-force curve is neverexactly linear at
any region, and for purposes of indicating changes in vehicle
chassis behavior a best-approximation can actually be very
useful. Both the simulation and experimental testing showed
definitechangesin the pi-parameter estimate when the cornering
stiffness and road surface were suddenly varied. The parameter
estimate lagged the parameter change slightly, but repeated
testing seemed to show that this lag is related to primarily to lack
of excitation of the system and the choice of a relatively large
amount of memory in past estimates (i.e. a forgetting factor was
chosen very close to 1).

For both simulation and experimental studies, the steering
inputs did not appear to provide enough excitation for the
parameters to converge during straight-line driving. Clearly, the
parameters are updated only during maneuvers that produced
relatively large yaw rates. In the experimental case, some
parameter drift is very obvious in the estimate, and this is
likely due to the large amount of correlated noise in the yaw-
rate measurement. For this test, yaw rate was obtained an
encoder attached to the top of the vehicle [22] and this likely
increases correlation between vehicle bounce and yaw angle due
to bounce of the sensing arm. In full-sized vehicles using inertial
units, such correlation would not be as likely or could be better
mitigated in the sensor design and placement.

CONCLUSIONS AND FUTURE WORK
This study presented a concept of sensitivity invariance

within a vehicle identification framework focusing on road-
tire interaction at highway speeds. By using sensitivity
invariance, the vehicle model was reduced from a nonlinear,
seven-parameter estimation problem to a linear, one-parameter
representation suitable for identification. Both simulation and
experimental studies demonstrated the method.

Obvious improvements to the algorithm would be to
address methods to modify the parameter converge. Well-known
techniques include conditional parameter updating, covariance
resetting, parallel estimation, leakage approaches, directional
forgetting, or robust estimation to name a few [6, 21, 23]. Such
approaches were intentionally neglected in this study to maintain
simplicity in the presentation of the sensitivity invariance
approach and the ability of this approach to identify the model.

The extension of dimensional analysis into identification and
systems theory arose from the author’s attempt to understand
the underlying assumptions of the Pi Theorem. Similar work,
particularly circuit network analysis and biological modeling in
the period of the 1970’s [14, 24, 25], suggests a generality to
the identification approach beyond vehicle systems. Extensive
work remains in developing automated methods of invariance
discovery and automated tools for finding the best parameter-
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domain representation.
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