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ABSTRACT 
The selection of a nominal plant model is a central 

design choice for a robust controller design.  In the case of 
vehicle dynamic studies, the nominal plant model for a 
vehicle is traditionally chosen using knowledge of a 
particular experimental vehicle under study.  With such a 
design focus on one particular plant, it may be questionable 
whether the resulting controller synthesis technique 
provides experimental conclusions that are generalizable to 
several other vehicle types.  This work develops an 
alternative, dimensionless representation of vehicle 
dynamics that is more suitable for a generalized vehicle 
analysis.  Within such a nondimensional framework, the 
average of vehicle parameters becomes well defined, and 
perturbations about the average are easily developed that 
reasonably encompass all production vehicles.  These 
uncertainty bounds are then used to generate a robust 
controller suitable for nearly all passenger vehicles.  For the 
purposes of demonstration, the focus of this work is a 
lateral-positioning control task.  The resulting controller is 
demonstrated on a scaled experimental vehicle. 

1. PREVIOUS WORK AND PROBLEM STATEMENT 
 Robust controller design techniques have been applied 
to the field of vehicle chassis control to achieve many 
different performance objectives: robust yaw rate control 
[1,2], robust lateral positioning using one [2, 3] or more 
driver inputs [4-6].  A difficulty with many published 
approaches is to obtain an adequate description of the 
model uncertainty.  Most descriptions depend on plant 
frequency responses or parameter perturbations with a 
single vehicle under consideration.  The resulting controller 
design is therefore often vehicle specific, i.e. suitable only 
for application to a single design vehicle.  

 This work seeks to develop a more general 
representation of vehicle controllers so that one controller is 
implementable on any production vehicle.  Because 
production vehicles span a large range in size and mass, a 
novel, size-independent method of model representation 
and controller design is necessary.  For purposes of 
demonstration, the familiar task of positioning the vehicle 
laterally at high speed on a nominal highway surface was 
chosen.   This task was considered earlier in [3] and [7] 
using an LMI and stacked sensitivity approach, 
respectively.  While both controller designs were robust to 

vehicle-to-vehicle model variations, each had limitations.  
The first did not account for unmodeled dynamics other 
than parameter variation, while the second exhibited poor 
transient performance.  Both of these aspects are improved 
upon in the current design. 

 This paper is summarized as follows: Section 2 
presents distributions of vehicle parameters and a 
discussion of methods of discovering outliers.  Section 3 
presents equations for the linear, lateral vehicle dynamics 
with a fixed preview distance. Section 4 defines the 
robustness criteria required for generalized vehicle control: 
that a controller must stabilize the average vehicle 
dynamics in the presence of perturbations that generate the 
range of published vehicle dynamics. Section 5 develops a 
robust controller design to demonstrate a single-velocity 
robust controller implementation. Section 6 presents 
simulation and experimental results.  Finally, a discussion 
and conclusion summarizes the primary findings. 

2. PARAMETER DISTRIBUTIONS 
 Motivating the nondimensional representation is the 
desire to develop controller implementations suitable to any 
vehicle.  Consequently, vehicle-to-vehicle variation is 
addressed in a dimensionless framework that utilizes the 
Buckingham Pi theorem [8].  The resulting representation 
accommodates two modeling aspects previously ignored by 
other researchers: first, parameter-to-parameter 
interdependency clearly arises due to common vehicle 
design; second, the individual parameter distributions show  
normal distributions in the nondimensional representation 
that provide a numerically well-defined mean and standard 
deviation of vehicle dynamics [3, 9]. 

 Application of the Buckingham Pi theorem [8] to the 
classical vehicle dynamics known as the Bicycle Model 
yields new, dimensionless groupings of parameters that 
collectively do not have dimensions.  These dimensionless 
groupings are known as pi parameters, and represent a 
reparameterization of the problem in a unit- or dimension-
independent framework (see [10] for further details).  For 
the planar bicycle model these parameters are: 

1 2 3 4 52 2 2, , , ,f r zC L C La b I
L L mU mU mL

α απ π π π π
⋅ ⋅= = = = =  (1) 

With:  
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m  = vehicle mass  (5.451 kg)               
Iz  = vehicle moment of inertia (0.1615 kgm2)        
V  = vehicle longitudinal velocity  (3.0 m/s)              
a = distance from C.G. to front axle  (0.1461 m)  
b = distance from C.G. to rear axle  (0.2191 m) 
L = vehicle length, a + b  (0.3652 m) 
Cαf = cornering stiffness of front 2 tires  (65 N/rad) 
Cαr = cornering stiffness of rear 2 tires  (110 N/rad) 

The values in parenthesis are quite different from a typical 
full-sized vehicle because they correspond to the measured 
values for a 1/7-scale experimental scale used on the 
Illinois Roadway Simulator, a treadmill/vehicle counterpart 
to a wind tunnel/airplane testing system.  The similarity in 
dynamics between this vehicle and full-sized vehicles was 
proven via the Buckingham-Pi Theorem, and was the 
original motivation for analyzing vehicle dynamics in a 
nondimensional framework.  Derivation and explanations 
of the vehicle Π  parameters are given in more detail in [9].  
Note that a vehicle model described by vehicle-mLU 
dimensions has reduced parametric dependence, from 8 
dimensional parameters to 5 nondimensional parameters. 
Further, 2π  is not independent and can be obtained by 
definition: 

 2 11π π= −    (2) 
so that there are only 4 descriptive, primary parameters for 
each vehicle instead of the 8 normally associated with 
bicycle-model vehicle dynamics. 

 The similarity in dynamics between systems relies on 
comparisons between different pi parameters, a concept 
proven via the Buckingham-Pi Theorem nearly 100 years 
ago [8].  This Theorem is traditionally utilized used to 
compare two dissimilarly-sized systems: if two systems 
have equivalent pi-parameters, then they are dimensionally 
similar and a transform exists that will map behavior of one 
system directly to the other.  Additionally, the numerical 
‘closeness’ of two systems with regard to their pi-
parameters is a very fundamental measure of the closeness 
of two systems dynamically, a metric that is independent of 
the units of measurement or the linearity/nonlinearity of the 
governing dynamics.  Therefore, the reparameterization of 
vehicle dynamics to nondimensional coordinates is quite 
useful in the comparison of different vehicles.   

 Another improvement of this work over previous 
studies is the careful exclusion of vehicle measurements 
that are outliers in the distribution of pi parameters.  To find 
such outliers, additional vehicle measurements were 
obtained from the National Highway Safety and 
Transportation Administration (NHTSA) [11].  These 
measurements did not contain tire cornering stiffness 
values, so only the 1π , 2π , and 5π  parameters can be 
calculated.  However, these are sufficient to reveal several 
vehicles that were outliers in the original data.  This is seen 
clearly in Fig. 1 below, where the parameters from the 

previous study (dark) and data from the NHTSA crash 
testing database (light) are shown. 
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Fig. 1: Outliers are not obvious in the dimensional (top) 

distributions, but are obvious in the nondimensional 
(bottom) distributions of the same parameter 

 

 One problem with using traditional, dimensioned 
parameters to define a model for robust controller design is 
that the mean and range of production vehicle dynamics are 
difficult to define; their distribution is non-normal and 
highly skewed (top plot of Fig. 1).  For the dimensional 
parameter, zI , to fit to a 2-standard-deviation guassian 
distribution about the average, vehicles with negative 
inertia would be required. A relative distribution of the 
corresponding nondimensional vehicle 5π  parameter shows 
a much more normal trend, seen in the bottom plot of the 
same figure.  Clearly, the nondimensional distribution is 
more amenable to a definition of an average parameter as 
well as operating parameter range.  Distributions of the 
remaining three pi-parameters with the outliers removed are 
shown below for the collection of full-size vehicle 
parameters discussed earlier.  Note that the two velocity-
dependent parameters, 3π  and 4π , are calculated for a fixed 
speed of 28 m/s.  Because the NHTSA data does not 
include cornering stiffnesses, the 3π  and 4π  datasets are 
much smaller.  Also, by Equation (1) the 3π  and 4π  
parameters are strongly dependent upon longitudinal speed, 
but the ratio of 3π  to 4π  is speed independent.   
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Fig. 2: Distribution of Pi parameters 

 

From the distributions of Fig. 2, the average pi parameters 
are obtained for full-sized production vehicles: 

1 3 4 3 52

145.67710.4431, , 1.0977 , 0.2510
U

π π π π π= = = ⋅ =  (3) 

These average values provide the dynamics of an average 
vehicle when substituted into the bicycle model, which is 
discussed shortly. 

3. VEHICLE DYNAMICS 
 The space description of vehicle dynamics is based on 
the bicycle model [12] with the state vector [lateral 
position, lateral velocity, yaw angle, yaw rate]: 

Tdy dy
dt dt

ψψ ≡   
x   (4) 

and front steering input, T

fδ ≡  u , as the sole control 

channel.  Note that all states are measured with respect to 
the vehicle’s center-of-gravity.  The state space 
representation (in path error coordinates) [12] is: 

,d
dt

= ⋅ + ⋅ = ⋅x A x B u y C x    (5) 

with: 
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 (6) 

2 2
1 2 3, ,f r f r f rf C C f a C b C f a C b Cα α α α α α= + = ⋅ − ⋅ = ⋅ + ⋅  

The non-dimensionalization transforms are obtained by a 
state substitution that normalizes each state with respect to 
distance, mass, and time.  The same approach was used to 
generate the parameters of Equation (1).  As with any unit-
independent representation, the nondimensional dynamics 
can be rewritten entirely in terms of the Π  parameters.  
Mathematically, this is shown via a variable substitution 
defined by: 

*= ⋅x M x   (7) 
The above state normalizations are combined with a time 
normalization, *t t= ⋅S .  For the vehicle system, L

U
=S , and 

M is defined as: 

1 Udiag L U
L

 =   
M    (8) 

The state-space equations can be rewritten in the states x* 
and time unit t* as: 

 
( )* 1 *

*
dd d

dt dt dt
⋅

= = ⋅ ⋅
M xx xM

S   (9) 
We also assume that the input and output satisfy the 
dimensional mappings: 

 *= ⋅u U u    (10) 
 *= ⋅y Y y    (11) 

Substitution gives: 

 1 1

1 1

* * *
*

* * *

d
dt

− −

− −

= ⋅ + ⋅

= ⋅ + ⋅

x SM AM x SM BU u

y Y CM x Y DU u

 (12)
 

An equivalent nondimensional system can then be made of 
the form: 

 * * * * *
* * * * *

= +
= +

x A x B u
y C x D u

  (13) 

as long as the state space matrices satisfy (by inspection): 

 1 1

1 1

*  ,     *
*  ,         *

− −

− −

= =
= =

A SM AM B SM BU
C Y CM D Y DU

  (14) 

Giving: 
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(15) 

2 2
1 3 4 2 1 3 2 4 3 1 3 2 4, ,p p p= Π + Π = Π Π − Π Π = Π Π + Π Π   

A similar non-dimensionalization can be obtained in the 
Laplace domain, generating transfer function dynamics 
solely dependent on the vehicle Π  parameters. 

 In previous work [7], an error preview method was 
used [13-15] to make the control problem more amenable.  
In this work, the same method is utilized with a 
modification that the preview distance be a fixed 2 lengths 
of the vehicle.  Under this constraint, the C* matrix 
becomes: 

[ ]* 1 0 2 0=C .  (16) 
This form of the output matrix is different from the 
previous study [7], where a fixed preview time of 2 seconds 
was selected.  A 2-second preview time at high-speeds 
corresponds to a 30-50 car-length preview distance.  While 
this is appropriate for human drivers, this was excessive for 
a control implementation and resulted in very slow rise 
times observed in the previous study.   

 To complete the vehicle model description, it is useful 
to add additional scaling transforms to limit the largest 
control effort, tracking error, and reference input to all have 
unity 1-norms.  To do this, one uses a variable 
transformation suggested by [16].  For the vehicle system, 
reasonable signal norms are: 

[ ] [ ]( )
[ ] [ ]( )
[ ]

0.1745 10

0.15 0.5  

0.15

max

max

max

u rad degrees

e m scale lanes

r m

= =

= =

=

  (17) 

Which become in the nondimensional space: 

 [ ]
[ ]

[ ]

* 0.1745

* 0.4184

* 0.4184

max

max
max

max
max

u unitless
e

e unitless
L

r
r unitless

L

=

= =

= =

  (18) 

With the signals normalized as above, the goal is to 
maintain an output position within [-1,1], using control 
inputs bounded by [-1,1], given a reference input that 
remains within [-1,1]. 

4. PERTURBATION DESCRIPTION 
 Of the original data set of vehicle parameters, only 50 
vehicles have been recorded with complete sets of bicycle-
model parameters.  This subset is hereafter referred to a V, 
and each set member will be referred to as Vi. To specify 
the average vehicle in the set, the pi values of Equation (3) 
are calculated at a velocity such that 

3 0.5π = .  This pi-term 
must be fixed as it cooresponds to the velocity scheduling 
parameter.  The value of 0.5 was chosent somewhat 

arbitrarily, and it corresponds to 3.0 m/s scale speed or 
approximately 42 mph for a full-sized vehicle.  The 
nondimensional transfer function for the nominal system is 
given by: 

 ( )
( )

2

2 2

* * 1 2.2465 * 2.9609 * 1.1563
* * * 2.1923 * 1.5797f

y s s s
s s s sδ

⋅ + ⋅ +=
+ ⋅ +

 (19) 

Note that s ⇒ s* because s has dimensions of 1/t and must 
also be normalized.  With signal normalization as described 
previously, the transfer function becomes: 

 
( )
( )

( )
( )

2

2 2

ˆ * * * * *
* * *

1 0.9546 * 1.2582 * 0.4913
* * 2.1923 * 1.5797

n max

f f max

y s y s u
s s e

s s
s s s

δ δ
= ⋅

⋅ + ⋅ +=
+ ⋅ +

 (20) 

 A key insight of this work is to utilize the observed 
variations in Π  parameters in database V to describe the 
expected variation of any vehicle controller.  The advantage 
of this approach is that each set of parameters in the 
database are correctly cross-correlated, thus avoiding the 
conservatism of one-at-a-time variable manipulation.  
Additionally, a controller design that is robust to the wide 
variations in vehicles in V should be portable vehicle-to-
vehicle.  

 From the data in database V, we compare the relative 
error between the average vehicle and each individual 
database member.  The frequency-dependent error, e(jw), 
between the average plant and the ith plant is given by: 

( ) ( )
( )

1 5 1 5

1 5

, ,..., , ,...,
( )

, ,...,
i iG jw G jw

e jw
G jw

Π Π − Π Π
=

Π Π
   (21) 

Where G(jw) represents the frequency response of the 
vehicle bicycle model dependent on the Π  parameters. A 
simple multiplicative uncertainty description is used to 
describe this system variation, represented in block-diagram 
form in Fig. 3. 

+

+
G(s)

∆I

u

GP(s)
WI(s)

 
Fig. 3: Multiplicative uncertainty model  

 The plot of each plant deviation, calculated from (21)  
for each Vi in the database V is shown in Fig. 4.  It is clear 
that the maximum multiplicative uncertainty is 
approximately constant over nearly the entire frequency 
range, a result that justifies a multiplicative representation. 
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Fig. 4: Multiplicative uncertainty, by frequency 

The weight representing system robustness, wI, is specified 
by fitting the upper bound of all observed perturbations.  In 
this case: 

( ) 0.2 * 0.5*
0.1 * 1I

sw s
s

⋅ +=
⋅ +

  (22) 

The high frequency gain was made slightly higher than 
needed in order to account for possible unmodeled 
dynamics that are unaccounted for by the bicycle model, 
such as steering actuator dynamics, vehicle roll and pitch, 
aerodynamics, etc.  The feasibility of the control synthesis 
problem requires that the uncertainty weighting of Eq. (22) 
not be too high, and in very high speed or low cornering 
stiffness cases, this requirement is violated.  These limiting 
cases are discussed extensively in [7, 10]. 

5. CONTROLLER SYNTHESIS 
 Because the H-infinity system representation does not 
allow unstable open-loop systems, the double integrator is 
approximated with poles very close to the jw-axis: 

( )
( ) ( )

2

2 2

* * 1 0.9546 * 1.2582 * 0.4913
* * 2.1923 * 1.5797*

n

f

y s s s
s s ss Kδ

⋅ + ⋅ +≈
+ ⋅ ++

 (23) 

with K = 0.0001.  The resulting high DC gain approximates 
the integrator effect. 

 The H-infinity controller must balance the tradeoff 
between three frequency domain criteria: performance 
weighting, represented by Pw S⋅ ; control effort, represented 
by 

uw KS⋅ ; and model uncertainty, represented by 
Iw T⋅ .  

These three design goals are represented approximately by 
minimization of the stacked H-infinity norm of [16]: 

P

u

I

w S
N w KS

w T
∞

⋅
= ⋅

⋅

.   (24) 

Additionally, an exogenous disturbance is added to allow 
for disturbance rejection in the common case when the 
steering input may be biased, or where there is a steady 
disturbance acting on the vehicle such as a road bank angle 

[17].  The control problem is represented diagrammatically 
in Fig. 5. 
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Fig. 5: Classical form of the mixed-sensitivity H-infinity 

synthesis problem 
 

While wI was defined in the previous section, the remaining 
weights, wP and wU, represent design variables.  In each of 
the following weighting functions, Mi is the high frequency 
gain, Ai is the steady-state gain, and wBi is the approximate 
crossover bandwidth.  The performance weight is given by: 

 ( )
2

2

(1/ * )
*

( * )
P BP

P
BP P

M s w
w s

s w A
⋅ +

=
+ ⋅

  (25) 

With parameters MP = 1.5, with AP = 0.01, and wBP = 0.1 
rad/sec*.  For the control weighting:  

 ( )
2

2

(1/ * )
*

( * )
U BU

U
BU U

M s w
w s

s w A
⋅ +

=
+ ⋅

  (26) 

The control weighting was chosen with MU = 1/100, AU = 
10, and wBU = 200 rad/sec*. Finally, the disturbance weight 
is given as ( )* 1Dw s = . 

 The H-infinity controller is obtained using standard 
robust synthesis routines, which solve the control problem 
by iterating through possible controller representations 
seeking to minimize the norm of the stacked sensitivity.  A 
solution was found with a norm of 1.0349, but this solution 
included a fast pole at s*= -2111.  Using model reduction 
by balanced truncation, the remaining dynamic modes were 
extracted to produce a controller: 

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

2

2 2

2 2

s*+2004 s*+10 s*+0.1638( *) 6.4274   
( *) s*+158.6 s*+10.35 s*+0.01

s*  + 0.2421s* + 0.01625 s*  + 2.216s* + 1.562
  

s*  + 1.324s* + 0.5169 s*  + 15.03s* + 65.06

U s
E s

= ⋅

⋅

  (27) 

where E(s*) is the error between the reference signal and 
previewed feedback. The gamma value larger than unity is 
due to the control effort exceeding the specified bounds at 
high frequencies, a violation that is not of particular 
concern. 

6.  SIMULATION AND EXPERIMENTAL RESULTS 
 Experimental testing of this H-infinity controller was 
conducted in both simulation and experimental platforms.  
The simulation was necessary to represent the full possible 
range of vehicle plants, while the experimental vehicle is 
used to introduce real-world plant variations including 
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nonlinearities, unmodeled dynamics, and disturbances that 
are otherwise ignored in a simulation study. 

 
Fig. 6: Experimental test vehicle  

 

 The experimental vehicle utilized for testing of the 
controller is shown in Fig. 6, and the parameters given in 
Section 2 were measured from this vehicle using methods 
described in [3, 9].  For the experimental vehicle to operate 
at a fixed 3π  value of 0.5, it was driven at a speed of 2.95 
m/s.  

 Note that the original generalized controller is designed 
in nondimensional time and space.  For implementation in 
‘true’ space, one must convert the controller into a 
dimensional form using inverses of the parameter 
mappings: 

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

2

2 2

2 2

s+1.619e4 s+80.79 s+1.323*( ) 142.16   
( ) * s+1281 s+83.58 s+0.08078

s  + 1.955s + 1.061 s  + 17.9s + 101.9
  

s  + 10.69s + 33.72 s  + 121.4s + 4245

max

maxScaleVehicle

uU s
E s e

= ⋅ ⋅

⋅

(28) 
Note that the signal normalizations from Eq. (17) are also 
included in the conversion above in variable form.  An 
interesting aspect of the conversion is that the vehicle mass 
is not needed to transform the generalized nondimensional 
controller to a specific controller for a particular vehicle.   

 The vehicle responses from the experimental vehicle 
are shown in Fig. 7 as the vehicle attempts to track a square 
wave in lateral position similar to repeated lane change 
maneuvers. The steering angle was limited to 0.5 radians 
amplitude due to physical limitations.  The H-infinity 
controller is slightly underdamped, a result that should be 
expected in consideration of reduced-state feedback 
combined with severe robustness constraints.   Also, there 
was no system identification outside of measurement of 
basic parameters: vehicle mass, vehicle length, vehicle 
velocity, and tire cornering stiffness.   
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Fig. 7: Experimental closed loop step responses 

 

 Also shown in Fig. 7 are the predicted vehicle 
responses based on a simulation of the linear Bicycle Model 
with the measured parameters of Section 2.  The close 
match between measured and predicted results shows a 
good validation of the model for both controller design and 
for simulation.  Even for the aggressive maneuvers above, a 
very reasonable match is observed between measured and 
predicted responses. 

 Using the bicycle model dynamics of the vehicles in 
the database V, the controller was implemented in 
simulation for each vehicle.  The results are shown below.  
The envelope of responses shows a very reasonable set of 
vehicle responses for a square-wave tracking problem 
simulating an emergency lane-change maneuver. 
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For the responses of Fig. 8, each of the vehicles reach 
different steady-state values because the amplitude of the 
square wave was made equal to the vehicle length (in 
meters), which is different for each vehicle.  The larger 
amplitude responses correspond to longer (and heavier) 
vehicles.  The plots reveal that the larger vehicles are more 
sluggish in their response, as expected.  By nature of using 
a non-dimensional control formulation, such size effects are 
implicitly accounted for in the control design. 

 7.  DISCUSSION AND CONCLUSIONS 
 The key factor limiting the controller performance is 
the tradeoff between small tracking error, good disturbance 
rejection, and maintaining system robustness.  This well-
known tradeoff between robustness and depends on the 
intent of the control designer.  However, it was found that 
significant tuning could not eliminate the observed 
overshoot, a fact that is probably due to the coupled nature 
of the feedback signal.  The fixed preview distance forces a 
fixed ratio between the gain on lateral position and yaw 
angle.      

 The difficult problem of attempting to develop a 
control algorithm suitable for any vehicle was made 
relatively simple by the use of a generalized, 
nondimensional control approach. By parameterizing plant 
dynamics in dimensionless parameters, normal distributions 
were revealed that intuitively defined an average system.  
Measured differences between individual vehicles and the 
average plant motivated a simple multiplicative uncertainty 
description.  An H-infinity methodology based on a stacked 
sensitivity approach was presented and utilized.  Good 
controller results were obtained in both simulation and on a 
research vehicle. The research vehicle implementation 
required minimal identification because the controller, by 
design, was robust enough to operate nearly any vehicle.  
Simulated step-responses on a large range of passenger 
vehicles showed similar results. 
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