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ABSTRACT

The present study aims to develop dynamic models
suitable for the analysis and design of robotic snakes.
Specifically, this research presents an implicit model with a
high degree of design flexibility, namely the ability to change
the number of links and to vary friction in the model
formulation. The implicit model is validated numerically by
comparison to an explicit model with small number of links.
The validated implicit model is then used to establish the
optimal gait for a six-link snake robot to achieve locomotion
with minimal power consumption. An iterative search is
conducted over a range of operational parameters - amplitude
of angular displacement inputs at each joint, relative phase lag
between the sinusoidal displacement inputs at the joints, and
frequency of sine-wave input - to determine the optimally
efficient gait. Results indicate that, for a particular forward
velocity, an optimal gait exists that minimizes power
consumption. This optimal solution is validated experimentally
via tests performed on a six-link snake robot.

KEYWORDS
Snake-robot; serpentine locomotion; optimal gait; hyper-
redundant; mobile robot dynamics.

INTRODUCTION

Many researchers [1-11] have provided insight into the
mathematical modeling of the kinematics and dynamics of
serpentine locomotion. However, issues remain with these
models, including questions about the level of mathematical

complexity, little if any validation against experimental results,
differing assumptions regarding robot/ground interaction, and
limited analysis of power consumption as a function of gait
parameters, operating speed.

Hirose [12-15] was the first to analyze snake-like
locomotion by performing a series of experiments on actual
snakes. These experiments sought to determine the path
followed by a snake as it locomotes forward in the serpentine
gait, referred to by Hirose as a Serpenoid Curve. Hirose also
established that a net forward motion could be generated by
applying time-varying torque along the length of the snake.
Based on these results, a wheel-based, rigid-link snake-like
locomotor was built capable of moving forward using applied
joint torques without driving the wheels. However, the study
was purely focused on the kinematics of motion, leaving open
issues related to power consumption and practical
determination of gait.

The Robotics group at the California Institute of
Technology developed theory and mathematical models [16-
19] to expand the study of the kinematics of snakes to include
the dynamics of wheel-based snake-like locomotion. In these
models, forward motion is generated by coupling internal shape
changes with external holonomic constraints assuming no-slip
constraints along the wheel axes. Qualitative experiments were
conducted on a 30 degree-of-freedom hyper-redundant robot
that demonstrated locomotion and other applications related to
grasping, obstacle avoidance etc. However, there were few
quantitative studies confirming the accuracy and results
obtained by the mathematical models. Further, the predicted
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locomotion was not studied with regard to minimizing power

consumption.

Iwasaki [9] and his colleagues recently investigated robotic
snake gaits that achieve forward locomotion at a prescribed
speed while requiring the least power. Their mathematical
model assumed a multi-link robotic snake without wheels.
However, this model was not validated experimentally to
confirm the optimal gait parameters established via analytical
results.

The present study aims to develop dynamic models
suitable for the analysis, design and control of robotic snakes.
Specifically, this research seeks to develop an easily modifiable
model which has flexibility with respect to number of links as
well as the ability to change the friction model. The objectives
of the present study are three fold:

e To provide a basic framework that allows study of the
dynamics of planar serpentine locomotion of a discrete
robotic snake model.

e To determine the operational parameters which optimize
the gait of a six-link articulated snake robot to achieve
minimum power consumption for a desired speed of
locomotion.

e To experimentally validate the velocity-frequency
relationship established via the mathematical analysis.

In this paper, mathematical modeling and analysis of the
dynamics of a three-link articulated snake model is first
described using two different methods: 1) a closed-form
solution approach hereafter referred to as the explicit
formulation and 2) an approach where link-to-link joint forces
at a present time step are approximated using prior trajectories,
an approach hereafter referred to as an implicit formulation.
The next section presents a comparison of the two proposed
methods. In the following section, the issue of optimal gait
resulting in minimal power consumption at a given forward
speed is studied. Simulation results for the optimally efficient
motion are then provided. Finally, experimental results are
presented to validate the analytical model. A Conclusions
section summarizes the main results of the study.

MODELING AND ANALYSIS

For a snake robot, the key to generating forward
locomotion is to exploit the difference in friction coefficients in
the normal and tangential directions to the snake at the link-to-
ground contact points. As convention, the normal direction is
perpendicular to the link and the tangential direction is along
the length of the link. Most of the studies [1, 5, 9, 12-15]
assume the normal friction coefficient to be much larger than
the tangential friction coefficient; with some [18, 19] assuming
that slip in the lateral direction is negligible.

Analytical models of a general robotic snake usually
consist of z rigid links actuated at the (n—1) joints connecting
these links. Each link is generally assumed to have one point of
contact with the ground at its center of gravity, an assumption
also made in the present study. Additionally, the following
assumptions are made within this study to derive the equations
of motion of a snake robot:

e Each link has uniform mass distribution and the parameters
for each link - length, mass etc. - are identical for all the
links.

e A viscous friction model is employed to describe link-to-
ground interaction (unless otherwise stated). The friction

coefficients in the normal and tangential direction are
assumed constant over the entire snake. Viscous friction is

governed by: F,_ =c-v; where v is the velocity in a

visc
particular direction, ¢, the viscous friction coefficient in that
direction, and F,_, the friction induced force at the point of

contact in the direction of the velocity, v.
e Only planar serpentine locomotion is considered.

The general robotic snake system consists of a total of n+2
degrees of freedom with two degrees of freedom representing
the planar position of the center of mass of the first link and the
remaining degrees of freedom representing the orientations of
the n links in the global reference frame.

To illustrate the mathematical formulation of an explicit
model, a three-link model is considered as it is the simplest
rigid-link snake robot that can locomote. The 5 independent
degrees of freedom for a three-link model, are-x, y,6,,6,,6,. A

schematic of the model is shown in Fig. 1 and the free-body
diagram of each link is shown in Fig. 2. The force and moment

equilibrium ~ equations: Y F,, =m}X, ,ZF L =m;y, and
M, =1 .0, for each of the three links can be written as
follows:

Link 1:
Fg,lx +F, =m¥, (1)
Fg,1y+F'1y =mj}1 (2)
T, - F,Isin®, + F, lcos6, =10, (3)

Link 2:
-F, +Fg’2X +F, =m¥, @)
_Fly +Fg’2y +F2y = mj}z (5)

(TZ _T‘l)_(le +F2x)lSin92 +(F'ly +F2.V)Icose2 :IcéZ (6)

Link 3:
—F) +F,," =mi, ™)
—F,, +F,," =mj, ®)
~T,—F, Isin0; +F, lcosO; =1, 53 ©)

where the parameters are defined as follows:

m Mass of each link

/ Distance from the center of gravity of the link to
the joint, equal to half of the link length, assuming
uniform mass distribution

I, Mass moment of inertia of the link about the
center of mass

X;,¥;,0;  The global position and orientation of the i” link
T, Torque applied at the i joint (between i” and
(i+1)" links)
F, " F, " Frictional forces between the i” link and the

ground at the center of gravity in the global
coordinate system, resolved in the x and y
directions.
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Fy Fy  The joint forces between i” and (i+1)" links in

the global coordinate system, resolved in the x and
y directions

Explicit Formulation for a three-link robotic snake

To obtain the time-varying positions and orientations of the
various links, the Egs. (1-9) have to be solved simultaneously.
Two solution methods, namely explicit and implicit, are
considered in this study. The explicit method utilizes the exact
model without any approximations. The force and moment
dynamic equations are simplified by rearranging them to
eliminate the joint forces. These equations are further
simplified by enforcing the compatibility conditions that
describe the positions of all the links in terms of the five
independent variablesx, y,6,,6,,6,. The resulting number of

governing equations is always equal to the number of
independent degrees of freedom; hence this solution method is
hereafter referred to as an explicit method.

The challenge with the explicit model formulation is that
the joint force and compatibility algebraic equations are highly
nonlinear, making it difficult to write the governing differential
equations in only the independent variables. One can overcome
this algebraic difficulty by allowing more system differential
equations than are necessary, e.g. by approximating the joint
connections by spring-damper systems. The dynamics of the
system are simulated individually for each link without the
necessity of algebraic solutions for the joint forces. Further, the
algebraic compatibility conditions are also not needed in the
solution method. Because there are more equations than the
number of independent degrees of freedom, this solution
method is hereafter referred to as an implicit method. These
distinctions between explicit and implicit formulations are best
illustrated by direct comparison, presented in the following
sections.

As an illustration, the explicit equations of motion for a
three-link snake are now derived. From Fig. 1, the coordinates
of the center of mass of each link can be expressed as a

function of the aforementioned five independent
variables, x, y,0,,0,,6,, as follows:

X, =x (10)

Y=y (11

X, =x+/-cos@, +[-cosb, (12)

Vv, =y+l-sinf, +1[-sin b, (13)

Xy =x+[-cos@, +2[-cosb, +1-cos b, (14)

Yy =y+I1-sinf, +2[-sin 0, +/-sin O, (15)

Differentiating Eqgs. (10-15) with respect to time yields the
velocities of the center of mass of the links in the global
coordinate system as:

X, =% (16)
=y (17)
%, = x—10,sin6, — 10, sin 6, (18)

y, = 3 +16, cos 6, +16, cos 6, (19)
%, = x—16, sin 6, — 216, sin 6, — 16, sin 6, (20)
V3 = 7 +16, cos 6, + 216, cos 6, + 16, cos b, 2n

Similarly, differentiating the velocities i.e. Eqgs. (16-21) with
respect to time yields the accelerations of the center of mass of
the links as:

X =i (22)
Y=y (23)
X, = %10, sin6, —16, sin 0, —10,” cosh, —10,” cosd,  (24)

¥, =3 +16, cos6, +16, cos 0, —16,” sin 6, =16, sin@,  (25)
Xy =¥ 16, sin 6, —216, sin 0, —16, sin 6, —16,” cos 6,
—210,” cos 0, —16,” cos 0, (26)

$, = +16, cos 0, +210, cos 0, +10, cos 0, —16,” sin 6,
—210,” sin 6, —16,” sin 0, (27)

The contact forces between the ground and the link at the
center of mass are modeled assuming the viscous friction model
stated previously. The friction coefficients and hence the
contact forces are defined locally, i.e. in the normal and
tangential directions and then transformed back into the global
coordinate system. From Fig. 3, the contact forces in the
tangential and normal directions can be written as:

F . =c'v' =c' (% cosb, +y,sinb,) (28)

g.i i
n

=C" v, =C" (- ,5sin6, + , cosb,) (29)

Bl

Equations (28-29) can be expressed in matrix form as follows:

F.' c' 0 cosf, sind, | (x,
N o |7 ar (30)

F,, 0 C, —sinf, cosd, | |y,
The contact forces in the normal and tangential directions can

be transformed back into the global coordinate system as
follows:

X t no_ .
F,/ =F, cost —F, sing, (31
y o _ . n
F,  =F, sin0 +F, coso, (32)

Using Eqs. (30-32) the friction forces associated with the i”
link can be expressed in the global coordinate system as:

F, | |cosf, —sin6, ||C' 0
Fg)l.y a sin@, cos0, 0 C/

cosd, sin6, | |x;
—sinf, cos@, | |y, (33)
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Equations (10-33) describe how the compatibility constraints
and frictional forces enter the dynamic model. It is now
possible to write the governing differential equations, with the
first goal to eliminate joint forces. One can eliminate several
coupling forces by summing Egs. (1), (4), and (7):

X

m(E +5%, +3,)=F, " +F,," +F,, (34)
Similarly, summing Egs. (2), (5), and (8) results in:
m(J’l +7, +j}3):Fg,1y +Fg,2y+Fg,3y (35)

The joint forces, F;, and F},, are to be eliminated from Egs. (3),
(6) and (9) to obtain the remaining governing equations. This is
achieved by expressing the joint forces in terms of known
quantities. Summing Egs. (4), (7) and (5), (8) and solving for
F, and Fj, respectively results in:

_Fy =m(s, +5,)-(F,," +F,.) (36)
—-F, = m(y2 +j}3)_(Fg,2y +Fg,3y) (37)

Solving Egs. (7) and (8) for F,, and F*, yields:

—F, =mx, —Fg; (38)
_F2y =my, _Fg,3}’ (39)

The right hand side of Egs. (34) and (35) can be expressed
solely in terms of the independent variables using the
generalized Eq. (33) and Eqgs. (16-21). The resulting differential
equations are functions of linear and angular displacements and
velocities of the center of mass of the links. The left hand side
of Egs. (34) and (35) can be rewritten in terms of the
independent variables and their derivatives alone using Egs.
(22-27). These equations, upon simplification, yield:

3mit —mi(26) sin 6, + 36} sin 0, + 6 sin 6 (40)
=0+ ml(20'12 cos@, +36, cosd, + 6, cos 93)
3my + ml(Zé1 cos 6, +30, cos 0, +0, cos 0, )

. . . 41

= 0, +mi26,” sin 0, +30,” sin 0, + 6" sin 0, ) D
where, O, and Q, are defined as:

O =F, " +F, +F5 (42)

O, =F, ) +F, +F,5 (43)

Substituting Egs. (36-37) into Eq. (3) and simultaneously using
Egs. (22-27) and simplifying results in:

1,6, +2mi(y cos 6, — i sin 6,)

+ml’ [352 cos(6, —6,)+ 6, cos(6, - 6, )]

=T +Q,+ml {— 36, sin(6, - 6,)+ 6, sin(6, - 6, )} (44)

where, 1, and Q; is defined as:

I, =1, +2ml*

+F, 5 )l sin 0, + (Fg,Z'V “5)

0, :—(ngzx +Fg,3y)lcos 0,

Similarly, using Egs. (36-39) in Eq. (6) and simplifying
utilizing Egs. (22-27) yields:
1,6, +3ml(jcos 6, — ksin 6, )
+ml’ [3:9] cos(«91 - 02)+ 253 cos(t92 -6, )]
2 A2 . 22 .
= (,~T)+ 0, + mI* 6 sin(6,- 6,)- 267 sin(6, - 0,)}  (46)

where, /,, and O, is defined as:

Iy, =1, +5ml’

0, = —(Fg_z" +2F g;)’sin 0, + (Fg,z” +2F 893"')7c0s o, @7

Finally, using Egs. (22-27) and Egs. (38, 39) in Eq. (9) and
simplifying yields the last of the five governing equations as:

1,0, + ml(j} cosé, — Xsin (93)
+ml’ [91 005(493 -6, )+ 20, cos(H2 -6, )]

= (1) + 0 +mlP67sin(0, - 6)+ 26, sin(0, - 0,)] )
Where, [, and Qs is defined as:
Ly =1, +ml*
03 = L. tm (49)

Qs =—F,;"Isin0, + F, ;"1 cos 0,

Equations (40, 41, 44, 46, and 48) are the five equations
governing the dynamics of a three-link articulated robot.
Rewriting these equations in matrix form yields:

3m 0 —2mlsing, —3mlsin®, —mlsin®,

0 3m 2mlcos6, 3mlcosé, mlcosf;
—2mlsing, 2mlcosé, 1, 3ml* cos@, —6,) ml*cos@, - 6,)
—3mlisin@, 3micosl, 3ml*cos© —6,) 1, 2ml* cos(@, — 6,)
—mlsing, micos, ml*cos(®,—6) 2ml*cos@®, —6;) 1oy

X 0 ml(26,7 cos B, + 36, cos 6, + 6" cosb;) (o)
b 0 ml(267 sin6, + 36, sin6, +0,"sin6,) | |0,
x10t=| T, |+| ml*[-36," sin(6, - 0,) + 0,” sin(6; — 6)] | +| Os

o
=
|
~

ml*(36,” sin(6, - 0,) — 26" sin(6, = 6,)] | | Qs
mi*[-0," sin(0, — 6,) + 20," sin(0, — 6,)]| | Os

(50)

o
|
=

The above equation is of the form A(X) X =f(X,X)

or X = g(X X ) These simplified equations can be solved
numerically. In this study the MATLAB Simulink software is
used to numerically integrate Eq. (50) to obtain a solution X (t)
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Solution methods describing the kinematics and dynamics
of the serpentine locomotion resembling the above explicit
method detailed have been presented in the literature by many
researchers [1, 4, 5, 7-10, and 15-19]. Although each solution
method differs slightly, they all share an ultimate goal of
obtaining the time-varying positions and orientations of the
links.

Implicit Formulation for a three-link robotic snake

While it is relatively easy to derive the explicit equations
of motion for a three-link model, it is algebraically quite
challenging and tedious to derive a similar set of equations for
snakes with larger number of links. The implicit method
simplifies the algebraic manipulations considerably by relaxing
an algebraic constraint of connection between the joints and
instead modeling them by spring-damper systems. The damper
and spring are designed to have vibration dynamics several
orders of magnitude faster than the snake’s gross motion and
therefore this motion should not greatly affect the predicted
motion of the snake. This assumption is tested in later sections
of this study.

Although replacing each joint’s algebraic constraints with
joint dynamics greatly increases the order of the dynamic
model, it greatly simplifies the necessary mathematical
manipulations. Specifically, the positions, velocities and
accelerations of the center of mass of the links need not be
expressed in terms of the position of the center of mass of the
first link, orientations of the links, e.g. in x,y,6,,6,,6,, and

their derivatives. The original snake consisting of one
articulated n-link body is therefore deconstructed into n
coupled but independent bodies. The dynamics of the spring-
damper system can be simulated to directly obtain the coupling
forces between joints while simultaneously solving for the
dynamics of the collective robot snake system. Thus, this
method does not require solving for the joint forces as in the
explicit method.

The primary disadvantage of the implicit method over the
explicit is that the additional differential equations greatly
increase the required simulation time. With the steady and
exponential increase in desktop computing capability, this
tradeoff is increasingly unimportant.

To model the joint connections by spring-damper systems,
the spring stiffness and damping constant need to be chosen.
The spring stiffness is chosen such that the joints are stiff
enough to exhibit very fast dynamics and damping constant is
chosen to have as minimal vibration as possible. All
locomotion torques at each joint are assumed to span the joint
such that an equal and opposite torque acts on each link. From

Fig. 4, the expressions for the joint forces at i joint can be
written as:

Fy =k =2 )+, (¥, — %)) (51)

Fy =k (o' =y e (7 —30) (52)
where the parameters are defined as follows:

k; Spring stiffness.

c Damping constant.

X, Vi Coordinates of the i” joint expressed as a

function of the coordinates of the center of mass
of the link to the right of the joint, i.e. (i +1)" link.

X', v Coordinates of the i” joint expressed as a

function of the coordinates of the center of mass
of the link to the left of the joint, i.e. i" link.

The coordinates x';, y'/, x',, and y', can be expressed in

terms of the coordinates of the centers of mass of i” and
(i+1)" links, (x;,y,) and (x,.,,,,,) respectively as:

i i

X' =x,, —1-cosb,, (53)
X' =x, +1-cosb, (54)
V' =y —1-sind,, (55)
Y=y, +1-sing (56)

The time derivatives of the positions, i.e. x’/, y'/, x',, and

y'+ are obtained by differentiating Eqs. (53-56), which are

obtained numerically using velocities from the previous time
steps. Besides Egs. (51-56), the friction formulation equations
are also needed, i.e. Egs. (28-33) as established in the explicit
formulation section.

With the joint and contact forces known, the implicit
method is easily solved numerically. Eqs. (1-9) are integrated
using the MATLAB Simulink software to determine the
positions and velocities of the center of mass of each link. A
flowchart describing the implementation of implicit model in
Simulink is presented in Fig. 5.

COMPARISON OF IMPLICIT AND
FORMULATION RESULTS

To confirm that the implicit and explicit formulations are
mathematically equivalent, the dynamics of a three-link snake
model are simulated using both methods. The relative errors in
the rotations and velocities are compared. Relative error in
rotation is defined as AH(t) =0, (t)— 0., (t), where 6, and 6,
are the rotations calculated by the implicit and explicit methods
respectively. The relative errors in other quantities are
calculated similarly. The time-step used for the simulations is
0.001 s. Further reduction in time step resulted in only a
maximum of 0.1% change in the calculated displacement and
velocity values.

Figures 6 and 7 represent the relative errors between the
implicit and explicit rotation and translational velocities of the
tail link, i.e. link 1 for a three-link snake robot. The amplitude
of motion considered is 30 deg, the relative phase lag is 90 deg,
and the frequency of sine-wave input is 3 rad/s. It appears from
these plots that the magnitude of the relative error between the
two models is of the order of 107, which is quite small as
compared to the amplitude of motion (n/6). Similar plots are
obtained for the other two links. Such results suggest very close
agreement between the two methods.

EXPLICIT
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OPTIMALLY EFFICIENT SERPENTINE LOCOMOTION
Having confirmed that the implicit method predicts
locomotion behavior as well as an explicit model for a simple
three-link robot, the implicit model is now used to analyze a
six-link robot. Specifically, locomotion dynamics are studied to
determine the optimal gait that gives locomotion with minimal
power consumption at a given forward velocity. Prior studies
[9, 15] indicate that the undulatory motion of snake can be
replicated by sending a traveling sine wave along the length of
the snake and that dynamics of the snake using joint inputs as a
specified angle versus torque are related by a decoupling. This
wave can be approximated in a discrete snake model by
incrementing the phase angle of an applied sinusoidal torque or
the prescribed angular motion at each joint of the snake robot.

This analysis considers the input to be a commanded joint angle

with the angular motion at i” joint described by the form:

0, (t) =a sin(a)t + /5',.) (57)
where, 8, =(i—1)8 and i=1,2,..n-1.

The parameter @ (frequency of commanded angular
motion) is related to the speed of locomotion, while the
parameters o (amplitude of sinusoidal input) and f (phase lag)
are related to the shape of forward motion. The optimally
efficient motion is defined by [9] as the set of parameters, a, f
and o that result in the least mean power consumption for a
desired mean forward velocity. The mean power input is
determined by averaging the periodic input power over 15

. . . 2
cycles, or equivalently over a time period of 15 275 after the
@

snake has achieved steady-state locomotion. The mean forward
velocity is the time averaged velocity of the center of mass of
the entire snake in the global x-direction over 15 cycles. Other
design parameters also affect the optimal motion; these include
the tangential and normal friction coefficients, the mass and
length of the link, and the number of links. But these other
parameters are fixed in the design and operating environment of
the snake and cannot be modified by the input to the joints, e.g.
the snake’s control algorithm.

To determine the optimally efficient gait, this study uses an
iterative search through a range of the parameters a, f, and w.
When a grid point was found to be locally optimal, a linear
optimization algorithm was used to further refine the parameter
estimate such that the numerical estimate of the optimal
parameters is not limited to the coarse grid spacing. Some
parameters remain constant over the entire analysis: mass of the
link, m (1 kg), length of the link, / (6 cm), tangential friction
coefficient, C; (0.1 N-s.m'l), normal friction coefficient, C, (10

N-s.m") and the number of links, n (6). The parameter space
over which the iterative search is performed is: o (rads™) = 1.0,
2.0, 3.0,..., 20.0, a (deg) = 5, 10, 15,..., 75 and S (deg) = 20,

25, 30,..., 90. The other simulation parameters used are:
¢, =1 N-s/m, k, =1000 N/m. and a fixed time step of 0.001 s.

Discussion regarding the results generated by the simulations is
presented in the following section.

RESULTS AND DISCUSSION
Figure 8 shows the variation of the mean power input ( £, )

versus the desired mean forward velocity (7, ). It can be seen

from the figure (solid line joining the optimal points) that an
optimal solution does indeed exist for a given desired
locomotion velocity. The variations of the optimal parameters:
frequency (w), phase (f) and amplitude (a) with the desired
mean velocity are plotted in Figs. 9-11. The optimal frequency
®,, appears to vary almost linearly with the desired velocity.

The optimal phase S and optimal amplitude «

opt
be nearly constant at 80 deg and 30 deg respectively,
independent of the desired velocity. A trace of the path
followed by the snake robot at & =30 deg, =80 deg and w =5
rad/s is presented in Fig. 12 and a plot of the snake’s position
and orientation at six instances over one time period is shown
in Fig. 13.

Compared to an earlier study [9], the results of the present
research match qualitatively but not quantitatively. For
instance, the present study predicts that an optimal motion
should consist of slightly more than one full sine wave (1.3 sine
waves), while this earlier study predicted optimal motion for
exactly one sine wave. This is equivalently described by
comparing the optimal phase, f,, of a six-link robot. The

o appear to

present study predicts /S

opt
between links, while [9] predicts this to be at 60 deg. The
variation of optimal amplitude «,, predicted by [9] seems to

to be at approximately 80 deg

be roughly linear with desired velocity, while the present study
predicts a nearly constant value at 30 deg. The optimal
frequency of serpentine motion, @ is predicted by the

opt >
present study to vary linearly with 7, in agreement with this
prior work [9].

EXPERIMENTAL VALIDATION

To validate the analytical results, a snake robot which
consists of six rigid wheeled members actuated by servos at the
five joints is built. The wheels are chosen so that they have
little slip in the lateral direction i.e. they are able to generate
large friction coefficients in the normal direction and have
relatively low friction coefficients in the tangential or forward
direction. Thus the experimental conditions were designed to
qualitatively match the assumed friction characteristics in the
analytic formulation. A picture of the six link snake robot on
treadmill is provided in Fig. 14. The mass of each link, m is
75.6 grams and the length of each link (2*/) is 7.6 cm. The
friction characteristics are measured by utilizing the capability
of the treadmill to tilt it to a desired angle of forward
inclination (y) and run at a desired velocity.

To measure the tangential friction characteristics, the snake
is set free perfectly straight on the treadmill i.e. relative angles
between the links to be 180 deg. Initially y is set to a very small
angle (2 deg in this case) and then increased steadily. The
velocity of the treadmill is increased until the gravity of the
snake almost balances the frictional forces on the snake. The
above process is repeated in steps of 0.2 deg until a speed of 1
m/s is reached which is approximately the physical limit of the
snake. Knowing the mass of the snake, m, and the inclination
angle, y, the tangential friction force, F, can be calculated as:
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F,=m-g-siny (58)
where, g is the acceleration due to gravity

Figure 15 shows a plot of the tangential friction
characteristics. Assuming the tangential friction force to vary
linearly with the tangential velocity, the tangential friction
characteristics are predicted as:

F =0.084-v, +0.14 (59)
where, v, is the velocity in the tangential direction

To estimate the friction characteristics in the normal
direction, the links are slightly bent alternately with the relative
angle between adjacent links slightly less than 180 deg (165
deg in this case (=180—24)). The friction measurements are
repeated as indicated above. The force equilibrium equation in
the direction of treadmill velocity can be written as:

F, -cosA+F, -sini=m-g-siny (60)
where, F, is the friction force in the tangential direction and
F, is the friction force in the normal direction
Assuming F, known in Eq. 60, solving for F, yields:

F oo (m-g-siny—F, -cos 1)

n

(61)

sin A

A plot of the normal friction characteristics is shown in
Fig. 16. Again, assuming a linear variation, the normal friction
characteristics are predicted as follows:

F =12-v, +0.27 (62)
where, v, is the velocity in the normal direction

Equations (61) and (62) indicate that the friction
characteristics of a snake operating on a treadmill surface
resemble that of a viscous friction model with an offset or in
other words, a Bingham friction model. The implicit method is
then modified to account for this change in the friction model.

Tests are performed on the treadmill to validate the
frequency-velocity relationship for a six-link snake robot at o =
70 deg and f# = 75 deg. A plot of the variation of analytical and
experimental velocities with frequency at this parameter setting
is shown in Fig. 17. The analytical velocity seems to match
closely with the experimentally measured velocity. The slight
variation in the values predicted by the experiment can be
attributed to the difficulty in estimating the friction
characteristics of the snake in the normal direction. Normal
friction characteristics are relatively more sensitive to minor
variations in the angle 4, while the tangential friction
characteristics are independent and these differences get
amplified at higher frequencies.

CONCLUSIONS AND FUTURE WORK

An implicit method to study the dynamics of serpentine
locomotion has been established. Using this implicit model,
optimal gait of a six-link snake robot that results in minimal
power consumption for a given forward velocity is established
for a viscous friction model. Further, friction characteristics are
determined experimentally for a six-link snake robot. The

nature of frequency-velocity relationship at & = 70 deg and f =
75 deg is validated via experimental testing.

As future work, additional consideration will be given to
the friction modeling, particularly with regard to establishing
the optimal gait for the Bingham friction model. The large
static friction measured in the tangential friction characteristic
curve does not affect the locomotion significantly since the
snake’s motion is always enforced in the longitudinal direction.
However, a combined static/viscous friction model will almost
certainly impact predicted snake behavior. Additionally,
methods to measure or estimate the robot/ground interaction to
further improve adaptability to the environment and minimize
power consumption will also be studied.
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