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ABSTRACT 

This work considers the problem of robustly controlling 
systems that have an implicit parametric coupling, and 
specifically considers the problem of lateral control of 
passenger vehicles at highway speeds. Passenger vehicles 
collectively have a wide range in dynamic behaviors mainly 
due to the ranges in size between different models. However, as 
vehicle size increases, the length, mass and mass moments of 
inertia also increase in predictable relationships that strongly 
couple these parameters to each other. The proposed control 
technique exploits this inherent parametric coupling in order to 
design a single robust controller that can be easily adapted 
parametrically from vehicle to vehicle. Parameter decoupling in 
the design model is achieved in the control synthesis step using 
a dimensional transformation. The resulting design model 
presents a system representation suitable for robust control of a 
very wide range of passenger vehicles using only a dimensional 
rescaling. This method is distinguished from prior work in that 
the structure of parametric dependence is included in the 
controller synthesis. The resulting design is tested on a scaled 
vehicle test setup developed at Pennsylvania State University. 
Both simulation and experimental results have shown the 
effectiveness of the technique for the proposed application. 

1. INTRODUCTION 
This work discusses a robust, simultaneous control 

technique for systems whose system parameters are inherently 
coupled. Human- or naturally-optimized systems will likely 
exhibit a property where many of the system parameters 
entering the dynamic model are strongly interrelated. This 
arises because the key dynamic parameters of a system are 
generally the same parameters that must be optimized to satisfy 
design criteria in the system build. A physical example of a 
collection of systems whose behavior is similar yet scaled along 
key dynamic parameters is the family of passenger vehicles. 
For example: a passenger vehicle larger than average tends to 

be longer, heavier, and with a larger mass moment of inertia 
than average as well. Additional generalizations can be made 
between vehicle size and the tire force generation performance, 
the suspension behavior, etc. These relationships between 
length, mass, inertia, etc. obviously do not follow an exact 
functional relationship. But if one simply knows that the system 
under consideration is a modern production passenger vehicle, 
one can infer general estimates of many parameters if given just 
one parameter, mass for instance. This inference can be 
formalized as equations describing coupling parameter 
relationships.  

The application of a generalized robust control and/or 
guidance technique in automotive applications is not as 
extensive as in the aerospace industry, at least as reported in 
public literature. However, robust control implementation are 
gaining increased interest in applications of Automated 
Highway Systems (AHS) [1, 2]. A robust ∞H  loop-shaping 
controller was designed in [1] and a nonlinear robust controller 
was developed for lateral control of heavy trucks in automated 
highways in [2]. In most vehicle models, the vehicle velocity 
appears as a free parameter due to the significant changes in the 
vehicle dynamic model as a function of velocity, changes that 
sometimes change an open-loop stable model to an unstable 
model with increasing speeds. Thus, gain-scheduling is often 
required and used. To address this velocity dependence, a gain-
scheduling controller was designed in [3] and an LPV 
controller in [4]. Additional application are described in [5-9].  

While scaling theory is an old subject and has been applied 
to dynamical and structural systems analysis, its application to 
control of these same systems is very limited and has been seen 
in literature only during the last decade. One of the most recent 
and well developed work in this area is the works of Brennan 
and Alleyne [7, 10, 11]. Previous work by Brennan [7]  have 
shown the advantages of using the dimensionless representation 
in vehicles for robust control design. Specially, Brennan [7] has 
shown the achievement of tight frequency-domain variations 
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using dimensionless vehicle models. The tight frequency 
domain distribution allows for small plant variations from the 
nominal model finally resulting in smaller uncertainty bounds.  

The current work is very different from the previous works 
in two ways. First, the previous works used a general stacked-
sensitivity approach to obtain a dynamic uncertainty model. 
The current work departs from this by modeling system-to-
system variations as a parametric uncertainty. The goal is to 
obtain a less conservative controller because parametric 
uncertainty is a subset of the uncertainty seen in the stacked-
sensitivity approach. Secondly, the current work uses the 
general ∞H -synthesis and the µ -synthesis/ analysis to better 
account for structure in the uncertainty model, which was not 
done in the previous work. 

This concept of parametrically constrained engineering 
systems can be best explained with the help of Fig. 1. Consider 
three systems that are parametrically different and as indicated 
in the 321 ppp −−  space. These systems are represented by 

321 ,, GGG  and all enclosed inside the volume S , Fig. 1(a). 
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 Fig. 1: Schematic of systems in parametric space 

In the case of passenger vehicles, 1G  may represent a compact 
car, 2G  mid-size and 3G  a luxury size sedan. Wile one can 
attempt to design a single robust controller to simultaneously 
stabilize the three plants, it is often difficult due to the wide 
range in parameter variation. Additionally, as the number of 
plants increases, it usually also extends the solid S  further such 
that it may be very difficult if not impossible to synthesize a 
single controller to stabilize all the plants. Further, to robustly 
control all systems, one has to encompass all system within an 
uncertainty description. By bounding parameter variations 
without considering their coupling, for instance bounding 
plants 321 ,, GGG  with a surface S   in the 321 ppp −−  space, 
this inherently includes other plants represented by parametric 
variation within the same a sphere that encloses S . Many of 
these parameter combinations can never physically occur, and 
therefore controllers that consider these plants as key 
constraints on system performance or robustness may be highly 
conservative when implemented on the actual systems. While 
grossly over-simplified, this example illustrates the difficulty in 
finding a controller that satisfies all robustness and 
performance conditions for all systems when collective 
aggregates of dissimilarly sized systems are considered. 

The remainder of the paper is organized as follows: First 
the general framework of the technique is discussed. Next, the 

bicycle model is presented for the vehicle dynamic model. 
Following this, the dimensional transformation method is 
described. Next, the robust control synthesis and 
implementation are discussed. Finally, a summary of the main 
points and results are given.  

2. FRAMEWORK OF THE TECHNIQUE 
The general setup of the current approach is as shown as a 

general approach in Fig. 2.  It can be summarized into four 
steps: 

 
Step 1 - System transformation: Transform each dimensional 
model to a dimensionless model using the dimensional 
transformation operator Dℑ . One should be judicious in 
selecting dimensional scaling parameters such that strongly 
coupled parameters, mass and mass-moment of inertia, appear 
together as a pi-term in the newly parameterized model. Details 
on dimensional scaling can be found in most undergraduate 
fluid dynamics texts. 
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Fig. 2: The general setup 
 

Step 2 - Perform robust control synthesis: Define a nominal 
model and uncertainty bound that includes all systems of 
interest. Also determine the stability and performance 
requirements on the system in the dimensionless domain 
through appropriate scaling. Perform the robust control 
synthesis. 
 
Step 3 - Control system transformation: Transform the 
dimensionless controller to its corresponding dimensioned  
controller using the inverse dimensional transformation 
operator, 1

D
−ℑ . 

Step - 4 Verify requirements: Verify that the controller 
requirements are all met. If requirement not met go back to step 
2 and repeat the control synthesis with a different design 
weights. 

3. THE BICYCLE MODEL 
Apart from actuator dynamics, the two primary states 

describing planar vehicle dynamics at constant forward velocity 
are yaw and lateral motions. A two degree-of-freedom (DOF) 
planar vehicle dynamic model commonly used is called the 
bicycle model [7, 12]. In this model, the coupling between the 
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roll and lateral modes is not considered. The dynamic model is 
herein expressed in road-fixed error coordinates, Fig.  3.  
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Fig.  3: Schematics of the bicycle model. X-Y and x-y are road 

(path) and body fixed coordinates, respectively. 

While the general bicycle model may have more inputs, 
only front steering input is considered here. The equation of 
motion (EOM) of this 2-DOF model is given by Eq. (1). 
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where the state variables are defined as: y : lateral position, y& : 
lateral velocity, ψ : yaw angle, ψ& : yaw rate. The input is 

fδ : 
front steering input. The parameters are m  : vehicle mass, zI  : 
vehicle moment of inertia, U  : vehicle longitudinal velocity, a : 
distance between the center of gravity (C.G.) and the front axle, 
b : distance between the center of gravity (C.G.) and the rear 
axle, L : vehicle length between the front and rear axels 
( ba += ), 

fCα : cornering stiffness of the front 2 tires, and rCα : 
cornering stiffness of the rear 2 tires. 

The bicycle model can be represented in state-space form 
[7], Eq. (2), by choosing the state vector, [ ]Tyy ψψ &&≡x  
and the control input, 

fu δ≡ . 
A Bu
C Du

= +
= +

x x
y x
&     (2) 

where the system matrices are given by Eq. (3): 
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with, 1f , 2f  and 3f  as defined in Eq. (4) 
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In this system, a , b , L , m , and zI  tend to increase with 

increasing size of the vehicle. Therefore, these parameters 
exhibit a general coupling relationship. Additionally, the front 
and rear cornering stiffness increase/decrease with mass. 
Further, front and rear cornering stiffness values are further 
coupled as they generally change in unison due to uniform road 
and similar tire conditions. 

4. THE DIMENSIONAL TRANSFORMATION 
The method of dimensional transformation is briefly 

discussed here. First some preliminaries are presented followed 
by the transformation of variables, vectors and systems. A 
detailed procedure can be found in [13].  

4.1 Preliminaries 
The dimensional extraction operator, 

, ( , )v ed D e v= : is an 
operator that extracts the units of the variable v  relative to the 
unit system e , a column vector by convention and results in a 
dimensional unit vector. This dimensional unit vector is nothing 
but the exponents of each unit used to describe the physical 
quantity v . To uniquely define this vector, one must specify 
both the unit system as well as the variable, v . For instance, 
the gravitational constant  29.81 m / sg =  has dimensional units 
that can be represented in many unit systems. For the unit 
system, [ ]Ttimemasslengthe =  the extraction operator 
yields [ ]Tev geDd 201),(, −== , and in another unit system 

[ ]Tforcemasse = , the result of the operator is 
[ ]Tev geDd 11),(, −== . 

The Scaling Matrix, 
DA : is formed by the dimensional unit 

vectors of the variables (parameters) that are chosen as scaling 
parameters, also traditionally called repeating parameters. 

DA  
is a square matrix with rows (and column) size equal to the row 
size of e .  Scaling parameters must be chosen such that 

DA  is 
full rank. For example, for the bicycle model discussed before, 
choosing the unit system [ ]Ttimemasslengthe =  and the 
scaling parameters { }, ,m L U , the scaling matrix 

DA  is given by 
Eq. (5), where the unit system e  remains the same for all the 
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parameters and the operator is acted upon each parameter under 
the same unit system. 

, , ,

0 1 1
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0 0 1

D M e L e U eA d d d
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The matrix 
DA  is defined as a scaling matrix only if the 

dimensional unit vectors of all the scaling parameters 
(variables) are extracted with respect to a single unit system e . 

4.2 Dimensional Transformation of a Variable 
Given a variable v , unit systems e  and the scaling 

variables [ ]1 2 nw w wL , the dimensional transformation of 

v  to its corresponding dimensionless quantity is defined in Eq. 
(6). 
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For example, the mass moment of inertia of the bicycle model 
is transformed to its dimensionless form as follows:  
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The expressions of all the transformed variables of the bicycle 
model are summarized in Tab. 1. Note that in these examples 

[ ]w m L U=  and [ ]Te length mass time= . 
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Tab. 1: Summary of dimensionless parameters and signals for 
the bicycle model. 

In addition to parameter and signal scaling, all time 
derivates should take in account the time scaling in the 
transformation. This can be summarized as follows: given a 
variable v , a unit systems e  and the scaling variables 
[ ]1 2 nw w wL , the dimensional transformation of q  

repeated derivatives of v  with respect to time, i.e. ( )
q

q

d v
dt

,  to 

its corresponding dimensionless quantity ( )
q

q

d v
dτ

 with new 

time scaling ( tτ β= ⋅ ), is defined by Eq. (7). 
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For example, consider the lateral speed ( y& ) of the bicycle 

model. In this case, 1q =  and U Ut
L L

τ β= ⋅ ⇒ = . And since 

( ) y
L

weyy ⋅== 1,,DΓ , the derivative can be transformed as:  
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4.3 Dimensional Transformation of State, Output and 
Input Vectors 

The dimensional transformation of a vector is determined 
by applying the transformation of component variables to each 
element of the vector. The focus of this paper is on the three 
vectors, namely: state, output and input vectors. This 
transformation can be compactly represented by Eq. (8). 
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where, xM , 
yM  and uM  are the state, output and input 

transformation matrices. For example for the bicycle model, 
these transformation matrices are given by Eq. (9). 
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(9) 

4.4 Dimensional Transformation of System Models 
 The transformation of system models is finally summarized as 
follows: Given a general plant model ⎥

⎦

⎤
⎢
⎣

⎡
≡

DC
BA

G  expressed in 

the dimensional domain with x , y  and u  as the state vector, 
output vector and input vector, respectively. The dimensional 
transformation to an equivalent representation, ⎥

⎦

⎤
⎢
⎣

⎡
≡

DC
BA

G  

expressed in the dimensionless domain with x , y , u  and β  as 
the new state vector, output vector, input vector and a new time 
scaling (i.e., tτ β= ⋅ ),  respectively, is as defined as:  
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For a control system, the above transformation can be adopted  
to controller dynamics keeping in mind the input to a controller 
is an output from the plant and the output from the controller is 
an input to the plant. More specifically, the transformation is 
given by Eq. (11). 
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with xkM  being the state transformation matrix of the controller 
state vector and is expressed as: 
 

⎥
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x
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where, xM  and xkwM  are the state transformation matrices of 
the plant state vector and state vector of the control weights, 
respectively.  

For the bicycle model, the system is transformed using the 
tools discussed above. The resulting system matrices of the 
dimensionless representation are given by Eq. (13). 
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with 1p , 2p , …, 6p  as defined in Eq. (14).  
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5. THE ROBUST CONTROL SYSNTHESIS AND 
IMPLEMENTATION 

In order to perform the robust control synthesis, the 
dimensionless system needs to be represented in LFT form. 
This form basically separates the nominal model from the 
uncertainty. The nominal model is determined from Fig.  4 and 
is given by Eq. (15).  
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Fig.  4: Block diagram representation of the LFT dimensionless 

bicycle model 

The nominal values of the parameters 
1 6p p−  in this model 

are obtained by using means of the pi-parameters calculated for 
many different passenger vehicles [7, 14]. 

The uncertainty block that relates the disturbances 
[ ]1 6

Tz z=z K  and [ ]1 6
Tw w=w K is a diagonal and given 

by Eq. (16).  
 

( )1 2 3 4 5 6p p p p p pdiag δ δ δ δ δ δ⎡ ⎤∆ = ⎣ ⎦   (16) 

5.1 The H∞ Synthesis 
The controller synthesis is performed using the H∞  control 
synthesis. The design criteria are as follows: 
• Robust stability for all π  variations 0.2iπδ ≤ . The bound 

on π  parameters is chosen such that it covers variations in 
parameters of many passenger vehicles as shown by 
statistical distribution in [7, 14].  

• Robust performance: 
o For an impulse lateral force, the unitless lateral 

displacement should be less than 0.15m/m and a 
unitless settling time less than 8 sec/sec. Also the 
control action should have its magnitude less than 0.2 
rad (~ 11.5o),  

o For an impulse yaw moment, the yaw angular 
displacement should be less than 0.2 (~ 11.5o) and a 
unitless settling time less than 8 sec/sec. Also the 
control action should have its magnitude less than 0.2 
rad (~ 11.5o). 

The simulated response to an impulsive lateral force and 
yaw moment are given by Fig. 5 and Fig. 6 respectively. In 
both cases the above requirements are met. 
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Fig.  5: Response to an impulsive lateral force: (top) lateral 

position, (bottom) control action. 

 

 
Fig.  6: Response to an impulsive moment: (top) yaw angle, 

(bottom) control action. 

5.2 The µ-Synthesis/Analysis 
The uncertainty block in this problem clearly shows that it 

has a diagonal structure and the H∞  controller designed in the 
previous section is expected to be conservative as it doesn’t 
account for the structure of the actual uncertainty. Therefore, 
another synthesis approached that takes into consideration the 
structure of the uncertainty, known as the µ -synthesis may be 
necessary depending on the results of the µ -analysis. A µ -
analysis performed on the above H∞  controller to decide if µ -
synthesis is necessary. The results show that it’s not required as 
the structured and unstructured singular values have close 
values. A summary of the analysis result is given in Tab. 2.  

 
 
 
 

 Robust 
stability 

Robust 
stability/Nominal 

performance 
H∞ Norm 0.671 1.012 

µ -upper bound 0.628 0.748 
µ -lower bound 0.627 0.705 

Tab. 2: Summary dimensionless parameters and signals of the 
bicycle model 

5.3 Experimental implementation 
The proposed technique is tested using a 1/5th scaled vehicle 

on a rolling roadway simulator shown in Fig.  7. The vehicle 
has been designed such that dimensionless tire and inertial 
properties at the speed of operation match those of a full size-
vehicle at 15 m/s. The controller is implemented using 
SIMULINK and compiled using real time workshop with 
hardware target. The dimensionless controller designed for a 
generalized vehicle is transformed to dimensioned form by 
applying the inverse of the transformations of Eq. (6) and (7) 
using the mass, length, and velocity scaling factors specific to 
the scale vehicle (Step 3 of Fig. 2). 

 

 
Fig.  7: The scaled vehicle and rolling roadway simulator. 

The vehicle is equipped with a steering actuator and 
position sensors. The position and orientation of the vehicle is 
measure indirectly using a linkage with encoders located at 
each joint. The position and orientation are calculated from the 
encoder readings and the dimensions of the linkage. 

Two scenarios were considered in both the numerical and 
experimental cases: 1) driving with smooth lane change and 2) 
driving under sudden lane change and maneuvering. The first 
operation resembles the normal driving condition on highways 
and city where lane-change is done merely to overtake slow 
vehicles on a lane. The performance of the controller on the 
nominal plants is considered effective as shown in Fig.  8. In 
the second scenario, the controller performance under sudden 
change of lane is evaluated. Sudden change of lane usually 
occurs in avoiding accidents that happen instantly in front of 
the vehicle or sudden change of mission, in the case of high 
performance vehicles: such as military vehicles, that required a 
maneuvering to suddenly change in position. This scenario is 
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an extreme case and is the most critical to evaluate the 
performance of the robust controller. Fig.  9 show the response 
to the driving condition under sudden change of lane. 
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Fig.  8: Response to driving under smooth lane changing. 
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Fig.  9: Response to driving under sudden lane changing. 

 
The performance of the controller in both scenarios is 
compared to the experimental results of the scaled vehicle. 
Note that the controller is universal in the sense that it was 
NOT designed for the scale vehicle. Instead, it is designed for 
many vehicles within the family of passenger vehicles in the 
dimensionless domain, and the resulting dynamic controller is 
re-scaled as needed to various vehicles of different sizes. 
Therefore, if one wants to test it on another vehicle in the 
family, say a bigger vehicle, one has to transform only the 
controller based on the parameters of the new vehicle. To use 
wording that parallels “gain-scheduling”, this method is “plant-
scheduling” a robust controller from one size vehicle to 
another; the universal controller is parametrically adapted to 
every vehicle in the family. 

 

6. SUMMARY 
The paper focused on the development of a technique for 

robust control and experimental implementation using the 
design of a robust vehicle autopilot as an example. The design 
and dimensional transformation process was discussed and the 
effectiveness of the method as an alternative approach to 
conventional simultaneous stabilization control. The 
effectiveness of the controller was demonstrated both 
numerically and experimentally. By use of dimensional scaling, 
the controller synthesis accounts for much of the general 
coupling between the parameters. Significant parameter 
variation from systems of widely different sizes is accounted 
for by transforming the controller back to the dimensioned 
domain through dimensional transformations specific to each 
system.  
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