
   
Abstract— This work presents results of an ongoing 

investigation into models and control strategies suitable to 
prevent vehicle rollover due to untripped driving maneuvers.  
For use as a design model for controller synthesis, low-order 
models are sought that have sufficient complexity to 
characterize a vehicle’s roll behavior, yet are not unnecessarily 
complex or nonlinear. To compare different low-order models 
found in literature, this work investigates the validity of several 
roll dynamic models by comparing model prediction to 
experiment in both the time and frequency domains. Discussion 
is also given on methods for parametric fitting of the models 
and areas where significant model error is observed.  
 

Index Terms—Vehicle rollover, vehicle dynamics, modeling 
of dynamic systems 

I. INTRODUCTION 
ccidental death due to motor vehicle accidents claim 
over 1.2 million life-years of unlived life each year, and 

is the largest premature death factor for those under the age 
of 65 [1]. Vehicle accidents are the single largest cause of 
fatalities for males 44 years and under and for females 34 
years and under [2]. These deaths are sudden, and often 
strike when a person is at the peak of both their professional 
and personal/family life.  

Among the myriad causes of vehicle accidents, rollover 
stands out as an area deserving of particular focus. While 
vehicle rollover is involved in only 2.5% of the 11 million 
accidents a year, it accounts for approximately 20% of all 
fatalities [3].   

To study rollover, the National Highway Traffic Safety 
Administration (NHTSA) has developed a number of 
transient maneuvers that are observed to induce untripped 
wheel lift or even untripped vehicle rollover in some vehicle 
models [4, 5]. While this experimental approach is 
unarguably valid for illustrating shortcomings in vehicle 
behavior, the method does have shortcomings. In particular, 
it is difficult to definitively establish from only a very small 
subset of tests whether or not roll safety is ensured over all 
possible transient maneuvers. Additionally, experimental 
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results do not directly translate into a vehicle model suitable 
for rollover mitigation through feedback control. Both 
factors highly motivate the development of vehicle roll 
models. 

In considering the choice of which roll dynamic model to 
use, the choice of complexity in the model should match 
well with the intended use of the model. This study is 
focused on finding dynamic models that are well suited to 
the design and implementation of online, real-time 
controllers to prevent the onset of rollover. A goal of this 
work and particular departure from previous studies is to not 
only understand and validate the linear vehicle dynamics of 
roll behavior, but also to understand the relative impact of 
various assumptions in creating the vehicle models to ensure 
the use of the simplest model possible in later controller 
synthesis. 

The remainder of the paper is organized as follows: 
Section 2 presents preliminaries on nomenclature and model 
formulation. Section 3 presents several models that will be 
compared in this study. Section 4 discusses how the inertial 
parameters of the models were obtained. Section 5 discusses 
experimental fitting of linear tire parameters. Section 6 
details modifications to the linear tire to account for camber. 
Section 7 presents dynamic model fits. Conclusions 
summarize the main points. 

II. PRELIMINARIES 
The following notation is used for each of the models 

described in this work: 
 U  Longitudinal velocity (body-fixed frame) 
 m, ms  Vehicle mass and sprung mass respectively 
 Ixx, Iyy, Izz  Inertia about roll (X), pitch (Y),vertical (Z) axis 
 Ixz  Inertia product 
 lf, lr  Front- and Rear-axle-to-CG distances 
 L  Track of vehicle (lf + lr) 
 Kφ  Effective roll stiffness of the suspension 
 Dφ  Effective roll damping of the suspension 
 h   height from roll axis to CG 
 

fα , rα   Slip angle of the front, rear tires 

 β  Slip angle of the vehicle body 
 Cf, Cr  Front, Rear cornering stiffness 
 

fδ   Front steering angle 

For ease of comparison model to model, each of the 
models is presented in a compact symbolic notation of the 
form: 
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(1) 
where i denotes the model number (1 to 4 for this study), 
and 

 { }Tyq φψ=  (2) 
which denotes the lateral position, yaw angle, and roll angle 
respectively. The input to the model, 

 { }T
rf FFu =  (3) 

denotes the front and rear lateral tire forces respectively. The 
general MDK form described by Eq. (1) allows for an 
intuitive term-by-term comparison between different 
models.  Further, this MDK form can be readily transformed 
to the general state-space form of: 

 uBxA
dt
dx ⋅+⋅=  (4) 

with the state vector, 
 [ ]φφ &rVx =  (5) 

representing lateral velocity, yaw rate, roll angle and roll 
rate respectively.  The transformation from MDK form to 
state space is given by the following. Let: 
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and define, 
 ( ) 43 IRIMRE T +⋅−⋅=  (7) 
where nI represents the identity matrix of size n. Then the 
state-space matrices A and B are obtained from matrices M, 
D, K and F as: 
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The state-space form more conveniently allows numerical 
simulation and model comparisons used in later sections. 

III. VEHICLE MODELS 
A search of recent literature found over two dozen unique 

vehicle models inclusive of roll dynamics, but of these, only 
a few are chosen for further analysis. Considerations used to 
eliminate certain models are detailed in previous work (see 
[6]), but the main criteria are based primarily on model 
complexity, whether or not the model had been validated 
experimentally by the authors of the model, and how easily 
model parameters can be measured or inferred.  

To emphasize the similarity between the models used in 
this study, each is presented in the same coordinate system 
regardless of the coordinate system used in the original 
publication of the model [7-9]. Herein they all follow the 
SAE right-handed sign convention shown in Fig 1.  

 For brevity, details of each model derivation have been 
omitted from this work, but further details can be found in 
the original publications [7-9] and in previous work [6]. A 
discussion of the notable similarities and differences 

between the different models can be found in [6].  
 

 
Figure 1: SAE Coordinate System 

 

A. Model 1 - 3DOF Model Assuming Existence of Sprung 
Mass and No X-Z Planar Symmetry 

 The most complex model considered in this work is 
derived by assuming a sprung and unsprung mass, and 
assuming the unsprung mass has a non-symmetric mass 
distribution about the x-z plane. It is motivated by the model 
presented by Mammar et. al. [10]; further details and 
assumptions are listed therein. Following the MDK form 
specified earlier, the MDK matrices are given by:  
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B. Model 2 - 3DOF Model Assuming Existence of Sprung 
Mass and  X-Z Planar Symmetry 
A common assumption in the above model is that the 

vehicle is symmetric about the x-z plane, thus making Ixz 
zero and eliminating all cross terms. An example of this is 
presented by Kim and Park in [8]. In presenting this model, 
some authors absorb the suspended mass term, mgh, in the 
(3, 3) element of the K matrix, into the roll stiffness. For 
example, Kim and Park cited above make this assumption. 
Placing the equations of motion into the form specified by 
Eq. (1), the damping, stiffness, and force matrices remain 
the same,  

 121212 ,, FFKKDD ===  (13) 
while the mass matrix becomes: 

fuFqKqDqM ⋅=⋅+⋅+⋅ &&&
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With the assumption of a symmetric mass distribution, the 
yaw dynamics are not directly coupled to the roll and 
sideslip dynamics in the MDK form. In state-space, they can 
only be coupled through the inversion of the mass matrix, 

1−E , and through the tire forces, if these forces are 
dependent on roll. 

C. Model 3 - 3DOF Model Assuming Sprung Mass Only  
In addition to the assumptions given previously, it is 

sometimes assumed that the entire mass of the vehicle is 
concentrated at the sprung mass. The paper by Carlson et. al 
[7] uses this assumption. To modify previous models to 
express this assumption, the unsprung mass is made zero 
and the sprung mass is made equal to the total mass of the 
vehicle. The resulting MDK matrices are: 
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The F and K matrices are unchanged, e.g.  
 2323 , FFKK ==  (17) 

D. Model 4- 2DOF Model Assuming No Roll Dynamics 
Finally, if one assumes that the sprung mass height is zero, 

the roll dynamics are completely eliminated because there is 
no longer any coupling from yaw or lateral velocity into roll. 
Without this coupling, there is no energy input to the roll 
model other than initial conditions. This assumption 
produces the well-known “bicycle model” which describes 
the vehicle’s planar dynamics [11]. 
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Again, the F matrix is unchanged: 
 34 FF =  (21) 

While this model does not include any roll dynamics and 
only exhibits lateral and yaw dynamics, it is included in this 
work because bicycle model parameters are used in all other 
models. It is therefore important to consider this model in 

order to find or fit chassis parameters for models 1-3. 

IV. OBTAINING VEHICLE INERTIAL PARAMETERS 
To analyze validity of the models to describe vehicle 

chassis behavior, experiments were performed on a 5-door 
1992 Mercury Tracer station wagon available at Penn 
State’s Pennsylvania Transportation Institute test track. A 
significant improvement over previous work is that this 
study was conducted using Novatel’s GPS/INS “SPAN” 
system. This GPS/INS system is based off two Novatel 
OEM4 dual frequency GPS receivers and the Honeywell 
HG1700 military tactical-grade IMU.  This combination can 
provide estimates of position, velocity and attitude at rates 
up to 100Hz.  In differential carrier phase fixed-integer 
mode and with continuous presence of GPS data, the system 
achieves a position solution with an accuracy of 2 cm. 
Attitude can be estimated with a 1-sigma accuracy of 0.013 
degrees for roll, 0.04 deg for pitch and 0.04 degrees for yaw. 
All velocity errors are 0.007 m/s (one sigma) [12]. 

Many of the inertial parameters appearing in models 1-4 
are easily measured or obtained from the National Highway 
Traffic Safety Administration database [13]. The table 
below presents these parameter values, units, and their 
source.  

 
Estimates of sprung mass, ms, were obtained by 
approximating the sprung mass as 0.8 times the total mass. 
The CG height was found to be 0.25 meters above the roll 
axis. The roll axis was found by video-taping the vehicle 
undergoing a rocking motion from the front and rear, 
determining the center of rotation at the front and rear axles, 
then using similar triangles to determine the axis of rotation 
at the center-of-gravity of the vehicle. Note that the sprung-
mass height above the roll-axis  is not the height of the CG 
above the road surface reported by NHTSA, 0.52 meters for 
this vehicle. 

V. FITTING BICYCLE MODEL TIRE PARAMETERS 
Several model parameters, especially the tire cornering 

stiffnesses, require experimental fitting and careful 
consideration of the tire’s impact on the model behavior. 
The models presented in this study lump right- and left-side 

Table 1: Inertial parameter values      
 Variable Value Units How obtained 
 m 1030 kg Measured 
 ms 824 kg Estimated 
 Wf 6339 N Measured 
 Wr 3781 N Measured 
 lf 0.93 m NHTSA* 
 lr 1.56 m NHTSA* 
 L 2.49 m Calculated 
 h 0.25 m Measured  
 Izz 1850 kg-m2 NHTSA* 
 Iyy 1705 kg-m2 NHTSA 
 Ixx 375 kg-m2 NHTSA 
 Ixz 72 kg-m2 NHTSA 
*measurements were also made and these confirmed the NHTSA 
value to within a few percent 



lateral tire forces to a single force on the front and rear 
axles,

fF  and rF . This single-wheel representation of a two-

wheel axle is why the bicycle model is so named. Further, it 
is assumed that the lateral forces acting on each tire are 
directly proportional to the tire slip with proportionality 
constants on the front and rear tires of 

fC  and rC  

respectively: 
 ,, rrrfff CFCF αα ==  (22) 

The slip angles, 
iα , are defined as the angle between the 

tire’s orientation and the velocity vector of the center of the 
tire:  
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The simplifying assumptions made for Eqs. (23) and (24) 
are that the slip angles are small enough to allow a linear 
approximation and that right- and left-side differences in tire 
forces are negligible. With these assumptions, the tire forces 
can be written as: 
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Longitudinal forces acting upon the tires are assumed to be 
zero, and longitudinal velocity, U, is assumed to be constant.  

The resulting expressions, when substituted into models 
1-4 above, predict linear models. However, it is well known 
that the linearity assumption is violated under aggressive 
maneuvering. Others have noted that if the lateral 
acceleration remains below 0.4 g’s, then assumptions of 
linearity appear to hold (many cite [14] as support).  
Therefore, care was taken in all testing to ensure that the 
experiments were conducted at lower accelerations. 

To test whether or not linearity is actually preserved in the 
measured data, two frequency responses were conducted on 
the vehicle: one for steering inputs of small amplitude (1/4 
rotation of the hand wheel) and one for large amplitudes 
(slightly less than 1/2 rotation of the handwheel). The 
resulting Bode plots are overlaid and shown in Figs. 1 and 2 
below for the two states of the bicycle model, yaw rate and 
lateral velocity recorded at a speed of 25 mph. The linearity 
of the models is evident. 

To find the cornering stiffnesses, two methods were used 
that are both based on steady-state data. Steady-state data 
was chosen since these data should be least influenced by 
model-to-model differences in high-order dynamics. The 
first fitting method attempts to match the DC gains of the 
sinusoidal frequency responses of Figs. 1 and 2. The second 
method is based on matching measured responses from 
steady-state turning around a skid-pad circle. Each is 
detailed below. 

 
 

Figure 1: Frequency Response, Steering Input to 
Lateral Velocity  

 

Figure 2: Frequency Response, Steering Input to 
Yaw Rate,  

 
From the state-space form of Eq. (4), the DC gains, G , of 

the bicycle model from steering input to state output are 
given by: 
 BCADG 1−−=    (28) 
For lateral velocity, V, this DC gain was parametrically 
solved to be: 
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and for yaw rate, r: 
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The numerical values of VG and rG  can be read from Figs. 1 
and 2 as 3.804 m/s lateral velocity per radian of steering 
input and 3.599 rad/sec yaw rate per radian of steering input, 
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respectively. Rearranging the above equations, one can 
directly solve for cornering stiffnesses after substitution of 
known vehicle parameters:  
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These values, when substituted into the bicycle model, did 
appear to match the measured sinewave time responses 
obtained in conducting the frequency responses. 
Additionally, it appeared to match maneuvers that did not 
excite significant roll, e.g. lane changes and the like. 
However, the model had a very poor fit for vehicle response 
data collected during steady-state turning on the skid pad. In 
an attempt to reconcile steady-turning data, a method was 
sought to determine cornering stiffness values for this data 
alone.  
 For steady-state turning around a constant radius circle, 
the side-slip, UV /=β ,  measured at the center-of-gravity 
of the vehicle is given by [15]: 
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 The side-slip is clearly dependent on speed and radius of 
the turning circle. This therefore suggests a method to 
determine the rear cornering stiffness: measure side slip on 
the vehicle and slowly increase the vehicle speed traversing 
a steady circle to the point where side slip becomes zero. At 

0=β , the above expression gives the cornering stiffness as: 
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Note that this expression is independent of the radius of the 
turn. Fig. 3 below shows data collected during one of many 
maneuvers to determine the speed at which zero sideslip 
occurred. Repeated measurements showed that zero sideslip 
occurred for this vehicle around 14.1 m/s. Using values 
measured for the vehicle, the calculated rear cornering 
stiffness was found to be radNCr /300,49−= . 

 The front cornering stiffness can be found using the 
relationship at steady state between steering input and front 
and rear cornering stiffness: 
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For the sideslip maneuvers as shown in Fig. 3, the average 
steering input, 

fδ , during the point at which sideslip passed 

through zero were approximately 0.0830 rad of front wheel 
angle. This gives an approximate value of 

radNC f /700,57−= . 

 

 
Figure 3: Using the zero-sideslip condition to measure 

cornering stiffness 
 
 The understeer gradient can also be used to find the front 
cornering stiffness from Eq. (34):  
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Measurements of the understeer gradient can be obtained by 
plotting steering input versus lateral acceleration as shown 
in Fig. 4 below. Using these results, an understeer gradient 
was found to be 016.0=usK . This gives a front cornering 
stiffness value of radNC f /400,68−= which is roughly 

15% different from the previous value. 



 
Figure 4: Steady state steering measurements measured as a function of 

lateral acceleration for two different radii turning circles along 
two different directions, clockwise and counter-clockwise. 

 
 When comparing the cornering stiffness values obtained 
from the steady-state circle methods to the steady-state circle 
time responses, the agreement was good. However, the same 
cornering stiffness values poorly matched the frequency 
response data. With these observations, it was inferred that 
another mechanism to produce tire force was occurring only 
during steady turning. Therefore, the model for tire force 
generation was revisited. 

VI. TIRE MODELS WITH CAMBER 
The previous analysis suggests that there is a significant 

tire force generation mechanism that is dependent on 
whether or not the vehicle is in a steady turn. One possible 
explanation for this behavior is that the tire model is 
dependent on the vehicle’s roll angle, an inference supported 
by the work of others. For example, in the reference [8],  
Kim and Park introduce a incremental change in force on the 

tire model in the form of φ
φ

α
∂

∂ f . This effect is commonly 

known as “roll steer” and is usually assumed to be a 
constant value when the amount of tire slip is small.  
According to [8], the magnitude of the coefficient for the 
front tires was 0.2, and -0.2 for the rear tires. 

To find the roll-steer parameters for this study, it appears 
that one must simultaneously solve for four parameters – 
two cornering stiffnesses and two camber coefficients – to 
match the measured steady-state data. However, here it is 
assumed that the cornering stiffnesses obtained by matching 
the frequency responses are not greatly influenced by tire 
camber due to the very low roll angles exhibited at low 
frequencies. Therefore, one only needs to consider the 
turning circle data to measure the influence of tire camber. 

 
To experimentally obtain parameters representative of tire 

camber, the following procedure is utilized. First, the tire 

forces are assumed to depend on roll by the following 
relationship: 
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where fwφ and rwφ are the camber angles of the front and 

rear tires, and 
fCφ
 and 

rCφ
 are the proportionality constants 

representing the change in tire force as a function of roll 

angle, 
φφ ∂

∂
= f

f

F
C , etc. Now define the change in wheel 

camber angle as a function of the entire vehicle’s roll angle 
via a proportionality constant, S: 
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The steady-state roll angle of the vehicle for a constant 
velocity, constant radius turn, vφ , is solved by moment 
balance: 
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A steady-state force balance for a vehicle traversing a 
steady-state turn gives the following slip angles: 
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which can be more compactly represented as: 
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with 
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The steady-state steering input necessary to traverse a 
constant radius turn at constant speed is therefore given by: 
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which allows one to solve for the steady-state steering gains 
for a constant velocity, constant radius turn.  
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and 
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The steady-state values of these two transfer functions are 
easily obtained using the turning data. This allows the values 
of *

fC and *
rC  to be directly calculated since all other 

parameters are known. 

VII. DYNAMIC MODEL FITTING 
 In previous work [6], examination of the phase lag 
observed in the frequency response data showed that a 
model of tire lag was necessary to obtain a reasonable model 
fit. The tire-lag phenomenon is commonly modeled as a 
first-order system with zero steady-state gain [16].  In 
previous work [6], a first-order tire lag model was 
introduced on the front steering input. After consultation 
with the authors of [7] and reviewing [11, 17], the following 
model of tire lag was used which considers tire lag as a 
function of tire slip on the front and rear tires: 
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The best fits were obtained with a tire lag value of sigma = 
0.8 for front and 0.6 for rear, but difference between these 
and an average value of 0.7 were minor. The above tire-lag 
model is used hereafter for all tire force calculations.  

A. Frequency Response Tests – Roll Model Fit 
The two parameters that remained to be estimated for roll 

model fitting were Kφ and Dφ.  To accomplish this, these 
parameters were varied manually until the models best 
matched the frequency response data. The resulting 
frequency-domain fits are seen in Figs. 5-7, where both 
experimental data and model are shown. The data was 
collected at 25 mph. 
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Figure 5: Frequency Resp. Steering Input to Lateral 

Velocity 
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Figure 6: Frequency Resp. Steering Input to Yaw Rate 
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Figure 7: Frequency Resp. Steering Input to Roll Angle 

Several points are evident from the above plots:  
1) There is little difference between the models. Errors due 

to parameter-fitting seem to be larger than model-to-
model differences. 

2)  The yaw rate and roll responses fit quite well. The lateral 
velocity has relatively large errors in fit, particularly 
around the roll dynamic frequencies. 

3) The inclusion of asymmetry in the inertia appears 
unnecessary and perhaps detrimental to the model fit 

B. Time Response Tests 
In order to obtain a more intuitive understanding of the 

model fit obtained by the frequency response tests, time 
response data were also taken. Shown in Figs. 8-10 are state 
responses during a representative lane-change at 25 mph.  

Both the frequency and time-domain responses showed 
that the predicted yaw response of all of the models is nearly 
identical.   

A noticeable discontinuity is visible in the yaw rate 
response. After inspection of the raw yaw data, delays were 
observed on one-second intervals which correspond to both 
the SPAN system’s internal Kalman filter updates and the 
differential corrections from the GPS base station. 
Investigation is ongoing to find the exact source and 
solution to this error.  
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Figure 8: Lane Change Lateral Velocity Response,  
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Figure 9: Lane Change Yaw Rate Response 
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Figure 10: Lane Change Roll Response 

VIII. CONCLUSIONS 
An overview of ongoing work to model and validate 

vehicle roll dynamics was given.  Several models of 
behavior are considered, each with different assumptions on 
vehicle behavior.  Experimental measurements show good 
agreement with these simple models, but also show that 
model-to-model differences in vehicle behavior are not very 

significant. In fact, these differences appear less significant 
than errors observed in parameter fitting.  

Further work is currently under way to better verify 
vehicle parameters and to obtain improved models of 
vehicle behavior. One evident shortcoming in the approach 
used thus far is the requirement that all of the models be 
linear.  Herein lies a significant difficulty in model-based 
rollover prediction and model-based controller synthesis to 
prevent vehicle rollover: while linearity greatly simplifies 
controller design, the limit handling maneuvers that 
ultimately induce rollover nearly always involve large tire 
forces and tire saturation. However, prior to examining non-
linear models and control schemes, it is important to fully 
understand and control vehicles dynamics in the linear 
range.  
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