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ABSTRACT 
This work presents “lessons learned” from an ongoing 

experimental and simulation investigation of vehicle chassis 
motion in yaw, sideslip, and roll. In particular, low-order 
models and parameter fitting methods are examined to 
illustrate how different combinations of maneuvers and 
algorithms can generate inconsistent estimates of key model 
parameters, particularly cornering stiffness. The key 
contribution of this study versus that of previous work [5] is 
the discovery of the source of estimation discrepancies 
including tire camber effects and terrain influences. Methods 
to remove both effects are proposed and demonstrated. The 
resulting roll- and terrain-corrected model fits show a 
significantly improved fit in the frequency domain and 
outstanding fit in the time domain. 
 
INTRODUCTION 

Accidental death due to motor vehicle accidents claim 
over 1.2 million life-years of unlived life each year, and is the 
largest premature death factor for those under the age of 65 
[1]. Among the myriad causes of vehicle accidents, rollover 
stands out as an area deserving of particular focus: while 
vehicle rollover is involved in only 2.5% of the 11 million 
accidents a year, it accounts for approximately 20% of all 
fatalities [2].   

Through repeated experimentation, the National Highway 
Traffic Safety Administration (NHTSA) has developed a 
number of transient maneuvers that can induce untripped 
wheel lift or even untripped vehicle rollover in some vehicle 
models [3, 4]. While this experimental approach is unarguably 
valid for illustrating shortcomings in vehicle behavior, the 
method itself has analytical shortcomings. In particular, it is 
difficult to definitively establish whether roll safety is ensured 
over all possible transient maneuvers. Additionally, 
experimental results do not directly translate into a 
representative vehicle model suitable for rollover mitigation 
through feedback control. Both factors highly motivate the 
development of dynamic vehicle models. 

In selecting a dynamic model, the complexity should 
match well with the intended use. This study focuses on 
suitable models for control synthesis. Hence, the objective is 
to determine the modifications necessary to improve the 

accuracy of low-order dynamic models without increasing 
their complexity. 

This work continues a previous study examining 
modifications to the basic “bicycle model” permitting 
prediction of a vehicle’s yaw, sideslip, and roll behavior 
during transient maneuvers. This earlier work [5] found that,  
when fitting parameters for the well-known bicycle model, 
different combinations of driving maneuvers and algorithms 
can generate inconsistent estimates of cornering stiffness.  

Until the present study, the mechanisms causing such 
inconsistency were not identified. The remainder of the paper 
is organized as follows: Section 2 presents preliminaries 
including nomenclature and model formulation. Section 3 
introduces the planar bicycle and Section 4 discusses past 
efforts to determine tire parameters [5], specifically how these 
methods lead to inconsistencies in cornering stiffness 
estimates. Section 5 traces the source of these inconsistencies 
to an influence of vehicle roll on tire force, even for very small 
slip angles. Section 6 discusses terrain influence and how this 
can be removed by data pre-processing. Section 7 extends the 
model further to allow prediction of roll. Section 8 
summarizes the results by showing the improvement in model 
fits to experimental data recorded in the frequency and time 
domains. Conclusions then summarize the main results.  
 
PRELIMINARIES 

The following notation is used for parameters in several 
of the models described in this work: 
 
TABLE 1. NOMENCLATURE USED IN DYNAMIC MODELS 

U  Longitudinal velocity (body-fixed frame) 

smm,  Vehicle mass and sprung mass respectively 

zzyyxx III ,,  Inertia about roll (X), pitch (Y), yaw (Z) axes 

xzI  Inertia product 

rf ll ,  Front- and Rear-axle-to-CG distances 
L  Track of vehicle ( rf ll + ) 

φK , φD  Effective roll stiffness, damping of the suspension 
h  Height from roll axis to CG 

rf αα ,  Slip angles of the front, rear tires 
β  Slip angle of the vehicle body  at the CG 

rf CC ,  Front, Rear cornering stiffness 
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For ease of comparison model to model, each of the models is 
presented in a compact symbolic notation of the form:  
 

fM q D q K q F u⋅ + ⋅ + ⋅ = ⋅                         (1) 

and  
{ }Tq y ψ φ=                  (2) 

 
which denotes the lateral position, yaw angle, and roll angle 
respectively. The input to the model,  
 

{ }T

f ru F F=    (3) 

 
denotes the front and rear lateral tire forces respectively. The 
general MDK form described by Eq. (1) allows for an intuitive 
term-by-term comparison between different models and is 
easily transformed to standard state-space representation using 
transformations in presented in the authors’ previous work [5]. 
 
PLANAR VEHICLE MODEL 

The majority of roll models presented in the current 
literature, and all of the models presented in this paper, are 
modifications of the well-known “bicycle model.” The only 
driver input considered in this constant-velocity model are 
changes in the front steering input, 

fδ . While the bicycle 
model is a planar representation of a vehicle that ignores roll 
dynamics, the parameters used in the bicycle model are also 
commonly used in roll dynamic models [6]. This work uses 
SAE coordinates [11], shown in Fig. 1.   
 

 
FIGURE 1: SAE COORDINATE SYSTEM 

 
Besides restricting the vehicle to planar motion, the 

derivation of the bicycle model also assumes that tire forces 
generated on the right side of the vehicle are equal to those 
generated on the left side of the vehicle. This allows the 
vehicle to be represented as a 2-wheeled vehicle shown below.  

 
FIGURE 2: BICYCLE MODEL DIAGRAM 

 

Summing forces in the y-direction and summing moments 
around the z-axis results in the equations of motion in the form 
of Eq. (1) with the system matrices:   
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  (4)  

 
Detailed derivations of the bicycle model are presented in 
almost every vehicle dynamics text, including [7-10], and the 
reader is referred to these for additional detail. 

 
Obtaining Vehicle Inertial Parameters 

To analyze the ability of the models presented in this 
paper to describe vehicle chassis behavior, experiments were 
performed on a 5-door 1992 Mercury Tracer station wagon 
available at Penn State’s Pennsylvania Transportation Institute 
test track. Data was collected using Novatel’s GPS/INS 
“SPAN” system [12], a GPS/INS system that is based off two 
Novatel OEM4 dual frequency GPS receivers and a 
Honeywell HG1700 IMU. This combination provides 
estimates of position, velocity and attitude at rates up to 
100Hz.  In differential carrier, phase-fixed, integer mode, and 
with continuous presence of GPS data, the system achieves a 
position solution with an accuracy up to 2 cm. Attitude can be 
estimated with a 1-sigma accuracy of 0.013 degrees for roll, 
0.013 deg for pitch and 0.04 degrees for yaw. All velocity 
errors are 0.007 m/s (one sigma). 

Many of the lumped inertial parameters appearing in the 
dynamic models herein are easily measured or obtained from 
the National Highway Traffic Safety Administration database 
[6]. The table below presents these parameter values for the 
test vehicle, their units, and their source.  

 
TABLE 2: INERTIAL PARAMETER VALUES 

 
An estimate of the sprung mass, ms, was obtained by 

approximating it as 0.8 times the total mass. The roll axis was 
found by video-taping the vehicle undergoing a rocking 
motion from the front and rear, determining the center of 
rotation at the front and rear axles, then using similar triangles 
to determine the axis of rotation at the center-of-gravity of the 
vehicle. The CG height was found to be 0.25 meters above the 
roll axis. Note that the sprung-mass height above the roll-axis 
is not the height of the CG above the road surface reported by 
NHTSA, 0.52 meters for this vehicle. 
FITTING BICYCLE MODEL TIRE PARAMETERS 

 Variable Value Units         How obtained 
 m 1030 kg          Measured 
 ms 824 kg          Estimated 
 Wf 6339 N          Measured 
 Wr 3781 N          Measured 
 lf 0.93 m         NHTSA* 
 lr 1.56 m         NHTSA* 
 L 2.49 m           Calculated 
 h 0.25 m          Measured  
 Izz 1850 kg-m2          NHTSA* 
 Iyy 1705 kg-m2        NHTSA 
 Ixx 375 kg-m2        NHTSA 
 Ixz 72 kg-m2        NHTSA 
*measurements were also made and these confirmed the NHTSA 
value to within a few percent 
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Several model parameters, especially the tire cornering 
stiffnesses, require experimental fitting and careful 
consideration of the tire’s impact on the model behavior. The 
models presented in this study lump right- and left-side lateral 
tire forces to a single force on the front and rear axles, fF  and 

rF . This single-wheel representation of a two-wheel axle is 
why the bicycle model is so named. Further, it is assumed that 
the lateral forces acting on each tire are directly proportional 
to the tire slip with proportionality constants on the front and 
rear tires of fC  and rC  respectively: 
 

,f f f r r rF C F Cα α= =                 (5) 
 

The slip angles, α , are defined as the angle between the tire’s 
orientation and the velocity vector of the center of the tire:  
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 (6) 

 
The simplifying assumptions made for Eq. (6) are that the slip 
angles are small enough to allow a linear approximation and 
that right- and left-side differences in tire forces are negligible. 
With these assumptions, the tire forces can be written as: 
 

 and f r
f f f r r

V l r V l rF C F C
U U

δ
+ ⋅⎛ ⎞ − ⋅⎛ ⎞= − =⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
 (7) 

 
Longitudinal forces acting upon the tires are assumed to be 
zero, and longitudinal velocity, U, is assumed to be constant.  

The resulting expressions, when substituted into the 
models presented, predict linear models. However, it is well 
known that the linearity assumption is violated under 
aggressive maneuvering [13]. Therefore, care was taken in all 
testing to ensure that the experiments were conducted at lower 
accelerations. 

To further test whether or not linearity is actually 
preserved in the measured data, two frequency responses were 
conducted on the vehicle. The first used steering inputs of 
small amplitude: 1/4 rotation of the hand wheel. The second 
used large amplitudes: slightly less than 1/2 rotation of the 
handwheel. During the steering inputs, the two states of the 
bicycle model, yaw rate and lateral velocity, were recorded. 
The vehicle was driven at a constant speed of 25 mph. The 
resulting Bode plots are both shown in Figs. 1 and 2 below.  
Both amplitudes of frequency response agree up to 
frequencies of 10 rad/sec, suggesting that the input-output 
response is approximately linear up to this frequency for input 
amplitudes smaller than half a rotation of the handwheel. 

To find the cornering stiffnesses, two methods were used 
that are both based on steady-state data. Steady-state data was 
chosen since it is least influenced by model-to-model 
differences of higher-order dynamics. The first fitting method 

attempts to match the DC gains of the sinusoidal frequency 
responses of Figs. 3 and 4. The second method is based on 
matching measured responses from steady-state turning 
around a skid-pad circle. Each is described below. 
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FIGURE 3: FREQUENCY RESPONSE, STEERING INPUT TO 

LATERAL VELOCITY  
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FIGURE 4: FREQUENCY RESPONSE, STEERING INPUT TO 

YAW RATE 
 

The DC gains, G , of the bicycle model from steering input to 
state output are given by: 
 

1G D CA B−= −    (8) 
 

Where A, B, C and D are the system matrices of the standard 
state-space form of  
 

DuCxy
BuAxx

+=
+=

   (9) 

 
For lateral velocity, V, this DC gain was parametrically solved 
to be: 

( )2

2 2 2

( ) ( )
( 2 ) ( )

f r r f f
V

f r r f f r f f r r

U C C l L C l m U
G

C C l l l l m U C l C l
⋅ ⋅ ⋅ + ⋅ ⋅

=
⋅ + + ⋅ ⋅ + ⋅ − ⋅

   (10) 

 
and for yaw rate, r: 
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2 2 2

( )
( 2 ) ( )

f r
r

f r r f f r f f r r

U C C L
G

C C l l l l m U C l C l
⋅ ⋅

=
⋅ + + ⋅ ⋅ + ⋅ ⋅ − ⋅

  (11) 

 
The numerical values of VG and rG  were read from Figs. 3 
and 4 as 3.804 m/s lateral velocity per radian of steering input 
and 3.599 rad/sec yaw rate per radian of steering input, 
respectively. Hence, there are two equations and two 
unknowns: the front and rear cornering stiffnesses. 
Rearranging the above equations, one can directly solve for 
cornering stiffnesses after substitution of known vehicle 
parameters:  
 

2( ) N-88,385 
( ) rad

f r
r

v r r

l m U G
C

G l G L
⋅ ⋅ ⋅

= =
− ⋅ ⋅

  (12) 

2

2 2

( ) N-83,014
( ) rad

r r r
f

r r r r f

U m G C lC
C U L G C L U m G l

− ⋅ ⋅ ⋅ ⋅
= =

⋅ ⋅ − ⋅ ⋅ − ⋅ ⋅ ⋅
  (13) 

 
These values, when substituted into the bicycle model, 

appear to match the measured sine wave time responses 
obtained while conducting the frequency responses. And, 
although the results are not shown, the model matched most 
time-domain maneuvers such as  lane changes. 

Surprisingly, the model had a very poor fit to steady-state 
turning responses measured on the skid pad. Fortunately, 
under the assumptions of the bicycle model, a constant turn 
steering maneuver can be used to determine cornering 
stiffness values. For example, steady-state turning around a 
constant radius circle, the side-slip, UV /=β , measured at the 
center-of-gravity of the vehicle is given by: 
 

2
r r

r

l W U
R C g R

β = +
⋅

  (14) 

 
The side-slip is clearly dependent on both speed and radius of 
the turning circle. This therefore suggests a method to 
determine the rear cornering stiffness: measure side slip on the 
vehicle and slowly increase the vehicle speed traversing a 
steady circle to the point where side slip becomes zero. At 

0=β , the above expression gives the rear cornering stiffness 
as: 
 

2r
r

r

WC U
l g

= −
⋅

                (15) 

 
Note that this expression is independent of the radius of the 
turn. Repeated measurements during steady-state circles of 
different radii and in opposing directions showed that the zero 
sideslip condition occurred repeatedly around 14.1 m/s. Using 
weight and length values measured for the vehicle and 
substituting these above, the calculated rear cornering stiffness 
was found to be radNCr /300,49−= . 

The front cornering stiffness can also be found the steady-
state vehicle response. At steady-state, the steering input and 
front and rear cornering stiffness are related by: 
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negative cornering stiffnesses). So: 
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=
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The average steering input, 

fδ , during the point at which 
sideslip passed through zero was approximately 0.0830 rad of 
front wheel angle. This gives an approximate value of 

radNC f /700,57−= . This is clearly in disagreement with the 
results of Equation (12) and (13). 

To investigate yet another means to determine the front 
cornering stiffness, the understeer gradient can also be used. If 
the rear cornering stiffness is known, the understeer is related 
to the front cornering stiffness by manipulation of Eq. (16):  
 

f r
f

r r us

W C
C

W C K
⋅

=
− ⋅

  (18) 

 
Measurements of the understeer gradient can be obtained by 
plotting steering input versus lateral acceleration as shown in 
Fig. 5 below. Using these results, an understeer gradient was 
found to be 016.0=usK . This gives a front cornering stiffness 
value of radNC f /400,68−=  which is roughly 15% different 
from the previous value. Again, this disagrees with previous 
values.  
 

 
FIGURE 5: STEADY STATE STEERING MEASUREMENTS 

VS LATERAL ACCELERATION FOR TWO DIFFERENT 
RADII TURNING CIRCLES  
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To understand the issue further, the bicycle model 
responses were compared to experimental data for the 
cornering stiffness values in each case. When comparing the  
cornering stiffness values obtained from the steady-state circle 
methods to the steady-state circle time responses, the 
agreement was good. However, the same cornering stiffness 
values poorly matched the frequency response data. These 
results can be summarized as the first lesson of this work: 

 
Lesson 1: The cornering stiffness parameter defining tire 
behavior is difficult to measure and may be fitted to 
different values depending on the maneuver used and/or 
the fitting technique employed. 
 
TIRE MODEL MODIFICATIONS 

To address the source of the parameter and fitting 
discrepancies, a further investigation into cornering stiffness 
values was initiated. Using data from steady state circle tests, 
the slip angle of the front and rear tire was calculated as was 
the force at each tire required to keep the vehicle moving in a 
steady state circle. The slip angles of each tire were plotted 
against the force for each axle. An example results for the rear 
axle is shown in Fig. 6.  

 
FIGURE 6. REAR TIRE SLIP ANGLE VS. REAR AXLE 

LATERAL FORCE 
 
The data shows a linear relationship throughout most of 

the range tested which is the basis of a linear tire model, but 
with two obvious deviations from linearity. First, away from 
the origin, the line fits for force are offset producing non-zero 
y-axis intercepts. Second, at very low slip angles, a nonlinear 
relationship between slip and tire force. Both observations 
suggest that other factors are influencing the force predictions.  

To investigate the source of this discrepancy, the tire 
force versus roll angle was compared as shown in Fig. 7 with 
tire force calculated from force and moment balance during 
the steady-state turn. 

 
FIGURE 7. VEHICLE ROLL ANGLE VS REAR TIRE 

LATERAL FORCE 
 

An interesting result was that a linear plot is produced for all 
values tested With these observations, it was inferred that 
another mechanism to produce tire force was occurring during 
steady turning that is strongly dependent on roll angle. 
Therefore, the model for tire force generation was revisited. 
 
Lesson 2: Vehicle roll behavior can have a significant 
effect on tire force, especially at low lateral slip levels. 
 
Camber Influence in Tire Forces 

The previous analysis suggests that there is a significant 
tire force generation mechanism that is dependent on whether 
or not the vehicle has a roll angle. This inference is supported 
by Fig, 7 and the work of others. For example, in [14],  Kim et 
al introduced a incremental change in force on the tire model 

in the form of 
φ

φ
α
∂

∂ f

. This effect is commonly known as “roll 
steer” and is usually assumed to be a constant value when the 
amount of tire slip is small. 

If the previous analytical methodology is applied to find 
the roll-steer parameters for this study, one discovers that two 
equations must be used to solve for four parameters – two 
cornering stiffnesses and two camber coefficients – to match 
the measured steady-state data. To make the problem solvable, 
one can note that the roll angles measured on a vehicle for 
very low frequency sine wave steering inputs are quite small. 
Therefore it can be  assumed that the cornering stiffnesses 
obtained by matching the frequency responses are not greatly 
influenced by tire camber at low frequencies. Therefore, one 
only needs to consider the turning circle data to measure the 
influence of tire camber. 

To experimentally obtain parameters representative of tire 
camber, the following procedure is utilized. First, the tire 
forces are assumed to depend on roll by the following 
relationship: 

f f f f w f

r r r r wr

F C C

F C C
φ

φ

α φ

α φ

= +

= +
   (19) 

 
where wfφ and wrφ are the camber angles of the front and rear 
tires, and 

fCφ
 and 

rCφ
 are the proportionality constants 
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representing the change in tire force as a function of roll angle. 
Now define the change in wheel camber angle as a function of 
the entire vehicle’s roll angle via a proportionality constant, S: 
 

wf f v

wr r v

S

S

φ φ

φ φ

= ⋅

= ⋅
   (20) 

 
This constant encompasses linear effects due to suspension 
geometry, etc. for small rotations of the chassis. The steady-
state roll angle of the vehicle for a constant velocity, constant 
radius turn, vφ , is solved by moment balance: 

2
s

v
m Uh

K Rφ

φ = ⋅    (21) 

 
A steady-state force balance for a vehicle traversing a steady-
state turn gives the following slip angles: 
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             (22) 

 
which can be more compactly represented as: 
 

2 2
*

2 2
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with 

r
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f S
K

hmC
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K
hmC

C
φ

φ

φ

φ == **  and .  (24) 

The steady-state steering input necessary to traverse a constant 
radius turn at constant speed is therefore given by: 
 

2 2 2 2
* *1 1 fr

f f r
f r

llL mU U mU UC C
R C L R R C L R R

δ
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= − ⋅ − + ⋅ −⎢ ⎥⎢ ⎥
⎣ ⎦ ⎣ ⎦

 (25) 

 
which allows one to solve for the steady-state steering gains 
for a constant velocity, constant radius turn.  

 

2 2 2 2
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(27) 

 

The steady-state values of these two transfer functions are 
easily obtained using the turning data. This allows the values 
of *

fC and *
rC to be directly calculated since all other 

parameters are known. For the vehicle tested in this study, 
these values were found to be kgC f 50.119* −=  and 

kgCr 43.169* −= . 
 
Dynamic Tire Model 

In previous work, examination of the phase lag observed 
in the frequency response data showed that a model of tire lag 
was necessary to obtain a reasonable model fit [5, 15]. The 
tire-lag phenomenon is commonly modeled as a first-order 
system with zero steady-state gain [9, 16]. The following 
model of tire lag was used which considers tire lag as a 
function of tire slip on the front and rear tires: 

 
f f

f f f

r r
r r

dF V l rU C F
dt U

dF V l rU C F
dt U

δ
σ

σ

⎛ + ⋅ ⎞⎛ ⎞
= − −⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
⎛ − ⋅ ⎞⎛ ⎞= −⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

  (28) 

 
The best fits were obtained with a tire lag value of sigma = 0.8 
for front and 0.6 for rear, but differences between these and an 
average value of 0.7 were minor and so the average value is 
used hereafter.  
 
TERRAIN INFLUENCES  

Multiple trials of a lane change maneuvers revealed 
repetition in the discrepancies between the measured and 
predicted response from all roll models.  When looking at the 
error plots for the same lane change at various speeds, it 
became clear that the variations in measured data are due to 
changing terrain over which the lane change was performed. 
This was an unexpected result, especially since these 
maneuvers were performed on pavement that appeared level.  

To verify this hypothesized terrain-influence, cones were 
placed on the track to ensure repeatability of the maneuver, 
and the lane change was driven at 5 mph and then again at 25 
mph.  Data was collected during both runs and the roll data 
from the slow maneuver was converted to a roll vs. position 
table.  Roll data from the low speed was assumed to be due to 
terrain since roll dynamics were not excited in such a slow 
maneuver. The measured roll angle was then corrected for 
terrain influence by subtracting the low speed roll value 
corresponding to the same position as the high speed 
maneuver.   
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FIGURE 8: LANE CHANGE ROLL RESPONSE WITH AND 

WITHOUT TERRAIN COMPENSATION 
 
A comparison is shown in Fig. 8 between raw and terrain 
compensated vehicle responses. The profound influence of the 
terrain on model fit is clearly evident.    
 
Lesson 3: Even for seemingly “level” road conditions, 
terrain influence can produce easily measured errors 
between measured and model-predicted vehicle behavior. 
Subtraction of terrain influence can significantly improve 
model fit. 
 
ROLL DYNAMICS MODELS 

A search of recent literature found over two dozen unique 
vehicle models inclusive of roll dynamics. Considerations 
used to eliminate certain models from further study are 
detailed in previous work, but the main criteria were based on 
model complexity, whether or not the model had been 
validated experimentally by the authors of the model, and how 
easily model parameters can be measured or inferred [5, 15].  

The two roll models used in this study are commonly used 
in the literature and the model formulations were confirmed 
using both Newtonian mechanics and a Lagrangian approach. 
The Newtonian method utilized the free-body diagram shown 
in Fig. 9.  

 
FIGURE 9. ROLL MODEL DIAGRAM 

The results are similar to other published models, and 
have previously been compared to more complex models[5, 
14, 17, 18]. The differences between the two models arise 
from the assumptions made about vehicle behavior. The 
second model assumes that the weight of the sprung mass is 

distributed symmetrically about the x-z plane, while the first 
does not. Following the MDK form of Eq. (1), the MDK 
matrices for both models are given by the following: 
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And for the second model, which includes the above 
mentioned assumption, the matrices are identical except for a 
slightly different M matrix.  
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VALIDATION OF DYNAMIC MODELS 
Frequency Response Tests 

Only two new parameters were introduced in the 
modifications of the original “bicycle model” to account for 
roll dynamics: φK and φD . These parameters were varied 
manually until the models best matched the frequency 
response data. The resulting frequency-domain fits are seen in 
Figs. 10-12, where both experimental data and model are 
shown. The data was collected at 25 mph. 
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FIGURE 10: FREQUENCY RESPONSE, STEERING INPUT 

TO LATERAL VELOCITY 
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FIGURE 12: FREQUENCY RESPONSE, STEERING INPUT 

TO ROLL ANGLE 
 
The most notable comment about the above fits is that they are 
far better than previous work [5]. The only difference between 
this model and previous work is the inclusion of roll influence, 
since subtraction of terrain effect is not possible. Particularly 
notable are that, unlike previous results, the shape of the 
model-predicted frequency responses all are in agreement with 
measured data. Since the curve of a frequency response is 
most strongly related to dynamic effects, this suggests that the 
primary vehicle dynamics are captured by the models. There 
appear slight offsets between model and experiment, 
particularly at high frequencies. These are likely due to slight 
parameter error and additional investigation of this is ongoing. 
 
Time Response Tests 

In order to obtain further understanding of the model fit 
obtained by the frequency response tests, time response data 
were also taken. Shown in Figs. 13-15 are state responses 
during a representative lane-change at 25 mph. These time 
responses all show close agreement between the models and 
measured data, with the largest discrepancies occurring near 
the peaks of the respective responses. As noted earlier, the 
differences between the different models appear to be quite 
small, much smaller than the influence of terrain of the 
influence of parameter fitting errors. Furthermore, the 
observation of a poor fit near the peaks of the frequency 
responses provides further indication that nonlinear effects 
might be influencing the data in these regions.  
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FIGURE 13: LANE CHANGE LATERAL VELOCITY 

RESPONSE 

13 14 15 16 17 18 19 20
-25

-20

-15

-10

-5

0

5

10

15

20

25

Time (sec)

Ya
w

 R
at

e 
(d

eg
/s

)

 

 
measured
Bicycle model
Roll-Symmetric
Roll-Asymmetric

 
FIGURE 14: LANE CHANGE YAW RATE RESPONSE 
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FIGURE 15: LANE CHANGE ROLL RESPONSE 

 
CONCLUSIONS 

An overview of ongoing work to model and validate 
vehicle roll dynamics was presented in this work particularly 
focusing on explaining discrepancies discovered in previous 
work. The results of this study can be summarized in three 
“lessons learned”: 
• Lesson 1: The cornering stiffness parameter defining tire 

behavior is difficult to measure and may be fitted to different 
values depending on the maneuver used and/or the fitting 
technique employed. 

• Lesson 2: Vehicle roll behavior can have a significant effect 
on tire force, especially at low lateral slip levels. 

• Lesson 3: Even for seemingly “level” road conditions, 
terrain influence can produce easily measured errors 
between measured and model-predicted vehicle behavior. 
Subtraction of terrain influence can significantly improve 
model fit. 

After correcting for roll-induced tire forces and terrain 
effects, the resulting fits in the time and frequency domain 
show outstanding agreement between model and experiment.  
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