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ABSTRACT
This work evaluates a real-time algorithm to localize a vehi-

cle on a highway in the direction of travel without the use of GPS.
The algorithm uses a particle filter to estimate vehicle position
along a map of road grade using real-time pitch measurements
from an in-vehicle pitch sensor as the input. Experiments over 60
kilometers along Interstate I-80 and US Route 220 in Pennsylva-
nia are used to demonstrate the algorithm, observe the speed of
convergence, and evaluate several methods of implementation.
The results indicate that the method can localize a vehicle with
a position accuracy of 5 meters after traveling about 1 kilometer
within the 60 kilometer map.

INTRODUCTION
For reasons of safety and efficiency, there is a great deal

of interest in localizing road vehicles. Today, the Global Posi-
tioning System (GPS) serves as the primary means to determine
vehicle position. However, due to poor GPS signal reception in
some locations, the ease of jamming a GPS signal in battlefield
operation, and the need for sensor redundancy in vehicle automa-
tion and driver assist applications, there has been great interest in
localization technologies independent of GPS.

This study directly follows the work done in [1] and the pre-
liminary discussion, methodology, and experimental validation
can be found therein. This study extends the previous work of
vehicle localization along a one-mile test track to implementa-
tion along actual highways with an on-vehicle map of over 60
kilometers in length. The purpose of this paper is to demonstrate
the feasibility of the algorithm to localize a vehicle in an un-
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controlled environment within which the algorithm is meant to
be implemented, like an interstate highway, versus a closed test
track as shown in [1].

Highway data is perhaps the most challenging demonstra-
tion of the algorithm’s potential to localize a vehicle across large
terrain maps. Not only is the vehicle traveling very quickly, and
thus the wheelbase filtering effect is quite prominent, but the
highway roadway surface itself represents the smoothest road-
ways available and hence the least likely to excite the pitch vari-
ations that are used for correlation.

Several methods have been used to localize a vehicle without
GPS or during short GPS outages including fusion of GPS with
odometry [2], inertial measurements, vision [3], laser scans [4],
or using a network of beacons [5]. Of particular relevance to this
work is the fusion of GPS with map data. A demonstration of this
capability was accomplished in real-time [2] where a Kalman fil-
ter was used to combine GPS data with odometry measurements.

Similar to the work done in [6] where an aircraft’s elevation
profile is matched to a digital elevation map, this work demon-
strates the use of a terrain map for real-time vehicle localiza-
tion with the goal to obtain GPS-accurate position resolution
of a vehicle’s longitudinal position. Similar terrain-aided ap-
plications include missile guidance systems [7] and underwater
robotics [8]. This work uses a particle filter, which is gaining
wide use for localization [6, 9, 10], tracking [11], and even vehi-
cle localization during GPS outages [12].

In this study it is assumed that the lane of travel has been pre-
viously mapped and that on-vehicle storage of the resulting ter-
rain information is available. The first assumption is quite realis-
tic given the large number of ongoing research projects focused
on mapping terrain, whereas the second assumption is increas-



ingly valid given the exponentially decreasing costs of data stor-
age and recent integration of similar on-vehicle map databases
into commercial products, for example the “TomTom” naviga-
tion devices.

PARTICLE FILTER
Details presented in this section are a summary of the al-

gorithm used in [1] with significant portions repeated here for
completeness; however, the parameter values within the algo-
rithm are adjusted from the previous work in order to extend the
application to long-range highway data.

Particle filters are Monte-Carlo estimators that are known to
be quite robust to non-Gaussian variance distributions similar to
what would occur in this work due to similarities in the road pro-
file along different segments. A Kalman filter could not be used
to estimate the vehicle position because the vehicle can start any-
where along the map, hence the initial probability distribution is
uniform whereas a Kalman filter requires a gaussian probability
distribution.

The algorithm begins by converting the time-dependant data
to the spatial domain, or more plainly as a function of distance
from the starting point. Other than wheelbase filtering which is
dependant on velocity, this removes velocity dependence on the
pitch data. A set of N equally weighted and randomly distributed
particles are located along the terrain map. The pitch estimate of
each particle location is determined from the pitch map; particles
that lie between the discretely mapped locations are determined
via linear interpolation.

The particle filter algorithm is based off of Algorithm 3
in [11] and iterates every dX distance of vehicle travel by re-
peating the following: First, the position estimates, denoted by
X , at interval k are updated from the previous estimate by

Xk = Xk−1 +dX +dO (1)

where dO is gaussian noise of variance RO, equal to the variance
of the odometry measurement.

Second, the weights of the position particles are updated by
measuring the actual vehicle pitch and comparing it to the parti-
cle’s pitch estimate using a standard particle weighting function.
The importance density is assumed to be the prior density and
the pdf is assumed to be gaussian:

qk
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exp
(
− 1

2·R · (θa−θp,i)
2
)

∑
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(
exp

(
− 1

2·R · (θa−θp,i)
2
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Here R is the measurement noise variance on pitch, θa is the
measured pitch, and θp,i is the ith particle’s pitch corresponding
to its position along the terrain map.

Third, the particles are resampled following Algorithm 2 de-
scribed in [11] where the number of effective position particles

Ne f f is calculated as

Ne f f =
1

∑
N
i=1

(
qk

i
)2 (3)

and when Ne f f is below a threshold of NT , the position particles
are re-sampled by

c = cumsum
(
qk

)
u1 = rand(1) ·N−1

i = 1
for j = 1...N

u j = u1 +( j−1) ·N−1

while u j > ci
i = i+1

end
Xk

j = Xk
i

qk
j = N−1

end

(4)

where rand(1) is an evenly distributed random number in [0,1]
and cumsum is the cumulative sum.

Fourth, the vehicle’s position is estimated as the mean of the
position particles. This use of the entire population to character-
ize the estimate is fairly conservative since the position estimate
of the “best” particle is in general far better than that of the pop-
ulation mean. However, for this study on the feasibility of the
algorithm itself, convergence of the population to the correct so-
lution is a far better indicator of algorithm performance than is
analysis of the best particle estimate.

Fifth, as a means of measuring the accuracy of the algorithm
the error in the prediction is calculated from the true vehicle posi-
tion as measured by GPS. Because a driver is not capable of driv-
ing over the exact center of the lane, a path error is introduced
called the lane-keeping error. An estimate of error between the
predicted position to the actual vehicle position would include
the lane-keeping error. In order to remove this error the mea-
sured vehicle position is projected to the nearest position on the
map. The corrected error is calculated as the distance from the
predicted position to the corrected measured position as

Ek = |X̄− xk
c| (5)

where X̄ is the mean location of the position estimates and xc is
the vehicle’s GPS measured location projected to the map. The
lane-keeping error is calculated as

Ek
l = |xk

c− xk
m| (6)

where xm is the vehicle’s measured GPS location. An example
of the projection and error measurement is shown in Fig. 1 [1].
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Figure 1. LANE KEEPING ERROR AND ITS CORRECTION.

EXPERIMENTAL RESULTS
The particle filter algorithm used in this work was imple-

mented off-line using data previously recorded. The data was
collected using an instrumented vehicle equipped with a portable
sensor integration platform designed for research applications in
robotics, surveying and vehicle dynamics. The onboard NovA-
tel Synchronized Position Attitude Navigation (SPAN) system,
based on an OEM4 DL4-PLUS dual frequency receiver and the
Honeywell HG1700 military grade IMU, can acquire data up to
100Hz. The position errors in the latitude and longitude data,
with full satellite visibility, are about 2 meters (one sigma) and
the errors in the orientation angles are 0.017 and 0.02 degrees
(one sigma) for the roll and pitch angles respectively. The Hon-
eywell HG1700 military grade IMU is based on the Honeywell
GG1308 ring laser gyro and Honeywell RBA500 accelerometers
and has a performance range consistent with requirements of tac-
tical missiles and smart munitions systems. The IMU has only a
10 deg/hr gyro bias and 3 milli-g acceleration bias.

To test the algorithm, the pitch response of a Ford Explorer
was measured as the vehicle traveled for over 60 km along In-
terstate I-80 and US Route 220 in Pennsylvania and stored for a
terrain map. The vehicle was then used a second time to travel
along a small portion of the previous route, without regard to fol-
lowing the exact path, in order to collect the data to be used for
localization, hereafter called the fragment data. Figure 2 shows a
few kilometers of the map and fragment pitch data, demonstrat-
ing visible variations in pitch between the data sets due to the
differences in speed, inexact path tracking, and possibly vehicle
loading differences between measurements.

The particle filter was implemented with N equal to 39,842
particles (1,000 particles per mile on the map [1]), iterated every
dX = 100 meters of travel, the map was decimated to 5 meters in
order to reduce the computational load, and NT = 0.95 ·N. The
value of the pitch noise variance, R, was relaxed to a value of 0.1
degrees2, much greater then the variance in the IMU pitch mea-
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Figure 2. A FEW KILOMETERS OF THE TERRAIN MAP AND TEST
FRAGMENT PITCH DATA ALONG I-80 AND ROUTE 220 IN PA.

surement of 0.000169 degrees2 [13]. R is called a variance, but it
is actually an indicator of the amount of trust is placed in the ac-
curacy of the measurement; a small R means the measurement is
trusted to accurately indicate the position of the vehicle along the
map. In this case, R was relaxed to account for the mean offset
between the pitch data, as shown in Fig. 2, likely due to different
loading conditions in the vehicle between the data sets; otherwise
the algorithm would converge too quickly to an erroneous solu-
tion at another portion of the map where the pitch value would
be equivalent to the biased pitch measurement.

The value of RO was calculated using the results of an ef-
fective tire radius study [14], where a tire with a specified radius
of 321.65 mm was measured to have a nominal effective radius
of 310.4 mm. Under different loading and tread conditions the
effective radius was shown to vary by as much as 0.8%, which
causes an equivalent error in a dead-reckoning odometry mea-
surement. Thus, to be conservative, the variance in the odometry
measurement was chosen to be RO = (0.01 ·dX)2 m2, or 1% of
the distance traveled between iterations. The vehicle used in this
study could not be equipped to measure odometry, so the odom-
etry measurement was instead extracted from GPS by calculat-
ing the shortest distance between data points; however, there are
many alternatives to measuring odometry without using GPS.

The algorithm’s convergence results are shown in Fig. 3,
an overhead view of the highway with the position estimates as
dots, the mean estimate as a circle, and the actual “true” position
measured from GPS shown as a box. It can be seen that as the
vehicle travels, the position estimates converge to the measured
vehicle location to within the accuracy of the GPS/INS system.

The error in the vehicle’s position estimate (Eq. 5) as a func-
tion of the distance traveled is shown in Fig. 4. It can be seen that
the algorithm localized the vehicle to the accuracy of the map af-
ter traveling about two kilometers. Also shown in this figure and
following figures is a line representing the mapping interval of
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Figure 4. POSITION ESTIMATE ERROR AS A FUNCTION OF THE
DISTANCE TRAVELED.

the terrain map, 5 meters, a value which places a lower-limit on
the achievable estimator accuracy.

The lane-keeping error and position estimate error are cal-
culated at every iteration following Eqs. 5 and 6. Figure 5
demonstrates the position estimate error as a function of the lane-
keeping error from once the localization error is reduced to the
map decimation until the end of the algorithm.

It can be seen that there is no direct correlation between the
lane-keeping error and the algorithm accuracy, contrary to the
off-line correlation study in [13]. Also, it is evident that the al-
gorithm was able to localize a vehicle within the accuracy of the
map even though the vehicle had as much as 5 meters of lane-
keeping error. This is probably due to fact that the lane-keeping
error in this work is mostly due to GPS system innacuracy rather
than true error. In the off-line correlation study differential GPS
was used that could resolve lane-keeping error to centimeter level
accuracy.

This also demonstrates that, while the high frequency pitch
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Figure 5. POSITION ESTIMATE ERROR AS A FUNCTION OF THE
LANE KEEPING ERROR.

data may vary significantly between travel lanes, the low fre-
quency data can still be used to sufficiently localize a vehicle
after the solution has converged. Thus a driver using this local-
ization method would not need to be concerned with following
the exact same path as the map and could even move within a
few meters of the mapped lane. This gives the possibility of only
having to map the center lane of the highway in order to localize
a vehicle across a three lane highway.

ROLL DATA
An alternate approach to localizing the vehicle is to use the

roll measurement instead of a pitch measurement. The roll data
was collected in the same manner and in the same location as the
pitch data. The roll data, as shown in Fig. 6, varies as much as
the pitch data.

The algorithm is implemented again using roll data while
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Figure 6. A FEW KILOMETERS OF THE TERRAIN MAP AND TEST
FRAGMENT ROLL DATA ALONG I-80 AND ROUTE 220 IN PA.

excluding the pitch data, thus Eq. 2 is modified to

qk
i =

exp
(
− 1

2·Rr
· (φa−φp,i)

2
)

∑
N
i=1

(
exp

(
− 1

2·Rr
· (φa−φp,i)

2
)) (7)

where Rr is the measurement noise variance on roll, which was
set to equal R, φa is the measured roll angle, and φp,i is the ith

particle’s roll corresponding to its position along the roll map.
The resulting error convergence is shown in Fig. 7. It can

be seen that localization using the roll data is about as accurate
as using the pitch measurement; however, in order to converge to
the accuracy of the map decimation the vehicle needed to travel
twice as far as when the pitch data was used.

It can also be seen that the first four kilometers of travel re-
sulted in poor localization, which is due to the little variation of
the roll data from the mean roll measurement within that dis-
tance, as shown in Fig. 6. This demonstrates the tradeoff of
relaxing Rr; if Rr is reduced to the variance of the roll measure-
ment sensor, then the algorithm would be more sensitive to the
slight changes in roll and possibly decrease the time of conver-
gence; however, the algorithm would then become very sensitive
to bias errors between the roll measurement and the roll map and
in the presence thereof could result in an erroneous position es-
timate. This encourages a further investigation, which is beyond
the scope of this study, into an adaptive algorithm that could vary
the value of Rr as a function of the error in the measured roll and
the corresponding roll of the estimated position along the map.

PITCH AND ROLL DATA
In an attempt to improve the performance of the algorithm,

a redundancy can be used in the position estimation by including
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Figure 7. POSITION ESTIMATE ERROR AS A FUNCTION OF THE
DISTANCE TRAVELED USING ONLY A ROLL MAP.

the roll map with the pitch map. Thus Eq. 2 is modified to

qk
i =

Qk
i

∑
N
i=1

(
Qk

i
) (8)

where

Qk
i = exp

(
− 1

2 ·R
· (φa−φp,i)

2− 1
2 ·Rr

· (θa−θp,i)
2
)

(9)

and Rr is again set to equal R.
The results of using this modified algorithm are shown in

Fig. 8. Because the accuracy of the map is limited to the decima-
tion distance of 5 meters, which in turn is limited by the accuracy
of uncorrected GPS, we cannot determine if the redundancy im-
proved the overall accuracy. However, the added measurement
did increase the rate of convergence and thus decreased the dis-
tance required to converge from 2 kilometers to nearly 1 kilome-
ter. This suggests that both pitch and roll measurements could
be used initially in the algorithm in order for the estimate to con-
verge quickly, and once the position estimate has converged to
a desired accuracy, the algorithm could switch to using only the
pitch or roll measurement.

FAULTY SENSOR DETECTION
The algorithm demonstrated in this study can also be used to

detect when a sensor is faulty. For example, after the algorithm
has converged to a solution and is tracking the vehicle accurately
along the highway, the pitch and roll measurements can be pre-
dicted using the map data. If a sensor has diverged abnormally
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Figure 8. POSITION ESTIMATE ERROR AS A FUNCTION OF THE
DISTANCE TRAVELED USING PITCH AND ROLL MAPS.

beyond the expected value, while the other sensor’s measured
values continue to be in accord with the expected value, then the
diverging sensor can be assumed to be faulty or accruing error
abnormally. The sensor can be then switched off or noted for
replacement or maintenance.

To demonstrate, the algorithm was used again using only
the pitch measurement for estimation and an abnormal amount
of bias error, 5 degrees, was added to only a portion of the roll
measurements. Throughout the algorithm the error in the pitch
and and roll sensor data are calculated as

Eθ = |θa−θp,e| (10)
Eφ = |φa−φp,e| (11)

where θp,e and φp,e are the pitch and roll values at the estimated
vehicle location along their respective maps. The errors are cal-
culated at each iteration, and shown in Fig. 9 where it can be
seen that the error in the roll measurement is clearly predicted.

CONCLUSIONS AND FUTURE WORK
This work shows that a vehicle’s longitudinal position can

be estimated along a long stretch of highway given a terrain map,
pitch measurements, and odometry. The convergence of the esti-
mate is seen to occur within approximately 1 to 2 kilometers of
highway driving, with converged longitudinal positioning error
of 5 meters in accuracy, or the decimation of the terrain map, as
compared to a GPS system. It has also been shown that localiz-
ing a vehicle using its pitch measurements is as accurate as us-
ing the roll measurements or both of them combined. A method
of faulty sensor detection has also been demonstrated. Further
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study is under way to increase the localization accuracy and de-
crease the computational load of the particle filter algorithm.
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