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Abstract— This work develops a real-time algorithm to lo-
calize a vehicle in the direction of travel without the use of
GPS. The inputs to the algorithm include a terrain map of road
grade and real-time pitch measurement from an in-vehicle gich
sensor. Correlation is achieved in real-time using a partite filter
described in detail in this work. Simulations and experimens at
the Pennsylvania Transportation Institute test track are used to
demonstrate the algorithm, observe the speed of convergesc
and to determine key parameters for practical implementaton.
The results indicate that the method can quickly localize a
vehicle with one-meter accuracy or better.
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For reasons of safety and efficiency, there is a great dec 0 10 20 e ) 20 0 50
of interest in localizing road vehicles. Today, the Global
Positioning System (GPS) serves as the primary mean 1
to determine vehicle position. However, due to poor GPS
signal reception in some locations, the ease of jamming it ,/\
/

I. INTRODUCTION 0.8

a GPS signal in battlefield operation, and the need for
sensor redundancy in vehicle automation and driver assis
applications, there has been great interest in localizatio
technologies independent of GPS.

Several methods have been used to localize a vehicl
without GPS or during short GPS outages including fusion
of GPS with odometry [1], inertial measurements, vision
[2], laser scans [3], or using a network of beacons [4].
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Of particular relevance to this work is the fusion of GPS 0.8 25mph
with map data. A demonstration of this capability was o ‘ ‘ ‘ —T
accomplished in real-time [1] where a Kalman filter was ° 100 ath Distance () 00 500

used to combine GPS data with odometry measurements. A

methodology called Belief Theory was used to correlate amg. 1. Measured road grade as a function of time and distahearious

estimated vehicle position to a given digital road map, angphicle speeds on a circular handling area [8].

this method is able to correctly map the vehicle’s position

in the absence of GPS if the position was first correlated

correctly before the GPS outage. Many other approachgsrain-aided applications include missile guidance esyst

to vehicle localization exist, but like this example, mos{6] and underwater robotics [7].

are designed to improve upon GPS accuracy or maintainit is assumed that the lane of travel has been previously

localization during GPS outages and are thus not completedyapped and that on-vehicle storage of the resulting terrain

independent of GPS. The purpose of this research is to stugiformation is available. The first assumption is quite real

methods of localizing a vehicle completely without a GPSstic given the large number of ongoing research projects

device. focused on mapping terrain, whereas the second assumption
Similar to the work done in [5] where an aircraft’sis increasingly valid given the exponentially decreasiogts

elevation profile is matched to a digital elevation map, thisf data storage and recent integration of similar on-vehicl

work demonstrates the use of a terrain map for real-tim@ap databases into commercial products, for example the

vehicle localization with the goal to obtain sub-meter posi“TomTom” navigation devices.

tion resolution of a vehicle’s longitudinal position. Slani In this study, several terrain characteristics were con-

sidered for vehicle localization: road height changesdroa
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pitch measurements [9], and superelevation correlates-to v

hicle roll. Both measurements are not perfect due to vehicle 0'57 | [~ 5mph |
dynamics; for example, the vehicle’s pitch response acts a 045 h :gg mpﬂ
a low-pass filter to road grade changes [8]. However, as 047 H e
this work demonstrates, this filtering effect is not sigrmifit 50-35’
enough to filter out measurements of roadway disturbance & o3r
useful for determining vehicle position. g 0.25

To demonstrate that a vehicle’s pitch measurement give: & 02
repeatable terrain-correlated responses, a test vehiate w 20157
driven in a circular trajectory on a handling area of the 2
Pennsylvania Transportation Institute (PTI) test trache o 01 |
of the flattest portions of this vehicle testing facility. In 0.05, "
Figure 1, one can see two plots: first, the pitch measurement of ‘ ‘ ‘ ‘ ‘
versus time for different velocities, and second, the saate d 0 0.05 01 0.15 0.2 0.25

. . . . Spatial Frequency (cycles/meter)
versus distance traveled using the same starting point. Onc

can Cl??-rly see fro.m the second plot that pitch correlat%. 2. Power Spectral Density (PSD) of the vehicle’s pitesponse at
to position. Examining the response closely, the changes various speeds [8].

observed pitch are due to the very small slope added to the

handling area to allow water drainage. Also, because gimila

responses are measured for a vehicle traveling at various . ) ) )
speeds, one can conclude that the “wheelbase filteringtteffé”0Ssible pitch disturbance sources can be differentiajed b

[10] of the vehicle’s pitch dynamics is relatively minor. their different spatial distance and_ hgnce frequency range
These plots suggest that a vehicle can be localized 59ad_way surface texture has variations on the order of
correlating a previously-mapped roadway with a Vehide’gennme_ters (100 cycles/meter); potholes on the order of
pitch response history transformed into a spatial pitch-me&0 centimeters (10 cycles per meter); step changes surface
surement. This study tests this localization methodolagy a €lévation would cause pitch changes on the order of 1
suggests an algorithm for fast localization. The remainddpeter (1 cycle per _meter); imperfect su_rface leveling dwrin
of this paper is organized as follows: Section 2 presentsrgadway constructlon creates undulations between 10 and
preliminary analysis of feasibility including an analysithe ~ 100 meters in length (0.1 and 0.01 cycles per meter); and,
terrain features being correlated. Section 3 introduceara pdue to sighting-distance requirements, roadway elevation
ticle filter algorithm to achieve real-time position estina ~ changes are designed to change on the order of 100 meters
from terrain disturbances. Section 4 presents the restilts @ longer (lower than 0.01 cycles per meter). The PSD in
this filter tested using test-track data. Finally, a Coricis Figure 2 shows that the most likely source of correlation

section summarizes the main findings of this work. is the low-frequency undulation caused by uneven road-
surfacing during construction. Thus, if one were finding
Il. PRELIMINARY FEASIBILITY ANALYSIS vehicle position by correlation of a pre-mapped profile, one

Because the pitch of a vehicle responds differently witlj‘ould thus not expect any fundamental failure in localaati
respect to speed over the same terrain, the so-called whel8@M @ simple pothole. Only a major roadway resurfacing
base filtering effect, it was initially unclear whether @ event or rerouting WOL_JId produce errors sufficiently large a
disturbances in pitch would be repeatable across differefft réquire reconstruction of the roadway map.
speeds and for roadways other than a circular track section.Further, the large-scale undulations also explain why the
To test repeatability, we drove a test vehicle - a 1992 Mgrcuicorrelation is largely insensitive to lateral position agtfim-
Tracer station wagon - at 2.2, 17.9, and 29 m/s (5, 40, aridied by Figure 2 where no attempts were made to maintain
65 mph) on the roadway section of the test track, recordiract lane position. Road construction and surface fingshin
pitch_ By Comparing the Power Spectra| Density (PSD) Ouend to produce undulations in the Iongitudinal directioatt
the pitch responses in spatia| frequencies, shown in F|gu?ée invariant to lateral pOSitiOﬂ Changes on the size sdale o
2, one observes the similarity of low-frequency contenhwit the vehicle width, e.g. the width of a steam roller or coreret
frequency measured in cycles-per-distance. It is clear th@lab pour. Additional experiments, discussed in [8], shivat t
the low-speed data has a higher power density than highe longitudinal position estimation error indeed ince=sas
frequency data. Further, the correlation between sigrsals With larger errors in lateral lane-keeping error, and thnet t
poor at oscillations faster than 0.1 cycles per meter, bti€lationship is approximately linear for small lane deioias
matches quite well for lower frequencies. This not onl@nd modern roadways. While formal relationships were not
demonstrates the vehicle’s speed-dependant filteringtsffe established, a 0.5 meter RMS lane-keeping error resulted in
but also shows that speed-independent correlation betweapProximately a 1 meter additional longitudinal localiaat
multiple traversals of a path can be achieved if low-fregqyen €rror.
pitch data is used. Hereafter, the pitch response of the map and in-vehicle

When explaining this research, we are often asked whpitch measurement are both filtered using a second-order
road “features” are used for correlation in the algorithmlow-pass spatial filter with a cutoff frequency of 0.1 cy-



cles/meter. The roadway map features are recorded at 50 Hie test track and a complete map was recorded separately
using a vehicle traveling at 5 m/s to produce pitch readitigs aver the entire track at a constant speed. Figure 3 shows the
0.1 meter intervals. This combination of extreme low speedrap and fragment data demonstrating that there are visible
and high sampling rates at 100 times the period of correlatiosariations in pitch between the data sets due to differences
is intended to avoid any aliasing effects that could latasbi in speed and inexact path tracking. The pitch data were

the estimator. filtered using a low-pass filter at the cutoff frequency of 0.1

To test whether terrain-based localization is feasible, exycles/meter as discussed above.
periments were conducted comparing a low-speed (5 m/s)
pitch-map of the PTI test track to samples of pitch data taker
at high speeds (20 m/s). Truth estimates of vehicle positior
during all runs were determined by a NovAtel “Span” Dif-
ferential Global Positioning System (DGPS) that is factory
integrated with a Honeywell HG1700 ring-laser gyro Indrtia
Measurement Unit (IMU), with positioning accuracy of 2
cm. Off-line correlation was attempted using correlation
windows of approximately 300 data points and a Pearson
product correlation metric. Comparison across 5 teststrial
with DGPS showed that the roadway correlation method was
successful in localizing the vehicle along the mapped track
in longitudinal position. The resulting localization acaay
ranged from 1 meter to 10 cm [8]!

Although this estimation accuracy is excellent, the off-
line correlation algorithm is not fast enough for real-time
in-vehicle applications. Further, there are no obvioushmec
anisms to include vehicle dynamics or multiple, simultane- | | — Pitch Map
ous sources of roadway terrain measurements, for exampl | — Fragment ||
correlation from simultaneous in-vehicle pitch and rollane
surements. This work solves these issues using advance
filtering methods, specifically the use of a particle filteneT
roll correlation work is not shown because roll disturbance
measurements are strongly coupled with vehicle steering
inputs, and thus a lengthy discussion of vehicle roll dyreami
models would be necessary to include such analysis. The fc
cus hereafter on correlation just using pitch measurenignts
adequate to succinctly demonstrate the localization dhgor
with little loss in generality.
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IIl. PARTICLE FILTER ESTIMATION

. . . Fig. 3. Overhead view and pitch data of the terrain map antligigted
Particle filters are Monte-Carlo estimators that are knowfst fragment.

to be quite robust to non-Gaussian variance distributions

similar to what would occur in this work due to similarities

in the road profile along different segments. A Kalman filter The algorithm begins by converting the time-dependant
couldn’t be used to estimate the vehicle position becaustta to the spatial domain, or more plainly as a function
the vehicle can start anywhere along the map, hence thé distance from the starting point. Other than wheelbase
initial probability distribution is uniform whereas a Kaém filtering which is dependant on velocity, this removes ve-
filter requires a gaussian probability distribution. Due tdocity dependence on the pitch data. A set /&f equally
the rapid advances in computing power, particle filters haweeighted and evenly distributed particles are located glon
recently been demonstrated to be fast enough for real-tintlee terrain map. The pitch estimate of each particle lonatio
applications [11] [12]. As a result, this method is gainings determined from the pitch map; particles that lie between
wide use for localization [13] [14] [15] [5], tracking [16], the discretely mapped locations are determined via nearest
and even vehicle localization during GPS outages [17].  neighbor linear interpolation.

The particle filter algorithm used in this work was im- The particle filter algorithm is based off of Algorithm 3
plemented off-line using data previously recorded using an [16] and begins to iterate through the fragment data by
instrumented vehicle equipped with the previously desttib repeating the following: First, the position estimates)ated
IMU and DGPS system at the test track at the Pennsylvariy X, at time intervalk are updated from the previous
Transportation Institute. At various speeds, pitch andtjpos estimate by
data sets were recorded separately over small fragments of Xk = x*1 1 dX +do, 1)



wheredX is the distance the vehicle travels between timdifferent loading conditions in the vehicle between theadat
steps as inferred from odometry add is gaussian noise sets.

of variance Ro, equal to the variance of the odometry The value of R, was calculated using the results of an
measurement. effective tire radius study [18], where a tire with a spedifie
Second, the weights of the position particles are updategdius of 321.65 mm was measured to have a nominal
by measuring the actual vehicle pitch and comparing it to theffective radius of 310.4 mm. Under different loading and
particle’s pitch estimate using a standard particle wénght tread conditions the effective radius was shown to vary by as
function. The importance density is assumed to be the prigfuch as).8%, so a dead-reckoning odometry measurement

density and the pdf is assumed to be gaussian: could vary by0.8%. Thus, to be conservative, the variance
1 2 in the odometry measurement was chosen tofe =
P (_ﬁ (9o — Jp) ) (o) (0:01-dX)* m?,
& Zf-vzl (exp (_ﬁ (g — ¢p7i)2)) ’ The convergence results on the track are shown in Figures

4 and 5. Figure 4 is an overhead view of the test track with
Here R is the measurement noise variance on pitoh, the position estimates as dots, the mean estimate as a, circle
is the measured pitch, ang,; is the i*" particle’s pitch and the actual “true” position measured from differential
corresponding to its position along the terrain map. GPS shown as a box. It can be seen that as the vehicle
Third, the particles are resampled following Algorithm 2travels, the position estimates converge to the measured
described in [16] where the number of effective positiovehicle location. Figure 5 demonstrates the convergence on

particlesN.ry is calculated as the pitch response map where the dots represent the pitch at
1 each position estimate along the map and the mean position
Nepp = W (3)  estimate as the circle. Convergence is clearly seen within
=1 i

about 150 meters of forward roadway travel.
and whenN; is below a threshold ofVr, the position At every 10 meters the vehicle’s position is predicted by

particles are re-sampled by the mean of the particle’s position estimates and the emror i
¢ = cumsum (qk) the p_re_diction is calculated. Because_g driver is not capabl
w = rand(1) - N~ of driving over the exact same position around the track
i=1 at every pass, a path error is introduced called the lane-
for j=1..N keeping error. An estimate of error between the predicted

wj =y +(j—1) N position to the actual vehicle position as measured by DGPS
while u; > ¢; (4) would mcl_ude the lane-keeping error._ln orde_r_to remove the
i—i+1 lane-keeping error the measured vehicle position is ptejec
end to the nearest position on the map. The corrected error is
Xk — xFk calculated as the distance from the predicted positionéo th
q;#: N-1 corrected measured position as
end E* = |X — ], 5)

whererand(1) is an evenly distributed random number inyhere X is the mean location of the position estimates and

[0, 1] and cumsum is the cumulative sum. . is the vehicle’s DGPS measured location projected to the
Fourth, at every time step the vehicle’s position is estimap The lane-keeping error is calculated as

mated as the mean of the position particles. The position

error estimate is also calculated as the standard dewviation B = |z — )], (6)

of the position particles. This use of the entire populatiomherexm is the vehicle's actual DGPS measured location.

to characterize the estimate is fairly conservative sitee tAn example of the projection and error measurement is

position estimate of the “best” particle is in general fattbe shown in Figure 6.

than that of the population mean. However, for this study The standard deviation of the population of particle posi-

on the feasibility of the algorithm itself, convergence bét . . :

: L o tion estimates is also calculated at every 10 meters. These
population to the correct solution is a far better indicaibr esults are shown in Fiqure 7 and demonstrate the algorithm
algorithm performance than is analysis of the best particfe 9 9

. converged to an accuracy of about 1 meter after moving over
estimate. X e .
150 meters. Also shown in this figure and the following
is a line representing the mapping interval of the terrain
map, 10 cm, a value which places a lower-limit on the

The particle filter described above was implemented witAchievable estimator accuracy. Compared to the off-line
N equal to 1000 particlesN, = 0.9 - N, and the vehicle correlation method mentioned earlier[8], the on-line jotet
traveling about 15 m/s. The value of the pitch noise variancélter algorithm estimate is similar in accuracy.

R, was relaxed to a value of 0.1 degr&esuch greater then  One disadvantage of particle filters is the computational
the variance in the IMU pitch measurement of 0.000168Burden imposed by using a large number of particles to
degree? [8], in order to account for a mean offset andachieve an accurate yet robust prediction. To determine the

IV. RESULTS
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when 1,000 < N < 10,000. This suggests that the position
relationship between particle population size and estimaf the vehicle can be estimated most efficiently at about,00
tor accuracy, the same algorithm was tested using varioparticles per mile and further particles are unnecessdnig. T
numbers of particlesV distributed randomly across the onecan also be used to estimate the computational cost of using
mile map. The converged estimate error was inferred by particle filter to estimate vehicle position over largeaare
examining the standard deviation of the population avetagenaps for a given measure of initial uncertainty. For eacte mil
over the final 100 meters. This was repeated 10 times, eaghroadway that could be a possible vehicle location within
time with a different random initial population, and aveireg  in the map, 1000 particles would be needed.
the results. The plot of population size versus estimator
error is graphed in Figure 8. It can be seen that, as the
numbers of particles increases to 1000 per mile, the acgurac
improves greatly. It can also be seen that the algorithm This work shows that a vehicle’s longitudinal position can
resulted in about the same accuracy with = 1,000 as be estimated given a terrain map and pitch measurements.

V. CONCLUSIONS
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To achieve on-line estimation, a particle filter algorithsn i
presented. The convergence of the estimate is seen to ocpat
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within approximately 150 meters of driving, with converged
longitudinal positioning error of consistently achieviag-
curacies of about 1 meter or better as compared to a DGPS
system. By examining population size, a particle density of

1,000 particles per mile of unknown roadway has been shown
to be sufficient for position estimation and can be used as a
basis for larger maps covering greater distances.
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