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Terrain-Based Road Vehicle Localization Using Particle Filters

Adam J. Dean, Ryan D. Martini, and Sean N. Brennan

Abstract— This work develops a real-time algorithm to lo-
calize a vehicle in the direction of travel without the use of
GPS. The inputs to the algorithm include a terrain map of road
grade and real-time pitch measurement from an in-vehicle pitch
sensor. Correlation is achieved in real-time using a particle filter
described in detail in this work. Simulations and experiments at
the Pennsylvania Transportation Institute test track are used to
demonstrate the algorithm, observe the speed of convergence,
and to determine key parameters for practical implementation.
The results indicate that the method can quickly localize a
vehicle with one-meter accuracy or better.

I. I NTRODUCTION

For reasons of safety and efficiency, there is a great deal
of interest in localizing road vehicles. Today, the Global
Positioning System (GPS) serves as the primary means
to determine vehicle position. However, due to poor GPS
signal reception in some locations, the ease of jamming
a GPS signal in battlefield operation, and the need for
sensor redundancy in vehicle automation and driver assist
applications, there has been great interest in localization
technologies independent of GPS.

Several methods have been used to localize a vehicle
without GPS or during short GPS outages including fusion
of GPS with odometry [1], inertial measurements, vision
[2], laser scans [3], or using a network of beacons [4].
Of particular relevance to this work is the fusion of GPS
with map data. A demonstration of this capability was
accomplished in real-time [1] where a Kalman filter was
used to combine GPS data with odometry measurements. A
methodology called Belief Theory was used to correlate an
estimated vehicle position to a given digital road map, and
this method is able to correctly map the vehicle’s position
in the absence of GPS if the position was first correlated
correctly before the GPS outage. Many other approaches
to vehicle localization exist, but like this example, most
are designed to improve upon GPS accuracy or maintain
localization during GPS outages and are thus not completely
independent of GPS. The purpose of this research is to study
methods of localizing a vehicle completely without a GPS
device.

Similar to the work done in [5] where an aircraft’s
elevation profile is matched to a digital elevation map, this
work demonstrates the use of a terrain map for real-time
vehicle localization with the goal to obtain sub-meter posi-
tion resolution of a vehicle’s longitudinal position. Similar
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Fig. 1. Measured road grade as a function of time and distanceat various
vehicle speeds on a circular handling area [8].

terrain-aided applications include missile guidance systems
[6] and underwater robotics [7].

It is assumed that the lane of travel has been previously
mapped and that on-vehicle storage of the resulting terrain
information is available. The first assumption is quite real-
istic given the large number of ongoing research projects
focused on mapping terrain, whereas the second assumption
is increasingly valid given the exponentially decreasing costs
of data storage and recent integration of similar on-vehicle
map databases into commercial products, for example the
“TomTom” navigation devices.

In this study, several terrain characteristics were con-
sidered for vehicle localization: road height changes, road
road grade changes (derivative of height), and superelevation
changes. The last two are the primary focus of this work
because road grade correlates very strongly to in-vehicle
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pitch measurements [9], and superelevation correlates to ve-
hicle roll. Both measurements are not perfect due to vehicle
dynamics; for example, the vehicle’s pitch response acts as
a low-pass filter to road grade changes [8]. However, as
this work demonstrates, this filtering effect is not significant
enough to filter out measurements of roadway disturbances
useful for determining vehicle position.

To demonstrate that a vehicle’s pitch measurement gives
repeatable terrain-correlated responses, a test vehicle was
driven in a circular trajectory on a handling area of the
Pennsylvania Transportation Institute (PTI) test track, one
of the flattest portions of this vehicle testing facility. In
Figure 1, one can see two plots: first, the pitch measurements
versus time for different velocities, and second, the same data
versus distance traveled using the same starting point. One
can clearly see from the second plot that pitch correlates
to position. Examining the response closely, the changes in
observed pitch are due to the very small slope added to the
handling area to allow water drainage. Also, because similar
responses are measured for a vehicle traveling at various
speeds, one can conclude that the “wheelbase filtering” effect
[10] of the vehicle’s pitch dynamics is relatively minor.

These plots suggest that a vehicle can be localized by
correlating a previously-mapped roadway with a vehicle’s
pitch response history transformed into a spatial pitch mea-
surement. This study tests this localization methodology and
suggests an algorithm for fast localization. The remainder
of this paper is organized as follows: Section 2 presents a
preliminary analysis of feasibility including an analysisof the
terrain features being correlated. Section 3 introduces a par-
ticle filter algorithm to achieve real-time position estimation
from terrain disturbances. Section 4 presents the results of
this filter tested using test-track data. Finally, a Conclusions
section summarizes the main findings of this work.

II. PRELIMINARY FEASIBILITY ANALYSIS

Because the pitch of a vehicle responds differently with
respect to speed over the same terrain, the so-called wheel-
base filtering effect, it was initially unclear whether terrain
disturbances in pitch would be repeatable across different
speeds and for roadways other than a circular track section.
To test repeatability, we drove a test vehicle - a 1992 Mercury
Tracer station wagon - at 2.2, 17.9, and 29 m/s (5, 40, and
65 mph) on the roadway section of the test track, recording
pitch. By comparing the Power Spectral Density (PSD) of
the pitch responses in spatial frequencies, shown in Figure
2, one observes the similarity of low-frequency content with
frequency measured in cycles-per-distance. It is clear that
the low-speed data has a higher power density than high
frequency data. Further, the correlation between signals is
poor at oscillations faster than 0.1 cycles per meter, but
matches quite well for lower frequencies. This not only
demonstrates the vehicle’s speed-dependant filtering effects,
but also shows that speed-independent correlation between
multiple traversals of a path can be achieved if low-frequency
pitch data is used.

When explaining this research, we are often asked what
road “features” are used for correlation in the algorithm.
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Fig. 2. Power Spectral Density (PSD) of the vehicle’s pitch response at
various speeds [8].

Possible pitch disturbance sources can be differentiated by
their different spatial distance and hence frequency range:
roadway surface texture has variations on the order of
centimeters (100 cycles/meter); potholes on the order of
10 centimeters (10 cycles per meter); step changes surface
elevation would cause pitch changes on the order of 1
meter (1 cycle per meter); imperfect surface leveling during
roadway construction creates undulations between 10 and
100 meters in length (0.1 and 0.01 cycles per meter); and,
due to sighting-distance requirements, roadway elevation
changes are designed to change on the order of 100 meters
or longer (lower than 0.01 cycles per meter). The PSD in
Figure 2 shows that the most likely source of correlation
is the low-frequency undulation caused by uneven road-
surfacing during construction. Thus, if one were finding
vehicle position by correlation of a pre-mapped profile, one
would thus not expect any fundamental failure in localization
from a simple pothole. Only a major roadway resurfacing
event or rerouting would produce errors sufficiently large as
to require reconstruction of the roadway map.

Further, the large-scale undulations also explain why the
correlation is largely insensitive to lateral position, a fact im-
plied by Figure 2 where no attempts were made to maintain
exact lane position. Road construction and surface finishing
tend to produce undulations in the longitudinal direction that
are invariant to lateral position changes on the size scale of
the vehicle width, e.g. the width of a steam roller or concrete
slab pour. Additional experiments, discussed in [8], show that
the longitudinal position estimation error indeed increases
with larger errors in lateral lane-keeping error, and that the
relationship is approximately linear for small lane deviations
and modern roadways. While formal relationships were not
established, a 0.5 meter RMS lane-keeping error resulted in
approximately a 1 meter additional longitudinal localization
error.

Hereafter, the pitch response of the map and in-vehicle
pitch measurement are both filtered using a second-order
low-pass spatial filter with a cutoff frequency of 0.1 cy-
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cles/meter. The roadway map features are recorded at 50 Hz
using a vehicle traveling at 5 m/s to produce pitch readings at
0.1 meter intervals. This combination of extreme low speeds
and high sampling rates at 100 times the period of correlation
is intended to avoid any aliasing effects that could later bias
the estimator.

To test whether terrain-based localization is feasible, ex-
periments were conducted comparing a low-speed (5 m/s)
pitch-map of the PTI test track to samples of pitch data taken
at high speeds (20 m/s). Truth estimates of vehicle position
during all runs were determined by a NovAtel “Span” Dif-
ferential Global Positioning System (DGPS) that is factory-
integrated with a Honeywell HG1700 ring-laser gyro Inertial
Measurement Unit (IMU), with positioning accuracy of 2
cm. Off-line correlation was attempted using correlation
windows of approximately 300 data points and a Pearson-
product correlation metric. Comparison across 5 test trials
with DGPS showed that the roadway correlation method was
successful in localizing the vehicle along the mapped track
in longitudinal position. The resulting localization accuracy
ranged from 1 meter to 10 cm [8]!

Although this estimation accuracy is excellent, the off-
line correlation algorithm is not fast enough for real-time,
in-vehicle applications. Further, there are no obvious mech-
anisms to include vehicle dynamics or multiple, simultane-
ous sources of roadway terrain measurements, for example
correlation from simultaneous in-vehicle pitch and roll mea-
surements. This work solves these issues using advanced
filtering methods, specifically the use of a particle filter. The
roll correlation work is not shown because roll disturbance
measurements are strongly coupled with vehicle steering
inputs, and thus a lengthy discussion of vehicle roll dynamic
models would be necessary to include such analysis. The fo-
cus hereafter on correlation just using pitch measurementsis
adequate to succinctly demonstrate the localization algorithm
with little loss in generality.

III. PARTICLE FILTER ESTIMATION

Particle filters are Monte-Carlo estimators that are known
to be quite robust to non-Gaussian variance distributions
similar to what would occur in this work due to similarities
in the road profile along different segments. A Kalman filter
couldn’t be used to estimate the vehicle position because
the vehicle can start anywhere along the map, hence the
initial probability distribution is uniform whereas a Kalman
filter requires a gaussian probability distribution. Due to
the rapid advances in computing power, particle filters have
recently been demonstrated to be fast enough for real-time
applications [11] [12]. As a result, this method is gaining
wide use for localization [13] [14] [15] [5], tracking [16],
and even vehicle localization during GPS outages [17].

The particle filter algorithm used in this work was im-
plemented off-line using data previously recorded using an
instrumented vehicle equipped with the previously described
IMU and DGPS system at the test track at the Pennsylvania
Transportation Institute. At various speeds, pitch and position
data sets were recorded separately over small fragments of

the test track and a complete map was recorded separately
over the entire track at a constant speed. Figure 3 shows the
map and fragment data demonstrating that there are visible
variations in pitch between the data sets due to differences
in speed and inexact path tracking. The pitch data were
filtered using a low-pass filter at the cutoff frequency of 0.1
cycles/meter as discussed above.
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Fig. 3. Overhead view and pitch data of the terrain map and highlighted
test fragment.

The algorithm begins by converting the time-dependant
data to the spatial domain, or more plainly as a function
of distance from the starting point. Other than wheelbase
filtering which is dependant on velocity, this removes ve-
locity dependence on the pitch data. A set ofN equally
weighted and evenly distributed particles are located along
the terrain map. The pitch estimate of each particle location
is determined from the pitch map; particles that lie between
the discretely mapped locations are determined via nearest-
neighbor linear interpolation.

The particle filter algorithm is based off of Algorithm 3
in [16] and begins to iterate through the fragment data by
repeating the following: First, the position estimates, denoted
by X , at time intervalk are updated from the previous
estimate by

Xk = Xk−1 + dX + dO, (1)
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wheredX is the distance the vehicle travels between time
steps as inferred from odometry anddO is gaussian noise
of variance RO, equal to the variance of the odometry
measurement.

Second, the weights of the position particles are updated
by measuring the actual vehicle pitch and comparing it to the
particle’s pitch estimate using a standard particle weighting
function. The importance density is assumed to be the prior
density and the pdf is assumed to be gaussian:

qk
i =

exp
(

− 1

2·R
· (φa − φp,i)

2

)

∑N

i=1

(

exp
(

− 1

2·R
· (φa − φp,i)

2

)) , (2)

Here R is the measurement noise variance on pitch,φa

is the measured pitch, andφp,i is the ith particle’s pitch
corresponding to its position along the terrain map.

Third, the particles are resampled following Algorithm 2
described in [16] where the number of effective position
particlesNeff is calculated as

Neff =
1

∑N

i=1

(

qk
i

)2
(3)

and whenNeff is below a threshold ofNT , the position
particles are re-sampled by

c = cumsum
(

qk
)

u1 = rand(1) · N−1

i = 1
for j = 1...N

uj = u1 + (j − 1) · N−1

while uj > ci

i = i + 1
end
Xk

j = Xk
i

qk
j = N−1

end

(4)

whererand(1) is an evenly distributed random number in
[0, 1] andcumsum is the cumulative sum.

Fourth, at every time step the vehicle’s position is esti-
mated as the mean of the position particles. The position
error estimate is also calculated as the standard deviations
of the position particles. This use of the entire population
to characterize the estimate is fairly conservative since the
position estimate of the “best” particle is in general far better
than that of the population mean. However, for this study
on the feasibility of the algorithm itself, convergence of the
population to the correct solution is a far better indicatorof
algorithm performance than is analysis of the best particle
estimate.

IV. RESULTS

The particle filter described above was implemented with
N equal to 1000 particles,NT = 0.9 · N , and the vehicle
traveling about 15 m/s. The value of the pitch noise variance,
R, was relaxed to a value of 0.1 degrees2, much greater then
the variance in the IMU pitch measurement of 0.000169
degrees2 [8], in order to account for a mean offset and

different loading conditions in the vehicle between the data
sets.

The value ofRO was calculated using the results of an
effective tire radius study [18], where a tire with a specified
radius of 321.65 mm was measured to have a nominal
effective radius of 310.4 mm. Under different loading and
tread conditions the effective radius was shown to vary by as
much as0.8%, so a dead-reckoning odometry measurement
could vary by0.8%. Thus, to be conservative, the variance
in the odometry measurement was chosen to beRO =
(0.01 · dX)

2 m2.
The convergence results on the track are shown in Figures

4 and 5. Figure 4 is an overhead view of the test track with
the position estimates as dots, the mean estimate as a circle,
and the actual “true” position measured from differential
GPS shown as a box. It can be seen that as the vehicle
travels, the position estimates converge to the measured
vehicle location. Figure 5 demonstrates the convergence on
the pitch response map where the dots represent the pitch at
each position estimate along the map and the mean position
estimate as the circle. Convergence is clearly seen within
about 150 meters of forward roadway travel.

At every 10 meters the vehicle’s position is predicted by
the mean of the particle’s position estimates and the error in
the prediction is calculated. Because a driver is not capable
of driving over the exact same position around the track
at every pass, a path error is introduced called the lane-
keeping error. An estimate of error between the predicted
position to the actual vehicle position as measured by DGPS
would include the lane-keeping error. In order to remove the
lane-keeping error the measured vehicle position is projected
to the nearest position on the map. The corrected error is
calculated as the distance from the predicted position to the
corrected measured position as

Ek = |X̄ − xk
c |, (5)

whereX̄ is the mean location of the position estimates and
xc is the vehicle’s DGPS measured location projected to the
map. The lane-keeping error is calculated as

Ek
l = |xk

c − xk
m|, (6)

wherexm is the vehicle’s actual DGPS measured location.
An example of the projection and error measurement is
shown in Figure 6.

The standard deviation of the population of particle posi-
tion estimates is also calculated at every 10 meters. These
results are shown in Figure 7 and demonstrate the algorithm
converged to an accuracy of about 1 meter after moving over
150 meters. Also shown in this figure and the following
is a line representing the mapping interval of the terrain
map, 10 cm, a value which places a lower-limit on the
achievable estimator accuracy. Compared to the off-line
correlation method mentioned earlier[8], the on-line particle
filter algorithm estimate is similar in accuracy.

One disadvantage of particle filters is the computational
burden imposed by using a large number of particles to
achieve an accurate yet robust prediction. To determine the
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Fig. 4. Position estimates after the vehicle traveled a distance D.
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Fig. 5. Pitch estimates after the vehicle traveled a distance D.
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relationship between particle population size and estima-
tor accuracy, the same algorithm was tested using various
numbers of particlesN distributed randomly across the one
mile map. The converged estimate error was inferred by
examining the standard deviation of the population averaged
over the final 100 meters. This was repeated 10 times, each
time with a different random initial population, and averaging
the results. The plot of population size versus estimator
error is graphed in Figure 8. It can be seen that, as the
numbers of particles increases to 1000 per mile, the accuracy
improves greatly. It can also be seen that the algorithm
resulted in about the same accuracy withN = 1, 000 as
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Fig. 7. Position estimate error as a function of the distancetraveled.

when1, 000 < N ≤ 10, 000. This suggests that the position
of the vehicle can be estimated most efficiently at about 1,000
particles per mile and further particles are unnecessary. This
can also be used to estimate the computational cost of using
a particle filter to estimate vehicle position over large area
maps for a given measure of initial uncertainty. For each mile
of roadway that could be a possible vehicle location within
in the map, 1000 particles would be needed.

V. CONCLUSIONS

This work shows that a vehicle’s longitudinal position can
be estimated given a terrain map and pitch measurements.
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To achieve on-line estimation, a particle filter algorithm is
presented. The convergence of the estimate is seen to occur
within approximately 150 meters of driving, with converged
longitudinal positioning error of consistently achievingac-
curacies of about 1 meter or better as compared to a DGPS
system. By examining population size, a particle density of
1,000 particles per mile of unknown roadway has been shown
to be sufficient for position estimation and can be used as a
basis for larger maps covering greater distances.
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