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Self-organizing traffic jams are known to occur in medium-to-high density traffic flows and it is 

suspected that ACC algorithms may affect their onset in mixed human-ACC traffic flows. 

Unfortunately, closed-form solutions that predict the statistical occurrence of these jams in 

mixed traffic do not exist. In this paper, a closed form solution that explains the impact of 

adaptive cruise control (ACC) on congestion due to the formation of self-organizing traffic jams 

(or “phantom” jams) is obtained. The master equation approach is selected for developing a 

model that describes the self-organizing behavior of traffic flow at a mesoscopic scale. The 

master equation approach is further developed to incorporate driver (or agent) behavior using 

ACC or car-following algorithms. The behavior for both human-driven and ACC vehicles is 

modeled using the General Motors‟ fourth model. It is found that while introduction of ACC 

vehicles into traffic may enable higher traffic flows, it also results in disproportionately higher 

susceptibility of the traffic flow to congestion. 
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1. INTRODUCTION 

  

The US Department of Transportation stated in a 

recent report that “between 1985 and 2006, vehicle 

miles traveled increased by nearly 100 percent, while 

highway lane miles only increased 5 percent during the 

same period” [1]. Another report from the Texas 

Transportation Institute mentioned that “between 1982 

and 2005, the percentage of the major road system that 

is congested grew from 29 percent to 48 percent” [2]. 

Recent studies have shown that traffic jams on 

highways may be self-organized, i.e. vehicle clusters 

may spontaneously emerge from initially homogeneous 

traffic if the density exceeds a critical value [3]. Such 

spontaneously-formed vehicle clusters or traffic jams 

have no apparent root causes (such as an accident) and 

are often referred to as “phantom” jams [4]. 

Self-organized traffic jams may lead to adverse effects 

on the environment (in terms of excessive emissions), 

financial losses (in terms of fuel wastage) and losses in 

productivity (in terms of lost man hours). This paper 

addresses the question of whether Adaptive Cruise 

Control (ACC) may offer a solution to reduce 

congestion by preventing self-organized traffic jams. 

 

  

2. LITERATURE REVIEW  

  

Active research has been performed in the area of 

adaptive cruise control and car-following driver models 

by Herman, Gazis and Potts [5], Seiler and Hedrick [6], 

Darbha [7], Zhou and Peng [8], and Ioannou [9]. Many 

studies on the impact of automated vehicle systems on 

traffic flow have been performed in recent times [10]. 

Studies of Advanced Highway Systems (AHS) with 

infrastructural support, such as communication 

networks or dedicated lanes, indicate remarkable 

improvements in highway capacity [11]. However, since 

implementing AHS would require an extensive 

infrastructure overhaul and equally large investments, it 

is a more realistic goal to expect that highways in the 

near future will be populated with a mix of ACC and 

human-driven vehicles. In fact, many major auto 

manufacturers such as Audi, Ford, Lexus etc. already 

offer different forms of ACC on their vehicles. Different 

studies based on systems of mixed ACC and 

human-driven vehicular traffic suggest that traffic flow 

may either increase or decrease [10]. Since there isn‟t a 

clear mandate on the impact of introduction of ACC 

vehicles into highway traffic, an urgent need exists to 

analyze their effect. 
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 Active research has also been performed to 

analyze the phenomenon of self-organized traffic jams 

by Kerner and Konhäuser [3], Nagel and Paczuski [12], 

and Mahnke, Pieret and Kaupužs [13], [14]. Most 

existing methodologies for analyzing traffic flow are 

based primarily on either macroscopic or microscopic 

models. Macroscopic models are not conducive for 

analyzing traffic comprising a mixture of ACC and 

human-driven vehicles, while microscopic models rely 

primarily on numerical simulations and cannot be 

solved analytically for a large number of vehicles. 

Further, self-organized traffic jams form at a scale that 

is between the macroscopic (traffic stream) and 

microscopic (individual vehicle) scales, and thus a 

mesoscopic („meso-„, Greek for middle) approach is 

required to analyze their behavior. Recent advances by 

Mahnke [13] in modeling the mesoscopic behavior of 

traffic provide new opportunities for analysis. However, 

Mahnke primarily focuses on clustering behavior in 

physical systems [15], and thus little research has been 

done to analytically study the impact of ACC on the 

formation of self-organized traffic jams at a mesoscopic 

scale. Further, other studies regarding the impact of 

ACC on traffic flow have primarily relied on numerical 

simulations [16] or experimental studies alone [10]. The 

following research proposes an analytical framework to 

overcome the shortcomings of experimental studies and 

numerical simulation approaches. 

3. MASTER EQUATION APPROACH  

  

To simplify the study of highway traffic, the system 

is often idealized as a closed road of length   with   

vehicles on it (Figure 1). Mahnke and Pieret model the 

formation of clusters, or self-organized traffic jams, in 

this system as a stochastic process using the discrete 

form of the master equation [13], and express the 

growth dynamics of the expected cluster size 〈𝑛〉 as 

follows: 
𝑑

𝑑 
〈𝑛〉  〈  (𝑛)〉  〈  (𝑛)〉    〈𝑛〉    〈𝑛〉 

(1) 

where   (𝑛) denotes the transition probability rate of 

a vehicle joining a cluster of size 𝑛 and is dependent 

on the headway in free flow;   (𝑛)  denotes the 

transition probability rate of a vehicle leaving a cluster 

of size 𝑛 and is reasonably assumed to be constant 

(    ). The condition for steady state is   〈𝑛〉  
  〈𝑛〉 . The mean field approximation is used to 

approximate the expected value of the transition 

probability rates. 

Expressions for free headway obtained from the 

steady state condition (from equation (1)) and physical 

constraints (fixed length of track) are equated as 

follows:  

[ℎ𝑓𝑟𝑒𝑒]𝑠𝑠
 
   𝑙  (〈𝑛〉   )ℎ𝑐𝑙𝑢𝑠𝑡𝑒𝑟

  〈𝑛〉   
 

 

(2) 

where [ℎ𝑓𝑟𝑒𝑒]𝑠𝑠
 denotes free headway corresponding to 

steady state condition and is dependent on the transition 

probability rates; ℎ𝑐𝑙𝑢𝑠𝑡𝑒𝑟  denotes the headway inside a 

cluster and is known from experimental data to be 

approximately constant [13][14]; and 𝑙  denotes the 

length of a vehicle. Additionally, assuming that the 

cluster size is large, i.e. 𝑛    𝑛, and rearranging the 

terms, the following simplified form of the relationship 

between expected cluster size and traffic density is 

obtained:  

〈𝑛〉∗  
𝜌∗ ([ℎ𝑓𝑟𝑒𝑒]𝑠𝑠

+ 𝑙)  𝑙

([ℎ𝑓𝑟𝑒𝑒]𝑠𝑠  ℎ𝑐𝑙𝑢𝑠𝑡𝑒𝑟)
 (3) 

where, 〈𝑛〉∗( 〈𝑛〉𝑙  )  denotes the normalized 

expected cluster size and 𝜌∗(  𝑙  )  denotes the 

dimensionless density. 

 
Fig. 1 Closed road system under consideration.  

(a) Vehicles in free flow; (b) Vehicles transitioning from 

free flow to jammed state (joining a cluster); (c) 

Vehicles stuck inside a cluster. 

As previously mentioned, the expression for steady 

state free headway [ℎ𝑓𝑟𝑒𝑒]𝑠𝑠 
is obtained using the 

transition probability rates   (𝑛) and   (𝑛). Mahnke 

and Pieret develop an expression for   (𝑛)  by 

assuming that vehicles join the cluster by moving at 

constant speed and “colliding” with the cluster, 

irrespective of the driver‟s efforts to maintain a safe 

velocity and distance from the preceding vehicle during 

the “collision” process. This does not reflect the true 

driver behavior while approaching a cluster. Instead, in 

this study, new transition rates are determined based on 

car-following or ACC algorithms to more accurately 

describe driver behavior. 

  

4. NEW TRANSITION PROBABILITY RATES 

  

In the present study, new transition rates are derived 

based on car-following models to represent driver 

behavior. One of the most popular and validated, yet 

simple, car-following models is the fourth model 

proposed by the General Motors research group [5], [17]. 

The model is used in the present analysis and is described 

as follows: 
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𝑥̈𝑛 1( +  ∆ )  
𝛼 [𝑥̇𝑛 1( + ∆ )]

[𝑥𝑛( )   𝑥𝑛 1( )]
(𝑥̇𝑛( )

  𝑥̇𝑛 1( )) 

(4) 

where 𝑥𝑛 1( )  denotes the position of the vehicle 

entering the cluster, 𝑥𝑛( ) denotes the position of the 

tailing vehicle in the cluster, and 𝛼  denotes the 

sensitivity of the driver of the vehicle entering the cluster. 

The headway 𝑥𝑛( )   𝑥𝑛 1( ) is represented by ℎ( ). 
The range of driver sensitivities is determined using 

typical traffic conditions and comfortable deceleration 

standards set by AASHTO. The typical traffic flow is 

assumed to have free flow velocity of about 25 m/s 

(about 55 miles/hour), free headway of about 100 m, and 

cluster velocity of about 0-2 m/s. Further, the maximum 

permissible deceleration is limited to 3.4 m/s
2
, according 

to AASHTO standards. Using these values, the process 

of a vehicle joining a cluster is simulated to obtain the 

maximum observed deceleration. The simulation outputs 

are included in figure 2(a) for two different driver 

sensitivities. The simulation is repeated for various 

values of driver sensitivities and the acceptable driver 

sensitivities are determined to fall in the approximate 

range [0.4, 0.65] (Figure 2(b)). 

 
Fig. 2 (a) Maximum observed deceleration during 

simulation of a vehicle joining a cluster with typical 

traffic conditions. (b) Maximum observed deceleration 

with varying driver sensitivities. 

Next, the equation of the car-following model is 

solved to determine the time taken to join the 

cluster  ( 𝑗𝑜𝑖𝑛) . The resulting expression for   𝑗𝑜𝑖𝑛 is a 

hypergeometric series with no closed-form solutions: 

 𝑗𝑜𝑖𝑛  
 

𝑣𝑐
∑ {

 

  𝑚𝛼
(
𝑣𝑐
𝑘
)
𝑚

(ℎ𝑓𝑟𝑒𝑒
1 𝑚𝛼

∞

𝑚=1

 ℎ𝑐𝑙𝑢𝑠𝑡𝑒𝑟
1 𝑚𝛼 )} 

(5) 

where 𝑘 is a driver dependent constant and 𝑣𝑐  is the 

velocity of the tailing vehicle in the cluster. However, it 

is observed that as an increasing number of terms is 

included in calculating  𝑗𝑜𝑖𝑛 , the hypergeometric series 

converges quickly to the true solution obtained from 

numerical simulation (Figure 3(a)). An additional key 

insight of this paper is to recognize that the 

hypergeometric series is constrained by the range of 

permissible driver sensitivities. Considering the range of 

permissible driver sensitivities, it is observed that one 

can approximate a closed-form solution by using the first 

term of the series ( 1) and an appropriate truncation ratio 

( 𝑇𝑅 ), such that    𝑗𝑜𝑖𝑛  𝑇𝑅 1 . For typical traffic 

conditions, the truncation ratio (𝑇𝑅) is determined to be 

about 1.4 (Figure 3(b)). 

 
Fig. 3 (a) Time to join a cluster – theoretical expression 

converges quickly to the numerical solution (b) Range 

of permissible driver sensitivities limits the variation of 

truncation ratio, 𝑇𝑅   𝑗𝑜𝑖𝑛  1.  

The transition probability rate for joining the cluster 

is thus given by the inverse of time taken to join a cluster, 

as shown in equation (6). The growth dynamics for the 

cluster are determined as proposed in [13], but the 
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closed-form approximations of the new transition rates 

are used to account for the car-following behavior. 

  (𝑛)   
 

𝑇̅𝑅   1
  
𝑘(  𝛼)

𝑇̅𝑅
(

 

ℎ𝑓𝑟𝑒𝑒
1 𝛼  ℎ𝑐𝑙𝑢𝑠𝑡𝑒𝑟

1 𝛼 ) (6) 

The expression for steady state free headway is thus 

obtained from equations (1) and (6), and is included as 

equation (7). The expression may be substituted in 

equation (3) to obtain the relationship between 

normalized expected cluster size and dimensionless 

density. Thus, the new transition probability rates yield 

a new expression for steady state free headway which 

better reflects the driver behavior and consequently the 

true cluster formation process. 

[ℎ𝑓𝑟𝑒𝑒]𝑠𝑠
 {ℎ𝑐𝑙𝑢𝑠𝑡

1 𝛼 +
 𝑘(  𝛼)

𝑇̅𝑅
}

1
1 𝛼⁄

 (7) 

5. INTRODUCTION OF ACC VEHICLES INTO 

TRAFFIC FLOW  

  

The closed-ring system is now considered with 

traffic containing a mixture of human-driven vehicles 

and ACC vehicles. Let the proportion of ACC vehicles 

on the closed road be  𝑝. If the population of vehicles is 

large, such that the proportion of human-driven and 

ACC vehicles is approximately the same both inside and 

outside the cluster, then the effective transition 

probability rates are given by: 

  
𝑒𝑓𝑓(𝑛)  (  𝑝)  

𝐻(𝑛) +  𝑝  
𝐴𝐶𝐶(𝑛);   

  
𝑒𝑓𝑓(𝑛)       

(8) 

where   
𝐻(𝑛)  denotes transition probability rate of 

joining a cluster for a human-driven vehicle with 𝛼 = 0.4, 

and   
𝐴𝐶𝐶(𝑛)  denotes transition probability rate of 

joining a cluster for an ACC vehicle with 𝛼 = 0.7. The 

sensitivity value for human drivers is supported by 

experimental data from German highways [14]. If  𝑝  0, 

i.e. the traffic consists only of human-driven vehicles, 

each with driver sensitivity 𝛼  = 0.4, then the 

dimensionless critical density obtained from the above 

theoretical analysis is approximately 0.1 (Figure 4(a)). 

This value is in reasonable agreement with the actual 

value of critical density observed on German highways 

with human-driven vehicles (Figure 4(b)). 

The sensitivity value for ACC vehicles is 

determined from the necessity of obtaining a closed form 

solution for the analysis. When the expressions for 

individual transitional probabilities   
𝐻(𝑛)  and 

  
𝐴𝐶𝐶(𝑛)  are substituted in the effective transition 

probability rate   
𝑒𝑓𝑓(𝑛) and the steady state condition 

  
𝑒𝑓𝑓〈𝑛〉    

𝑒𝑓𝑓〈𝑛〉  is considered, the following 

equation is obtained: 

ℎ𝑓𝑟𝑒𝑒
1 𝛼𝐻ℎ𝑓𝑟𝑒𝑒

1 𝛼𝐴𝐶𝐶  𝑏ℎ𝑓𝑟𝑒𝑒
1 𝛼𝐻  𝑐ℎ𝑓𝑟𝑒𝑒

1 𝛼𝐴𝐶𝐶 + 𝑑  0 (9) 

where 𝑏, 𝑐, and 𝑑 are functions of ℎ𝑐𝑙𝑢𝑠𝑡𝑒𝑟 ,  , 𝑝, 𝛼𝐴𝐶𝐶 , 

𝛼𝐻 , and 𝑇𝑅. In the depicted general form, equation (9) is 

a transcendental equation and can be solved using only 

numerical or graphical methods. In order to obtain an 

analytical solution for the steady state free headway, the 

transcendental equation is reduced to an algebraic 

equation (quadratic, cubic or bi-quadratic) by enforcing a 

constraining relation on the values that 𝛼𝐻  and 𝛼𝐴𝐶𝐶  

may simultaneously assume. One such relation that 

reduces equation (9) into a cubic equation and thus 

allows a closed form solution is  (  𝛼𝐻)   2(  
𝛼𝐴𝐶𝐶), 𝑖. 𝑒. 𝛼𝐴𝐶𝐶  0.5( + 𝛼𝐻). It may be observed that, 

once this substitution is made, arbitrary choices of driver 

sensitivities cannot be made in this analysis. This is due 

to the fact that the choices are restricted by two 

constraints, viz. the maximum acceptable deceleration 

(as discussed in section 4.2), and the need to obtain a 

closed form solution. A number of values of driver 

sensitivities (𝛼𝐻 , 𝛼𝐴𝐶𝐶) such as (0.35, 0.675), (0.4, 0.7) 

etc. which satisfy the relation (  𝛼𝐻)   2(  𝛼𝐴𝐶𝐶)  

also lie approximately in the range defined by maximum 

acceptable deceleration based on AASHTO standards. 

 
Fig. 4 (a) Phase portrait for cluster size versus density 

for traffic consisting of human-driven vehicles 

with 𝛼  0. . (b) Experimental data for traffic flow 

consisting solely of human drivers [Modified from [14], 

data from [3]] 

Thus, the relation (  𝛼𝐻)   2(  𝛼𝐴𝐶𝐶)  may 

be used as an approximation, together with this restricted 

set of values, to reduce equation (9) into a cubic form. 
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The expression for steady state free headway in a 

multi-species environment is obtained by solving the 

cubic equation and then substituted into equation (3) to 

obtain a relationship between expected cluster size and 

density in a multi-species environment. The results from 

the analysis are discussed next. 

  

6. RESULTS AND SIMULATIONS 

  

The expression for steady state free headway in a 

multi-species environment is substituted in equation (3) 

to obtain the relationship between expected cluster size 

and density. The phase portraits are obtained for the 

analytical solutions for both human and ACC driver 

models. Figure 5(a) indicates that, if the vehicle 

population consists of only ACC drivers (𝑝   , 𝛼  
0. ), the traffic operates at higher critical densities, and 

consequently higher traffic flows, as compared to when 

it consists of only human drivers (𝑝  0, 𝛼  0. ). The 

relationship between cluster size and density in a 

single-species environment is validated using a Monte 

Carlo simulation wherein the cluster formation process 

is modeled as a one-dimensional random walk (Figure 

5(b)). The simulation is valid only up to dimensionless 

density 𝜌∗  0.  in this case, beyond which the 

expression for free headway obtained from physical 

constraints (fixed length of road) yields incorrect results, 

due to finite length of vehicles (𝑙). 

 
Fig. 5 Phase portraits for cluster size versus density.  

(a) Analytical solution for human and ACC drivers;  

(b) Monte Carlo simulation and comparison with 

analytical solution for human drivers.  

Lines indicate analytical solution. Solid dots indicate 

simulation results. 

Further, it is found that as the proportion of ACC 

vehicles on the road is increased, the traffic flow 

becomes increasingly sensitive to changes in vehicle 

population proportions. In predominantly human driver 

traffic in the jam-free regime, a small change in vehicle 

proportion does not change the state of the traffic flow, 

which continues to operate in the jam-free regime 

(Figure 6(a) - operating point A1). On the other hand, if 

the same change of vehicle proportion is introduced in 

predominantly ACC traffic, it causes the traffic flow to 

change from a jam-free state to a self-organized jam or 

congested state (Figure 3(a) - operating point B1). 

Figure 6(b) describes the sensitivity of critical density to 

proportion of ACC vehicles and indicates that traffic 

systems with very high ACC penetration are up to 10 

times as susceptible to congestion caused by 

self-organized traffic jams, as traffic systems with very 

low ACC penetration. 

 
Fig. 6 Increased ACC penetration results in an increase 

in critical density at which self-organized jams begin to 

form. (a) Critical density vs. ACC penetration. (b) 

Sensitivity of critical density to proportion of ACC 

vehicles on the road. 

Monte Carlo simulation of the multi-species system 

is used to determine the normalized critical density as 

the proportion of ACC vehicle on the road increases. 

Specifically, the Monte Carlo simulation is used to 

determine the lower bound of the density, or the density 
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at which clusters begin to form. The results from the 

Monte Carlo simulation appear to match quite well with 

the theoretical analysis, as shown in Figure 7.  

 
Fig. 7 Results from the Monte Carlo simulation appear 

to agree with the theoretical analysis. Colormap 

indicates the total number of vehicles inside a cluster. 

7. CONCLUSIONS  

  

The study has shown that as the percentage of ACC 

vehicles in the traffic system is increased the critical 

density also increases correspondingly. The increase in 

critical density implies that the density at which vehicle 

clusters begin to spontaneously appear is increased. This 

indicates that the traffic flow can operate at higher 

densities and consequently higher flow rates, since it is 

known from the fundamental diagram of traffic flow 

that, in the free flow regime, the flow increases as the 

density increases.  

Additionally, while increased ACC penetration may 

allow the traffic system to operate at increased densities 

and flows, it comes at a cost. As ACC penetration 

increases, a small percentage of drivers with low 

sensitivities are enough to cause a self-organized traffic 

jam. In other words, in a predominantly ACC traffic 

system, introduction of a small percentage of human 

drivers may cause a rapid reduction of critical density, 

resulting in a self-organized traffic jam. 
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