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Across many industries, the prevailing practice is to design families of products that 
exploit commonality to take advantage of economies of scale and scope while targeting a 
variety of market applications.  A product family is a group of related products that are 
derived from a common set of components, modules, and/or subsystems to satisfy a variety 
of market applications where the common “elements” constitute the product platform.  
Successful development of a platform and deployment of the product family requires input 
from multiple disciplines (e.g., marketing, engineering, manufacturing), and a variety of 
methods and tools exist to support different aspects of product family design.  Unfortunately, 
many of these methods and tools have been developed – and consequently exist – in isolation 
from one other.  In this paper, we introduce a new approach for integrating several of these 
disparate tools to translate user needs and requirements into commonality specifications 
during product family design.  In particular, we integrate the market segmentation grid, 
Generational Variety Index (GVI), Design Structure Matrix (DSM), commonality indices, 
mathematical modeling and optimization, and multi-dimensional data visualization tools to 
translate user requirements into commonality specifications for a product family: what to 
make common, what to make unique, and the best parameter settings for each component 
and/or subsystem.  The design of a family of unmanned ground vehicles (UGVs) is included 
to demonstrate the proposed approach and highlight its benefits and limitations. 

I.  Introduction 
CROSS many industries, the prevailing practice is to design families of products that exploit commonality to 
take advantage of economies of scale and scope while targeting a variety of market applications.  A product 

family is a group of related products that are derived from a common set of components, modules, and/or 
subsystems to satisfy a variety of market applications where the common “elements” constitute the product 
platform.1  The platform is used to create individual products either through addition/subtraction/substitution of one 
or more modules to realize a module-based product family, or by scaling and/or “stretching” one or more design 
variables to realize a scale-based product family.2  Successful examples can be found in a variety of companies, 
including Airbus,3 Black & Decker,1 Boeing,4 and Rolls Royce.5    

Product family design is a difficult task – it involves all of the complexities of product design compounded by 
the challenges of coordinating the design of multiple products.  There are many advantages to product families, 
however, most of which stem from increased commonality among the set of products.  As Robertson and Ulrich6 
point out, “By sharing components and production processes across a platform of products, companies can develop 
differentiated products efficiently, increase the flexibility and responsiveness of their manufacturing processes, and 
take market share away from competitors that develop only one product at a time.”  Platforms promote better 
learning across products, and the use of common components and modules can decrease lead-time and risk in the 
development stage since the technology has already been proven in other products.7,8  Inventory and handling costs 
are also reduced due to the presence of fewer components in inventory.  The reduction of product line complexity, 
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the reduction of set-up and retooling time, and the increase of standardization and repeatability improve processing 
time and productivity, and hence also reduce costs.7,9  Fewer components also need to be tested and qualified, which 
reduces cost as well as time-to-market.10,11   

Successful development of a platform and deployment of a product family requires input from multiple 
disciplines (e.g., marketing, engineering, manufacturing),12 and a variety of tools and methods exist to support 
different aspects of product family design as discussed in the next section.  Unfortunately, many of these tools and 
methods have been developed – and consequently exist – in isolation from one other.  Consequently, in this paper 
we introduce a new approach for effectively integrating several of these disparate tools to translate user 
requirements into commonality specifications during product family design.  Section III introduces our approach for 
integrating these tools and methods into a coherent framework to translate user requirements into commonality 
specifications for a product family.  Section IV demonstrates the proposed approach using an example based on a 
family of unmanned ground vehicles.  The benefits and limitations of the proposed approach along with future work 
are discussed in Section V.  

II.  Related Work: Methods and Tools to Support Product Family Design 
Product family design involves all of the complexities of product design compounded by the difficulties of 

coordinating the simultaneous design of multiple products.  A variety of tools and methods have been developed 
over the past two decades to support product family design and platform-based product development.12,13  For 
instance, the market segmentation grid maps market segments and price/performance tiers to help marketing and 
engineering identify potential platform leveraging strategies for the product family as it is being developed.1  As 
shown in Figure 1, market segments (e.g., user groups) are listed on the horizontal axis while the price/performance 
tiers (i.e., range of uses) are plotted on the vertical axis.  Within this grid, four platform leveraging strategies can be 
identified: (1) no leveraging; (2) horizontal leveraging, which shares common technology across several market 
segments within a given price/performance tier; (3) vertical leveraging, which scales technology up/down within 
market segment to address different price/performance tiers; and (4) beachhead approach, which combines vertical 
and horizontal leveraging to attack all of the market segments within a single platform.  Market segmentation grids 
are useful in a wide range of applications,1,14 including platform-based development at start-up firms.15,16  They have 
also been used to identify potential platform leveraging strategies during product family redesign.17 
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Figure 1. Market Segmentation Grid and Platform Leveraging Strategies 

Identifying ways to leverage a platform and reuse common “elements” within a product family is not trivial.  
Martin and Ishii18 modified Quality Function Deployment (QFD) and the House of Quality – a good tool for 
integrating marketing and engineering19 – to compute a Generational Variety Index (GVI) that can be used to help 
identify subsystems/components that will need to be redesigned over the lifetime of the product line; those that are 
not subject to a lot of redesign are potential platformable “elements” within the family.  Figure 2 illustrates part of 
the seven-step process that Martin and Ishii use to compute GVI.  After determining the market and desired life for 
the platform (Step 1), a QFD matrix is used to map customer requirements to engineering requirements (Step 2); the 
example in Figure 2 is for a water cooler that has four planned variants over its lifetime – the requirements for each 
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variant are not shown.  The expected changes in customer requirements (Step 3) and engineering metric target 
values (Step 4) are identified, and a normalized target value matrix is calculated (Step 5) based on the mapping of 
engineering requirements to subsystems/components (see QFD Matrix II in Figure 2).  Using the GVI rating scale 
shown in the lower right of the figure, the GVI matrix is created by replacing each x in the second QFD matrix with 
a 1, 3, 6, or 9 (Step 6).  Finally, the ratings in each column are tallied (Step 7) to compute the GVI value for each 
subsystem/component.  As noted in the figure, subsystems and components with low GVI values will not require a 
lot of redesign over the life of the product; therefore, they can be integrated into the platform.  Meanwhile, the 
“elements” with high GVI values will require a lot of redesign to accommodate the anticipated variation in the 
customer requirements; therefore, these subsystems/components should not be part of the platform.   
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Figure 2. Example of Computing the Generational Variety Index (GVI) for a Water Cooler 

To complement the GVI analysis, Martin and Ishii18 introduce a Coupling Index derived from the product’s 
Design Structure Matrix (DSM)20 to identify ways to modularize the product and standardize interfaces between 
high GVI “elements”, thereby minimizing the impact of their redesign on the system.  DSMs have actually been 
used extensively for identifying modules within a product architecture,21,22 which influences not only how the 
product family will be designed23,24 but also how teams should be staffed, structured, and organized for effective 
product development.25  DSM-based methods are also being developed to identify platforms within a family26,27 as 
well as strategies for embedding flexibility into subsystems/components that may vary over the product lifecycle.28  
These methods draw heavily on the findings from recent research into change propagation in complex systems.29,30   

Concurrently, metrics for product family design have focused primarily on assessing (1) modularity and (2) 
commonality.31  Metrics for modularity abound in the literature and are reviewed elsewhere;32,33 instead, we focus 
on commonality indices for product family design and their use as surrogates for estimating the manufacturing and 
production cost savings of platform-based product development.2  Numerous commonality indices have been 
developed to assess the “goodness” of a product family,34 and multiple perspectives (e.g., design, fabrication, 
assembly) can be used when performing this assessment on a product family.35  While most of these indices rely on 
discrete component and part counts (e.g., count the number of component instances that have the same size/shape, 
material/manufacturing, and assembly/fastening scheme within a family36), a few indices have been developed to 
assess parametric variety, i.e., variations in the settings of design parameters across products in a family.37,38  One 



4 
 

such index is the Product Family Penalty Function (PFPF) introduced by Messac, et al.,39 which can be used during 
product family optimization.  As defined in Eq. (1), PFPF is used to measure the dissimilarity among the different 
parameter settings for each design variable used to define the product family. 
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In Eq. (1), xij is the individual value of the ith design variable for the jth product, n is the number of design variables 
being considered, and p is the number of products in the family.  The deviation is expressed as a percentage of the 
mean for each design variable so that while the parameter values change during optimization, the percent deviation 
is normalized against mean value of each variable.  Minimizing PFPF during product family optimization reduces 
the parametric variation in the family, which is equivalent to maximizing commonality in the family.  PFPF has 
been applied to electric motor family design39,40 as well as the design of a family of General Aviation Aicraft.41 

Finally, to support product family optimization, more than 40 different optimization-based methods have been 
developed,42 ranging from those that are engineering-centric43 to those that include manufacturing considerations44 
and market analysis.45  A wide range of algorithms have been used to support product family optimization, including 
linear and non-linear programming (e.g., sequential linear/quadratic programming, generalized reduced gradient) as 
well as derivative-free methods such as pattern search, simulated annealing, and genetic algorithms.42  Newer 
optimization algorithms such as ant colony optimization are also finding use in product family design;46 however, 
genetic algorithms (GAs) are becoming the predominant approach for product family optimization given the 
flexibility in their problem formulation, capability to handle multiple objectives, and ability to be run in parallel 
computing environments.47,48  Multi-objective optimization approaches for product family design are also being used 
to combine other methods and tools, such as the market segmentation grid to identify effective platform leveraging 
strategies,49 and integrate engineering design, customer value, and production cost models to identify profitable 
portfolios of products and platforms.50  Given the potential synergies among these methods and tools, an integrated 
approach to product family design would provide an effective means to translate user requirements into 
commonality specifications.  Our proposed approach is introduced next. 

III.  Proposed Approach: An Integrated Framework for Product Family Design 
The starting point for our integrated approach is the product platform planning framework introduced by 

Robertson and Ulrich.6  Their framework consists of three steps as shown in Figure 3: (1) product plan, (2) 
differentiation plan, and (3) commonality plan.  In the product plan, the goal is to identify which products to offer 
when.  Identifying how products will be positioned within the each market segment is part of the differentiation 
plan.  Finally, the commonality plan outlines which “chunks” (i.e., subsystems/components) will be shared between 
each of these products.  Taken together, the three steps define the product platform plan for a product family. 
 

 

Figure 3. Product Platform Planning Framework of Robertson and Ulrich6 
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While these three steps are a useful guide to structure product platform planning, the framework itself can be 
difficult to implement as it has not been linked to specific methods and tools to support each step.  Therefore, we 
propose the integrated approach in Figure 4 to link the methods and tools discussed in the previous section into the 
product family planning framework advocated by Robertson and Ulrich.  In particular, we integrate the market 
segmentation grid, DSMs, GVI, commonality indices, and optimization to translate user requirements (i.e., customer 
needs) into commonality specifications for a product family (i.e., what to make common, what to make unique, and 
the best parameter settings for each component and/or subsystem41).  As shown in Figure 4, the market segmentation 
grid (along with reverse engineering and benchmarking of existing systems) is used to identify a promising product 
plan, and GVI and DSMs are used to initiate the differentiation plan.  GVI is also used to define a potential 
commonality plan, which is verified using commonality indices and multi-objective optimization for detailed trade 
studies.  Multi-dimensional data visualization tools51 are used to display results, allowing designers to change and 
modify their preferences, targets, etc. “on the fly” to bring the commonality and differentiation plans into alignment.  
In essence, our integrated approach enables a “Design by Shopping” paradigm52 for product family design.   
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Figure 4. Integrated Approach to Product Family Design 

IV.  Example: Design of a Family of Unmanned Ground Vehicles 
To demonstrate the proposed approach, consider the design of a family of unmanned ground vehicles (UGVs).  

While the existing systems offered by companies like Foster-Miller (e.g., the Talon) and iRobot (e.g., the Packbot) 
are effective, there is no sharing or part commonality across existing systems as there is little to no incentive for 
manufacturers to collaborate with one another.  As a result, users must maintain multiple sets of spare parts, 
manuals, and tools; keep multiple specialized technicians on staff for logistical support and maintenance; and 
conduct different sets of training and certification procedures for each robot since the operating systems and user 
controls are different for each robot.  Furthermore, there is no plug-and-play capability across systems from different 
manufacturers, e.g., a manipulator arm from one manufacturer will not work on the other manufacturer’s UGV and 
vice versa.  By applying our approach to this problem, we hope to identify promising opportunities for commonality 
within future UGV systems. 

A. Market Segmentation and Product Plan for UGV Family 
To develop the product plan for the UGV family, we gathered a set of requirements for the UGV capabilities 

(e.g., weight, speed, range, lift capacity) for different missions, and threshold and objective values were identified 
for each capability for each mission.  Threshold values represent the minimum values that must be met in order to 
complete a mission while the objective values provide targets that users would like to achieve.  Over 50 different 
missions were identified based on type of ordnance, UGV functionality (e.g., dig, detonate, diffuse), location of 
operation, etc.  Initially, formal clustering techniques (e.g., fuzzy clustering53,54) were used to group similar missions 
into representative “market segments”, but it made better sense to group the UGVs into three classes consistent with 
current systems.  In the end, three “performance tiers” were identified corresponding to small, medium, and large 
UGVs based on weight, and threshold and objective values are then defined for each of these three weight classes.   

In parallel to this effort, we also dissected and analyzed several existing systems, including the Talon, Packbot, 
Bombot, and RONS (see Figure 5).  The capabilities of each UGV were measured (e.g., weight, speed, battery life, 
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lift capacity) to establish a baseline for comparison as well as provide data for validating the mathematical models 
developed for optimization and product family trade studies.  These systems were also used to construct a “generic” 
UGV architecture, which is shown in the DSM in Figure 6.  This DSM shows not only the connections between 
subsystems and components but also the extent to which a change in one component is will likely impact another 
component (L = low, M = medium, H = high) by taking into consideration the potential for change propagation 
within the system.29  This information is particularly useful when conducting GVI analysis to identify how the 
commonality and differentiation plans.   
 

    
(a) Bombot 

http://www.defensetech.org 
(b) Talon 

http://www.foster-miller.com 
(c) Packbot 

http://www.irobot.com 
(d) RONS 

http://www.globalsecurity.org 

Figure 5. Existing UGVs Dissected and Analyzed 

 

Figure 6. DSM of “Generic” UGV Architecture 55 

B. Commonality and Differentiation Plan 
With this as our “generic” reference architecture for the UGV family, we proceeded to compute GVI for each 

subsystem based on the requirements for the different “performance tiers”, i.e., small, medium, and large UGVs.  
The GVI results are summarized in Figure 7.  Subsystems with low GVI values will not vary much across the 
family, while subsystems with high GVI values will vary considerably in order to achieve the performance 
requirements for the different sized UGVs.  For instance, the arm and gripper had high GVI values based on the 
different capabilities and desired functionality; therefore, the recommendation is to modularize these subsystems and 
standardize their interfaces in order to allow different manipulators and grippers to be easily swapped out (and 
upgraded) for different missions.  Batteries, on the other hand, have a low GVI value, and it appears that common 
batteries may be used across different UGVs; however, the number of batteries needs to be scalable given the power 
requirements for larger UGVs.  Meanwhile, the chassis falls in the middle – many requirements drive chassis sizing 
(e.g., long vs. short and wide vs. narrow for maneuverability as well as reach capability).  Note that while GVI helps 
identify which subsystems/components can be common between products in the family, it does not indicate what the 
best parameters settings are for those shared “elements” – that is the role that optimization plays in our approach. 
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Figure 7. GVI Analysis for "Generic" UGV Architectu re55 

A subsequent analysis of each pair of UGVs (e.g., small and medium, medium and large, small and large) was 
used to translate these GVI recommendations to the parameter level.55  For instance, even though the chassis will 
vary across each weight class, we sought to identify potential opportunities for scaling the chassis in one or more 
dimensions based on the threshold and objective values for each UGV pair.  Alternatively, one could use Martin and 
Ishii’s Coupling Index to facilitate this analysis;18 however, it was in our best interest to understand each subsystem 
at the parameter level before creating mathematical models to estimate the performance of new UGV designs.  The 
final GVI recommendations are listed in Error! Not a valid bookmark self-reference. where an “x” indicates 
common settings across two or more UGVs, e.g., chassis height can be common to all three UGVS, but only the 
small and medium have common chassis length and width based on the threshold and objective requirements.  
Based on these GVI recommendations, we develop a mathematical model and use multi-optimization, commonality 
indices, and multi-dimensional data visualization to perform trade studies and determine the best parameter settings 
for the subsystems/components in the UGV family.  

Table 1. GVI Recommendations for Commonality in Key Subsystems of UGV Family 

Subsystem Design Parameters Small Medium Large 
Length x x  
Width x x  Chassis 
Height x x x 

Wheels/Tracks x x x 
Wheel Diameter    

Track Width    
Mobility 

Wheelbase    
Length x x x 
Width x x x Batteries 
Mass x x x 

Outer Arm Radius x x  
Arm Segment Length x x  Manipulators 

Number of Links x x  

C. Mathematical Modeling and Multi-Objective Optimizat ion 
In order to finalize our commonality specifications for the UGV family, we developed a mathematical model to 

simulate system performance.  The model was developed to estimate UGV capabilities for the specific threshold and 
objective requirements that defined each “market segment”, e.g., the analysis for the chassis needed to compute its 
weight as well as estimate its stair climbing capability and ground clearance for obstacle avoidance.  The DSM was 
also used to help identify subsystem interactions of interest to include the model, e.g., the interactions between the 
chassis and manipulator that dictate lift capacity and center of gravity, which impacts tipping, self-righting, etc.   

The model was developed in Simulink® and employed a combination of physics-based models, allometric 
design principles, curve fits, and look up tables to estimate the capabilities of the different subsystems in a new 
UGV design alternative.  The overall structure of the model is shown in Figure 8, which is divided into 14 analysis 
blocks.  The first 11 blocks size the specified subsystem while the last 3 blocks compare the predicted performance 
against the capabilities defined for each weight class to compute an effectiveness measure for each UGV based on 
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how well the threshold and objective values are met.  The blocks are sequenced to minimize feedback loops in the 
model as each block relies on a combination of user-specified inputs (e.g., battery type) and inputs from other 
subsystems (e.g., chassis mass) in order to perform its analysis.  Key parameters that serve as both inputs and 
outputs for analysis (e.g., chassis mass, vehicle mass, vehicle velocity) require iteration in the model as indicated by 
the feedback loops in Figure 8.  Even with these iterations, the model executes a complete analysis in 4 seconds on a 
moderately equipped desktop PC.   
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Figure 8. System Decomposition for UGV Mathematical Model 

After model convergence was verified, we confirmed trends in the model, e.g., as battery size increased, vehicle 
range increased for a given vehicle mass and velocity.  We validated the individual subsystems and overall model 
using data from the four existing UGVs that we dissected and analyzed (see Figure 5).  The model is linked directly 
to our trade space visualization software (ATSV),51,56 which is used to generate new design alternatives to study the 
tradeoff between commonality and effectiveness in the UGV family.  Details on model convergence, validation, and 
linking to ATSV can be found elsewhere.57,58  

Once the model is linked to ATSV, random sampling and visual steering are used to generate about 15,000 
design alternatives that span the small, medium, and large weight classes.  Figure 9 plots the predicted effectiveness 
of each UGV versus its size; the best 90 UGV designs in each weight class are color-coded while the remaining 
designs are shown in gray.  While the majority of the designs fall into the medium weight class, there are many 
small and large alternatives; unfortunately, while the small and medium designs appear to be relatively effective, 
many of the large designs in this study are not.  Regardless, these alternatives provide a basis for a product family 
trade study, which considers families composed of different combinations of these small, medium, and large UGVs.   

 

Colored points 
indicate the 90 
most effective 
design alternatives

Key: • Small
• Medium
• Large 

 

Figure 9. Effectiveness vs. Vehicle Size (0/red = Small, 0.5/green = Medium, 1/blue = Large) and Mass 



9 
 

D. Product Family Trade Study and Commonality Specifications 
For this product family trade study, we consider the best 90 designs from each weight class (see colored designs 

in Figure 9) to create families based on the GVI recommendations, e.g., select a set of small, medium, and large 
UGVs that have common batteries, scaled chassis, and different manipulators as recommended by GVI.  For each 
family, we compute the effectiveness of the family by averaging the individual effectiveness of each UGV as well as 
the dissimilarity in the family using PFPF from Eq. 1.  Figure 10 shows the results of this analysis with red points 
being an exact match with the GVI recommendations; green points match the GVI recommendations within one 
parameter, i.e., all but one subsystem parameter are shared as recommended by GVI.  Based on this analysis, we 
identify five families that are an exact match and about 250 families that are within a few parameters of the GVI 
recommendations.  Table 2 lists some of the key subsystem parameters for the five families that match the GVI 
recommendations.  Additional parameters that are common within these families are also highlighted, indicating that 
we may have been too conservative and missed opportunities for commonality given the level of analysis we used.   
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Figure 10. UGV Families based on GVI Recommendations (red/green) and Enumerated Options (gray) 

In parallel to identifying the GVI-based families, we enumerate all 729,000 possible UGV families (= 90 small 
designs x 90 medium designs x 90 large designs) and computed the average effectiveness and PFPF for each family.  
These UGV families are shown in gray in Figure 10.  Unfortunately, when compared to all of these possible options, 
none of the GVI-based families fall on the Pareto frontier – the families indicated by +’s in the figure that offer the 
best combination of commonality (i.e., minimum PFPF) and effectiveness.  Of these families, three are of particular 
interest as highlighted in the figure: (1) the Most Effective Family, (2) the Most Common Family, and (3) the Best 
Compromise Family.  The Most Effective Family does the best job in satisfying the effectiveness requirements for 
the small, medium and large UGVs (Average Effectiveness = 86.8%), but it has less commonality than the other 
designs, although by no means the worst.  The Most Common Family provides the opposite – it offers the most 
commonality among the three UGVs in the family, but this comes at a small sacrifice in performance (Average 
Effectiveness = 86.0%).  Finally, the Best Compromise Family falls between the two – it has more commonality 
than the Most Effective Family but with less sacrifice in performance compared to the Most Common Family.  In 
fact, the Average Effectiveness is 86.7%, indicating a remarkably good compromise in this family.   

The corresponding parameter settings for these three UGV families are listed in Table 3.  Here, color is used to 
highlight parameter values that are common (in orange) and similar (in yellow), i.e., within 5% across two or more 
UGVs within a given family.  Note that even though some of the parameter values are the same across families (i.e., 
they all use tracks, and nearly all of them have the same battery specifications), the color coding for common and 
similar parameter values are within a single family, not across the three families.   
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Table 2. UGV Families that Most Closely Resemble GVI Recommendations 
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Small 0.557 0.227 0.318 2 0.261 0.028 0.112 0.062 1.4 0.021 0.565 3

Medium 0.592 0.221 0.334 2 0.291 0.032 0.112 0.062 1.4 0.021 0.524 3

Large 0.665 0.301 0.344 2 0.181 0.13 0.112 0.062 1.4 0.021 0.306 3

Small 0.544 0.203 0.079 2 0.269 0.034 0.112 0.062 1.4 0.021 0.134 3

Medium 0.575 0.191 0.086 2 0.279 0.043 0.112 0.062 1.4 0.021 0.133 3

Large 0.911 0.5 0.079 2 0.121 0.061 0.112 0.062 1.4 0.021 0.112 3

Small 0.578 0.208 0.08 2 0.277 0.03 0.112 0.062 1.4 0.021 0.569 3

Medium 0.603 0.205 0.08 2 0.297 0.035 0.112 0.062 1.4 0.021 0.568 3

Large 0.911 0.5 0.079 2 0.121 0.061 0.112 0.062 1.4 0.021 0.112 3

Small 0.646 0.223 0.35 2 0.307 0.025 0.112 0.062 1.4 0.021 0.104 3

Medium 0.608 0.224 0.32 2 0.301 0.035 0.112 0.062 1.4 0.021 0.11 3

Large 0.665 0.301 0.344 2 0.181 0.13 0.112 0.062 1.4 0.021 0.306 3

Small 0.643 0.234 0.349 2 0.307 0.021 0.112 0.062 1.4 0.021 0.104 3

Medium 0.608 0.224 0.32 2 0.301 0.035 0.112 0.062 1.4 0.021 0.11 3

Large 0.665 0.301 0.344 2 0.181 0.13 0.112 0.062 1.4 0.021 0.306 3

# = GVI & PFPF Suggest Commonality

# = PFPF Suggests Additional Commonality

# = Neither GVI or PFPF Suggest Commonality

Family 2

Chassis Mobility Batteries Manipulator

Family 1

Family 3

Family 4

Family 5

 
 

Table 3. Common, Similar, and Unique Parameter Settings in the UGV Families on the Pareto Frontier 
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Small 0.542 0.206 0.198 2 0.264 0.033 0.112 0.062 1.4 0.021 0.418 3

Medium 0.788 0.416 0.249 2 0.078 0.039 0.112 0.062 2.8 0.021 0.243 3

Large 1.007 0.498 0.257 2 0.175 0.058 0.112 0.062 2.8 0.021 0.229 3

Small 0.543 0.224 0.135 2 0.251 0.025 0.112 0.062 1.4 0.021 0.105 3

Medium 0.732 0.409 0.163 2 0.051 0.047 0.112 0.062 1.4 0.021 0.283 3

Large 1.007 0.475 0.170 2 0.178 0.049 0.112 0.062 1.4 0.021 0.218 3

Small 0.543 0.224 0.135 2 0.251 0.025 0.112 0.062 1.4 0.021 0.105 3

Medium 0.792 0.418 0.236 2 0.057 0.033 0.112 0.062 1.4 0.021 0.292 3

Large 0.763 0.371 0.117 2 0.115 0.108 0.112 0.062 2.8 0.022 0.408 3

# # = Similar (< 5%) Values

Most    

Common 

Family

Most     

Effective 

Family

Chassis Mobility ManipulatorBatteries
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Compromise 

Family

 
 

Comparing Table 2 and Table 3, we see that UGV families that lie on the Pareto frontier have less commonality 
than the GVI-based families as one might expect.  While key battery and manipulator parameters are made common 
across both sets of families along with the use of tracked designs, the families on the Pareto frontier have very few 
chassis parameters in common.  At best, the chassis height or length is shared between the medium and large UGVs, 
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and the small UGV has a completely different chassis in all cases.  It is interesting that the results differ so much and 
yet the average effectiveness of the family is within 1-2% of each other.   

Finally, to gain more insight into the differences between the UGV families based on the GVI recommendations 
and the enumerated families, we color code all of the families in Figure 10 based on how closely they “match” the 
GVI recommendations and plot the results in Figure 11.  The scale in Figure 11 shows that the families range from a 
complete or very close match (red) to little to no match (blue).  As expected, the closer the match to GVI, the lower 
the PFPF values (i.e., the more commonality), and the tradeoff is remarkably favorable in the family in that families 
with high PFPF values (i.e., less commonality) actually do not perform well either.  Based on the results in Figure 9, 
we conclude that this drop-off in effectiveness is driven largely by the poorly performing large UGVs in this study.  
Apparently, these poorly performing designs are also very dissimilar to the small and medium designs while the 
most effective large designs also have a lot in common with the small and medium designs.  In many situations, this 
may not be the case; however, this is a promising and useful finding from this product family trade study.   

 

 

Figure 11. Comparison of GVI-based Families with Enumerated Families 

An important take-away from this analysis is that GVI may suggest too much commonality because its analysis 
is done at the subsystem/component level (e.g., make the chassis common) and not at the parametric level (e.g., the 
chassis should have common height and width but the length should be scaled).  Furthermore, GVI analysis is done 
for the entire family and may miss opportunities for commonality between subsets of products within the family 
(e.g., the small and medium chassis can be common but the large chassis should be unique).  In both cases, using 
GVI in concert with quantitative analysis – a mathematical model of the system and optimization – will provide 
additional insight into the commonality-performance tradeoffs within the family.  In this UGV product family trade 
study, we are fortunate that the effective small, medium, and large designs tended to have a lot of commonality; 
however, that may not happen in practice.  This is why multi-dimensional data visualization is important to product 
family trade studies: the ability to “see” trends in the data is critical to making effective design decisions particularly 
when identifying the platform elements within a family.   

V. Closing Remarks and Future Work 
This paper introduces an integrated approach to product family design that links several existing methods and 

tools within a three-step framework to help translate user requirements into commonality specifications for the 
family, i.e., what to make common, what to make unique, and the best parameter settings for each component and/or 
subsystem.  The integrated approach includes both qualitative (e.g., market segmentation grid, GVI) and quantitative 
(e.g., multi-objective optimization, commonality indices) with multi-dimensional data visualization to realize an 
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effective approach for product family design.  The proposed approach is applied to the design of a family of 
unmanned ground vehicles (UGVs) to demonstrate its effectiveness and shed light on its shortcomings.  Families of 
UGVs are successfully created based on the recommendations from GVI as well through enumeration of all possible 
combinations of small, medium, and large designs.  While the GVI-based families do not fall directly on the Pareto 
frontier, they provide reasonably good solutions that are very close to the best families that can be obtained.  As 
such, using GVI to guide product family formation from sets of existing designs provides a basis for future work in 
product family commonality selection.59   

The impetus for this work was integrating several methods and tools that existed in the literature into a coherent 
framework that can help translate user requirements into commonality specifications.  In many cases, designers may 
not have the mathematical models that are necessary for multi-objective optimization and product family trade 
studies; in which case, using the market segmentation grid, GVI, and DSM can still assist designers in determining 
preliminary commonality specifications for the family.  The next step is to integrate the tools into a single software 
package – the process would be expedited, and errors would be minimized, if the output from one tool fed directly 
into the input of another, which was not the case in this example.  Finally, depending on the computational expense 
of the models involved, some multi-objective optimization approaches may become intractable and limit the ability 
to “steer and interact” with the data while it is being generated.   
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