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Across many industries, the prevailing practice isto design families of products that
exploit commonality to take advantage of economiesf scale and scope while targeting a
variety of market applications. A product family is a group of related products that are
derived from a common set of components, modulesnd/or subsystems to satisfy a variety
of market applications where the common “elements”constitute the product platform.
Successful development of a platform and deploymemif the product family requires input
from multiple disciplines (e.g., marketing, engineeng, manufacturing), and a variety of
methods and tools exist to support different aspestof product family design. Unfortunately,
many of these methods and tools have been developednd consequently exist — in isolation
from one other. In this paper, we introduce a nevapproach for integrating several of these
disparate tools to translate user needs and requingents into commonality specifications
during product family design. In particular, we integrate the market segmentation grid,
Generational Variety Index (GVI), Design Structure Matrix (DSM), commonality indices,
mathematical modeling and optimization, and multi-dmensional data visualization tools to
translate user requirements into commonality specifations for a product family: what to
make common, what to make unique, and the best pangeter settings for each component
and/or subsystem. The design of a family of unmamad ground vehicles (UGVSs) is included
to demonstrate the proposed approach and highlighits benefits and limitations.

[. Introduction

CROSS many industries, the prevailing practiceiddsign families of products that exploit commdwpab
take advantage of economies of scale and scope warjjeting a variety of market applications. pdduct

family is a group of related products that are derivednfra common set of components, modules, and/or
subsystems to satisfy a variety of market applbceti where the common “elements” constitute pineduct
platform The platform is used to create individual produgither through addition/subtraction/substitutidrone
or more modules to realize a module-based produnily, or by scaling and/or “stretching” one or matesign
variables to realize a scale-based product famil§uccessful examples can be found in a varietyonfpanies,
including Airbus® Black & Decker: Boeing? and Rolls Royce.

Product family design is a difficult task — it irlves all of the complexities of product design compded by
the challenges of coordinating the design of midtiproducts. There are many advantages to prddudities,
however, most of which stem from increased comnignhamong the set of products. As Robertson arithf!
point out, “By sharing components and productioncpsses across a platform of products, companiedealop
differentiated products efficiently, increase thexibility and responsiveness of their manufactgrprocesses, and
take market share away from competitors that develoly one product at a time.” Platforms promottdr
learning across products, and the use of commorpeoents and modules can decrease lead-time andhrible
development stage since the technology has alreeely proven in other produdts. Inventory and handling costs
are also reduced due to the presence of fewer coemp® in inventory. The reduction of product lo@mplexity,
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the reduction of set-up and retooling time, andititeease of standardization and repeatability owprprocessing
time and productivity, and hence also reduce costSewer components also need to be tested andigdaivhich
reduces cost as well as time-to-market.

Successful development of a platform and deploynefna product family requires input from multiple
disciplines (e.g., marketing, engineering, manufiacg)? and a variety of tools and methods exist to suppor
different aspects of product family design as dised in the next section. Unfortunately, manyhesé tools and
methods have been developed — and consequently-exigsolation from one other. Consequentlyttirs paper
we introduce a new approach for effectively intéigga several of these disparate tools to translager
requirements into commonality specifications dunimgduct family design. Section Il introduces @ypproach for
integrating these tools and methods into a cohdramework to translate user requirements into comatity
specifications for a product family. Section IVnaenstrates the proposed approach using an exaraptiton a
family of unmanned ground vehicles. The benefild kmitations of the proposed approach along viitiare work
are discussed in Section V.

II. Related Work: Methods and Tools to Support Productamily Design

Product family design involves all of the compl@st of product design compounded by the difficsltaf
coordinating the simultaneous design of multipleducts. A variety of tools and methods have bemreldped
over the past two decades to support product faddlgign and platform-based product developrifefit. For
instance, the market segmentation grid maps mad@ments and price/performance tiers to help markeind
engineering identify potential platform leveragisategies for the product family as it is beinyeleped: As
shown in Figure 1, market segments (e.g., userpgoare listed on the horizontal axis while the@iperformance
tiers (i.e., range of uses) are plotted on theicadraxis. Within this grid, four platform leveriag strategies can be
identified: (1) no leveraging; (2) horizontal leaging, which shares common technology across deneaeket
segments within a given price/performance tier; (@itical leveraging, which scales technology up/dowithin
market segment to address different price/perfoomdiers; and (4) beachhead approach, which corshiedical
and horizontal leveraging to attack all of the nearkegments within a single platform. Market segfaton grids
are useful in a wide range of applicatidi$ijncluding platform-based development at startiupg$'>*® They have
also been used to identify potential platform lexging strategies during product family redesign.
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Figure 1. Market Segmentation Grid and Platform Leweraging Strategies

Identifying ways to leverage a platform and reusenmon “elements” within a product family is notvisil.
Martin and Ishit® modified Quality Function Deployment (QFD) and tHeuse of Quality — a good tool for
integrating marketing and engineering to compute a Generational Variety Index (GVBtthan be used to help
identify subsystems/components that will need tadaesigned over the lifetime of the product littegse that are
not subject to a lot of redesign are potentialfptatable “elements” within the family. Figure 2uitrates part of
the seven-step process that Martin and Ishii us®topute GVI. After determining the market andicbeklife for
the platform (Step 1), a QFD matrix is used to roagtomer requirements to engineering requiremé&iep(2); the
example in Figure 2 is for a water cooler that foas planned variants over its lifetime — the regments for each



variant are not shown. The expected changes itormas requirements (Step 3) and engineering médriget
values (Step 4) are identified, and a normalizegetavalue matrix is calculated (Step 5) basedhennapping of
engineering requirements to subsystems/componse¢és@QFD Matrix Il in Figure 2). Using the GVI radi scale
shown in the lower right of the figure, the GVI matis created by replacing eaghin the second QFD matrix with
al, 3,6, or9 (Step 6). Finally, the ratingsacth column are tallied (Step 7) to compute the @llie for each
subsystem/component. As noted in the figure, sstbgays and components with low GVI values will nequire a
lot of redesign over the life of the product; tHere, they can be integrated into the platform. alehile, the
“elements” with high GVI values will require a lof redesign to accommodate the anticipated variaitiothe
customer requirements; therefore, these subsystempbnents should not be part of the platform.
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Figure 2. Example of Computing the Generational Vaiety Index (GVI) for a Water Cooler

To complement the GVI analysis, Martin and I$hintroduce a Coupling Index derived from the prdtiuc
Design Structure Matrix (DSM] to identify ways to modularize the product anchderdize interfaces between
high GVI “elements”, thereby minimizing the impaaf their redesign on the system. DSMs have agtuzden
used extensively for identifying modules within eoguct architectur&;? which influences not only how the
product family will be designéd® but also how teams should be staffed, structuaad, organized for effective
product developmert. DSM-based methods are also being developed tifigglatforms within a famil$??” as
well as strategies for embedding flexibility intobsystems/components that may vary over the prdidecycle?
These methods draw heavily on the findings fronemecesearch into change propagation in completesyss® >

Concurrently, metrics for product family design éafocused primarily on assessing (1) modularity &2d
commonality’® Metrics for modularity abound in the literatunedaare reviewed elsewhete® instead, we focus
on commonality indices for product family desigrdaheir use as surrogates for estimating the matwifag and
production cost savings of platform-based produetetbpmenf. Numerous commonality indices have been
developed to assess the “goodness” of a productlyfdfnand multiple perspectives (e.g., design, fabricgti
assembly) can be used when performing this assessme product famil§> While most of these indices rely on
discrete component and part counts (e.g., counntingber of component instances that have the saeksisape,
material/manufacturing, and assembly/fastening meheithin a family®), a few indices have been developed to
assess parametric variety, i.e., variations inséi¢éings of design parameters across productsfamay.®”*® One



such index is the Product Family Penalty Funct®RRF) introduced by Messac, et*3which can be used during
product family optimization. As defined in Eq. (BFPF is used to measure the dissimilarity ambegdtfferent
parameter settings for each design variable usddftoe the product family.
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In Eq. (1), x is the individual value of thd'idesign variable for thd'jproduct,n is the number of design variables
being considered, amis the number of products in the family. The d#éein is expressed as a percentage of the
mean for each design variable so that while thampater values change during optimization, the perdeviation

is normalized against mean value of each variabénimizing PFPF during product family optimizatioeduces
the parametric variation in the family, which isuaglent to maximizing commonality in the familyPFPF has
been applied to electric motor family destyias well as the design of a family of General AwviatAicraft.*

Finally, to support product family optimization, reothan 40 different optimization-based methodsehiagen
developed? ranging from those that are engineering-cefittiz those that include manufacturing considerafibns
and market analysfS. A wide range of algorithms have been used to stuggoduct family optimization, including
linear and non-linear programming (e.g., sequetitiabr/quadratic programming, generalized redugredlient) as
well as derivative-free methods such as pattermcheaimulated annealing, and genetic algoritimsNewer
optimization algorithms such as ant colony optinicraare also finding use in product family desfgmowever,
genetic algorithms (GAs) are becoming the predontirepproach for product family optimization givehnet
flexibility in their problem formulation, capabilitto handle multiple objectives, and ability to ha in parallel
computing environment¥:*® Multi-objective optimization approaches for pratitamily design are also being used
to combine other methods and tools, such as th&ehaegmentation grid to identify effective platfoteveraging
strategied? and integrate engineering design, customer valnd, production cost models to identify profitable
portfolios of products and platform%. Given the potential synergies among these methadgools, an integrated
approach to product family design would provide effective means to translate user requirements into
commonality specifications. Our proposed apprdadhtroduced next.

[ll.  Proposed Approach: An Integrated Framework for Product Family Design

The starting point for our integrated approachhe product platform planning framework introduceg b
Robertson and Ulrich. Their framework consists of three steps as shawfrigure 3: (1) product plan, (2)
differentiation plan, and (3) commonality plan. thre product plan, the goal is to identify whiclogucts to offer
when. Identifying how products will be positionedthin the each market segment is part of the dhfiéiation
plan. Finally, the commonality plan outlines whithunks” (i.e., subsystems/components) will berstidbetween
each of these products. Taken together, the giegs define the product platform plan for a prodamily.

Product Plan
What model concepts and variants will we deliver at
what times to what target customers?
E What major options do we offer for each modet and
iant?
- variant?
Time
Differontiation Plan Commonality Plan
Differentiating | Madel 1 Model2  Model 3 Chunk Model 1 Model 2 Model 3
Attribute
. e ° . Goal: Perfect Consistency . . * »
L[] [] [] 3 3 L] [ 3
L] L] . . - - . L] ° .
L] [ ] L ] L 3 L ] L] L] L ]
How will we differentiate the models from one another? Which elements are comman and which are distinet
across the models {and how are distinct elements
How will we make sure the models attract our target different}?

customers?

Figure 3. Product Platform Planning Framework of Rdbertson and Ulrich®



While these three steps are a useful guide totstei@roduct platform planning, the framework itssn be
difficult to implement as it has not been linkedsfoecific methods and tools to support each stEperefore, we
propose the integrated approach in Figure 4 totlekmethods and tools discussed in the previottsosento the
product family planning framework advocated by Rtden and Ulrich. In particular, we integrate tmarket
segmentation grid, DSMs, GVI, commonality indiceisd optimization to translate user requiremengs, ©ustomer
needs) into commonality specifications for a pradamily (i.e., what to make common, what to makéque, and
the best parameter settings for each componenvasabbsyste). As shown in Figure 4, the market segmentation
grid (along with reverse engineering and benchmayrkif existing systems) is used to identify a ping product
plan, and GVI and DSMs are used to initiate thdedintiation plan. GVI is also used to define aepdal
commonality plan, which is verified using commotalindices and multi-objective optimization for di¢d trade
studies. Multi-dimensional data visualization &bhre used to display results, allowing designersh@nge and
modify their preferences, targets, etc. “on thé fitybring the commonality and differentiation psimto alignment.
In essence, our integrated approach enables agési Shopping” paradigthfor product family design.

User Requirements
FRRREEEEEEEE: Product Plan ------------+
' Market Segmentation Grid

_____________________ [
v '

------- Differentiation Plan ------ i------- Commonality Plan -------

i Generational Variety Index (GVI) ' i Generational Variety Index (GVI) '

i ) ) i Multi-Dimensional !
i Design Structure Matrix (DSM) >

Data Visualization Multi-Objective Optimization

Multi-Objective Optimization : ' Commonality Index :

L l .................. L ] ..................
v

Commonality Specifications

Figure 4. Integrated Approach to Product Family Degn

IV. Example: Design of a Family of Unmanned Ground Veltles

To demonstrate the proposed approach, considetetsign of a family of unmanned ground vehicles (4BV
While the existing systems offered by companies Hoster-Miller (e.g., the Talon) and iRobot (etge Packbot)
are effective, there is no sharing or part commtnakross existing systems as there is little dointentive for
manufacturers to collaborate with one another. aAsesult, users must maintain multiple sets of espazarts,
manuals, and tools; keep multiple specialized tidums on staff for logistical support and maintecey and
conduct different sets of training and certificatiprocedures for each robot since the operatintesysand user
controls are different for each robot. Furthermdinere is no plug-and-play capability across systérom different
manufacturers, e.g., a manipulator arm from oneufaaturer will not work on the other manufacturdd&V and
vice versa. By applying our approach to this peallwe hope to identify promising opportunities gommonality
within future UGV systems.

A. Market Segmentation and Product Plan for UGV Family

To develop the product plan for the UGV family, gathered a set of requirements for the UGV capsli
(e.g., weight, speed, range, lift capacity) fofatiént missions, and threshold and objective valuese identified
for each capability for each mission. Thresholtiea represent the minimum values that must beimetder to
complete a mission while the objective values pieviargets that users would like to achieve. edifferent
missions were identified based on type of ordnatl®) functionality (e.g., dig, detonate, diffusédcation of
operation, etc. Initially, formal clustering tedties (e.qg., fuzzy clusteriftf¥) were used to group similar missions
into representative “market segments”, but it mbaelter sense to group the UGVs into three classesistent with
current systems. In the end, three “performaneestiwere identified corresponding to small, mediand large
UGVs based on weight, and threshold and objectiees are then defined for each of these threehiveigsses.

In parallel to this effort, we also dissected andlgzed several existing systems, including theiaPackbot,
Bombot, and RONS (see Figure 5). The capabildfesach UGV were measured (e.g., weight, speetkrydife,



lift capacity) to establish a baseline for compamiss well as provide data for validating the mathgcal models
developed for optimization and product family tradedies. These systems were also used to conatfgeneric”
UGV architecture, which is shown in the DSM in Rig. This DSM shows not only the connections keetw
subsystems and components but also the extentithwhchange in one component is will likely impaciother
component (L = low, M = medium, H = high) by takiigo consideration the potential for change prapiag
within the systemd? This information is particularly useful when camiting GVI analysis to identify how the
commonality and differentiation plans.

(@) RONS

(a) Bombot (b) Talon (c) Packbot
http://www.defensetech.org http://www.foster-miller.com http://www.irobot.com http://www.globalsecurity.org

Figure 5. Existing UGVs Dissected and Analyzed
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Figure 6. DSM of “Generic” UGV Architecture>®

B. Commonality and Differentiation Plan

With this as our “generic” reference architectune the UGV family, we proceeded to compute GVI éach
subsystem based on the requirements for the difféperformance tiers”, i.e., small, medium, andga UGVs.
The GVI results are summarized in Figure 7. Sulesys with low GVI values will not vary much acroge
family, while subsystems with high GVI values wilhry considerably in order to achieve the perforoean
requirements for the different sized UGVs. Fortanse, the arm and gripper had high GVI values dasethe
different capabilities and desired functionalityetefore, the recommendation is to modularize tkabsystems and
standardize their interfaces in order to allow atiéht manipulators and grippers to be easily swéppé (and
upgraded) for different missions. Batteries, om thher hand, have a low GVI value, and it app#&aascommon
batteries may be used across different UGVs; horyélve number of batteries needs to be scalabkngive power
requirements for larger UGVs. Meanwhile, the clegafals in the middle — many requirements drivasdis sizing
(e.g., long vs. short and wide vs. narrow for maeeability as well as reach capability). Note thdiile GVI helps
identify which subsystems/components can be competmeen products in the family, it does not indicahat the
best parameters settings are for those shared éelsin- that is the role that optimization playur approach.
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Figure 7. GVI Analysis for "Generic" UGV Architectu re>®

A subsequent analysis of each pair of UGVs (emallsand medium, medium and large, small and lavgss
used to translate these GVI recommendations tg#nameter leve’ For instance, even though the chassis will
vary across each weight class, we sought to ideptential opportunities for scaling the chassi®one or more
dimensions based on the threshold and objectiveesdbr each UGV pair. Alternatively, one coul@ hartin and
Ishii's Coupling Index to facilitate this analysfshowever, it was in our best interest to understach subsystem
at the parameter level before creating mathematicalels to estimate the performance of new UGVgiesi The
final GVI recommendations are listed Error! Not a valid bookmark self-reference. where an “x” indicates
common settings across two or more UGVs, e.g.,sihdeight can be common to all three UGVS, buy t¢iné
small and medium have common chassis length anthviidsed on the threshold and objective requiresnent
Based on these GVI recommendations, we developtihemmatical model and use multi-optimization, comalin
indices, and multi-dimensional data visualizatiorperform trade studies and determine the bestpex settings
for the subsystems/components in the UGV family.

Table 1. GVI Recommendations for Commonality in KeySubsystems of UGV Family

Subsystem | Design Parameters SmglMedium | Large
Length X X
Chassis Width X X
Height X X X
Wheels/Tracks X X X
. Wheel Diameter
Mobility Track Width
Wheelbase
Length X X X
Batteries Width X X X
Mass X X X
Outer Arm Radius X X
Manipulators| Arm Segment Length X X
Number of Links X X

C. Mathematical Modeling and Multi-Objective Optimization

In order to finalize our commonality specificatioios the UGV family, we developed a mathematicaldeiao
simulate system performance. The model was degdltpestimate UGV capabilities for the specifieghold and
objective requirements that defined each “markghemt”, e.g., the analysis for the chassis needammpute its
weight as well as estimate its stair climbing calggtand ground clearance for obstacle avoidantae DSM was
also used to help identify subsystem interactidnisterest to include the model, e.g., the intdoagt between the
chassis and manipulator that dictate lift capaantgl center of gravity, which impacts tipping, sédfiting, etc.

The model was developed in Simulink® and employedombination of physics-based models, allometric
design principles, curve fits, and look up tablesstimate the capabilities of the different sub=ys in a new
UGV design alternative. The overall structuretaf thodel is shown in Figure 8, which is dividedid# analysis
blocks. The first 11 blocks size the specifiedsysitem while the last 3 blocks compare the prediperformance
against the capabilities defined for each weigasglto compute an effectiveness measure for eadh bdGed on



how well the threshold and objective values are. néte blocks are sequenced to minimize feedbaapgsion the
model as each block relies on a combination of -specified inputs (e.g., battery type) and inputenf other
subsystems (e.g., chassis mass) in order to pertsrmnalysis. Key parameters that serve as hbgihts and
outputs for analysis (e.g., chassis mass, vehielgsivehicle velocity) require iteration in the rabds indicated by
the feedback loops in Figure 8. Even with thesmttons, the model executes a complete analygisectonds on a

moderately equipped desktop PC.
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Figure 8. System Decomposition for UGV MathematicaModel

After model convergence was verified, we confirntieshds in the model, e.g., as battery size inctbasshicle
range increased for a given vehicle mass and yglo&Ve validated the individual subsystems andral/enodel
using data from the four existing UGVs that we écted and analyzed (see Figure 5). The modeiksdi directly
to our trade space visualization software (ATSV¥,which is used to generate new design alternativesudy the
tradeoff between commonality and effectivenessiénGV family. Details on model convergence, \atiion, and
linking to ATSV can be found elsewhete®

Once the model is linked to ATSV, random samplimgl aisual steering are used to generate about 05,00
design alternatives that span the small, mediumh,|@amge weight classes. Figure 9 plots the predieffectiveness
of each UGV versus its size; the best 90 UGV designeach weight class are color-coded while tmeaieing
designs are shown in gray. While the majority fed tlesigns fall into the medium weight class, treee many
small and large alternatives; unfortunately, whie small and medium designs appear to be relatefbctive,
many of the large designs in this study are notgdrdless, these alternatives provide a basis fwoduct family
trade study, which considers families composedftérént combinations of these small, medium, ardé UGVs.

most effective
design alternatives
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Figure 9. Effectiveness vs. Vehicle Size (0/red #all, 0.5/green = Medium, 1/blue = Large) and Mass



D. Product Family Trade Study and Commonality Specifiations

For this product family trade study, we consider biest 90 designs from each weight class (seeembligsigns
in Figure 9) to create families based on the G\ébremendations, e.g., select a set of small, medand, large
UGVs that have common batteries, scaled chassisd#ferent manipulators as recommended by GVIr éach
family, we compute the effectiveness of the farbijyaveraging the individual effectiveness of ea&MJas well as
the dissimilarity in the family using PFPF from Elg. Figure 10 shows the results of this analysth ved points
being an exact match with the GVI recommendatigmsegn points match the GVI recommendations withie o
parameter, i.e., all but one subsystem parameéeslzred as recommended by GVI. Based on thiysasaive
identify five families that are an exact match atmbut 250 families that are within a few parametdrthe GVI
recommendations. Table 2 lists some of the kepysibm parameters for the five families that mateh GVI
recommendations. Additional parameters that anencon within these families are also highlightedii¢ating that
we may have been too conservative and missed appies for commonality given the level of analysie used.

Best Compromise Family

Most Effective Famil
— ly

Key:
® Matches GVI exactly
Matches GVI to 1 setting
® Varies from GVl in 2 or
more parameters

Average Effectiveness (larger is better)

15.95

PFPF (smaller is better)

Figure 10. UGV Families based on GVI Recommendatian(red/green) and Enumerated Options (gray)

In parallel to identifying the GVI-based familiese enumerate all 729,000 possible UGV families @=sfall
designs x 90 medium designs x 90 large designsyramgputed the average effectiveness and PFPF dbrfamily.
These UGV families are shown in gray in Figure Unhfortunately, when compared to all of these gaesbptions,
none of the GVI-based families fall on the Paretmfier — the families indicated bys in the figure that offer the
best combination of commonality (i.e., minimum PFFBRd effectiveness. Of these families, threec@rgarticular
interest as highlighted in the figure: (1) the M&é$tective Family, (2) the Most Common Family, af3) the Best
Compromise Family. The Most Effective Family ddlee best job in satisfying the effectiveness rezmgnts for
the small, medium and large UGVs (Average Effecteas = 86.8%), but it has less commonality thanother
designs, although by no means the worst. The Mashmon Family provides the opposite — it offers thest
commonality among the three UGVs in the family, this comes at a small sacrifice in performanceefage
Effectiveness = 86.0%). Finally, the Best CompmemiFamily falls between the two — it has more comality
than the Most Effective Family but with less sdcefin performance compared to the Most Common Fanin
fact, the Average Effectiveness is 86.7%, indicatiremarkably good compromise in this family.

The corresponding parameter settings for these ti@V families are listed in Table 3. Here, cabused to
highlight parameter values that are common (in gearand similar (in yellow), i.e., within 5% acrdsg or more
UGVs within a given family. Note that even thougime of the parameter values are the same acrog®ea(i.e.,
they all use tracks, and nearly all of them hawesame battery specifications), the color codirrgcfommon and
similar parameter values are within a single familyt across the three families.



Table 2. UGV Families that Most Closely Resemble G\Recommendations

Chassis Mobilit Batteries Manipulator
£ |5 |8 |3+|_E|Ee|® |§ |E |e=lte £

[ - e N Y e R R e R -

v E|le Els Efg 8IS g|8E|2ElE|52|e2|8% |55
|8 |8 |5°|7a|E%|8 |5 |B [SE|Es|E
Robot | > O O Q o < zZ
Family1| small | 0.557| 0.227] 0.318| 2 |WOPT3N 0.028 [ 0.112| 0.062| 1.4 | 0.021 | 0.565| 3
Medium | 0.592 | 0.221] 0.33a| 2 |FTFY 0.032 ] 0.112| 0.062| 1.4 | 0.021] 0524 3

Large | 0.665 | 0.301 2 |o0181] 013 [0.12] 0.062| 1.4 |TNVFN 0.306 [ER
Family2| small | 0.544] 0.203| 0.079] 2 0.034] 0112] 0.062| 1.4 [0.021] 0134 3
Medium | 0.575 | 0.191| 0.086] 2 [NF3EN 0.043| 0.112 [ 0.062| 1.4 | 0.021] 0133 3

Large | 0.911] 05 2 |o0.121]|0.061]0.112] 0.062| 1.4 [TXPEY 0.112 [ERN
Family3| small | 0.578] 0.208] 0.08 | 2 [WOP¥7A| 0.03 [0.112| 0.062| 1.4 | 0.021] 0569 3
Medium | 0.603 | 0.205| 0.08 [ 2 [PVl 0.035] 0.132 [ 0.062| 1.4 | 0.021] 0568 3

Large | 0.911] 05 2 |o0.121]| 0.061]0.112] 0.062| 1.4 [TXFEY 0.112 [ERN
Family4| small | 0.646]0.223| 0.35 | 2 [NOEW7Al 0.025 [ 0.112| 0.062| 1.4 | 0.021 | 0.204| 3
Medium | 0.608 | 0.224 032 | 2 |UETFY 0.035] 0.112| 0.062| 1.4 |0.021] 021 | 3

Large OGN 0.301 [IOEV 2 [o.1s81] 0.13 [0.312] 0.062| 1.4 [TNPFN 0.306 [NNERN
Family5| small | 0.643[0.234] 0.349] 2 [0.307[0.021[0.112] 0.062] 1.4 | 0.021]0.204| 3
Medium | 0.608 | 0.224| 032 | 2 [o0.301]0035]0.112[0.062| 1.4 |0.021] 021 | 3

Large 0.301 2 |o01s1] 013 [0.112] 0.062] 1.4 [TXVFN 0.306 [ERN|

| # |=GVI&PFPFSuggest commonality
t: 0 = PFPF Suggests Additional Commonality
n =Neither GVI or PFPF Suggest Commonality

Table 3. Common, Similar, and Unique Parameter Seitigs in the UGV Families on the Pareto Frontier

]

Comparing Table 2 and Table 3, we see that UGV Ifesnihat lie on the Pareto frontier have less comality
than the GVI-based families as one might expechil&®key battery and manipulator parameters areencagnmon
across both sets of families along with the ustraafked designs, the families on the Pareto fromidee very few
chassis parameters in common. At best, the chiasigjht or length is shared between the mediumange UGVs,
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Chassis Mobility Batteries Manipulator
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< 2 e =2 2= 2 s = Ocx| £ S g
Robot | > © o = 2 @ o < =
Best Small 0.542 ] 0.206 | 0.198
Compromise | Medium | 0.788 | 0.416 | 0.249
Family Large 1.007 | 0.498 | 0.257
Most Small 0.543 ] 0.224 | 0.135
Common Medium | 0.732 | 0.409 | 0.163
Family Large 1.007 | 0.475 | 0.170
Most Small 0.543 ] 0.224 | 0.135
Effective Medium | 0.792 | 0.418 | 0.236
Family Large 0.763 | 0.371 | 0.117 0.022 | 0.408

-= Similar (< 5%) Values



and the small UGV has a completely different cleassall cases. It is interesting that the resdifffer so much and
yet the average effectiveness of the family is nith2% of each other.

Finally, to gain more insight into the differendestween the UGV families based on the GVI recomragods
and the enumerated families, we color code alheffamilies in Figure 10 based on how closely ttragtch” the
GVI recommendations and plot the results in Fiduke The scale in Figure 11 shows that the famiege from a
complete or very close match (red) to little tomatch (blue). As expected, the closer the matdB\g the lower
the PFPF values (i.e., the more commonality), &edradeoff is remarkably favorable in the famitythat families
with high PFPF values (i.e., less commonality) atyudo not perform well either. Based on the fessim Figure 9,
we conclude that this drop-off in effectivenessliiven largely by the poorly performing large UGMisthis study.
Apparently, these poorly performing designs ar® afsry dissimilar to the small and medium desigislevthe
most effective large designs also have a lot inmmomwith the small and medium designs. In manyasions, this
may not be the case; however, this is a promismguseful finding from this product family tradeidy.

Q.58

0.882

0834

Objective Effectiveness

0817

3859 £.881 9.204 12.227 15.85

Match
i ] o

Figure 11. Comparison of GVI-based Families with Enmerated Families

An important take-away from this analysis is thafl@ay suggest too much commonality because ittysisa
is done at the subsystem/component level (e.g.ertak chassis common) and not at the parametrit (evg., the
chassis should have common height and width buletingth should be scaled). Furthermore, GVI ansligsdone
for the entire family and may miss opportunities fommonality between subsets of products within fdmily
(e.g., the small and medium chassis can be commbthb large chassis should be unique). In bofegausing
GVI in concert with quantitative analysis — a matfa¢ical model of the system and optimization — ilbvide
additional insight into the commonality-performaricadeoffs within the family. In this UGV produ@mily trade
study, we are fortunate that the effective smaltdiam, and large designs tended to have a lot winoonality;
however, that may not happen in practice. Thighg multi-dimensional data visualization is impatéo product
family trade studies: the ability to “see” trendsthe data is critical to making effective desigtidions particularly
when identifying the platform elements within a fgm

V. Closing Remarks and Future Work

This paper introduces an integrated approach tdymtofamily design that links several existing noeth and
tools within a three-step framework to help trateslaser requirements into commonality specificatidor the
family, i.e., what to make common, what to makequej, and the best parameter settings for each ammpand/or
subsystem. The integrated approach includes halitative (e.g., market segmentation grid, GVIjl gjuantitative
(e.g., multi-objective optimization, commonalitydines) with multi-dimensional data visualization realize an
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effective approach for product family design. Tpmposed approach is applied to the design of alyfaofh
unmanned ground vehicles (UGVs) to demonstrateffectiveness and shed light on its shortcominigamilies of
UGVs are successfully created based on the reconatiens from GVI as well through enumeration ofpaiksible
combinations of small, medium, and large desigiile the GVI-based families do not fall directln the Pareto
frontier, they provide reasonably good solutiorst thre very close to the best families that camlit@ained. As
such, using GVI to guide product family formationrh sets of existing designs provides a basisuturé work in
product family commonality selectiof.

The impetus for this work was integrating severathnds and tools that existed in the literature atoherent
framework that can help translate user requiremetscommonality specifications. In many casessighers may
not have the mathematical models that are necessamulti-objective optimization and product fagnitrade
studies; in which case, using the market segmentafiid, GVI, and DSM can still assist designerglé@termining
preliminary commonality specifications for the fdyni The next step is to integrate the tools intsirggle software
package — the process would be expedited, andsemmuld be minimized, if the output from one toetl fdirectly
into the input of another, which was not the casthis example. Finally, depending on the companal expense
of the models involved, some multi-objective optiation approaches may become intractable and thaigbility
to “steer and interact” with the data while it isithg generated.
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