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Abstract 
A reasonable requirement for deployment of tire deflation devices is that a pursued suspect must be able to 
maneuver to a safe stop unless deadly force has been authorized. While a considerable body of literature concerning 
the dynamics of rapid tire blowouts exists, the more gradual tire deflation associated with TDDs or tires with minor 
punctures is seldom, if ever, addressed in experimental vehicle dynamics. This paper investigates the dynamics 
associated with slow tire deflation and presents a novel method for determining tire pressure by using direct tire 
radius measurements. During a tire deflation, the cornering stiffness of the tire changes with pressure, and so a 
method for determining cornering stiffness based on pressure is presented that fits a polynomial curve to 
experimental cornering stiffness data. Knowing the variable cornering stiffness enables the use of an all-integrator 
version of the planar bicycle model to model vehicle motion during a slow tire deflation. Experimental results show 
that yaw rate can be accurately predicted during a slow tire deflation based on these models. 
 
1. INTRODUCTION 
Tire deflation devices (TDDs) are the most commonly deployed high-speed police pursuit intervention technology. 
A reasonable requirement for deployment of pursuit intervention technologies is that a pursued suspect must be able 
to maneuver to a safe stop unless deadly force has been authorized. While a considerable body of literature 
concerning the dynamics of rapid tire blowouts exists, the more gradual tire deflation associated with TDDs or tires 
with minor punctures is seldom, if ever, addressed in experimental vehicle dynamics. Even so, vehicle behavior 
during a tire deflation caused by a small incidental puncture or police TDD deployment is important for designers of 
both roadways and police pursuit policies to understand.  
 
This paper investigates the dynamics associated with a tire deflation instigated by a TDD deployment using simple 
first-order models of tire deflation, experimentally determined relationships between tire pressure and tire lateral 
dynamics, and a planar bicycle model approximation of the afflicted vehicle. Past research by Patwardhan et al. [1] 
[2] and Blythe et al. [3] has involved rapid tire blowout. The main assumption used in rapid tire blowout is that it is 
an adiabatic process, e.g. so fast that heat transfer is negligible. For deflations caused by small punctures, however, 
the blowout is gradual and heat transfer cannot be ignored. Additionally, past efforts investigate many effects of tire 
blowouts including effects on rolling resistance, suspension, and cornering stiffness. This paper focuses primarily on 
loss of cornering stiffness during slow deflations to predict vehicle yaw rate based on steering input. 
 
Due to the high cost of research-grade wireless tire pressure sensors, the authors relied on indirect tire pressure 
monitoring for real- time measurements during experiments. The method used in this paper is simpler than the one 
used by Persson et al. [4] where data is obtained through a fusion of vibration dynamics and rolling wheel radius 
based off of wheel speeds. In this paper, pressure is found by a simple and direct measurement of wheel radius using 
an infra-red proximity sensor.  
 
The remainder of this paper is organized as follows: Section two introduces the proposed model for tire pressure 
change after a TDD strike, and introduces a novel method of experimentally determining tire pressure indirectly. 
Section three outlines the changes in tire properties observed at varying tire pressures, and features experimental 
results of a deflation test juxtaposed against model predictions. Section four offers a conclusion summarizing the 
experimental and simulated results. 
 
2. METHOD 
2.1 Tire Deflation Model 
To obtain a model of a slowly deflating tire, the inflated tire is modeled as a pneumatic capacitor with a known 
volume. The TDD strike is assumed to impinge an array of hollow TDD spikes into the tire, modeled as 
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Figure 8 shows a close correlation between the simulated yaw rate and the observed yaw rate during a deflation 
event, which confirms that that the yaw rate gain changes significantly with deflation. The observed changes in yaw 
rate gain are important because there is ongoing work, for example that of Persson et al. [4], to predict tire pressure 
by fusing yaw rate measurements derived from encoder data to those obtained with a gyroscope using a kinematic 
EKF. This work suggests that estimation of tire inflation from yaw-rate creates a feedback loop, since tire pressure 
significantly affects yaw rate for situations of interest such as low tire inflation. 
 
The agreement over time also gives confidence in the approximations for deflation dynamics and resulting influence 
on chassis dynamics. If the pneumatic resistance values were significantly in error, the gradual change in yaw-rate 
behavior would not be captured. And given that the results give good agreement across many different tires (not 
shown), this suggests that the fit is indeed capturing both pressure and volume effects and is not simply an artifact of 
fitting the pneumatic resistance value to a specific tire. 
 
Finally, the observed changes in dynamics confirms that one can maneuver a vehicle safely after a TDD impact, as 
long as the required maneuvering does not require significant steering ( yaw rate). Again, this agrees with intuition 
as most TDD impacts deflate the front tires primarily, resulting in a severely understeer vehicle which has limited 
maneuverability. 
 
4. CONCLUSIONS 
A main goal of this work was to predict a vehicle’s handling capability during an induced tire deflation. First, an 
indirect but simple method was presented to determine tire radius, and this radius was correlated to tire pressure. 
Experiments were then conducted to relate cornering stiffness to tire pressures below nominal values. Both trends 
were used to obtain the tire’s corning stiffness from a measurement of effective tire radius. To predict the vehicle 
dynamics, a tire deflation model was developed by assuming constant air temperature inside a tire during slow 
deflation. This deflation model was used to estimate time-varying cornering stiffness, estimates which were then 
used in a parameter-varying version of the planar bicycle model to predict vehicle motion. The simulated vehicle 
dynamics inclusive of tire deflation match closely with the experimental data, whereas the constant-parameter form 
of the planar bicycle model does not.   
 
Such results might allow a higher-fidelity tire pressure monitoring scheme based on yaw rate measurements. This 
remains for future work. 
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