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ABSTRACT 
Prior experiments have confirmed that specific terrain-

based localization algorithms, designed to work in GPS-free or 

degraded-GPS environments, achieve vehicle tracking with 

tactical-grade inertial sensors. However, the vehicle tracking 

performance of these algorithms using low-cost inertial sensors 

with inferior specifications has not been verified. The included 

work identifies, through simulations, the effect of inertial sensor 

characteristics on vehicle tracking accuracy when using a 

specific terrain-based tracking algorithm based on Unscented 

Kalman Filters. Results indicate that vehicle tracking is 

achievable even when low-cost inertial sensors with inferior 

specifications are used. However, the precision of vehicle 

tracking decreases approximately linearly as bias instability 

and angle random walk coefficients increase. The results also 

indicate that as sensor cost increases, the variance in vehicle 

tracking error asymptotically tends to zero. Put simply, as 

desired precision increases, increasingly larger and 

quantifiable investment is required to attain an improvement in 

vehicle tracking precision. 

INTRODUCTION 
Several safety-critical and mission-critical applications [1], 

such as path planning, navigation and collision avoidance, 

require the ability to accurately and inexpensively localize and 

track the position of a vehicle. While the Global Positioning 

System (GPS) has placed itself as a viable contender for being 

the default system used to perform localization and tracking, it 

has many shortcomings that cannot be ignored, especially in 

safety-critical and mission-critical scenarios. Specifically, poor 

GPS signal reception, the ability to jam GPS signals and the 

requirement to maintain redundancy in vehicle automation and 

driver assist systems necessitates the development of other 

localization and tracking techniques [2]. These factors, along 

with the miniaturization and cost reduction of inertial sensors, 

have resulted in the growth of inertial navigation technology. 

This paper considers one of the promising alternatives to GPS, 

hereafter called terrain-based localization, which utilizes only 

terrain information such as attitude (pitch, roll and yaw) or 

features generated thereof, to localize and track vehicles [3] [4]. 

Put simply, terrain-based localization works by comparing the 

current attitude measurement against a database of previously 

recorded terrain attitude maps. The algorithm then utilizes a 

filtering scheme, such as particle filtering or Kalman filtering, 

to localize and track the vehicle through continuous correlation 

of incoming sensor measurements to the terrain database.  

Today, a wide range of options exist for the system 

engineer trying to identify the appropriate sensor for a desired 

application. With regards to terrain attitude measurements in 

ground vehicles, several sensing techniques exist, which utilize 

LIDAR [5] [6], cameras [7] [8] or inertial sensors [9]. 

Typically, though, inertial sensors are used for attitude 

measurements in ground vehicles due to their ease of use, 

robustness and ruggedness. Within the category of inertial 

sensors too, there exist various options, separated by several 

orders of magnitude in terms of cost and precision [10]. With 

the development of micro electro-mechanical systems (MEMS) 

devices, inertial sensors have found applications in fields 

ranging from automotive safety and navigation to virtual reality 

and motion-based video games [11]. MEMS inertial sensors are 

typically low-cost, small-sized, designed for large volume 

production and lie at the lower end of the accuracy scale [10]. 

On the other hand, the development of optics-based inertial 

sensors, such as ring laser gyros and interferometric fiber optic 

gyroscopes (IFOG), has led to remarkable improvement in the 

quality of inertial measurements. However, optics-based inertial 

sensors are typically expensive and lie at the higher end of the 

accuracy scale. The choice and accuracy of inertial sensors 

plays a major role in the ability of the terrain-based localization 



  

algorithm to provide an accurate estimate of the vehicle‟s 

position.  

The accuracy of a sensor is usually characterized by 

quantifying the various individual noise sources that contribute 

to sensor measurement error, such as white noise, bias etc. [12] 

[13]. For example, for inertial sensors, manufacturers usually 

specify angle random walk, in-run bias instability, over-

temperature bias instability, resolution, bandwidth etc. to 

characterize the constituent gyroscopes and accelerometers. 

Prior research indicates that fusing low-cost inertial sensors 

with GPS can provide accurate estimates of vehicle states [14] 

[15]. However, in the present context where only terrain 

information is available, such a correction is not possible. Thus, 

for the applications discussed above, it becomes necessary to 

identify how inertial sensor characteristics affect the 

localization accuracy of the algorithm. Further, the adoption of 

terrain-based localization methods requires that the system 

engineer know how to translate the application requirements, 

such as desired vehicle tracking accuracy, into the correct 

sensor specifications, in order to select the appropriate inertial 

sensor for the application. 

In this paper, the effects of inertial sensor characteristics on 

vehicle localization accuracy, given a specific algorithm and 

environment, will be discussed. The given algorithm is a 

terrain-based localization algorithm that utilizes an Unscented 

Kalman Filter for performing vehicle tracking [16], and the 

given environment is the test track facility at the Larson 

Transportation Institute at the Pennsylvania State University.  

Thus, the paper attempts to elucidate a relationship between 

sensor characteristics and localization accuracy and in the 

process show that low-cost MEMS inertial sensors are indeed a 

viable option for terrain-based vehicle tracking. The remainder 

of this paper is organized as follows. Section 2 discusses the 

sensor modeling, characterization and simulation procedures. 

Section 3 includes a simulation-based analysis of the effects of 

sensor characteristics on vehicle tracking accuracy. Section 4 

compares existing inertial sensors available on the market in 

terms of their ability to track a vehicle using the terrain-based 

localization algorithm. Section 5 concludes the paper with an 

overview of important results. 

SENSOR MODELING, CHARACTERIZATION AND 
SIMULATION 

This section discusses the various noise sources in inertial 

sensor measurements. It also details the procedure for 

identifying inertial sensor characteristics through Allan 

variance analysis and simulating a signal emanating from an 

inertial sensor with known characteristics. It is assumed that the 

measurements obtained from a sensor are corrupted by a variety 

of noise sources inherent to the sensor. For example, random 

flickering in the sensor‟s electronic components can cause bias 

drift or bias instability in inertial sensors [16]. The 

measurement error caused by these noise sources can be 

approximated by developing noise models for each source. 

Noise modeling is the process of specifying a functional form 

and a set of parameter values that represent a noise source. For 

example, bias instability is modeled as a first-order Gauss-

Markov process [12]. On the other hand, sensor 

characterization is the process of identifying and quantifying 

the model parameter values of the noise sources that contribute 

to sensor measurement error, using actual measurements 

collected from a sensor. In the included work, sensor 

characterization is performed using Allan variance and 

autocorrelation analyses due to the ease of error source 

identification they offer [13]. Sensor simulation is the process 

of using the known noise models to corrupt true values of the 

sensed variable in order to simulate „noisy‟ sensor 

measurements. In the following subsections, aspects of sensor 

modeling, characterization and simulation will be discussed.  

Noise Sources and Modeling 
The primary noise sources that contribute to measurement 

error in inertial sensors are angle random walk (𝜂) and bias 

instability (𝑏) [14]. The noisy sensor measurements are 

calculated by adding the errors due to various noise sources to 

the true value, as shown in Eq. (1) : 

 𝜔 = 𝜔𝑇𝑅𝑈𝐸 + 𝜂 + 𝑏 (1)  

Angle random walk is modeled as a white noise applied to 

the angular rate measured by the gyroscope. Integration of the 

corrupted angular rate yields a random walk error in the angle 

(attitude) measurements, giving the noise source its name. The 

parameter used to specify angle random walk is the angle 

random walk coefficient (N) which is the square root of the 

noise power [17],  

 𝐸 𝜂2 = 𝑁2 (2)  

Bias instability is the result of the random flickering in 

electronic components and is modeled as a first-order Gauss-

Markov process representing exponentially correlated noise, as 

shown in Eq. (3): 

 𝑏 = −𝛽𝑏 + 𝜂𝑏  (3)  

where, 𝛽 = 1/𝑇𝑐 , is the inverse of the correlation time, and 𝜂𝑏  

is white noise with 𝐸 𝜂𝑏
2 = 𝜎𝐵

2 ≈ (𝛽2 + 𝜔0
2) 𝐵2/𝜔0, where 𝐵 

is the bias instability coefficient used to specify the noise, and 

𝜔0 corresponds to the flicker noise cutoff frequency [16] [17]. 

Thus, given the noise parameters, measurements from a noisy 

sensor can be simulated using the discussed noise model. As 

mentioned before, the noise parameters for inertial sensors are 

determined using Allan variance analysis. This analysis 

procedure is discussed in the following subsection. 

Allan Variance Analysis 
The basic premise of Allan variance analysis is that the 

different noise sources that contribute to sensor measurement 

error have different power spectral densities, and their 

individual contributions can be quantified by observing the 

Allan variance in the corresponding time domain. Allan 

variance in the context of inertial sensors is defined as follows 

[16] [18]: 



  

 
𝜎2 𝜏 =

1

2
  Ω 𝑘+𝑚 − Ω 𝑘 

2  
(4)  

where Ω 𝑘+𝑚  represents the gyroscope mean angular rate in the 

𝑘𝑡ℎ  interval containing 𝑚 measurements, 𝜏 denotes the 

correlation time and  ∙  represents the ensemble average. The 

typical plots describing Allan variance for angle random walk 

and bias instability noise sources, as a function of correlation 

time, are included as Figure 1 and Figure 2, respectively. The 

parameters defining these noise models are obtained from the 

following expressions which bound their values, as detailed in 

[13]: 

 
𝑁 =

𝜎𝐴 𝜏𝑁  𝜏𝑁

60
 

(5)  

 𝐵 = 0.6648𝜎𝐴(𝜏𝐵) (6)  

where 𝜏𝑁  corresponds to the correlation time when analyzing 

the Allan variance graph for angle random walk, 𝜎𝐴(𝜏𝑁) 

corresponds to the Allan deviation when the correlation time is 

𝜏𝑁 , 𝜎𝐴(𝜏𝐵) corresponds to the Allan deviation when the 

correlation time is 𝜏𝐵 , 𝑁 is referred to as the angle random walk 

coefficient and 𝐵 is referred to as the bias instability 

coefficient. The other parameter in the bias instability model, 

the correlation time  𝑇𝐶 , is typically determined using 

experimental autocorrelation analysis, as discussed in [19]. 

 

FIGURE 1: ALLAN DEVIATION PLOT FOR ANGLE RANDOM 
WALK [16] 

 

FIGURE 2: ALLAN DEVIATION PLOT FOR BIAS    
INSTABILITY [16] 

Sensor Simulation and Validation of Noise Models 
Armed with the knowledge of the angle random walk 

coefficient (𝑁), the bias instability coefficient (𝐵) and an 

estimate of the correlation time (𝑇𝐶  ), the noise model for an 

inertial sensor can be generated. The noise model can then be 

used to corrupt true attitude data in order to obtain the „noisy‟ 

attitude measurements from a simulated sensor. A sensor with 

pre-specified noise parameters is simulated in Simulink at a 100 

Hz sampling rate, to obtain the noisy attitude measurements. 

While not the focus of this study, it is expected that changing 

the sampling rate will also have an effect on the sensor 

performance. Initial simulations were performed using typical 

sensor characteristics based on data provided in inertial sensor 

datasheets. The sensor characteristics, or noise model 

parameters, were selected to represent tactical-grade sensors on 

one end of the accuracy scale, and MEMS inertial sensors on 

the other. Figure 3 and Figure 4 compare the true attitude with 

the attitude measurements output by the simulated sensors 

using manufacturer-supplied noise values [21] [22].  

 

FIGURE 3: SIMULATED TACTICAL-GRADE INERTIAL 
SENSOR OUTPUT COMPARED TO TRUE ATTITUDE DATA. 

(N = 0.001 º/√SEC, B = 0.0001 º/SEC) 

 

FIGURE 4: SIMULATED MEMS INERTIAL SENSOR OUTPUT 
COMPARED TO TRUE ATTITUDE DATA. (N = 0.01 º/√SEC, B = 
0.01 º/SEC) 
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It may be observed that despite the noise, the simulated 

sensor outputs tend to match the “features” or “patterns” in the 

true attitude data. Further, the plots seem to agree with intuition 

that MEMS inertial sensors provide noisier measurements as 

compared to tactical-grade inertial sensors. This provides a 

qualitative confirmation of the validity of the noise models. 

To fully validate the sensor noise model, the sensor 

characterization process is employed on the simulated sensor 

data. The noise model is validated by performing an Allan 

variance analysis as well as autocorrelation analysis to recover 

the noise parameters. The known and the recovered noise 

parameters are included in Table 1, whereas the Allan variance 

plot for the simulated sensor is included in Figure 5, and the 

autocorrelation plot is included in Figure 6. It is observed that 

the noise parameters recovered from the analysis of the 

simulated sensor data are in reasonable agreement with the pre-

specified noise parameters provided as input to the noise 

model. Thus, the noise modeling scheme and simulated sensor 

data generation are consistent. The attitude measurements from 

a simulated sensor can now be fed to the terrain-based 

localization algorithm and the resulting vehicle tracking 

accuracy can be analyzed.  

TABLE 1: INPUT AND RECOVERED NOISE PARAMETERS 

Parameter Input  Recovered 

Angle random walk 

coefficient, 𝑁 (°/ 𝑠𝑒𝑐) 
0.0040 0.0041 

Bias instability coefficient,  

𝐵 (°/𝑠𝑒𝑐) 
0.005 0.0047 

Correlation time, 𝑇𝐶  (sec) 200 190.74 

 

FIGURE 5: ROOT ALLAN VARIANCE PLOT FOR SIMULATED 
SENSOR DATA 

EFFECTS OF INERTIAL SENSOR CHARACTERISTICS 
ON VEHICLE TRACKING ACCURACY 

As the ability to simulate sensor data with known sensor 

characteristics has been introduced, the issue of the effects of 

these characteristics on the accuracy of vehicle tracking can be 

examined. As mentioned earlier, vehicle tracking is performed 

using a terrain-based tracking algorithm which utilizes an 

Unscented Kalman Filter. At this point, a brief overview of the 

vehicle tracking algorithm is in order. 

 

FIGURE 6: AUTOCORRELATION ANALYSIS FOR SIMULATED 
SENSOR DATA 

Terrain-based Vehicle Tracking Using Unscented 
Kalman Filters 

The basic premise of a terrain-based localization algorithm 

is that, as a vehicle travels over a road, an inertial measurement 

unit can be used to sense the terrain attitude (roll, pitch and/or 

yaw). The measured attitude can then be compared against a 

pre-recorded database or lookup table that contains attitude 

measurements along with the position coordinates of the entire 

road network. All locations on the road where the attitude 

matches the currently observed attitude are potential current 

positions for the vehicle. However, for tracking purposes, an 

estimate of the current location is usually known. 

Consequently, an Unscented Kalman Filter (UKF) can be used 

to update the current position estimate of the vehicle, as 

discussed in [20]. As the vehicle progresses and new 

measurements are obtained, the current position estimate of the 

vehicle is updated to continue to track the vehicle on the road 

network. For the purposes of this algorithm, the current position 

is defined as the distance of the vehicle from the last-visited 

intersection, and the tracking error is defined as the difference 

between the true and estimated positions. 

While previous experiments indicate that terrain-based 

vehicle tracking is indeed a viable option, these experiments 

have primarily been performed using tactical-grade inertial 

measurement units [20]. Tactical-grade inertial sensors are 

designed to have a high degree of accuracy and their 

specifications indicate that they have lower angle random walk 

coefficients and bias instability coefficients as compared to 

MEMS-based inertial sensors. Table 2 lists the sensor 

characteristics of the Honeywell HG1700 [22], which is a 

tactical-grade sensor and utilizes a ring laser gyroscope, and the 

Analog Devices ADIS16367 [21], which is a MEMS inertial 



  

sensor. Vehicle tracking accuracy has been examined for 

various simulated sensors whose sensor characteristics lie 

roughly in the range described by these two sensors. It must be 

noted at this point that the vehicle tracking algorithm does not 

estimate the bias in the sensor, i.e. sensor bias has not been 

chosen as a state in the state vector. The primary reason for 

doing so is that the stability of the Kalman filter cannot be 

guaranteed if bias correction is included without knowledge of 

the ground truth. As a preliminary example to indicate the 

qualitative differences in vehicle tracking accuracy, simulations 

were performed using sensors at the extreme ends of the sensor 

specification scale. Figure 7 includes the tracking error plots for 

the two simulated sensors with mentioned sensor 

characteristics. The simulated MEMS sensor has the following 

characteristics: 𝑁 = 0.01°/ 𝑠𝑒𝑐, 𝐵 = 0.01°/𝑠𝑒𝑐. On the other 

hand, the simulated tactical-grade sensor has the following 

characteristics:𝑁 = 0.001°/ 𝑠𝑒𝑐, 𝐵 = 0.0001°/𝑠𝑒𝑐. As an 

immediate observation, it can be seen that even a simulated 

MEMS sensor is able to maintain vehicle tracking albeit at 

slightly larger tracking error values. This observation implies 

that the terrain-based localization algorithm has the potential to 

track vehicles even with low-cost sensors with inferior 

specifications. Next, the effects of varying angle random walk 

coefficients and bias instability coefficients on vehicle tracking 

error are analyzed. The values of the noise coefficients are 

chosen so as to span the range between the low-cost MEMS 

sensor and the tactical-grade sensor specifications. 

TABLE 2: SENSOR CHARACTERISITICS [21] [22] 

Parameter 
Honeywell 

HG1700  

Analog Devices 

ADIS16367 

Angle random walk 

coefficient   𝑁 (°/ 𝑠𝑒𝑐) 
0.0016 0.033 

Bias instability 

coefficient,  𝐵 (°/𝑠𝑒𝑐) 
0.0003 0.013 

 

FIGURE 7: TRACKING ERROR WITH DIFFERENT 
SIMULATED SENSORS 

Effects of Angle Random Walk on Vehicle Tracking 
Accuracy and Precision 

Figure 8 depicts the plot of vehicle tracking accuracy using 

the terrain-based tracking algorithm as the angle random walk 

coefficient is varied from 0.001°/ 𝑠𝑒𝑐 to 0.01°/ 𝑠𝑒𝑐. Each 

data point on the thin lines indicates a set of simulations run 

with a fixed noise model. The thin lines in Figure 8 indicate the 

mean tracking error as the angle random walk coefficient is 

varied and the bias instability coefficient is held fixed at various 

values viz. 𝐵 = 0.0001, 0.002, 0.004, 0.006, 0.008, and 0.01°/𝑠. 

The plot indicates that the mean tracking error increases as the 

angle random walk is increased from the minimum to the 

maximum value under consideration. The thick line in Figure 8 

is the average of the mean tracking error across all bias 

instability coefficients. It has been included as a means to 

emphasize the following qualitative relationship: the mean 

tracking error increases as angle random walk coefficient 

increases. Within the range under consideration, this 

relationship may loosely be described as being quadratic in 

nature.  

 

FIGURE 8: MEAN TRACKING ERROR FOR VARYING ANGLE 
RANDOM WALK COEFFICIENTS

 

FIGURE 9: VARIANCE OF TRACKING ERROR WITH 
VARYING ANGLE RANDOM WALK COEFFICENTS 

0 20 40 60 80 100
0

2

4

6

8

10

12

14

16

Simulation time (in seconds)

T
ra

c
k
in

g
 E

rr
o

r 
(i
n

 m
e

te
rs

)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

0 0.002 0.004 0.006 0.008 0.01

M
e

an
 T

ra
ck

in
g 

Er
ro

r 
(i

n
 m

)

Angle Random Walk coefficient (in deg/rt-sec)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

0 0.002 0.004 0.006 0.008 0.01

V
ar

ia
n

ce
 o

f 
Tr

ac
ki

n
g 

Er
ro

r 
(i

n
 m

2 )

Angle Random Walk coefficient (in deg/rt-sec)

TACTICAL-GRADE 
SENSOR 

LOW-COST MEMS 
SENSOR 

B=0.008 

B=0.006 

B=0.01 

B=0.002 

B=0.0001 

B=0.004 



  

Figure 9 indicates that the variance in the tracking error 

changes significantly as the angle random walk coefficient is 

varied from its minimum to maximum value. The variance is 

representative of the precision with which the vehicle is 

tracked. Specifically, the variance of tracking error increases by 

about 150% as the angle random walk coefficient increases 

from 0.001 to 0.01 °/ 𝑠. Further, the variation in vehicle 

tracking precision with angle random walk coefficient also 

appears to be roughly linear in nature, within the range of 

values under consideration.  

Effects of Bias Instability on Vehicle Tracking 
Accuracy and Precision 

A similar analysis as performed for angle random walk 

noise is performed for bias instability. In this case, the 

relationship between vehicle tracking precision and bias 

instability coefficients is less apparent. The bias instability 

coefficients are varied from 0.0001°/𝑠𝑒𝑐 to 0.01°/𝑠𝑒𝑐. The 

angle random walk coefficients have the units °/ 𝑠. Figure 10 

includes the mean tracking error values as bias instability 

increases, for various fixed values of angle random walk 

coefficients. As before, the thick line indicates the mean 

tracking error averaged over the various fixed values of the 

angle random walk coefficients. The plot indicates that the 

mean tracking error increases moderately, i.e. the vehicle 

tracking accuracy decreases, as the bias instability noise 

component in the inertial sensor increases. Further, this 

relationship is approximately linear in nature within the range 

under consideration. The plot also indicates that the mean 

accuracy of tactical-grade sensors is slightly better than other 

commercial-grade or MEMS sensors, when considering vehicle 

tracking applications. 

 

FIGURE 10: MEAN TRACKING ERROR FOR VARYING BIAS 
INSTABILITY COEFFICIENTS 

Figure 11 depicts the precision in tracking error, and 

indicates that the variance in tracking error increases 

moderately as bias instability in the sensor increases. This 

implies that sensors with higher bias instability coefficients 

have a poorer precision. Further, the simulations indicate that 

tactical-grade sensors, which have a bias instability of the order 

of 0.0001°/𝑠𝑒𝑐, yield a marginally higher precision in vehicle 

tracking as compared to simulated low-cost MEMS inertial 

sensors, which have a bias instability of the order of 0.01°/𝑠𝑒𝑐. 

The pertinent issue now is to examine if the apparent 

advantages offered by increased precision of tactical-grade 

sensors, as observed from the simulations for both angle 

random walk and bias instability coefficients, justify the cost of 

these sensors. The next section discusses this issue by 

simulating some of the available sensors and comparing their 

accuracy and precision with their approximate purchase cost. 

 

FIGURE 11: VARIANCE OF TRACKING ERROR WITH 
VARYING BIAS INSTABILITY COEFFICIENTS 

COMPARISON OF VEHICLE TRACKING 
PERFORMANCE USING AVAILABLE INERTIAL 
SENSORS 

This section presents a cost versus performance 

simulation-based analysis of some of the inertial sensors 

available in the market today. From the viewpoint of a systems 

engineer who is trying to select the appropriate inertial sensor 

for a particular application and within budgetary constraints, it 

only seems natural to have a cost-benefit analysis close at hand. 

Specifically, it is advantageous to know the cost of obtaining a 

desired level of accuracy and precision in vehicle tracking, 

even if it is not one of the primary design constraints. A few 

inertial sensors which were representative of their „cost‟ 

category were selected for simulation. These sensors along with 

their characteristics are listed in Table 3. 

Figure 12 includes the approximate price of the selected 

sensor plotted against the mean tracking error delivered by a 

simulated sensor with the same characteristics. The thick line 

indicates the mean tracking error achieved during vehicle 

tracking with the specific simulated sensor. The thin lines 

represent one standard deviation from the mean value, as 

obtained from multiple simulations. In the sensor selection 

process, the plot may be used as an indicator of the cost of 

achieving a pre-specified accuracy. Alternatively, in the sensor 

design process, it may be used as an indicator of the possible 
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accuracy achieved when constrained by a pre-specified cost. 

From Figure 12 it may be observed that the sensors may be 

broadly grouped into two „cost‟ categories, the low-cost 

category and the higher-end category. Specifically, the plot 

indicates that the mean tracking error for low-cost sensors, i.e. 

sensors which cost less than USD 2000, is over 1 m. On the 

other hand, the mean tracking error for inertial sensors in the 

higher-end category, which cost USD 2000 or above, is less 

than 1 m. Further, for sensors in the higher-end category, the 

mean tracking error is relatively constant and appears to be 

independent of cost. 

TABLE 3: SELECTED AVAILABLE SENSORS 

Sensor 

Angle random 

walk coefficient, 

𝑁 (°/ 𝑠𝑒𝑐) 

Bias instability 

coefficient, 

𝐵 (°/𝑠𝑒𝑐) 

Analog Devices 

ADIS16367 [22] 
0.033 0.013 

Gladiator 

Technologies 

Landmark 10 [23] 

0.014 0.007 

Gladiator 

Technologies 

Landmark 30 [24] 

0.01 0.003 

Honeywell HG1700 

[21] 
0.0016 0.0003 

 

 

FIGURE 12: MEAN TRACKING ERROR VS. PRICE FOR 
SELECTED INERTIAL SENSORS 

More importantly though, Figure 13 includes the 

approximate cost of the listed sensor plotted against the 

variance of tracking error obtained by a simulated sensor with 

the same characteristics. This plot is indicative of the vehicle 

tracking precision delivered by the inertial sensor as a function 

of cost. It is observed that significant improvement is obtained 

as cost increases from the low-cost category to the higher end 

category. This is evident by observing the variance of tracking 

error of the ADIS16367 and Landmark 10 inertial sensors. 

However, the law of diminishing returns limits the 

improvement in vehicle tracking precision as cost increases 

further in the higher-end category. In other words, it requires 

more and more expensive inertial sensors in order to obtain 

higher precision. Specifically, as shown in Figure 13, the cost 

of the sensor can be approximated by a power law, where the 

variance of tracking error approaches zero asymptotically, as 

the cost of the sensor approaches infinity. This represents a 

fundamental limitation in the sensor selection and/or design 

process. The associated coefficient of correlation for the fitted 

curve is 0.995, indicating that the power law may indeed be a 

good functional approximation for the relation between sensor 

cost and vehicle tracking error precision. In Figure 13, the 

relationship is described as follows: 

 𝜎2 = 𝐴(𝐶𝑜𝑠𝑡−𝐵) (7)  

where 𝜎2 is the tracking error variance (in m
2
), 𝐴 = 508.4, 𝐵 = 

0.586, and sensor cost is in 2010 US dollars. It may be 

observed that the return on investment of inertial sensors for 

vehicle tracking purposes reduces as cost increases, since 

reasonable performance is offered by even cheaper sensors in 

the higher-end category, such as the Landmark 10. However, 

the cost-to-performance ratio metric is application specific, and 

for several applications, such as autonomous vehicles requiring 

high-gain feedback, the higher cost may be justified in order to 

achieve higher precision. 

 

FIGURE 13: VARIANCE OF TRACKING ERROR VS. PRICE 
OF SELECTED INERTIAL SENSORS 

CONCLUSIONS 
From the above simulations and analysis, it can be 

concluded that the terrain-based algorithm can be used for 

vehicle tracking even with low-cost sensors. Additionally, an 

analysis of the effects of inertial sensor characteristics on 

vehicle tracking error reveals that the mean tracking error 

increases as the values of the noise-characterizing coefficients 

increase. Consequently, it is observed that tactical-grade 

sensors tend to provide higher precision than their low-cost 

MEMS counterparts, which is as expected. It is also observed 

that that the relationship of the vehicle tracking precision with 
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the angle random walk coefficient is approximately quadratic in 

nature, and with bias instability coefficient is approximately 

linear in nature, within the range in consideration. Further, the 

angle random walk and bias instability coefficients appear to be 

linearly related to vehicle tracking precision. 

Further, the cost versus accuracy and cost versus precision 

plots indicate that as cost increases the vehicle tracking 

performance increases significantly at first, but as the cost 

increases further, the improvement in tracking performance is 

marginal. Specifically, it requires more expensive sensors to 

achieve the same scale of improvement in vehicle tracking 

precision in the higher-end category of sensors. 
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