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ABSTRACT 
The localization of vehicles on roadways without the use of a 

GPS has been of great interest in recent years and a number of 

solutions have been proposed for the same. The localization of 

vehicles has traditionally been divided by their solution 

approaches into two different categories: global localization 

which uses feature-vector matching, and local tracking which 

has been dealt by using techniques like Particle Filtering or 

Kalman Filtering. This paper proposes a unifying approach 

that combines the feature-based robustness of global search 

with the local tracking capabilities of a particle filter. Using 

feature vectors produced from pitch measurements from 

Interstate I-80 and US Route 220 in Pennsylvania, this work 

demonstrates wide area localization of a vehicle with the 

computational efficiency of local tracking. 

I. INTRODUCTION 

       There has been tremendous interest in recent years to 

develop techniques to locate and track a vehicle on the roadway 

to not only enhance the safety and security of the driver, but 

also for developing collision-avoidance systems, driver-assist 

systems and autonomous vehicle control [1-2]. Currently the 

Global Positioning System (GPS) is the primary means of 

locating the position of a vehicle. However, GPS suffers from 

many issues including slow update rate, poor signal reception 

and fragility of the whole system due to accidental or intended 

satellite disruption [2].  

The above issues with GPS systems have prompted 

researchers to explore other techniques to either augment or 

replace GPS in outage situations. Alternate localization 

methods typically utilize a map-based approach [3] in which 

the roadways of interest are initially mapped by collecting 

certain sensor data and processing this data to extract different 

parameters of interest. The map created in this process has a 

record of the parameter of interest and the locations 

corresponding to where these parameters were found. To 

perform localization, the vehicle must be outfitted with the 

sensor and be supplied with the map. The computer onboard the 

vehicle then correlates the sensor readings to the map to find its 

position. Different researchers have used different types of 

sensors and data types to solve this localization problem. For 

example, Zlot et.al [4] have used a LIDAR sensor and have 

extracted different types of statistical parameters from the 

LIDAR data to create a map. Schindler et al [5] have utilized 

vision sensors in tandem with SIFT features to localize 

themselves in an urban environment.  

A novel idea was proposed in [6], where terrain data (roll 

and pitch values) were used in the localization process. The 



  

advantages of using terrain data is evident because, unlike 

LIDAR and vision sensors the inertial sensors are not affected 

by external conditions such rain, dust, fog, visibility etc. 

The task of map-based localization by any of the above 

sensors can be broken down into the global localization 

problem and the local tracking problem. In case of global 

localization the vehicle has no prior information about its 

location and the algorithm proceeds to search through the 

whole map to finds its static position. In local tracking, the 

algorithm is initiated with a prior knowledge about the vehicle 

location and the vehicle has to track itself in the map as it is 

moving by locally minimizing the error between measured and 

mapped data. Typically the global localization methods utilize 

feature matching techniques that perform matches by using data 

structures such as KD-trees [7] or vocabulary trees [8] to 

quickly search through the map. In contrast, local tracking 

algorithms typically utilize model-based tracking methods such 

as Kalman filtering, unscented Kalman filtering [9] or particle 

filtering [6].  

The hybrid localization algorithm proposed in this work 

attempts to merge the key ideas of global and local tracking 

algorithms in order to obtain the benefits of both. The 

remainder of this paper is organized as follows: Section 2 

describes the previous work and techniques behind the particle 

filtering algorithm used in this study. Section 3 explains the 

process of generating feature vectors. Section 4 describes the 

hybrid tracking algorithm and Section 5 describes the 

advantages of the proposed method over previous methods. 

Section 6 describes the results obtained when the algorithm was 

tested for two different datasets, and finally section 7 presents 

the conclusions and mentions possible directions for future 

work. 

II. PARTICLE FILTERING ALGORITHM 

       This research presented in this paper builds upon the work 

in [6], which previously showed the use of a particle filtering 

algorithm to locally track a vehicle. In this prior study, roll and 

pitch information was found to closely correspond to the 

vehicle‟s position. The algorithm used these correlations to find 

the position of a vehicle in a two-stage approach: the 

preprocessing phase and the online phase. In the preprocessing 

phase, pitch and/or roll data values were collected while driving 

on the roadway, and then stored on board the vehicle. 

       The main steps involved in the online phase are as follows: 

Initially the map was populated by particles that were randomly 

placed on it. While driving down the roadway pitch values were 

collected. The particles were made to progress forward on the 

map through a propagation step using the equation 

 Xp
k = Xp

k−1 + dX +w (1)  

        Here Xp
k  is the position of the p

th
 particle at the k

th
 time 

step, dX is the distance the vehicle travels between iterations as 

inferred from odometry, and w is Gaussian white noise of 

variance, Q, is the variance of the odometry measurement. The 

Gaussian noise added accounts for noise in odometry 

measurements and also maintains a degree of randomness in the 

location of the particles to prevent them from converging to any 

location too quickly. After the update step, the particles were 

weighted based on the degree of match between the pitch value 

just collected off the roadway and the pitch value 

corresponding to each particle from the map database. The 

weighting scheme used was of the form 

 qi = μ−1 ∗ exp(−0.5 ∗ Rθ
−1 ∗  θa − θp,i 

2
) (2)  

where θa is the pitch measurement, θp,i is the i
th 

particle‟s pitch 

corresponding to its position in the terrain map, and µ is a 

normalizing factor equal to the sum of the particle weights, Rθ 

is the variance of the attitude measurement.    

 

FIGURE 1. PARTICLE FILTERING TECHNIQUE [14] 

 

       After weighing each particle, a re-sampling step was 

conducted to eliminate particles with a low weight and multiply 

the ones with a high weight. The re-sampling step was basically 

a ranking scheme to give more importance to the particles 

which have a higher likelihood of being in the correct position. 

The details of the re-sampling step can be found in [14]. After 

re-sampling the particles, the position estimate was chosen to 

be a mean of the position of all the particles. This process was 

repeatedly performed to localize and then track the vehicle. 

Figure 1 illustrates the details of this process.  

       This approach to localization was validated on a wide 

variety of environments [14] such as highways and city roads. 

This shows that enough pitch variation is encountered on most 

roadways in order to perform localization. The localization 

ability of this method is not affected by the speed of travel of 

the vehicle as pitch is measured with respect to the travel 

distance. However, a vehicle travelling at a faster speed would 

localize quicker than a vehicle moving at a slower speed as the 

fast moving vehicle would encounter more variation in pitch in 

a given time interval. Recent work has also delved in to how 



  

the measurement noise in different pitch sensors affects the 

accuracy of localization [16].  

The main disadvantage of the previous work [6] was 

that it uses all the pitch values collected and hence requires a 

vast database to store this information. It also requires 

considerable amount of computational effort to accurately 

localize the vehicle, quantified later in terms of FLOP Count 

(Floating-Point Operation Count). 

III. FEATURE VECTORS   

The previous work using inertial data for localization has 

typically utilized raw or filtered sensor data as an identifier to 

determine location [6]. In contrast, the present work draws 

upon the feature-based matching approaches [10] that have 

been built for global localization and utilizes these features that 

are extracted from raw sensor data as the parameters of interest. 

These features can be thought of as abstractions of the raw 

sensor data, abstractions that provide advantages in terms of 

uniqueness, computation and memory. This is critical because 

the localization algorithms will have to perform in a „real-time‟ 

environment and also have reasonable memory requirements to 

be practicable. In the present work, feature vectors can be 

defined as unique information extracted from a signal that can 

be used to identify or locate the signal in a vast set of similar 

signals.   

The feature vector generation process mainly consists of 

the following steps. First, a wavelet transform is performed to 

separate the data into different frequency bands. This is done 

because noisy data tends to dominate in the high frequency 

ranges. Then the signal corresponding to the lowest frequency 

band is chosen as the signal of interest. Figure 2 shows the 

process on an example signal. In this work a low-pass Gaussian 

filter was used with a cut-off frequency of .0074 cycles per 

meter, e.g. 1 cycle every 136 meters. This long spatial period 

was chosen as analysis of data showed that the long-period 

frequencies on a roadway gave the most repeatable features.  

There are many ways to represent signals as features. One of 

the simplest is to use the maxima-minima points in a specific 

frequency band as the feature points. Each feature is 

represented by the value of the extrema points and the relative 

distance between the extrema point and its preceding extrema, 

as shown in figure 3. This use of relative distance instead of 

absolute distance makes the feature bias and scale-invariant, an 

important property because both errors are common in field 

data collection. Feature vectors are generated from pitch data 

using maxima-minima points, and every set of five such points 

forms a feature vector. The number of maxima-minima points 

chosen to form one feature vector, in this case  being data from 

five extrema, depends on the degree of uniqueness desired. A 

very short feature would be less unique and hence give little 

advantage over raw pitch values, while a very long feature 

would require long time periods to detect on flat roadways and 

would hence cause a problem in quickly localizing the vehicle 

on certain sets of roads. The feature length of five points was 

chosen through tests on different road type datasets as a good 

tradeoff between uniqueness and convergence rates. 

 

FIGURE 2. FEATURE DETECTION PROCESS [10] 

 

 

FIGURE 3. FEATURE VECTOR MEASURES 

IV. FEATURE-BASED PARTICLE FILTER 

       The novel idea proposed here is to combine the concepts of 

particle filtering and feature generation to localize and track the 

vehicle efficiently. The particle filter can make use of the 

„uniqueness‟ of a feature vector and hence go through the re-

sampling step only when a feature is detected. This makes the 

algorithm more efficient and accurate by relying on the 

uniqueness of features rather than relying on every pitch value 

collected. 

       The process again consists of two main phases as described 

in Figure 4. In the preprocessing phase, pitch data is collected 

and correlated to specific locations on the roadway. Feature 

vectors are generated by the process described earlier. For each 

feature vector formed, the data stored in association with it are: 

(1) The set of five pitch values  

(2) Relative distance of each of these pitch values from its 

               neighbors. 

(3) Location of the last pitch value in that set.  



  

 

Hence, each feature is storing information that correlates the 

pitch domain to the distance domain. This preprocessing phase 

is performed offline and the data is then stored on-board the 

vehicle.   

 
FIGURE 4. FEATURE-BASED PARTICLE FILTER 

 

        In the online phase, the localization process is initialized 

by populating the map with a set on N equally weighted 

particles randomly placed on the map, like a typical particle 

filter. As the vehicle drives down the roadway, pitch data is 

collected and the steps of wavelet transform and maxima-

minima detection are performed as described earlier. As the 

vehicle keeps moving forward, the particles are also propagated 

in the map by a distance that is determined by odometry 

measurements, using equation (1) as in the regular particle 

filter. The main change introduced here is that, the particle filter 

correction step is not conducted unless a feature is detected; 

only then does it perform the re-weighting and re-sampling 

steps. The moment a set of five maxima-minima points are 

obtained, a feature is detected. Each particle located on the map 

is then re-weighted based on the degree of match between the 

feature just detected on the roadway and the feature „associated‟ 

with the particle. The „associated‟ feature for each particle is 

defined to be the feature most recently encountered by the 

particle from the map database. The weight given to the particle 

is based on two weights, a feature-matching weight and a 

distance-matching weight. The feature match-based weight is 

obtained from a Gaussian weighting function of the form in 

equation 2 with the difference that here instead of (θa − θp,i)
2 

the term used is (diff(i))
2
 where 

 

 diff i =  f i − f 2 (3)  

f(i) is the feature vector located closest to the i
th

 particle, but 

prior to the particle‟s position in the map, and f is the feature 

vector just detected in the online phase. In place of Rθ of 

equation (2), Rp, the measurement noise variance in pitch, is 

used. The norm used in equation (3) is the regular 2-norm of a 

vector.  

                               
 

FIGURE 5. PREPROCESSING PHASE 

 

The distance match-based weight is also a Gaussian weighting 

function of the form in equation (2) with  

 

 diff i =  dist − d(i)  (4)  

where d(i) is the absolute distance between the i
th

 particle and 

the feature prior to its position and d is the absolute distance 

between the feature just detected in the online phase and 

current position of the vehicle. In place of Rθ of equation (2), 

Rd, the measurement noise variance in odometry, is used. 



  

FIGURE 6. WEIGHTING MECHANISM FOR PARTICLES 

 

       These two weights are then combined as a weighted ratio 

to give a weight to each particle. Hence the weighting scheme 

used is as follows: 

 

 𝑝𝑖
𝑘 = 0.8 ∗  𝑁𝑝𝑓𝑖

𝑘 + 0.2 ∗ (𝑁𝑝𝑑𝑖
𝑘) (5)  

where  

pi
k
        is the weight given to i

th
 particle at the k

th
 iteration 

Npfi
k
   is normalized weight based on feature matching, 

Npdi
k
  is normalized weight based on distance matching. 

 
 

FIGURE 7. ONLINE PHASE 

 

The ratio to combine the two weights was decided upon by a 

trial and error method and was found to give optimal results 

when the ratio of feature-matching weight to the distance-

matching weight was 80/20. This ratio makes sense because a 

feature vector match holds more importance than a distance 

match as the probability of getting a good distance-match is 

more than a wrong feature-match. Hence, when a particle has a 

good feature match it will have a higher probability of being in 

the correct location.  

      The incorporation of distance-match ensures that there is no 

growing error in the position estimate. If not included, the 

position estimate would locate the position of the correct 

feature, but the location relative to the feature would be wrong 

since the vehicle has to drive past a feature before it can detect 

that feature. 

       Then the re-sampling step is performed as in a typical 

particle filter, as is shown in [6]. The above mentioned process 

continues as the vehicle drives down the roadway, resulting in 

eventual localization of the vehicle. 

V.  ADVANTAGES OVER PREVIOUS METHODS 

The main idea of this paper is to show the feasibility of 

feature-based tracking in the context of vehicle localization. 

The eventual applicability of these methods in practical 

applications depends on the following underlying assumptions:  

1) The road of travel has been previously mapped to obtain 

pitch values 

2) On-vehicle storage of terrain information is possible. 

3) Pitch data can be collected in a repeatable manner 

without considerable errors from the suspension 

dynamics, speed of travel etc.   

The first two assumptions seem plausible due to ongoing 

research where large number of roadways are being mapped, 

and the increasing use and declining cost of on-vehicle data 

storage. The third assumption was substantiated in the research 

work conducted by Dean et al [14]. 

(1) Computational Effort 

       A very important aspect of comparison between algorithms 

is the computational effort that is involved. The regular particle 

filtering algorithm performs both update and re-sampling steps 

at each time step. Hence it was expected that the computational 

effort of this algorithm would be much higher than the feature-

based particle filter, which performs the re-sampling step only 

when a feature is detected.  A comparison of the number of 

computations involved in both algorithms was conducted, 

considering only one particle going through the entire process 

for all time steps for one dataset. As was expected, the number 

of FLOP counts in the regular particle filter was 3.06E8 while 

that in the feature-based particle filter was 3.52E7. The details 

of these calculations are described in table 1 below. The values 

for FLOP counts used were referenced from [15]. There is an 

order of magnitude difference between the computational effort 

involved for the two algorithms, the feature-based method 

being less computationally challenging. The huge decrease in 

computational effort is a very big advantage of the proposed 

method.  

       Another important point of comparison would be the 

number of particles required in each, as this greatly affects the 

computational burden. As features are more unique than pitch 

values, they have a higher chance of being a correct match 

when a match is obtained, as compared to pitch values. Hence 

the number of particles that need to be placed on the map for 

localizing the vehicle would be expected to be less in the case 

of a feature-based particle filter. The number of particles chosen 

in the regular particle filter (1000/mile) is explained in [6]. 



  

Tests were conducted using the feature-based particle filter and 

as expected, better localization accuracies were obtained when 

much smaller numbers of particles were used, as shown in the 

results section. 

TABLE 1. COMPUTATIONAL EFFORT COMPARISON 

OPERATION FEATURE-

BASED 

APPROACH 

REGULAR 

PARTICLE 

FILTER 

ADDITIONS 20,601,639 153,020,000 

SUBTRACTIONS 825,293 4,003 

MULTIPLICATIONS 22,983 6,000 

DIVISIONS 3,447,375 38,260,000 

EXPONENTIATIONS 2,151 2,000 

TOTAL FLOP 

COUNTS 

35,256,623 306,086,003 

 

(2) Global localization and local tracking 

       Another important aspect to be considered is the fact that 

this approach is capable of performing global localization too. 

As explained in [10], the approach of using feature vectors 

generated from terrain information has already been shown to 

effectively perform global localization. Hence, even when the 

initial location of the vehicle is not known, this approach can be 

used to perform the global localization as well as the local 

tracking of the vehicle. As currently set, the algorithm performs 

both. Further, if the initial position is already known, then the 

local tracking of the vehicle can be performed with a much 

lower computational effort. 

VI. RESULTS 

       The proposed algorithm was run on two different datasets 

collected from highways in the state of Pennsylvania. In both 

cases the feature-based particle filter requires a lower 

computational effort and gave better accuracy than the regular 

particle filter. This demonstrates the advantages of using the 

proposed method over the existing particle filtering technique. 

Figure 8 shows the position estimate error as a function of the 

distance travelled by the vehicle for the first dataset. 

       In the online phase, the regular particle filter reached a 

prediction error of less than 0.5m after 2800m of travel, while 

the feature-based particle filter reached a prediction error of 

below 0.5m after just 792m of travel. As seen in the Figure 8, 

convergence was reached at less than one-third the 

corresponding distance for the regular particle filter.  

       Also, the average error after convergence in the case of the 

regular particle filter was 0.7565m, while for the feature-based 

particle filter the average prediction error was 0.5984m. In the 

regular particle filter the number of particles placed on the map  

was 1000/mile, while in the case of the feature based particle 

filter they were 250/mile. Table 1 shows that there is 10 times 

less computational effort involved for the feature-based filter as 

compared to the regular particle filter. Hence, there is a 10x 

improvement in terms of computational effort given the same 

number of particles and a 4x improvement in terms of number 

of particles, giving an overall 40x improvement on the existing 

particle filtering technique.  

 

 
FIGURE 8. POSITION ESTIMATE ERROR VS DISTANCE 

TRAVELLED FOR DATASET 1 

 

 
FIGURE 9. POSITION ESTIMATE ERROR VS DISTANCE 

TRAVELLED FOR DATASET 2 

 

       Figure 9 shows the results of running the online phase for 

both the algorithms on the second dataset. In the case of the 

regular particle filter, a prediction error of below 0.5m was 

reached after 2625m of travel while in the case of the feature-

based particle filter a prediction error of below 0.5m was 

reached after 1321m of travel, almost half the distance. The 

average prediction error for the regular particle filter was 1.84m 

while for the feature-based particle filter the average prediction 

error was 0.84m The feature based approach worked with  

greater accuracy while using half the number of particles 

compared to a particle filter with raw data. The regular filter 

had 1000 particles/mile. In this case also the feature-based 

particle filter worked better with half the number of particles, 

500 particles/mile. Hence in this case, there was an overall 

improvement of 20x as compared to the regular particle filter. 

 



  

        Another very important aspect of comparison is the 

database of information that needs to be stored in both the 

cases. The feature-based particle filter needs to store 

information pertaining only to the feature vectors whereas the 

regular particle filter needs to store all the pitch values 

collected off the roadway. Therefore, the database required is 

much smaller in the case of the feature-based particle filter. For 

simulation using the first dataset, the number of pitch values 

stored, in the preprocessing phase, for the regular particle filter 

was 4.10MB while using the same dataset for the feature-based 

particle filter required only 55.2KB, a reduction of a factor of 

75. In the case of the second dataset, the regular particle filter 

needed a database of 2.46MB while the feature-based filter 

needed a database of just 6.63KB, an improvement by a factor 

of 380.  

VII. CONCLUSIONS AND FUTURE WORK 

        The simulation results of the feature-based particle 

filtering approach show that, compared to a particle filter with 

raw data, a vehicle can be localized and tracked with a much 

higher convergence rate, with much better accuracy, through 

this method than using just the Particle filtering algorithm or 

the feature-based method. The algorithm works at a much lower 

computational effort and with a significantly smaller database, 

and thus is far more efficient  

    Future work can be directed towards improving on the 

feature-based approach by making the feature algorithm run 

parallel to the particle filter and help it whenever convergence 

is lost, as well as improve its efficiency by estimating bias and 

scale factor errors from the feature matches. Work can also be 

done in making the feature storage more efficient using 

approaches involving data structures such as KD-trees for 

performing the search.   
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