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Abstract 
This paper proposes a novel comparative metric to evaluate vehicle rollover propensity based on a frequency-
domain representation of the Zero Moment Point (ZMP). Unlike other rollover metrics such as the Static Stability 
factor which is based on steady-state behavior, or the Load Transfer Ratio which requires calculation of tire forces, 
the ZMP is based on a simplified kinematic model of the vehicle and analysis of the contact point of the vehicle 
relative to the edge of the support polygon. Previous work validated the ZMP experimentally in its ability to predict 
wheel lift in the time domain. This work explores the use of the ZMP in the frequency domain to specifically 
highlight the rollover mode of the vehicle, to allow a chassis designer to focus on design changes to improve 
rollover propensity.  
 
1. INTRODUCTION 
This paper proposes a novel comparative approach to evaluate vehicle rollover propensity. At present, there is no 
standard protocol to qualitatively examine the risk of vehicle rollover during a vehicle design process. Vehicle 
design engineers have some simple design tools to determine rollover metrics including the Static Stability Factor 
(SSF) [1] or experimental tests such as side-pull test [1], tilt-table test [1], centrifugal test [1], etc. However, there 
are a number of inherent disadvantages that come along with these metrics and these tests. As commonly known, the 
SSF is derived based on a steady-state turn, so it ignores the dynamic effects of the vehicle. Furthermore, according 
to NHTSA [1], it is possible to artificially improve the outcomes of the previously mentioned experimental tests 
with suspension alterations. Because of the importance of predicting rollover onset or behavior, there have been 
substantial efforts dedicated to study vehicle rollover and a considerable number of rollover metrics have been 
proposed [2, 3, 4, 5, 6, 7, 8]. Nevertheless, these previous works have metrics primarily focused on rollover 
detection rather than using them as a design tool that can quantify vehicle rollover propensity. 
 
As shown in [9, 10], rollover mechanisms are not solely dependent on any particular state, but rather are the result of 
a complex interplay between several different vehicle states. Moreover, in the same work, it has been shown that a 
technique called the Zero-Moment Point (ZMP) method [11] is a valid indicator to precisely predict the onset of 
vehicle rollover. The ZMP method allows the dynamic effects to be included in the rollover prediction algorithm. 
This paper investigates a frequency-domain representation of the ZMP that utilizes a vehicle dynamic model and the 
frequency response to qualitatively evaluate vehicle rollover propensity. The benefit of this metric versus a similar 
approach such as the Load Transfer Ratio (LTR) [2] is that it does not artificially saturate and is clearly based on the 
contact polygon of the vehicle. Although this proposed approach cannot analytically determine whether or not the 
vehicle will roll over, it gives an engineer a benchmark, namely rollover margin, to see whether a design is 
improved or worsened from rollover perspective, compared to the baseline design. This approach also highlights the 
rollover mode of the vehicle which allows the engineer to understand what the particular frequency that dominates 
the rollover mode of the vehicle is, so he/she can modify the configuration of the vehicle suspension accordingly to 
reduce the likelihood of vehicle rollover. Additionally, this approach can be considered as one of the optimization 
criteria apart from ride quality in a suspension design process.  
 
The remainder of the paper is organized as follows: Section 2 outlines the procedure used to infer rollover 
propensity. Section 3 introduces in detail the concept of the zero-moment point, which is a main technique used to 
determine vehicle rollover propensity. The results that show the effectiveness of this approach are given in Section 
4. Conclusions then summarize the main points of this paper. 
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As mentioned in Section 2, the ZMP is the point on the ground where the summation of the tipping moments acting 
on an object, due to gravity and inertia forces, equals zero [12]. The location of the ZMP must lie within the 
supporting polygon to maintain the dynamic stability of a kinematic chain; otherwise, the chain will turn over. To 
find the location of the ZMP, the free-body diagram of a two-link kinematic in Figure 2 is considered. By using 
general equations of motion [18] and D'Alembert's principle [19], the moment equation about point A in Figure 2 
induced by inertial forces and gravity is: 
 
         (1)                                

where  is the mass of the ith body,  is the inertia tensor of the ith  body,  is the linear acceleration of the ith 
body,  is the angular velocity of the ith body, ,  is the position vector of the center of gravity (CG) 

of the ith body,  is the position vector of the ZMP, and  is the gravitational acceleration. If  = [0 0 MAz]
T, 

the point A becomes a zero-moment point. 
 
Table 1 Nomenclature for rigid vehicle model 
Symbol m a b h T Ixx, yy, zz Ixz, yz 

Definition 
Vehicle 
mass 

Distance 
from CG to 
front axle 

Distance 
from CG 
to rear axle 

Height 
of CG 

Track 
width 

Mass 
moment of 
inertia 

Product mass 
moment of inertia 

Symbol φr φt θ p q r aG 

Definition 
Roll 
angle 

Roll angle 
of banked 
surface 

Pitch angle Roll rate Pitch 
rate 

Yaw rate CG's accelerationa 

aSubscripts x, y, and z indicate accelerations in x-, y-, and z- directions, respectively. 
 
To apply the concept of the ZMP to a vehicle system, a vehicle is modeled as a rigid body shown in Figure 3. In the 
figure, the coordinates oxyz are fixed with the vehicle at the center of gravity of the vehicle (point G). Point Q is a 
zero-moment point located by  and is always physically on the ground. To calculate the location of the zero-
moment point, we assume that the vehicle is symmetrical in the xz-plane (  = 0), and the vehicle is free to move in 
any directions. The nomenclature used in this section is defined in Table 1, Figure 3, and Figure 4. Considering 
Figure 4, the location of the ZMP may be expressed as: 
 

                         (2) 

By using Eq. 1, the lateral location of the ZMP can be expressed as: 

  (3) 

Since the main focus of this work is to determine vehicle rollover propensity, only the expression of yzmp is 
presented for brevity. The complete solutions of the location of the ZMP can be found in [9, 20]. Additionally, the 
fidelity of the above equation to predict vehicle rollover was confirmed in [9, 10, 20]. 
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