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ABSTRACT 

Due to its influence on suspension deflection, vehicle rollover, and tire normal forces, terrain 
modeling is an important factor when performing vehicle dynamics simulations. There has been 
significant research on 2D (longitudinal) road profile modeling for purposes of measuring ride 
quality, road roughness and condition, and evaluating suspension design. But there has been little 
study of 3D road geometry modeling, which may be useful for vehicle rollover and banked-road 
handling analysis. This study focuses on 3D terrain modeling for the purpose of vehicle 
dynamics simulation. Terrain data was collected using a LIDAR sensor mounted on an 
instrumented vehicle. This data was used to generate a 3D road representation that was imported 
into a multi-body CarSim vehicle simulation. A challenge with the full 3D representation was to 
determine the level of signal filtering necessary to smooth the raw LIDAR point cloud for an 
appropriate road representation. To find the optimal filtering, an iterative process was used that 
minimizes RMS error in roll and pitch by comparing in-vehicle measurements to simulated 
vehicle responses. At a particular spatial filtering frequency, a good match was obtained between 
simulations and measured vehicle responses. The contribution of terrain to vehicle roll dynamics 
was also studied by comparing simulated traversal of roads with and without vertical terrain 
features. 
Keywords: 3D road modeling, terrain dynamics, LIDAR, road measurement, CarSim 
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1. INTRODUCTION 

Terrain modeling plays an important role in road characterization and vehicle dynamics 
simulations. Not only do road roughness measurements indicate road health and ride quality, but 
the profile of the road can be used as an input to a vehicle dynamics model to find the chassis 
response. Over the years, different road profile measuring devices like the GM profilometer and 
Longitudinal Profile Analyzer (LPA) have been developed to measure two-dimensional 
road/terrain profile. The GM profilometer obtains vertical motion by integrating the vertical 
acceleration recorded by an accelerometer (Spangler et al., 1996). On the other hand, LPA uses 
an angular displacement transducer to measure angular travel of a horizontal beam whose one 
end is attached to a trailer wheel using. Some recent studies (Imine et al., 2005; Imine et al., 
2006) combine LPA measurements with observer design methods to estimate two-dimensional 
road profiles. Also, there has been significant research on statistical modeling of two-
dimensional terrain profiles under each tire (Chemistruck et al, 2009). This data is also useful for 
correlating vehicle motion with particular roads and road location (Dean et al., 2008).  

This study focuses on 3D terrain modeling for vehicle dynamics simulations. Most terrain 
measurement studies focus on road characterization using 2D longitudinal road profile under the 
tire. However, 3D digital terrain information is necessary for vehicle dynamics simulations 
involving lateral motion. With the increasing use of mobile Light Detection and Ranging 
(LIDAR) systems, it is possible to record 3D maps of the road. Although terrain mapping with 
the aid of LIDAR is very common in robotics, LIDAR mapping is hardly used for the purpose 
generating real terrain data for vehicle dynamics simulations. One of the recent studies by 
Detweiler, 2009, used a laser scan for digital terrain modeling. They compared the chassis 
response from a 7th order vehicle ride model on a real terrain with the measured responses and 
obtained a good agreement. Studies by Imine et al. [5, 6, and 7] used a similar ride model. 
However, such studies are focused on the vertical forces acting on sprung and unsprung masses 
rather than cornering forces acting on a vehicle at the tire-pavement interface when a vehicle is 
moving on a curve.  

Although 3D geometry of a road is often used in vehicle simulations for analyzing highway 
design and safety (Stine et al., 2010), most of such work has focused on idealized roads rather 
than measurements from actual roads. For most vehicle stability studies, terrain profile is often 
ignored even though it is well known that terrain dynamics contribute to the resulting roll 
dynamics of the vehicle.  The challenge in using 3D profiles for roll analysis of a vehicle is the 
presence of bias and noise in the 3D LIDAR measurements. This is similar to errors seen in 2D 
profilometer studies where advanced filtering techniques are used to remove similar 
measurement artifacts. But unlike these established 2D methods, the filtering techniques for 3D 
smoothing of road measurements are not yet well established. This study therefore considers the 
optimal smoothing of 3D terrain profile data for vehicle simulation studies.  
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under each tire. One could verify this easily with field experiments including aggressive lane 
changes on typical roads. Additionally, there should be verification on additional vehicles and 
LIDAR sensors that the optimal cut-off frequency does not significantly change across changes 
in either platform. 

Another area of future interest is the use of digitized roadways for use in vehicle driving 
simulators with motion systems. Many driving simulators are used in automotive industries as 
well as universities to analyze new vehicle or roadway designs, to evaluate the user experience, 
for driver training, and for vehicle dynamics research studies such as rollover stability systems. 
The digital 3D terrain modeling approach in this paper can be used for designing realistic road 
geometries for such vehicle simulators to produce simulated vehicle motions that optimally 
match on-road behavior.  
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