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Abstract— Non-GPS localization of vehicles on roadways has
received considerable attention in recent years ana number of
solutions have been proposed, with most solutiongldressing
local tracking. This paper presents an algorithm tlat achieves
global localization within very large road networksusing pitch
information. A key contribution is the development of the
Multi-scale Extrema Feature that provides a number of
advantages over traditional time-series subsequenaeatching
methods in order to implement the above scheme. The
algorithm’s results in localizing a vehicle’s posibn without
initialization within a road network spanning 6000 Km are also
presented.

I. INTRODUCTION

Autonomous vehicles, driver-assist systems, colisi
warning systems, etc. all benefit from accuratéresges of
vehicle location. While GPS provides position mfation,
it is quite susceptible to attack, outages andadigeception
problems. Consequently, there is growing inter@stevelop
alternatives to GPS such as map-based

approaches to global localization have involved tise of
LIDAR and vision sensors [3; 4; 7; 2]. While bottetabove
sensors are proven to improve the localization gélaicle,
they typically tend to fail under rainy and dusgnditions;
moreover, vision sensors also tend to be unrelidoking
poor lighting conditions such as nighttime drivinbhese
sensors are also expensive and can be blockedrbyrdi
snow. This work overcomes these problems by progosi
the use of road grade data measured from in-veli¢®
sensors, which are robust under all the above tiondi
assuming vehicles are operating on known (e.g. edyp
roadways. Among the different global localizatioethods
that have been suggested in literature [2] [3],ah#hors feel
that the proposed method is most practicable for
implementation on roadways as it is immune to esker
environmental conditions.

The data density per unit distance traveled alferef the
sensor choice for localization. This choice is dejant on a

localizatignl je off between computation and travel distanoe f

techniques [1], including some which rely on onlbar,4ji;ation. The previously mentioned vision amd/tbAR

LIDAR [2] and vision sensors [3].

approaches utilize high densities of data per digtance

The problem of map-based localization can be bmkethveled, and hence require higher computatiorsduees

down into two phases: global localization and ldcatking.
Global localization tries to estimate the positioh the
vehicle in the initial phase, during which it could present
anywhere in the map. Once the vehicle has beefidzedaon
a global scale, the second phase, i.e. local tngckis
initiated. In local tracking, the current positi@stimate of

the vehicle must be determined from previous, Qeartbomputation

position estimates and current sensor informatRwopular
approaches to local tracking include Particle Hitigg (PF)
and variants of Kalman Filtering [4], both of whidtave
been implemented by the authors for vehicle loatiin
using pitch information [5] [6].

Global localization tends to be a harder problemsdive
than local tracking because the large search spapéres
tremendous computational resources to implement
particle-filter or multiple Kalman Filter solutiowhen the
initial vehicle position is completely unknown. Rieus
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to localize, even within a small roadway networkd. the
same time their advantages include a smaller trdigéhnce
before localization, and the ability to simultansigu
estimate multiple vehicle state parameters. Inresht this
paper utilizes pitch data which is one dimensidnaiature.
While pitch data requires only a moderate amount of
and memory for localization within
considerably large road networks, the tradeoffhiat tthe
vehicle must travel a larger distance before sisfokes
localization and only a single parameter (roadwaoation)
can be estimated.

In order to implement a global localization schewith
pitch data, a signal retrieval method (time series
subsequence matching) has been implemented. This
:ﬁ)proach is similar to recent approaches in visiom
LIDAR-based global localization [2][3] which havdilized
techniques from image retrieval [8] [7].

While previous work by the authors has focusedaoal
tracking using pitch information, the main contribution of
this paper is to demonstrate the feasibility gibbal
localization in large roadway networks. This novel
application of pitch information requires new tirseries
subsequence matching tools because of the rathqueun
nature of this data. Therefore, the other majotrdmution of
this paper is the ‘Multi-Scale Extrema Feature’ ethis a
feature vector that has been specially designefddititate



pitch data retrieval from vehicles on roads. Thatudes
based approach that has been developed for
localization could also be applied to local trackjproblems
[5; 6] to take advantage of the computational aremary
benefits that are obtained in using this method.

The remainder of this paper presents an algorithat
achieves global localization within very large raatworks,
using pitch information. Section 2 presents therditure
survey for current signal retrieval techniques @xglains
the need to develop a new feature vector thatriscpéarly
effective in handling the challenges presented iphplata.
This section also presents the proposed
Extrema Feature’ and combines it with a KD-treenfeavork
for global localization. Section 3 shows the altor's
results in localizing a vehicle’s position withdnitialization
within a road network spanning 6000 km. Section
demonstrates the algorithm’s immunity to typicapdyg of
sensor noise. Conclusions then summarize the nesuilts
of this work.

|. SCALED SHAPE FEATURES

A. General overview of feature vector based localization

In this paper, pitch data measured on a vehicle
compared to features stored in a map in order aochefor
the locations of maximum agreement. Implementadiothe
localization algorithm can be divided into two phssa
preprocessing phase and an online phase. In

feature vectors which are stored in a databastheonline
phase, data collected on the vehicle is used @teifeature
vectors which are used in conjunction with the dase in
order to obtain the location of the vehicle. A soladic that
illustrates the above process is shown in Fig.i%.ttan be
seen that the feature vector plays a critical rioleboth
phases.

Online Phase

Preprocessing Phase
Mapped
Data
Generate
Feature Vectors
Generate
Database

Fig. 1. The two phases involved in the proposedlipation scheme
and the central role played by the feature vectdhése phases.
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B. Previous methods fromthe literature

One can observe that this map-matching problenuiig q
analogous to the time series subsequence matchitdem,
for which a large number of different solutions aawveen
proposed [9; 10; 11; 12] . Unfortunately, there aseweral

drawbacks when applying these approaches to magubas

localization. For example, all the above methods tie
Euclidean distance or a modified Euclidean distaswzh as

between the database signals and the query sighake

gloltalclidean distance criterion and its variants Hrsuited for

handling data with outliers or data in which theiseois
present in particular frequency bands. Unforturyatebad
information has larger noise content at higherdestries to
an extent where one would wish to create sepaesttire
vectors from different frequency bands (or diffdérenales)
to isolate noise influences. These requirementshard to
meet with methods based on Euclidean criterion as o
would need to maintain a separate matching prdoessach
frequency band. Additionally, the Euclidean disemeetric

‘Multi-Scals not very robust to outliers and other distorsiomn the

proposed formulation, feature vectors from all &rency
bands will have the same length and can be staradsingle
database, and the feature vectors are designesirbbst to
dutliers and distortion.

Further, it is difficult to implement a real-timension of
many methods proposed in the literature [9; 10;12]; To
create feature vectors in the above techniquesakigare
usually sampled at regular intervals which are allpgffset
in a technique commonly known as the sliding window
method. This technique results in information bestgred
redundantly across a large number of feature vectehnich
Will result in unnecessarily large databases whaplied to
road networks. Some methods such as LCSS [13Jolnest
to outliers and can be indexed for fast retrievabpses but
still have the drawback of using the sliding window

: X . tHEmework like all the above methods. In the skigimindow
preprocessing phase, mapped data is processedtam ob

method, the signal length that is used to geneadeature
vector is fixed, regardless of the variation withie signal.
This ‘one-size-fits-all' approach is adequate fagnals
which exhibit significant variation over “small’nie scales
(e.g. music). However, for map-based localizatitiiere
may be sections of road which are very smooth ahithw
have little variation in pitch information. Thudiged length
segment of the signal might not create adequatelgue
feature vectors.

C. Algorithm

The above drawbacks reveal a need for a different

approach towards generating feature vectors fehgitsed
localization. This section introduces the ‘Multi ae
Extrema Features’, which attempt to overcome thevab
drawbacks. The individual steps involved in geriegathis
feature vector are shown in Fig. 2.

Feature Vectors

Step 4
Perform

Generate
Wavelet Transform E ded Feature Vectors

Step 2 Step 3

Obtain Generate

Key Points

Point Feature Vectors

Fig. 2. The step by step process involved in olmgi the Scaled
Shape Feature Vect

1) Wavelet decomposition: To separate high-frequency
noise from low-frequency features, wavelet decorntiposis

Dynamic Time Warping (DTW) to calculate the distanc Performed to partition the signal into its compaisen



corresponding to dyadic frequency bands. Next, ufeat
vectors corresponding to each frequency band arputed.
This method is used to restrict the effect of frempy-
selective noise by limiting it to those feature tegs which

to a scale suited to the underlying variation pmese the
signal. Thus, the signal length that is encodddrger if the
key points are far apart because of little variafiothe data,
and vice versa. This adaptive nature of the prapdsature

have been extracted from the noise-affected fregyuenvector enables it to overcome ‘the one size fit§ al

bands. The Wavelet transform is performed by usiegso-

restriction of current time series subsequence mivagc

called “Sombrero wavelet” whose Fourier transforsn itechniques.

shown below.
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It has been shown that the wavelet transform [1s}]
equivalent to a multi scale differential operator.

WFQus) =™ (f * 6,)(w) )

Where the wavelety(t) = (—1)"%(6(0) and 6(t) is
typically chosen as the Gaussian function. In thesent
case n = 2, as we are utilizing the sombrero wavéleus,
the output signals, obtained from the wavelet fiamns,
contain peaks corresponding to the high curvatwmtg
(second derivative) of different Gaussian-smoothexgions
of the original signal. Step 1 in Fig. 3 presemtseaample of
this wavelet transform of a signal.

2) Obtaining Key Points: Local maxima of the output
from the wavelet transform are then selected aslidate
“key points”. These local maxima are calculatednfrthe
wavelet transform at each scale. This implies tifiat,local
maxima exists at time, and scala, , then:

6%51,5) =0 U=u,,5=5, )

These key points are found from the finite-differen
implementation of this equation. A heuristic measiar the
susceptibility of a certain local maxima to noiseevaluated
by measuring its distance to the neighboring pea#is.
adaptive threshold for this heuristic measure isduso
decide if a local maxima is to be designated asyaploint.

Fig. 3 (step 2) shows that the key points of ilaelet
transform at a particular scale represent high ature
points on the Gaussian smoothed version of theinalig
signal at that particular scale. This entire precektaking
the wavelet transform and finding the local maximahe
above manner is called ‘Wavelet Modulus Maxima'[1BY
encoding the shape information at recognizable pants,
this algorithm is able to achieve shift invariancEhis
procedure does away the need for encoding clogédgto
overlapping frames, thus reducing the number ofufea
vectors required to encode a particular stretathadd.

An underlying assumption in this analysis is the tdata
is composed of different regions of constant sl¢gieaight
lines) and that the key points are the high cumeatoridge’
points between these straight lines. Road datastdnd
exhibit this effect, at least for the six thous&md measured
by the authors.

3) Computing the point feature vector: Once the key
points are obtained, the distance of a key poiitstadjacent
neighbors on the Gaussian smoothed version of tigaal
signal is used to compute a point feature vectgru@ng the
neighboring key points, the feature vector is ablexpand

For a one dimensional signal, the distance betvieen
points in that signal is given by distance along #iibscissa
and the ordinate. Thus, four numerical quantitiee a
Irequired to describe the location of both the nedgh
present on each side of a point. leetnd ¢ denote the
distance of a key point along the abscissa to edcits
neighbors and let bnd d be its distance along the ordinate
to the same neighbors as shown in step3 of Figh8n the
feature vector at that particular key point is givsy:

[f(a,c) f(c,a) f(b,d) f(d,b)]

where f(x,y) = x/V(x? + y?).
This encoding scheme allows the feature vectoret@dale
invariant with respect to the input data. Thus,eattdire
vector computed on a signal which is scaled byedifit
amounts along the abscissa and the ordinate withdsame
as that computed on the un-scaled signal. Onlyrelaive
distances between key points are used to competiedture
vector and this makes the resulting feature vectnes
invariant. Both bias and scale errors are commonly
encountered when collecting pitch data and the queg
feature vector is designed to be immune to them.

(4)

4) Creating the extended feature vector: Finally, adjacent
feature vectors are bundled together to creatextanéed
feature vector in order to obtain an adequatelyqumi
representation of the shape around the key poimbo§ing
the length of an extended feature vector is a bfide
between increasing the uniqueness of a feature and
restricting the effect of an erroneous key point the
recognition of its neighborhood. Through implemé¢iots, it
was found that at least three point features im eatended
feature vector would be necessary for robust leatitin and
an example extended feature vector of this natuighown
in step 4 of Fig. 3.

D. Feature Matching

Once the feature vectors are created they are used
differently in the preprocessing phase and thenerphase.

1) Preprocessing phase: In the pre-processing phase, the
extended feature vectors are used to create a &Ditr
order to be able to perform an efficient searclough the
database of features. As the primary aim of thigepas to
explore the efficacy of the feature vectors foraliation, a
generic tree was used for testing the vectors. ferdetailed
treatment of the various types of tree data strestthat can
be used for localization is presented in [15]. Ateresting
new data structure called vocabulary tree [8] hagnb
reported to perform vision based localization very
efficiently, and could easily be extended to thepwmsed



method as well.

2) Online phase: In the online phase, the feature vectors

are tested for a match within the database to whtertheir
corresponding position estimate for the vehicleckequery
signal generates multiple feature vectors and eddhese
feature vectors is matched with the KD-tree databias
determine their corresponding position estimate floe
vehicle. Each position estimate was compiled into
histogram and the position with the highest valnethie
histogram is output as the best position estimatefquery
signal. For applications in which local trackindldavs the
global localization scheme, the histogram can bed u®
output multiple position estimates which can beduse
initiate a particle filter or multiple Kalman filts.
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Fig. 3. The feature vector creation process bgxample.

Il. EXPERIMENTAL RESULTS
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Fig.4. The roadway
experiments.

Fig.5. The figure shows the vehlcle setup useténeixperiments.
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Fig.6. The figure shows the data acquisition systesed in the

experiments.
Thirty different query signals were extracted frtime “test”
data. To check the accuracy of localization, theugd truth
for the 6 km stretch in the datasets was obtaimedh fa
DGPS system with a positional accuracy of 0.1 nsethr
must be noted that while the mapping phase used&®®
information for representing the pitch informatias a
function of distance, the testing phase used thehpi
information and the wheel encoder data to do thees&d he
localization estimate that is obtained from thigresentation
of the pitch data is verified by using the GPS datt was
collected as a part of the testing phase. A thidsbbten
meters was used to determine if a certain matchawegrate
or not. Fig. 5 and Fig. 6 shows the experimengalis and

An experiment was performed on actual highways tBig. 7 shows the accuracy curves that were obtdimethe

evaluate the feasibility of this method for glohadalization.

feature tree based method. The accuracy curvesrite the

For the experiment, “map” data was collected onewero localization accuracy that was obtained as a foncof

6000 km of roadway, and then “test” data was ctdléon a
small portion of the same road way, across justrné khe
full roadway, shown in Fig. 4, was used in the rbajpding

query signal length. It must be noted that for arguength
of 800 meters, the correct position estimate wagayd
amongst the first five position estimates that weléained

process while the second run was used in the testifrom the histogram of the position estimates. Theamand

procedure.

the standard deviation of the error in the locagstimate, in
the case of an accurate match for an 800 m qugnaki



were 1.96 meters and 0.68 meters respectivelyart lwe
clearly seen that a threshold value of 10m is eoy writical
and slight changes to the threshold will not afféice
accuracy curves in a significant manner. When testethe
6000km database it was found that a single feataotor
match took about 0.25 seconds. The entire matghiogess
for a 800 meter signal took about 45 seconds o4z

contributions from the data collection process expected

to be small if the sensors are properly mounted and
calibrated. The standard deviation of the bandtéichnoise

for pitch data is again expected to be mainly ftbmsensor
and the contribution from the data collection psscevas
estimated to be 0.057 degrees (std dev) for theh pifta
from experiments.

dual core computer when implemented by using a non-For this simulation, pitch data obtained from ategnated

optimized MATLAB code.
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Fig. 7. Accuracy curves for localization under @@nditions.

I1l. SIMULATION RESULTS

The objective of the simulation process is to tewt
ability of the designed feature vector to withstaratious
types of sensor noise typical of vehicle sensor$ @rad
measurement. Each type of sensor noise is repegségta
corresponding parameter in the sensor model. lghper,
the pitch and the encoder sensors are modeled tvih
sensor models taken from [16] and [6], which anegiby
Egns (5-6). It must be noted that the bias terntHe pitch
sensor error in [16] is modeled as a slow varyiiag land is

GPS-IMU system was used to generate feature vettiats
were stored in a feature tree. Fig. 4 shows thed 800 of
roadway that was used in creation of the featwge. tBmall
portions of the original signal were taken and gpted with
each of the different noise types,§s, vyq,vy,) UP tO
varying degrees to create a “query signal”’. Thetuiea
vectors obtained from this query signal were malcivith
the original database to estimate the positioméndatabase
from which this query signal was extracted. The@cness
of this position estimate was decided on the ba$ia
threshold distance (10 m) from the true point dfaotion of
the signal, e.g. any final estimate within thisestrold is
considered correct (local tracking algorithms cdacK”
easily within this range).

For each of the four parameters, the simulation was
performed by varying the parameter of interest ehil
keeping others constant at their expected valudof@rcost
sensors. The query signal was extracted from sifgrent
points of the original signal. Each query signal swa
corrupted and tested fifteen times in order to iobta
statistical estimate of algorithm performance thatounts
for the random nature of the errors introduced. Téws
were performed for query signals of lengths 205) 4hd

approximated as a constant for the purposes of thisq . iars

simulation.
TABLE I: Nomenclature for equations (5) and (6)

Symbol Quantity
Pitchy,Pitchy, True pitch ,Measured pitch
B, S Constant Bias error ,Constant Scale Factor error
Vit Zero mean band limited pitch noise
Vi Zero mean band limited encoder noise

Encoder; ,Encoder,,  True encoder value ,Measured Encoder value

Pitchy, = (1 + S;)Pitch, + B + vy, (5)

Encoder,, = Encoder; + v, (6)

These sensor models contain a total of four diffeezror
parameters K, S, vyq,vy2), €ach of which represents
particular types of noise. The error sources @hatmodeled

by these parameters can come from both the sensotha
data collection process. For exampkijncludes the bias

error in the pitch sensor and any inclination angler in

mounting the sensor to the vehicle. Similatly, andv,,,
represents the zero-mean band limited white nom® the
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Fig. 8. The plots show that the localization aecyrof the feature
based method is immune to the effect of bias nargk scale factor

pitch and encoder sensors and also the noise ftten t gorin the pitch sensor.

vehicle chassis vibration and measurement erroes tdu
slight differences in the lateral lane position afvehicle
during data collection. The bias and scale factoors are

Fig. 8 shows that the estimation process is uniteby
bias B) and scale errorss{), a result that was expected as

expected to be mainly from the pitch sensor and ttie feature vector was designed for scale and bias



invariance. sources of inertial data, thus reducing the quemgth
Fig. 9 (top) shows that the estimation procedures wabecause of the higher data density.
largely invariant to distance measurement (encodei3e

; TABLE II: Comparison of different sensor modalitiies localization
(vw1) that one would encounter at highways speeds (6PmpfT

/ : S Map Number of Travel dist
which was estimated to be 0.076m (std dev) for each C,fa”tfg’nr Size Feﬁ,fﬂ,rig,ﬁm forragﬁer;ss%nncﬁ
encoder tick at 100 Hz [6]. The addition of bandied Vision [3] 20Km 5 x1OKm® inf
ra_ndom noise in the pltch sensoy,§) was also investigated | 5.g [14]  165Km 9 x 16/Km’® ~20-60 f
(Fig. 9, bottom). In [16], it was found that lowstesensors .

Pitch [-] 6000Km 3 x 10Km ~400 m

used for pitch measurement had a standard deviefioy),

of 0.1 degrees, so variations in pitch noise arotind “Estimated from publication.

deviation were considered. This noise type appeahsve a The paper also introduces ‘Multi Scale Extrema

significant effect on the accuracy of the result. Features’ which are designed to overcome the eagect
Both Fig. 8 and Fig. 9 consider localization pemiance grawbacks of using current time series subsequence

over several different query lengths. The resuliswsthat matching techniques for inertial data. These festuare

the performance of a more accurate pitch sensorbean robust to sensor noise and future work could ingolv

achieved by a low-cost pitch sensor if one simpijlects demonstrating their capabilities by performing lization

data over a longer period of time to obtain a longeery with low-cost inertial sensors.

signal. Overall, this paper presents a promising new tephei
100 - to perform global localization in order to competesand/or
replace GPS position estimates on roadway networks.
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Fig. 9. The plots examine the effects of bandtahiwhite noise in
the encoder and pitch measurements on localizationracy



