
  

  

Abstract— Non-GPS localization of vehicles on roadways has 
received considerable attention in recent years and a number of 
solutions have been proposed, with most solutions addressing 
local tracking. This paper presents an algorithm that achieves 
global localization within very large road networks using pitch 
information. A key contribution is the development of the 
Multi-scale Extrema Feature that provides a number of 
advantages over traditional time-series subsequence matching 
methods in order to implement the above scheme. The 
algorithm’s results in localizing a vehicle’s position without 
initialization within a road network spanning 6000 Km are also 
presented.  

I. INTRODUCTION 

Autonomous vehicles, driver-assist systems, collision 
warning systems, etc. all benefit from accurate estimates of 
vehicle location.  While GPS provides position information, 
it is quite susceptible to attack, outages and signal reception 
problems. Consequently, there is growing interest to develop 
alternatives to GPS such as map-based localization 
techniques [1], including some which rely on onboard 
LIDAR [2] and vision sensors [3].  

The problem of map-based localization can be broken 
down into two phases: global localization and local tracking. 
Global localization tries to estimate the position of the 
vehicle in the initial phase, during which it could be present 
anywhere in the map. Once the vehicle has been localized on 
a global scale, the second phase, i.e. local tracking, is 
initiated. In local tracking, the current position estimate of 
the vehicle must be determined from previous, nearby 
position estimates and current sensor information. Popular 
approaches to local tracking include Particle Filtering (PF) 
and variants of Kalman Filtering [4], both of which have 
been implemented by the authors for vehicle localization 
using pitch information [5] [6]. 

Global localization tends to be a harder problem to solve 
than local tracking because the large search space requires 
tremendous computational resources to implement a 
particle-filter or multiple Kalman Filter solution when the 
initial vehicle position is completely unknown. Previous 
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approaches to global localization have involved the use of 
LIDAR and vision sensors [3; 4; 7; 2]. While both the above 
sensors are proven to improve the localization of a vehicle, 
they typically tend to fail under rainy and dusty conditions; 
moreover, vision sensors also tend to be unreliable during 
poor lighting conditions such as nighttime driving. These 
sensors are also expensive and can be blocked by dirt or 
snow. This work overcomes these problems by proposing 
the use of road grade data measured from in-vehicle INS 
sensors, which are robust under all the above conditions 
assuming vehicles are operating on known (e.g. mapped) 
roadways. Among the different global localization methods 
that have been suggested in literature [2] [3], the authors feel 
that the proposed method is most practicable for 
implementation on roadways as it is immune to external 
environmental conditions. 

The data density per unit distance traveled also affects the 
sensor choice for localization. This choice is dependent on a 
trade-off between computation and travel distance for 
localization. The previously mentioned vision and/or LIDAR 
approaches utilize high densities of data per unit distance 
traveled, and hence require higher computational resources 
to localize, even within a small roadway network. At the 
same time their advantages include a smaller travel distance 
before localization, and the ability to simultaneously 
estimate multiple vehicle state parameters. In contrast, this 
paper utilizes pitch data which is one dimensional in nature. 
While pitch data requires only a moderate amount of 
computation and memory for localization within 
considerably large road networks, the tradeoff is that the 
vehicle must travel a larger distance before successful 
localization and only a single parameter (roadway location) 
can be estimated.  

In order to implement a global localization scheme with 
pitch data, a signal retrieval method (time series 
subsequence matching) has been implemented. This 
approach is similar to recent approaches in vision and 
LIDAR-based global localization [2][3] which have utilized 
techniques from image retrieval [8] [7].  

While previous work by the authors has focused on local 
tracking using pitch information, the main contribution of 
this paper is to demonstrate the feasibility of global 
localization in large roadway networks. This novel 
application of pitch information requires new time series 
subsequence matching tools because of the rather unique 
nature of this data. Therefore, the other major contribution of 
this paper is the ‘Multi-Scale Extrema Feature’ which is a 
feature vector that has been specially designed to facilitate 
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pitch data retrieval from vehicles on roads. The feature 
based approach that has been developed for global 
localization could also be applied to local tracking problems 
[5; 6] to take advantage of the computational and memory 
benefits that are obtained in using this method.  

 The remainder of this paper presents an algorithm that 
achieves global localization within very large road networks, 
using pitch information. Section 2 presents the literature 
survey for current signal retrieval techniques and explains 
the need to develop a new feature vector that is particularly 
effective in handling the challenges presented by pitch data. 
This section also presents the proposed ‘Multi-Scale 
Extrema Feature’ and combines it with a KD-tree framework 
for global localization. Section 3 shows the algorithm’s 
results in localizing a vehicle’s position without initialization 
within a road network spanning 6000 km. Section 4 
demonstrates the algorithm’s immunity to typical types of 
sensor noise. Conclusions then summarize the main results 
of this work.  

I. SCALED SHAPE FEATURES 

A. General overview of feature vector based localization 

In this paper, pitch data measured on a vehicle is 
compared to features stored in a map in order to search for 
the locations of maximum agreement. Implementation of the 
localization algorithm can be divided into two phases: a 
preprocessing phase and an online phase. In the 
preprocessing phase, mapped data is processed to obtain 
feature vectors which are stored in a database. In the online 
phase, data collected on the vehicle is used to create feature 
vectors which are used in conjunction with the database in 
order to obtain the location of the vehicle. A schematic that 
illustrates the above process is shown in Fig. 1.It is can be 
seen that the feature vector plays a critical role in both 
phases.  

 

B. Previous methods from the literature 

One can observe that this map-matching problem is quite 
analogous to the time series subsequence matching problem, 
for which a large number of different solutions have been 
proposed [9; 10; 11; 12] . Unfortunately, there are several 
drawbacks when applying these approaches to map-based 
localization. For example, all the above methods use the 
Euclidean distance or a modified Euclidean distance such as 
Dynamic Time Warping (DTW) to calculate the distance 

between the database signals and the query signal.  The 
Euclidean distance criterion and its variants are ill suited for 
handling data with outliers or data in which the noise is 
present in particular frequency bands. Unfortunately, road 
information has larger noise content at higher frequencies to 
an extent where one would wish to create separate feature 
vectors from different frequency bands (or different scales) 
to isolate noise influences. These requirements are hard to 
meet with methods based on Euclidean criterion as one 
would need to maintain a separate matching process for each 
frequency band. Additionally, the Euclidean distance metric 
is not very robust to outliers and other distortions. In the 
proposed formulation, feature vectors from all frequency 
bands will have the same length and can be stored in a single 
database, and the feature vectors are designed to be robust to 
outliers and distortion.   

Further, it is difficult to implement a real-time version of 
many methods proposed in the literature [9; 10; 11; 12]. To 
create feature vectors in the above techniques, signals are 
usually sampled at regular intervals which are closely offset 
in a technique commonly known as the sliding window 
method. This technique results in information being stored 
redundantly across a large number of feature vectors, which 
will result in unnecessarily large databases when applied to 
road networks. Some methods such as LCSS [13] are robust 
to outliers and can be indexed for fast retrieval purposes but 
still have the drawback of using the sliding window 
framework like all the above methods. In the sliding window 
method, the signal length that is used to generate a feature 
vector is fixed, regardless of the variation within the signal. 
This ‘one-size-fits-all’ approach is adequate for signals 
which exhibit significant variation over “small” time scales 
(e.g. music). However, for map-based localization, there 
may be sections of road which are very smooth and which 
have little variation in pitch information. Thus a fixed length 
segment of the signal might not create adequately unique 
feature vectors.  

C. Algorithm  

The above drawbacks reveal a need for a different 
approach towards generating feature vectors for pitch-based 
localization. This section introduces the ‘Multi Scale 
Extrema Features’, which attempt to overcome the above 
drawbacks. The individual steps involved in generating this 
feature vector are shown in Fig. 2.  

 
1) Wavelet decomposition: To separate high-frequency 

noise from low-frequency features, wavelet decomposition is 
performed to partition the signal into its components 

 
Fig. 2.  The step by step process involved in obtaining the Scaled 
Shape Feature Vector. 

 
Fig. 1.  The two phases involved in the proposed localization scheme 
and the central role played by the feature vector in these phases.  
 



  

corresponding to dyadic frequency bands. Next, feature 
vectors corresponding to each frequency band are computed. 
This method is used to restrict the effect of frequency-
selective noise by limiting it to those feature vectors which 
have been extracted from the noise-affected frequency 
bands. The Wavelet transform is performed by using the so-
called “Sombrero wavelet” whose Fourier transform is 
shown below.  

                                   ����� � ���	
�

�                           (1) 
It has been shown that the wavelet transform [14] is 
equivalent to a multi scale differential operator.  

                     ���, �� � �� ��

��� � � ������                 (2) 

Where the wavelet  ���� � ��1�� ��

��� ������ and  ���� is 

typically chosen as the Gaussian function. In the present 
case n = 2, as we are utilizing the sombrero wavelet. Thus, 
the output signals, obtained from the wavelet transform, 
contain peaks corresponding to the high curvature points 
(second derivative) of different Gaussian-smoothed versions 
of the original signal. Step 1 in Fig. 3 presents an example of 
this wavelet transform of a signal.  

2) Obtaining Key Points:  Local maxima of the output 
from the wavelet transform are then selected as candidate 
“key points”. These local maxima are calculated from the 
wavelet transform at each scale. This implies that, if a local 
maxima exists at time �� and scale �� , then: 

                     
�����,��

��
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These key points are found from the finite-difference 
implementation of this equation. A heuristic measure for the 
susceptibility of a certain local maxima to noise is evaluated 
by measuring its distance to the neighboring peaks. An 
adaptive threshold for this heuristic measure is used to 
decide if a local maxima is to be designated as a key point.   

   Fig. 3 (step 2) shows that the key points of the wavelet 
transform at a particular scale represent high curvature 
points on the Gaussian smoothed version of the original 
signal at that particular scale. This entire process of taking 
the wavelet transform and finding the local maxima in the 
above manner is called ‘Wavelet Modulus Maxima’[14]. By 
encoding the shape information at recognizable key points, 
this algorithm is able to achieve shift invariance. This 
procedure does away the need for encoding closely-offset 
overlapping frames, thus reducing the number of feature 
vectors required to encode a particular stretch of data.  

An underlying assumption in this analysis is that the data 
is composed of different regions of constant slope (straight 
lines) and that the key points are the high curvature ‘bridge’ 
points between these straight lines. Road data tends to 
exhibit this effect, at least for the six thousand km measured 
by the authors. 

3) Computing the point feature vector: Once the key 
points are obtained, the distance of a key point to its adjacent 
neighbors on the Gaussian smoothed version of the original 
signal is used to compute a point feature vector. By using the 
neighboring key points, the feature vector is able to expand 

to a scale suited to the underlying variation present in the 
signal. Thus, the signal length that is encoded is larger if the 
key points are far apart because of little variation in the data, 
and vice versa. This adaptive nature of the proposed feature 
vector enables it to overcome ‘the one size fits all’ 
restriction of current time series subsequence matching 
techniques.   

For a one dimensional signal, the distance between two 
points in that signal is given by distance along the abscissa 
and the ordinate. Thus, four numerical quantities are 
required to describe the location of both the neighbors 
present on each side of a point.  Let $ $%& ' denote the 
distance of a key point along the abscissa to each of its 
neighbors and let b $%& & be its distance along the ordinate 
to the same neighbors as shown in step3 of Fig. 3. Then the 
feature vector at that particular key point is given by: 

                     (�$, '� �', $� �), &� �&, )�*                 (4) 
                  +,�-�  �., /� � ./√�.� 2 /� �.  

This encoding scheme allows the feature vector to be scale 
invariant with respect to the input data. Thus, a feature 
vector computed on a signal which is scaled by different 
amounts along the abscissa and the ordinate will be the same 
as that computed on the un-scaled signal. Only the relative 
distances between key points are used to compute the feature 
vector and this makes the resulting feature vectors bias 
invariant. Both bias and scale errors are commonly 
encountered when collecting pitch data and the proposed 
feature vector is designed to be immune to them. 

 
4) Creating the extended feature vector: Finally, adjacent 

feature vectors are bundled together to create an extended 
feature vector in order to obtain an adequately unique 
representation of the shape around the key point. Choosing 
the length of an extended feature vector is a tradeoff 
between increasing the uniqueness of a feature and 
restricting the effect of an erroneous key point on the 
recognition of its neighborhood. Through implementation, it 
was found that at least three point features in each extended 
feature vector would be necessary for robust localization and 
an example extended feature vector of this nature is shown 
in step 4 of Fig. 3.  

D. Feature Matching 

Once the feature vectors are created they are used 
differently in the preprocessing phase and the online phase.  

1) Preprocessing phase: In the pre-processing phase, the 
extended feature vectors are used to create a KD-tree in 
order to be able to perform an efficient search through the 
database of features. As the primary aim of this paper is to 
explore the efficacy of the feature vectors for localization, a 
generic tree was used for testing the vectors. A more detailed 
treatment of the various types of tree data structures that can 
be used for localization is presented in [15]. An interesting 
new data structure called vocabulary tree [8] has been 
reported to perform vision based localization very 
efficiently, and could easily be extended to the proposed 



  

method as well. 
2) Online phase: In the online phase, the feature vectors 

are tested for a match within the database to determine their 
corresponding position estimate for the vehicle. Each query 
signal generates multiple feature vectors and each of these 
feature vectors is matched with the KD-tree database to 
determine their corresponding position estimate for the 
vehicle. Each position estimate was compiled into a 
histogram and the position with the highest value in the 
histogram is output as the best position estimate for a query 
signal. For applications in which local tracking follows the 
global localization scheme, the histogram can be used to 
output multiple position estimates which can be used to 
initiate a particle filter or multiple Kalman filters. 

 

II. EXPERIMENTAL RESULTS  

An experiment was performed on actual highways to 
evaluate the feasibility of this method for global localization. 
For the experiment, “map” data was collected once over 
6000 km of roadway, and then “test” data was collected on a 
small portion of the same road way, across just 6 km. The 
full roadway, shown in Fig. 4, was used in the map building 
process while the second run was used in the testing 
procedure. 

      

 
Thirty different query signals were extracted from the “test” 
data. To check the accuracy of localization, the ground truth 
for the 6 km stretch in the datasets was obtained from a 
DGPS system with a positional accuracy of 0.1 meters. It 
must be noted that while the mapping phase used the GPS 
information for representing the pitch information as a 
function of distance, the testing phase used the pitch 
information and the wheel encoder data to do the same. The 
localization estimate that is obtained from this representation 
of the pitch data is verified by using the GPS data that was 
collected as a part of the testing phase. A threshold of ten 
meters was used to determine if a certain match was accurate 
or not.  Fig. 5 and Fig. 6 shows the experimental setup and 
Fig. 7 shows the accuracy curves that were obtained for the 
feature tree based method. The accuracy curves illustrate the 
localization accuracy that was obtained as a function of 
query signal length. It must be noted that for a query length 
of 800 meters, the correct position estimate was always 
amongst the first five position estimates that were obtained 
from the histogram of the position estimates. The mean and 
the standard deviation of the error in the location estimate, in 
the case of an accurate match for an 800 m query signal, 

  
Fig.6. The figure shows the data acquisition system used in the 
experiments.  

 
Fig.5. The figure shows the vehicle setup used in the experiments.  

 
Fig.4. The roadway network that was used as a part of the 
experiments.    

 
Fig. 3.  The feature vector creation process by an example.  
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were 1.96 meters and 0.68 meters respectively. It can be 
clearly seen that a threshold value of 10m is not very critical 
and slight changes to the threshold will not affect the 
accuracy curves in a significant manner. When tested on the 
6000km database it was found that a single feature vector 
match took about 0.25 seconds. The entire matching process 
for a 800 meter signal took about 45 seconds on a 2.4Hz 
dual core computer when implemented by using a non-
optimized MATLAB code.  

 

III.  SIMULATION RESULTS  

The objective of the simulation process is to test the 
ability of the designed feature vector to withstand various 
types of sensor noise typical of vehicle sensors and road 
measurement. Each type of sensor noise is represented by a 
corresponding parameter in the sensor model. In this paper, 
the pitch and the encoder sensors are modeled with the 
sensor models taken from [16] and [6], which are given by 
Eqns (5-6).  It must be noted that the bias term for the pitch 
sensor error in [16] is modeled as a slow varying bias and is 
approximated as a constant for the purposes of this 
simulation.   

TABLE I: Nomenclature for equations (5) and (6) 

    Symbol Quantity 

   Pitcht,Pitchm True pitch ,Measured pitch  

  B, Sf Constant Bias error ,Constant Scale Factor error 

 345 Zero mean band limited pitch noise   

34� Zero mean band limited encoder  noise 

Encodert ,Encoderm True encoder value ,Measured Encoder value   

 67�',8 � 91 2 :�;67�',< 2 = 2 >45          (5)
 ?%'@&�-8 � ?%'@&�-< 2  >4�                (6)  

These sensor models contain a total of four different error 
parameters (=, :� , 345, 34�), each of which represents 
particular types of noise.  The error sources that are modeled 
by these parameters can come from both the sensor and the 
data collection process. For example, = includes the bias 
error in the pitch sensor and any inclination angle error in 
mounting the sensor to the vehicle. Similarly, >45 and >4� 
represents the zero-mean band limited white noise from the 
pitch and encoder sensors and also the noise from the 
vehicle chassis vibration and measurement errors due to 
slight differences in the lateral lane position of a vehicle 
during data collection. The bias and scale factor errors are 
expected to be mainly from the pitch sensor and the 

contributions from the data collection process are expected 
to be small if the sensors are properly mounted and 
calibrated. The standard deviation of the band limited noise 
for pitch data is again expected to be mainly from the sensor 
and the contribution from the data collection process was 
estimated to be 0.057 degrees (std dev) for the pitch data 
from experiments. 

For this simulation, pitch data obtained from an integrated 
GPS-IMU system was used to generate feature vectors that 
were stored in a feature tree. Fig. 4 shows the 6000 km of 
roadway that was used in creation of the feature tree. Small 
portions of the original signal were taken and corrupted with 
each of the different noise types (=, :� , 345, 34�) up to 
varying degrees to create a “query signal”. The feature 
vectors obtained from this query signal were matched with 
the original database to estimate the position in the database 
from which this query signal was extracted. The correctness 
of this position estimate was decided on the basis of a 
threshold distance (10 m) from the true point of extraction of 
the signal, e.g. any final estimate within this threshold is 
considered correct (local tracking algorithms can “lock” 
easily within this range).  

For each of the four parameters, the simulation was 
performed by varying the parameter of interest while 
keeping others constant at their expected value for low cost 
sensors. The query signal was extracted from sixty different 
points of the original signal. Each query signal was 
corrupted and tested fifteen times in order to obtain a 
statistical estimate of algorithm performance that accounts 
for the random nature of the errors introduced. The tests 
were performed for query signals of lengths 205, 410 and 
820 meters. 

 
Fig. 8 shows that the estimation process is unaffected by 

bias (=� and scale errors (:��, a result that was expected as 
the feature vector was designed for scale and bias 

 
Fig. 8.  The plots show that the localization accuracy of the feature 
based method is immune to the effect of bias noise and scale factor 
error in the pitch sensor. 
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Fig. 7.  Accuracy curves for localization under real conditions.  
 



  

invariance.  
Fig. 9 (top) shows that the estimation procedure was 

largely invariant to distance measurement (encoder) noise 
�345� that one would encounter at highways speeds (60mph) 
which was estimated to be 0.076m (std dev) for each 
encoder tick at 100 Hz [6]. The addition of band-limited 
random noise in the pitch sensor (34�� was also investigated 
(Fig. 9, bottom). In [16], it was found that low-cost sensors 
used for pitch measurement had a standard deviation of 34� 
of 0.1 degrees, so variations in pitch noise around this 
deviation were considered. This noise type appears to have a 
significant effect on the accuracy of the result.  

Both Fig. 8 and Fig. 9 consider localization performance 
over several different query lengths. The results show that 
the performance of a more accurate pitch sensor can be 
achieved by a low-cost pitch sensor if one simply collects 
data over a longer period of time to obtain a longer query 
signal. 

 

IV.  CONCLUSIONS AND FUTURE WORK  

Firstly, the paper demonstrates the possibility of using 
pitch data for global localization in large roadway networks. 
By generating feature vectors for one dimensional pitch data, 
localization has been effectively performed for a road way 
network that is an order of magnitude larger than what has 
been previously demonstrated [3] [15]. Table II provides a 
comparison of the proposed method with localization 
methods using other sensors. While pitch information has 
low data density and hence can be utilized for localization 
over a large roadway network, the tradeoff is that a vehicle 
needs to travel a longer distance before localization is 
achieved.   

This work also enables the use of other inertial 
measurements from vehicles, such as roll and yaw data, for 
localization. Future work could be directed towards 
implementing a feature vector that combines multiple 

sources of inertial data, thus reducing the query length 
because of the higher data density. 

TABLE II: Comparison of different sensor modalities for localization 

Sensor 
Citation 

Map 
Size 

Number  of 
Features/Km 

Travel distance 
for query signal 

Vision [3] 20Km 5 x106/Kma <1 ma 

LIDAR [14]  165Km 9 x 103/Kma ~20-60 ma 

Pitch [-] 6000Km 3 x 101/Km ~400 m 

a 
Estimated from publication.  

The paper also introduces ‘Multi Scale Extrema 
Features’ which are designed to overcome the expected 
drawbacks of using current time series subsequence 
matching techniques for inertial data. These features are 
robust to sensor noise and future work could involve 
demonstrating their capabilities by performing localization 
with low-cost inertial sensors.  

Overall, this paper presents a promising new technique 
to perform global localization in order to compensate and/or 
replace GPS position estimates on roadway networks.  
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Fig. 9.  The plots examine the effects of band-limited white noise in 
the encoder and pitch measurements on localization accuracy. 
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