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ABSTRACT
This paper proposes a method for using previewed road

geometry from a high-fidelity map to improve estimates of pla-
nar vehicle states in the presence of unmodeled sensor bias er-
rors. Using well-established, linear models for representing hu-
man driver behavior and for planar vehicle states, a causal link
between previewed road geometry and vehicle states can be de-
rived. Cast as an augmented, closed-loop linear system, thetotal
driver-vehicle-road system’s states are estimated using aKalman
filter. Estimation results from this filter using simulated noisy
measurements of vehicle states and map-based measurementsof
previewed road geometry are compared to standard Kalman fil-
ters with identical measurements of vehicle states alone. The ef-
fects of errors in driver modeling, vehicle nonlinearity, and mea-
surement disturbances on the estimator’s fidelity are also exam-
ined and discussed.

INTRODUCTION
As computing power has become increasingly affordable in

smaller and smaller packages, so have the inertial and position
sensors common to the automotive world. Unfortunately for the
designers of vehicle driver assist systems, however, most low-
cost sensors still suffer from debilitating noise characteristics that
make their use for vehicle tracking difficult.

The outlook is less dire when absolute vehicle position is not
required. For instance, commercial vehicle stability control algo-
rithms have long relied on model-based estimation to make the
most of available inertial sensing technology [1]. Model-based
estimation with noisy sensors has essentially enabled the produc-
tion and deployment of stability-control-equipped vehicles, but
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with growing interest in vehicle autonomy and driver assisttech-
nologies like high-speed collision avoidance, slip detection and
control, great interest in gaining sufficient knowledge of vehicle
states from low-cost sensors remains [2].

In the case of autonomous vehicle guidance or in modeling
of driver response, it is generally assumed that maps are available
of the road geometry. Map information has already shown to be
a useful tool in improving vehicle localization accuracy [3]. The
key insight of this paper is that the steering input, calculated from
a previewed road geometry, can be considered yet another sen-
sor input to estimate vehicle state. This is a particularly low-cost
data source, especially in contrast to the costs associatedwith
high-quality sensing equipment that makes direct measurements
of vehicle states like sideslip, lateral position within a lane, and
true vehicle yaw angle possible. The present study augmentsthe
typical Kalman filter for vehicle state estimation by using multi-
ple map measurements per time step to aid in reliable, drift-free
state estimation. This is achieved by coupling road geometry to
vehicle dynamics through a representative driver model. Results
are encouraging, even though the models used are linear, sub-
ject to error, and the actual inertial sensors used on the simulated
vehicle are subject to large amounts of error. The use of roadpre-
view in the state estimation problem offers marked improvement
over the use of inertial sensors and GPS alone.

The following pages outline an estimation paradigm that en-
ables the use of high-fidelity geometric maps of roads as mea-
surements in a model-based Kalman filter framework. The re-
mainder of the paper is organized as follows: The following sec-
tion gives a brief outline of the history and state of the art in
driver modeling using linear models with preview and set the
precedent for increased use of map information in vehicle state
estimators. Then, a brief discussion outlines the driver-vehicle



model used in the development of two model-based Kalman fil-
ters designed to estimate vehicle states with and without road
preview information. The results of using these two types ofes-
timators, both with a perfect vehicle model and in the presence
of modeling error are discussed, and results from simulations of
a vehicle traversing a 80kph (50 mph) double lane change ma-
neuver follow.

Linear Models of Automobile Drivers using Preview
Vehicle driver modeling has been an important field of study

for over 20 years. In fact, some modern, high-fidelity vehicle
simulation software packages still make use of driver models that
are over 30 years old [4]. In 1980, MacAdam applied an optimal
fixed-point preview controller to vehicle lateral guidancein [5]
and showed that the model agreed well with actual human driver
behavior. A decade later, as a result of the PATH program at the
beginning of the 1990s, researchers at U.C. Berkeley [6, 7] de-
veloped guidance laws for autonomous vehicle control. These
control strategies also used feedforward control acting onpre-
viewed road curvature along with feedback to achieve vehicle
path tracking. But instead of focusing on matching human driver
behavior, the aim was to engineer solutions for autonomous vehi-
cles that could be implemented on public highways. Researchers
involved in this program, along with others, continued thisvein
of research through the 1990s [8–10]. This paper is not intended
to be a comprehensive review of lateral vehicle control; theau-
thors would like to refer readers to more comprehensive reviews
on this topic in [11,12].

Whether for driver modeling or for vehicle autonomy, nearly
all of such research makes use ofpreviewedinformation in one
form or another. In other words, autonomous driving and driver
models assume knowledge of what liesaheadof the driver in the
vehicle steering task. Amongst the more or less successful lin-
ear driver models in the literature, at least two distinct schools of
thought emerge. The first, consistent with [5], relies on a projec-
tion of the system states into the future. In a sense, even theap-
plications of model-predictive control [13,14] follow this thread.
The other seems to have grown out of an interest in applying
methods from optimal preview and LQR suspension control [15].
Sharp and Prokop used previewedroad geometryto drive the ac-
tions of their optimal preview steering controller in [16],and the
authors’ work along these lines continued through the follow-
ing decade in [17, 18]. While the controller proposed in [16]
was probably not devised to model human behavior exactly, Pick
and Cole were able to show that this type of controller approx-
imates human behavior quite well [19], especially when neuro-
muscular dynamics are included. Pick and Cole also examined
the mathematical relationship between predictive controltheory
and Linear Quadratic preview control theory in [12]. This isan
enlightening read, and clearly shows how, under many circum-
stances, the two approaches can yield identical controllers. The
authors also found that there are some instances where this is not
possible, and the approaches give divergent results.

For the present study, Sharp’s Optimal LQ steering con-
troller will be used as the control model for the closed-loop
driver-vehicle-road system. This structure is ideally suited to the
current application, which seeks to utilize the control effort asso-
ciated with the previewed map to better estimate current planar
vehicle position, yaw rate, angular rate and lateral velocity.

Vehicle state estimation with and without map informa-
tion

Estimating vehicle states using low-cost sensing equipment
is hard, and forces many production driver assist systems tobe
quite conservative in anticipation of sensor error [2]. Therel-
atively low signal-to-noise ratio of production sensors makes it
challenging to measure vehicle states like sideslip, the angle be-
tween the the vehicle orientation and the vehicle’s total velocity
vector, because sideslip has extremely small magnitudes under
normal driving conditions. Many low-cost sensors suffer from
severe bias instability, quantization effects, poor resistance to
temperature and other environmental variability. As a result, the
use of common low-cost inertial sensors in traditional Kinematic
Kalman Filters (KKFs) is often out of the question, although
success with vehicle sideslip estimation without a model using
GPS and yaw gyro measurements was shown in [20]. Some
researchers in the vehicle dynamics community have turned to-
wards model-based estimators that make use of known vehicle
dynamics to improve estimator accuracy [21, 22]. Some have
even found success using model-based estimation techniques to
estimate vehicle parameters and/or tire-pavement friction in real
time [2, 23, 24]. In the application most similar to the current
study, Mudaliar used a model-based Kalman filter in the design
of a lane departure warning system [4], and the match between
the filter and the simulated CarSim vehicle was exceptional.

While model-based estimation can indeed improve state es-
timates using otherwise inferior sensors, relying on the model
structure itself is a double-edged sword: the benefits are that the
model dynamics constrain the estimator error to be consistent
with expected behavior. The consequences are that modeling
error, when left unchecked, can introduce artificially amplified
errors in estimated states. One of the goals of the present study
is to examine whether the detrimental effects of modeling error
can be somewhat mitigated through the use of a map, which has
the potential to offer nearly limitless measurements at anygiven
time step, and with an extremely high degree of accuracy.

Using maps for vehicle localization and state estimation is
not a new idea. Recent work by the authors [3, 25–27] makes
use of extremely compact maps of roads to localize a vehicle by
using a measurement of its pitch angle alone. Alas, most of these
studies tend to bring map information into a filter once everytime
step. If multiple measurements are available from a map at each
time step, each coupled to the model slated for state estimation,
accuracy is likely to improve. The above discussion on preview
control suggests benefits for including multiple map measure-
ments at a given time step in an estimation algorithm; because



preview control makes use offutureas well as current informa-
tion to exact a particular system trajectory, future and current
information are both available (and useful) to a state estimator
which employs a closed-loop model of the preview-controlled
system.

Background on the Optimal Preview Controller
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Figure 1. SETUP OF THE VEHICLE-ROAD SYSTEM VARIABLES

The controller used in this study is identical in structure and
derivation to the one proposed in [16]. This background is in-
tended to be brief, and the authors would like to refer the reader
to [12,16,17,19] for a more detailed discussion of its derivation.
This model was chosen for its relative ease of implementation,
and its explicit use of multiple preview points. These will be used
later in the closed-loop estimation framework as extra measure-
ments. The continuous time open loop vehicle dynamic model to
be controlled is the planar “bicycle model” in its familiar,error-
coordinate form:

~̇x= A ·~x+B ·δ (1)

with the following state vector, state, and input matrices:

~x=
[
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]T

(2)

A=











0 1 0 0

0
−(Cf +Cr)

mU
(Cf +Cr)

m
(bCr−aCf )

mU
0 0 0 1

0 (bCr−aCf )
IzU

(aCf −bCr)
Iz

−(a2Cf +b2Cr)
IzU











B=











0
Cf
m
0

aCf
Iz











(3)

whereCf ,Cr are tire cornering stiffnesses,m, Iz are vehicle mass
and yaw moment of inertia,a,b are the distances from the vehi-
cle CG to the front and rear axles, respectively,U is the vehicle

forward speed, andδ is the lone system input, the steering input
(the vehicle’s front road wheel angle).

For simulation purposes, this linear vehicle representation
is converted to discrete time using a zero-order hold with sam-
pling timeT such that theA andB matrices become discrete-time
state and input transition matricesAd andBd. Next, a shift reg-
ister representing global road positions ahead of the vehicle is
constructed for the vehicle-road system shown in Fig. 1. The
road position at the preview distance is brought into this system,
which lags the previewed measurement backwards through the
state space at each time step until it corresponds with the global
road position at the current time stepk.
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Upon augmenting the vehicle state vector by adding the road
position shift register dynamics into the discrete-time vehicle dy-
namic equations, the following open-loop system is obtained,
where~xk is the state vector and~yr,k is the road’s lateral position
at timek.

[~zk] =

[

~xk

~yr,k

]

=

[

Ad 0
0 D

][

~xk−1

~yr,k−1

]

+

[

Bd

0

]

δ+
[

0
E

]

yr,i (5)

Whereyr,i is an input equal to the road offset at the preview dis-
tance. Notice that the augmented state transition matrix ispurely
diagonal. Thus, there is no coupling here between the road dy-
namics and the vehicle dynamics, and the two systems essen-
tially act independently of one another. In order to couple the
systems, a discrete-time linear quadratic regulator (LQR)is em-
ployed that acts on all of the augmented states. The states are
coupled through the quadratic cost functionR1 shown in Eq. 6,
again exactly as in [16].

J = lim
n→+∞

n

∑
k=0

[

~zT (k)R1~z(k)+ δ(k)R2δ(k)
]

(6)

with R1 defined as follows:

R1 =CTQCwhereC=

[

1 0 0 0−1 0 0 0· · · 0
0 0 1 0 1

UT
−1
UT 0 0 · · · 0

]

(7)

andR2 is chosen as unity. This configuration penalizes vehicle



yaw and lateral position error in the LQR design through the di-
agonal matrixQ.

Q=

[

qy 0
0 qψ

]

(8)

Acceptable preview lengths and cost function weightsqy andqψ
are not the topic of the present study– choosing these is a task
tackled extensively in [12,16,19].

The key point here is that through the use of the cost func-
tion in Eq. 6, an optimal preview gain vector can be obtained
for the augmented system using MATLAB’s DLQR function,
which solves the Discrete Algebraic Riccati Equation (DARE)
automatically. The augmented system is fed into this function
with the previewed road information as the only input. Note that,
because there is no way for the controller to influence the road,
there is a substantial subspace of this system which is uncontrol-
lable. The coupling between the road geometry and the vehicle
states is through the optimal state feedback control gainK. Once
the control loop is closed, its discrete-time dynamics are given
by the difference equation, Eq. 9

zk =

[[

Ad 0
0 D

]

−

[

Bd

0

]

[

K1 K2
]

]

zk−1+

[

0
E

]

yri

and K =
[

K1 K2
]

(9)

Consistent with common sense, the controller is unable to
influence the road position, as confirmed by the structure of the
input matrix through which the optimal controller influences the
state vector. Notice, however, that closing the loop with a driver
doesin fact allow the road’s absolute geometry to influence vehi-
cle states through theBd

[

K1 K2
]

term. This coupling of environ-
ment and physical system, through a model of a human driver, is
the key to using high-fidelity maps of road geometry to improve
vehicle state estimates.

Development of The Estimation Framework
The optimal preview steering controller outlined previously

is one mechanism that can create a causal link between observed
road geometry and the vehicle state vector. Therefore, a Kalman
filter designed around the closed-loop, augmented system, armed
with measurements of roadway geometry ahead of the vehicle
(from a high-fidelity map) is developed below in hopes that the
additional “measurements” offered by the road geometry will im-
prove estimates of the system’s states. For computational sim-
plicity and in the interest of clarity, the system is, at present,
designed with a steady-state Kalman observer gain. The vehi-
cle velocity is assumed constant, as are the optimal previewand
state feedback control gains of Eq. 9. The consequences of these
assumptions are discussed in detail in the following sections.

Table 1. REPRESENTATIVE VEHICLE PARAMETERS.

Parameter Value Units

m 1592 kg

Iz 2488 kg·m2

a 1.18 m

b 1.77 m

Cf 2*75000 N
rad

Cr 2*55000 N
rad

U 22.2 m
s

In the interest of providing a somewhat realistic picture of
how this estimator might be used, first consider a model-based
Kalman filter design for a traditional open-loop bicycle model
vehicle as described in Eq 3. To represent sensors typicallyavail-
able to measure vehicle dynamics, a yaw rate gyro, accelerom-
eter, and a GPS are all represented in the measurement vector
ybm, which is presented for the continuous-time bicycle model
dynamics below.

ybm= Hbmx+DH,bmδ

ybm=


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0 0 0 1
A21 A22 A23 A24

1 0 0 0


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
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ẏ
ψ
ψ̇









+


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0
B2

0



δ
(10)

This measurement vector can be used to generate a steady-
state Kalman observer for the discrete-time bicycle model dy-
namics of the vehicle represented by Tab. 1. This observer,
henceforth referred to as the “preview-free” Kalman filter,em-
bodies the type of model-based vehicle state estimator thatmight
be employed in a cost-sensitive or strap-on driver warning or
assist system. Tab. 2 gives representative values of the sensor
variances used in the simulations that follow. Note that since an
extended or unscented framework was not used, sensor variance
may seem higher than normal, since sensor noise was inflated
to deal with unmodeled bias instability and/or other sensorerror
sources. These vehicle and sensor noise parameters will be used
in the discussion that follows as a starting point for a Kalman
filter acting on the closed-loop vehicle dynamics of Eq. 9.

To implement a preview controller, the optimal preview con-
trol problem of Sharp et al [16] is solved for the open-loop car-
road system. While [16] and those that have followed this line
of work have conceded that the most realistic application ofthis
controller is realized by transforming the global coordinate sys-
tem of Fig. 1 to one that is driver-referenced and local to the



Table 2. REPRESENTATIVE FILTER PARAMETERS.

Parameter Value Units

σ2
gyro 0.066 rad2

s2

σ2
accel 0.050 m2

s4

σ2
GPS 1.5 m2

vehicle, the goal of using global road map information in thees-
timation framework makes this transformation impracticaland
somewhat unnecessary.

In order to devise a Kalman filter that makes use of the pre-
viewed road points, an augmented measurement vectoryz is de-
vised, and consists of the three measurements from the “preview-
free” filter described above, the road wheel steering wheel angle
resulting from the control action (δ =−Kz), and a measurement
of each previewed road geometry point in the shift registerD.
These “measurements” of global road position would, in prac-
tice, be products of a lookup table of road geometry in front of
the vehicle’s current position. This map could have many dif-
ferent sources; because of its compactness, it could be stored
within the vehicle, or streamed in real-time through cellular or
other communication technology. Because the map generation
only has to be performed one time, high-accuracy sensors could
be used in its creation, so any errors in the road position measure-
ments would likely arise from the map registration procedure. In
anticipation of this error, a substantial variance is assumed for
each map measurement. The results of changing this variance
are discussed in the following sections. The augmented mea-
surement vector described above is presented below in compact
form:

yCL = HCLz
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(11)

Where the matricesH11 andH12 are given by

H11= Hbm−


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0
DH,2

0



K1

H12=−





0
DH,2

0



K2

(12)

which preserves the original state measurements from the
“preview-free” filter while addingn map preview measurements
associated with the control inputs to the modeled controller. It is
important as well to mention that since the preview shift regis-
ter exists only in the discrete domain, theHbm andDH matrices
mentioned above must be thediscretizedversions.

For the filter design, the variance of each map measurement
is considered to be a constantσ2

map value, to be tuned based on
map fidelity, and trust in the driver model, which will be dis-
cussed in the next section. With the augmented measurement
vector and variances for each measurement, the design of the
steady-state Kalman estimator is straightforward. Systemstates
are propagated forward using the farthest road preview point yri

as an input, and when available, measurement updates are made
based on then road preview samples available from the map,
along with measurements from a steering angle sensor and each
of the inertial sensors on the vehicle. For all simulations that
follow, the closed-loop and open-loop systems were discretized
with a time step ofT = 0.025s, and measurements (were made
available at 10HZ for map geometry measurements, inertial mea-
surements, and GPS measurements. States are propagated using
measured steering input between Kalman updates.

Comparison of standard and preview-inclusive estima-
tion

The remainder of this manuscript deals with simulations of a
single maneuver. The vehicle described in Tab. 1 is subjected to a
reference path describing a standard double lane change maneu-
ver at 80kph. The reference geometry from the lane change ma-
neuver was taken from the commercial multibody vehicle simu-
lation package CarSim, but all linear model simulations, simu-
lated measurements, and Kalman filtering were accomplishedin
MATLAB / Simulink.

First, a closed-loop model of the vehicle-driver system was
run through the above double lane change maneuver with a pre-
view controller examining the road 0.5s in front of the vehicle.
To establish the general output behavior of the closed loop sys-
tem, refer to Fig. 2.

Next, simulated “measurements” were derived from the sys-
tem states by corrupting them with noise according to the vari-
ances in Tab. 2. These simulated measurements were fed into
the “preview-free” Kalman filter, and then through the Kalman
filter incorporating map measurements, which were also cor-
rupted with Gaussian white noise. The map registration was ac-
complished assuming that an independent odometry (x-position)
measurement was available to the filter at the sampling fre-
quency, 40hz, with a variance equal to that of the GPS system.
The authors believe that this is conservative enough to represent a
realistic Kalman-filtered estimate of x-position at each time step
derived from GPS velocity and position updates. Once the x-
position of the vehicle is registered in the map, the y-locations
of the road in front of the vehicle are known without additional
noise, since these are obtained from a map representing the road
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centerline.
Comparisons of vehicle lateral position and heading esti-

mates from each filter to the “clean” linear simulation are shown
in Figs. 3-6.
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The inclusion of the map measurements leads to significant
estimate improvement over the “preview-free” estimator for lat-
eral position and yaw angle, but improvements in the derivative
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states are less obvious. One important result of this exercise is the
recognition that this filter, through heavy weighting of theroad
geometry relative to the inertial sensors actually on boardthe
vehicle, does indeed tend to predictmodeled dynamicsalmost
exactly. Remembering that the discrete-time Kalman estimator
is essentially a weighted average of measurements, it is apparent
that the introduction of model error, either in the controller or in
the open-loop vehicle model itself, is much more likely to cor-
rupt the estimate than erroneous road preview measurements, for
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instance. Thus, even with an extremely accurate road map, itis
prudent to use restraint when choosing a varianceσ2

map for the
preview filter design. Humans exhibit considerable variability in
behavior from minute to minute, so it is only natural to assume
that even with perfect knowledge of a vehicle model, error inthe
driver model itself is likely to add error to an estimate formulated
with this method.

Results of application to a high-fidelity model of a
vehicle-driver system

The next key question, then, is which is most important:
driver model, map, vehicle model, or vehicle state sensor accu-
racy? What effects do errors in each have on the overall quality
of the closed-loop state estimate?

To begin to investigate these questions in a controlled en-
vironment, a high-fidelity simulation of the exact same lane-
change maneuver described in the preceding section was per-
formed using CarSim, where sources of error and sensor noise
can be controlled. CarSim’s closed-loop path-following behav-
ior mimics the model proposed by MacAdam in [5]. This means
that the “driver” of the simulated vehicle in CarSim uses a single-
point preview controller and an inverse model of the vehicledy-
namics to guide its motion. This is a significantly differentcon-
trol structure from the one employed by the closed-loop state
estimator outlined above. While some effort was expended to
achievesimilar controller performance between CarSim and the
linear closed-loop model, some error was left intentionally in
both the open-loop and closed-loop system dynamics for illus-
tration purposes, and to try to make the simulation more repre-
sentative of a real experiment. A comparison of the closed-loop
responses of the CarSim (ground truth) vehicle and the linear

model are shown in Fig. 7.

0 2 4 6 8 10 12 14 16
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

Time (s)

V
eh

ic
le

 Y
−

C
oo

rd
in

at
e

 

 
CarSim
Linear Closed−Loop Model
Reference Path

Figure 7. LATERAL POSITION VS. REFERENCE PATH FOR LINEAR

AND HIGH FIDELITY VEHICLE

The vehicle dynamics with parameters summarized in Tab. 2
matched with CarSim’s “E-Class Large SUV” responses reason-
ably well. But these results also show modeling error, as seen in
the comparisons between CarSim and the open-loop linear bicy-
cle model of Eq.3 in Fig. 8 and Fig. 9. These modeling errors are
representative of the differences that could occur betweenlinear
model representations of vehicle dynamics, and actual vehicle
states.

Both the “preview-free” estimator and the full closed-loop
estimator for the CarSim simulation were compared. To ob-
tain “measured” data, both the map information and CarSim
data were corrupted with noise approximately represented by the
noise accounted for in the Kalman Filter. These simulated mea-
surements were used in the preview-inclusive and preview-free
estimators. Additionally, for this experiment, the Gaussian noise
added to each measurement available to each filter was comple-
mented by a small 0.25m

s2 constant bias added to the accelerom-
eter measurement at each time step, which represents an approx-
imate 1.5◦ lateral accelerometer misalignment. This is a realistic
scenario for an actual implementation, and shows the advantage
of using previewed information, even in the presence of mod-
eling error and unmodeled sensor noise. This small amount of
accelerometer bias could result from an error in mounting the
IMU, or even from a traveled road’s cross-slope.

Fig. 10 and Fig. 11 show estimates of the two states found
in the last section to benefit most from the inclusion of preview.
For this simulation, the CarSim-generated vehicle states for the
double lane change trajectory are considered ground truth.It
does appear from the plots that the preview-inclusive Kalman
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Figure 8. OPEN LOOP COMPARISON OF CARSIM AND LINEAR
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Figure 9. OPEN LOOP COMPARISON OF CARSIM AND LINEAR

MODEL YAW RATE FOR DOUBLE LANE CHANGE

filter shows a smaller error magnitude over the trajectory than
the “preview-free” estimator, although bias is obvious at certain
points along the trajectory due to modeling error. Even so, the
large-scale drift present in they andψ state estimates from the
“preview-free” estimator is not present in the closed-loopfilter.
At the very minimum, this is a good result when sub-lane posi-
tion accuracy is needed. This suggests that the addition of pre-
view to the estimator helps to mitigate the effects of modeling
error and unmodeled sensor biases to a degree. While the lateral
position error is clearly smaller with the inclusion of preview

(see Fig. 12), the differences in error for the vehicle yaw an-
gle are less clear. Examining Fig. 13 shows that modeling error
leads to bias in both filter schemes when the system dynamics are
excited for the vehicle yaw state, but that the preview-inclusive
estimator shows a smaller RMS error over the system trajectory,
and has markedly better resistance to drift than its lower-order
counterpart.
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Figure 10. COMPARISON OF LATERAL POSITION ESTIMATES,

GROUND TRUTH, AND LINEAR MODEL PREDICTION

One important point is that it is clear from the state traces
from the linear model simulation in Fig. 10 and Fig. 11 that the
closed-loop estimate appears to be “pulled” towards the linear
model dynamics, which are known to be at least partially erro-
neous. The balancing act, then, is

1. striving for the best possible driver-vehicle model fit for a
given driver-vehicle combination

2. weighting the previewed states from the map with an expec-
tation of at least some modeling error

With respect for items 1 and 2 above, the inclusion of preview
in a model-based vehicle state estimator has promise for improv-
ing accuracy with low-cost sensors to a point suitable for driver
warning and assist technologies. Notice that in Fig. 10 the ve-
hicle’s lateral position was corrupted significantly by theend of
the maneuver. This could, at the very best, lead to false pos-
itives when used in conjunction with a lane departure warning
system, and at worst, lead to a premature activation of a driver
assist/intervention technology. The assistance of map-based es-
timation could help alleviate such errors.
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Figure 12. COMPARISON OF LATERAL POSITION ERROR BE-

TWEEN PREVIEW-FREE AND PREVIEW-INCLUSIVE FILTERS

Conclusions
This work presents a simulation-based evaluation of a novel

application of preview and map information for improvementof
model-based state estimation in vehicle dynamics. The unique
relationship of a vehicle to the global geometry of the road on
which it travels hinges upon the behavior of the vehicle’s driver.
Humans, in pursuit of the steering task, use previewed informa-
tion to aid in lane tracking. By including a driver model withpre-
view in a model-based Kalman filter, and treating mapped pre-
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Figure 13. COMPARISON OF YAW ERROR BETWEEN PREVIEW-

FREE AND PREVIEW-INCLUSIVE FILTERS

view samples as measurements in the filter, estimates of vehicle
states were improved for a representative vehicle performing a
double lane change maneuver at 80kph. Then, the technique was
extended to test the estimator’s performance in the face of con-
siderable modeling error in both the vehicle and driver models,
as well as an unmodeled sensor bias error.

While it is clear that the inclusion of preview information
is extremely helpful when the closed-loop vehicle dynamicsare
known, the waters are more treacherous when parametric model-
ing error is introduced. This must be expected if this technique is
to be applied to real vehicles, since human drivers exhibit consid-
erable variability in behavior. However, through intelligent and
careful modeling and selection of filter gains, the results suggest
that the inclusion of preview in a model-based estimator canin-
deed increase accuracy to a degree which renders the filter useful
for high-speed lateral control, driver warning, and driverinter-
vention systems, even with commonly available, noisy vehicle
state sensors.

Future work in this area is necessary to explore this type of
estimator’s ultimate utility for road vehicles. Physical experi-
ments are planned to investigate whether the closed-loop model
used is sufficiently predictive of human behavior to improvestate
estimates on a real vehicle driven by a human, and whether keep-
ing track of the estimator’s predicted system covariance could
lead to a reliable predictor of driver inattention and/or anemer-
gency maneuver.
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