MODEL-BASED VEHICLE STATE ESTIMATION USING PREVIEWED ROAD
GEOMETRY AND NOISY SENSORS

Alexander A. Brown Sean N. Brennan *
Department of Mechanical and Nuclear Engineering Department of Mechanical and Nuclear Engineering
The Pennsylvania State University The Pennsylvania State University
University Park, Pennsylvania 16802 University Park, Pennsylvania, 16802
Email: aab5009@psu.edu Email: sbrennan@psu.edu
ABSTRACT with growing interest in vehicle autonomy and driver ast@sh-

This paper proposes a method for using previewed road nologies like high-speed collision avoidance, slip detecand
geometry from a high-fidelity map to improve estimates of pla control, great interest in gaining sufficient knowledge ehicle
nar vehicle states in the presence of unmodeled sensor bias e states from low-cost sensors remains [2].

rors. Using well-established, linear models for represegihu- In the case of autonomous vehicle guidance or in modeling
man driver behavior and for planar vehicle States, a caus | of driver response, itis genera”y assumed that maps ailabla
between previewed road geometry and vehicle states can-be de of the road geometry. Map information has already shown to be
rived. Cast as an augmented, closed-loop linear systeniotae 3 yseful tool in improving vehicle localization accuracy. [Bhe
driver-vehicle-road system’s states are estimated usikglman key insight of this paper is that the steering input, cal@ddrom

filter. Estimation results from this filter USing Simu|atedi$y a previewed road geometry’ can be considered yet another sen

measurements of vehicle states and map-based measurerhents sor input to estimate vehicle state. This is a particulany-tost
previewed road geometry are compared to standard Kalman fil- gata source, especially in contrast to the costs assoaritad

fects of errors in driver modeling, vehicle nonlinearitmdamea-  of vehicle states like sideslip, lateral position withineaé, and
surement @sturbances on the estimator’s fidelity are alsore true vehicle yaw angle possible. The present study augrtients
ined and discussed. typical Kalman filter for vehicle state estimation by usinglti

ple map measurements per time step to aid in reliable, fiei-
state estimation. This is achieved by coupling road geogntetr
INTRODUCTION vehicle dynamics through a representative driver modetuRe
As computing power has become increasingly affordable in gre encouraging, even though the models used are linear, sub
smaller and smaller packages, so have the inertial andi@osit  ject to error, and the actual inertial sensors used on thelated
sensors common to the automotive world. Unfortunatelytiert  \ehicle are subject to large amounts of error. The use ofpoad

designers of vehicle driver assist systems, however, no@st | yiew in the state estimation problem offers marked improsem
cost sensors still suffer from debilitating noise charasties that over the use of inertial sensors and GPS alone.

make their use for vehicle tracking difficult.

The outlook is less dire when absolute vehicle position ts no
required. For instance, commercial vehicle stability colrelgo-
rithms have long relied on model-based estimation to mag&e th
most of available inertial sensing technology [1]. Modakbd
estimation with noisy sensors has essentially enabledtthip-
tion and deployment of stability-control-equipped vebg;lbut

The following pages outline an estimation paradigm that en-
ables the use of high-fidelity geometric maps of roads as mea-
surements in a model-based Kalman filter framework. The re-
mainder of the paper is organized as follows: The followieg-s
tion gives a brief outline of the history and state of the art i
driver modeling using linear models with preview and set the
precedent for increased use of map information in vehiegest

*Address all correspondence to this author. estimators. Then, a brief discussion outlines the driwdicle



model used in the development of two model-based Kalman fil-
ters designed to estimate vehicle states with and withcad ro
preview information. The results of using these two typessf
timators, both with a perfect vehicle model and in the presen
of modeling error are discussed, and results from simulatad

a vehicle traversing a 80kph (50 mph) double lane change ma-
neuver follow.

Linear Models of Automobile Drivers using Preview

Vehicle driver modeling has been an important field of study
for over 20 years. In fact, some modern, high-fidelity vehicl
simulation software packages still make use of driver mothelt
are over 30 years old [4]. In 1980, MacAdam applied an optimal
fixed-point preview controller to vehicle lateral guidanng5]
and showed that the model agreed well with actual humanrdrive
behavior. A decade later, as a result of the PATH programeat th
beginning of the 1990s, researchers at U.C. Berkeley [6e7] d
veloped guidance laws for autonomous vehicle control. &hes
control strategies also used feedforward control actingana
viewed road curvature along with feedback to achieve vehicl
path tracking. But instead of focusing on matching humawvedri
behavior, the aim was to engineer solutions for autonomehis v
cles that could be implemented on public highways. Reseasch
involved in this program, along with others, continued tre
of research through the 1990s [8—10]. This paper is not dedn
to be a comprehensive review of lateral vehicle control;ahe
thors would like to refer readers to more comprehensiveerevi
on this topicin [11,12].

Whether for driver modeling or for vehicle autonomy, nearly
all of such research makes usepoéviewednformation in one
form or another. In other words, autonomous driving andedriv
models assume knowledge of what l&seadof the driver in the
vehicle steering task. Amongst the more or less successful |
ear driver models in the literature, at least two distintioss of
thought emerge. The first, consistent with [5], relies onaqm-
tion of the system states into the future. In a sense, eveaphe
plications of model-predictive control [13, 14] follow #hihread.
The other seems to have grown out of an interest in applying
methods from optimal preview and LQR suspension contrdl[15
Sharp and Prokop used previewedd geometryo drive the ac-
tions of their optimal preview steering controller in [16hd the
authors’ work along these lines continued through the ¥ollo
ing decade in [17,18]. While the controller proposed in [16]
was probably not devised to model human behavior exactiy, Pi
and Cole were able to show that this type of controller approx
imates human behavior quite well [19], especially when aeur
muscular dynamics are included. Pick and Cole also examined
the mathematical relationship between predictive corntrebry
and Linear Quadratic preview control theory in [12]. Thisis
enlightening read, and clearly shows how, under many circum
stances, the two approaches can yield identical contsoliEne
authors also found that there are some instances whers tios i
possible, and the approaches give divergent results.

For the present study, Sharp’s Optimal LQ steering con-
troller will be used as the control model for the closed-loop
driver-vehicle-road system. This structure is ideallytestito the
current application, which seeks to utilize the controbefisso-
ciated with the previewed map to better estimate curremtgla
vehicle position, yaw rate, angular rate and lateral vé&joci

Vehicle state estimation with and without map informa-
tion

Estimating vehicle states using low-cost sensing equipmen
is hard, and forces many production driver assist systerbe to
quite conservative in anticipation of sensor error [2]. Thk
atively low signal-to-noise ratio of production sensorskemit
challenging to measure vehicle states like sideslip, tiytedme-
tween the the vehicle orientation and the vehicle’s toté ity
vector, because sideslip has extremely small magnitudésrun
normal driving conditions. Many low-cost sensors suffemfr
severe bias instability, quantization effects, poor tasise to
temperature and other environmental variability. As aliethe
use of common low-cost inertial sensors in traditional Kiragic
Kalman Filters (KKFs) is often out of the question, although
success with vehicle sideslip estimation without a modaigis
GPS and yaw gyro measurements was shown in [20]. Some
researchers in the vehicle dynamics community have turmed t
wards model-based estimators that make use of known vehicle
dynamics to improve estimator accuracy [21,22]. Some have
even found success using model-based estimation tectsique
estimate vehicle parameters and/or tire-pavement frigtioeal
time [2, 23, 24]. In the application most similar to the cuntre
study, Mudaliar used a model-based Kalman filter in the ahesig
of a lane departure warning system [4], and the match between
the filter and the simulated CarSim vehicle was exceptional.

While model-based estimation can indeed improve state es-
timates using otherwise inferior sensors, relying on thel@ho
structure itself is a double-edged sword: the benefits atetlie
model dynamics constrain the estimator error to be comgiste
with expected behavior. The consequences are that modeling
error, when left unchecked, can introduce artificially aifigd
errors in estimated states. One of the goals of the presgay st
is to examine whether the detrimental effects of modelimgrer
can be somewhat mitigated through the use of a map, which has
the potential to offer nearly limitless measurements atgingn
time step, and with an extremely high degree of accuracy.

Using maps for vehicle localization and state estimation is
not a new idea. Recent work by the authors [3, 25-27] makes
use of extremely compact maps of roads to localize a vehicle b
using a measurement of its pitch angle alone. Alas, moseskth
studies tend to bring map information into a filter once evieng
step. If multiple measurements are available from a mapdit ea
time step, each coupled to the model slated for state estimat
accuracy is likely to improve. The above discussion on @&vi
control suggests benefits for including multiple map measur
ments at a given time step in an estimation algorithm; bexaus



preview control makes use @ifiture as well as current informa-
tion to exact a particular system trajectory, future and-eamnir
information are both available (and useful) to a state extim
which employs a closed-loop model of the preview-contrblle
system.

Background on the Optimal Preview Controller
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Figure 1. SETUP OF THE VEHICLE-ROAD SYSTEM VARIABLES

The controller used in this study is identical in structund a
derivation to the one proposed in [16]. This background is in
tended to be brief, and the authors would like to refer thdeea
to [12,16,17,19] for a more detailed discussion of its deion.
This model was chosen for its relative ease of implementatio
and its explicit use of multiple preview points. These wéllsed
later in the closed-loop estimation framework as extra meas
ments. The continuous time open loop vehicle dynamic madel t
be controlled is the planar “bicycle model” in its familiarror-
coordinate form:

X=A-X+B-8 1)

with the following state vector, state, and input matrices:

X=[yywo]' (2)
0 1 0 0 0
0 —(Ci+Cr)  (Ci+Cr)  (bG-aCy) Ct
A<lo 5 7 [s=|F| @
(bG—aCr) (aCi—bG) —(a2C+b7C;) act
0 U 5 B Iz

whereCs,C; are tire cornering stiffnessem, |; are vehicle mass
and yaw moment of inertiaa, b are the distances from the vehi-
cle CG to the front and rear axles, respectivelyis the vehicle

forward speed, andis the lone system input, the steering input
(the venhicle’s front road wheel angle).

For simulation purposes, this linear vehicle represemati
is converted to discrete time using a zero-order hold with-sa
pling timeT such that thé\ andB matrices become discrete-time
state and input transition matricg andBy. Next, a shift reg-
ister representing global road positions ahead of the ielsc
constructed for the vehicle-road system shown in Fig. 1. The
road position at the preview distance is brought into thigey,
which lags the previewed measurement backwards through the
state space at each time step until it corresponds with titzag|
road position at the current time stkep

01 00--0 .
00 10--0 0
00 01--0
D=| . . E= |0 (4)
0 : : :
O vv ve- 0 1 :
0 - 0 1

Upon augmenting the vehicle state vector by adding the road
position shift register dynamics into the discrete-timbigke dy-
namic equations, the following open-loop system is obthine
whereXy is the state vector angly is the road’s lateral position
at timek.

-] (5] Bl e @

Wherey; is an input equal to the road offset at the preview dis-
tance. Notice that the augmented state transition matpursly
diagonal. Thus, there is no coupling here between the road dy
namics and the vehicle dynamics, and the two systems essen-
tially act independently of one another. In order to couple t
systems, a discrete-time linear quadratic regulator (LIQR)M-
ployed that acts on all of the augmented states. The stages ar
coupled through the quadratic cost functiRnshown in Eq. 6,
again exactly as in [16].

n

T ;T
I=lim_ 5 7 (9Ruz(k)+ 809 Red (K] ©
with R; defined as follows:
AT ~|1000-1 0 00---0
Ri=C QCWhereC_[OOlOﬁU—TlOO---O (7

andR; is chosen as unity. This configuration penalizes vehicle



yaw and lateral position error in the LQR design through the d
agonal matrixQ.

Q= {qY O} ®)

0 qy

Acceptable preview lengths and cost function weigigtandaqy
are not the topic of the present study— choosing these iska tas
tackled extensively in [12,16, 19].

The key point here is that through the use of the cost func-
tion in Eq. 6, an optimal preview gain vector can be obtained
for the augmented system using MATLAB'’s DLQR function,
which solves the Discrete Algebraic Riccati Equation (DARE
automatically. The augmented system is fed into this famcti
with the previewed road information as the only input. Nt}
because there is no way for the controller to influence thd,roa
there is a substantial subspace of this system which is tiraton
lable. The coupling between the road geometry and the \ehicl
states is through the optimal state feedback controligai@nce
the control loop is closed, its discrete-time dynamics averg
by the difference equation, Eq. 9

S [CHRe-

and K = [Kl Kz]

(9)

Consistent with common sense, the controller is unable to
influence the road position, as confirmed by the structuréef t
input matrix through which the optimal controller influesdbe
state vector. Notice, however, that closing the loop withiaed
doesin fact allow the road’s absolute geometry to influence vehi-
cle states through tHgy [Kl Kz] term. This coupling of environ-
ment and physical system, through a model of a human draver, i
the key to using high-fidelity maps of road geometry to imgrov
vehicle state estimates.

Development of The Estimation Framework

The optimal preview steering controller outlined previgus
is one mechanism that can create a causal link between edserv
road geometry and the vehicle state vector. Therefore, m&mal
filter designed around the closed-loop, augmented systeneda

Table 1. REPRESENTATIVE VEHICLE PARAMETERS.

Parameter Value Units
m 1592 kg
I, 2488 kg- m?

a 1.18 m
1.77 m

Ct 2¥75000 Lo

G 2*55000
u 22.2 o

In the interest of providing a somewhat realistic picture of
how this estimator might be used, first consider a model<base
Kalman filter design for a traditional open-loop bicycle rebd
vehicle as described in Eq 3. To represent sensors typaediy-
able to measure vehicle dynamics, a yaw rate gyro, accelerom
eter, and a GPS are all represented in the measurement vector
Yom: Which is presented for the continuous-time bicycle model
dynamics below.

Yom = HbmX+ Dy pm®

oo o0 177 0
Az1 Ao Axz Ay + [B2| d

g
10001]J0

(10)
Yom =

This measurement vector can be used to generate a steady-
state Kalman observer for the discrete-time bicycle mogel d
namics of the vehicle represented by Tab. 1. This observer,
henceforth referred to as the “preview-free” Kalman filtem-
bodies the type of model-based vehicle state estimatonthugit
be employed in a cost-sensitive or strap-on driver warning o
assist system. Tab. 2 gives representative values of thsoisen
variances used in the simulations that follow. Note thatesian
extended or unscented framework was not used, sensor e@rian
may seem higher than normal, since sensor noise was inflated
to deal with unmodeled bias instability and/or other seesar

with measurements of roadway geometry ahead of the vehicle sources. These vehicle and sensor noise parameters wikle u

(from a high-fidelity map) is developed below in hopes that th
additional “measurements” offered by the road geometrirui
prove estimates of the system’s states. For computatiamal s
plicity and in the interest of clarity, the system is, at s
designed with a steady-state Kalman observer gain. The vehi
cle velocity is assumed constant, as are the optimal presmaiv
state feedback control gains of Eg. 9. The consequencess¥ th
assumptions are discussed in detail in the following sastio

in the discussion that follows as a starting point for a Kaima
filter acting on the closed-loop vehicle dynamics of Eq. 9.

To implement a preview controller, the optimal preview con-
trol problem of Sharp et al [16] is solved for the open-loop ca
road system. While [16] and those that have followed this lin
of work have conceded that the most realistic applicatiotinisf
controller is realized by transforming the global coordénsys-
tem of Fig. 1 to one that is driver-referenced and local to the



Table 2. REPRESENTATIVE FILTER PARAMETERS.

Parameter Value Units
0%  0.066 B
02 0050 T
0%ps 15 P

vehicle, the goal of using global road map information inelse
timation framework makes this transformation impractiaat
somewhat unnecessary.

In order to devise a Kalman filter that makes use of the pre-
viewed road points, an augmented measurement vgcisde-
vised, and consists of the three measurements from theigpvev
free” filter described above, the road wheel steering whieglea
resulting from the control actio®(= —Kz), and a measurement
of each previewed road geometry point in the shift regiBter
These “measurements” of global road position would, in prac
tice, be products of a lookup table of road geometry in frdnt o
the vehicle’s current position. This map could have many dif
ferent sources; because of its compactness, it could bedstor
within the vehicle, or streamed in real-time through celtubr
other communication technology. Because the map generatio
only has to be performed one time, high-accuracy sensotd cou
be used in its creation, so any errors in the road positiorsorea
ments would likely arise from the map registration procedim
anticipation of this error, a substantial variance is asslifior

which preserves the original state measurements from the
“preview-free” filter while addingh map preview measurements
associated with the control inputs to the modeled contrdliés
important as well to mention that since the preview shifiseg

ter exists only in the discrete domain, tHg, andDy matrices
mentioned above must be tbescretizedversions.

For the filter design, the variance of each map measurement
is considered to be a constari‘.‘,‘,ap value, to be tuned based on
map fidelity, and trust in the driver model, which will be dis-
cussed in the next section. With the augmented measurement
vector and variances for each measurement, the design of the
steady-state Kalman estimator is straightforward. Systetes
are propagated forward using the farthest road previewt ygin
as an input, and when available, measurement updates ase mad
based on then road preview samples available from the map,
along with measurements from a steering angle sensor ahd eac
of the inertial sensors on the vehicle. For all simulaticmat t
follow, the closed-loop and open-loop systems were digaeét
with a time step oflf = 0.025, and measurements (were made
available at 10HZ for map geometry measurements, inergatm
surements, and GPS measurements. States are propagated usi
measured steering input between Kalman updates.

Comparison of standard and preview-inclusive estima-
tion

The remainder of this manuscript deals with simulations of a
single maneuver. The vehicle described in Tab. 1 is sulijd¢ota
reference path describing a standard double lane changeuman
ver at 80kph. The reference geometry from the lane change ma-
neuver was taken from the commercial multibody vehicle simu

each map measurement. The results of changing this variance|ation package CarSim, but all linear model simulations)si
are discussed in the following sections. The augmented mea- |, measurements, and Kalman filtering were accomplished

surement vector described above is presented below in cimpa
form:

ycL = Hcwz
o
ay
H1lga H12n y 11
0nx4 |nxn yI‘O
LYrn
Where the matriced 11 andH12 are given by
H11=Hpm— |Dn2| K1
0
- z (12)
H12=— D2 | Ko
L O -

MATLAB / Simulink.

First, a closed-loop model of the vehicle-driver system was
run through the above double lane change maneuver with a pre-
view controller examining the road 0.5s in front of the védic
To establish the general output behavior of the closed lgep s
tem, refer to Fig. 2.

Next, simulated “measurements” were derived from the sys-
tem states by corrupting them with noise according to the var
ances in Tab. 2. These simulated measurements were fed into
the “preview-free” Kalman filter, and then through the Kaima
filter incorporating map measurements, which were also cor-
rupted with Gaussian white noise. The map registration was a
complished assuming that an independent odometry (xipokit
measurement was available to the filter at the sampling fre-
quency, 40hz, with a variance equal to that of the GPS system.
The authors believe that this is conservative enough tesemt a
realistic Kalman-filtered estimate of x-position at eachetistep
derived from GPS velocity and position updates. Once the x-
position of the vehicle is registered in the map, the y-loret
of the road in front of the vehicle are known without additbn
noise, since these are obtained from a map representingdde r



T T
— - — Linear Closed-Loop Model mmm—— simulation
reference path —— preview-free estimate
estimate with preview

o

Vehicle Y-Coordinate
lateral velocity (m/s)

I
0
N

5 10 15 0 2 4 6 8 10 12 14 16
Time (s) time (s)
Figure 2. LINEAR CLOSED-LOOP VEHICLE MODEL LATERAL POSI- Figure 4. ESTIMATES OF LINEAR CLOSED-LOOP VEHICLE MODEL
TION VS. REFERENCE PATH LATERAL VELOCITY
centerline.
Comparisons of vehicle lateral position and heading esti- 03 ; ;
. . . . — S lati

mates from each filter to the “clean” linear simulation arevsh ~ preview-free estimate
in FIgS 3 6 estimate with preview

. -0. 0.2 —

0.1

T T
~ m— simulation 0 e —

= — - — preview-free estimate
35 estimate with preview ||
-0.1r
3L 4

25F B

yaw (rad)

151 B

lateral position (m)

1r- T -0.4 L L L L L L
. 0 2 4 6 8 10 12 14 16
LA N Time (s)
i\ S foe AR 1
o L v i Figure 5. ESTIMATES OF LINEAR CLOSED-LOOP VEHICLE MODEL
-osf BRI YAW ANGLE
-1 Il Il Il L L L L
0 2 4 6 8 10 12 14 16
Time (s)

states are less obvious. One important result of this eseizthe
recognition that this filter, through heavy weighting of tlead
Figure 3. ESTIMATES OF LINEAR CLOSED-LOOP VEHICLE MODEL geometry relative to the inertial sensors actually on bdhed
LATERAL POSITION vehicle, does indeed tend to predimbdeled dynamicalmost
exactly. Remembering that the discrete-time Kalman estima
is essentially a weighted average of measurements, it &rapp
The inclusion of the map measurements leads to significant that the introduction of model error, either in the con&olbbr in
estimate improvement over the “preview-free” estimataorid- the open-loop vehicle model itself, is much more likely ta-co
eral position and yaw angle, but improvements in the davigat  rupt the estimate than erroneous road preview measuref@ants
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instance. Thus, even with an extremely accurate road map, it
prudent to use restraint when choosing a varianﬁ;gp for the
preview filter design. Humans exhibit considerable valigtin
behavior from minute to minute, so it is only natural to assum
that even with perfect knowledge of a vehicle model, errghan
driver modelitself is likely to add error to an estimate farlated
with this method.

Results of application to a high-fidelity model of a
vehicle-driver system

The next key question, then, is which is most important:
driver model, map, vehicle model, or vehicle state sensou-ac
racy? What effects do errors in each have on the overalltguali
of the closed-loop state estimate?

To begin to investigate these questions in a controlled en-
vironment, a high-fidelity simulation of the exact same lane

model are shown in Fig. 7.

4 T
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Figure 7. LATERAL POSITION VS. REFERENCE PATH FOR LINEAR
AND HIGH FIDELITY VEHICLE

The vehicle dynamics with parameters summarized in Tab. 2
matched with CarSim’s “E-Class Large SUV” responses reason
ably well. But these results also show modeling error, as see
the comparisons between CarSim and the open-loop linear bic
cle model of Eg.3 in Fig. 8 and Fig. 9. These modeling errags ar
representative of the differences that could occur betdisear
model representations of vehicle dynamics, and actualcieshi
states.

Both the “preview-free” estimator and the full closed-loop
estimator for the CarSim simulation were compared. To ob-
tain “measured” data, both the map information and CarSim
data were corrupted with noise approximately representeie
noise accounted for in the Kalman Filter. These simulated-me
surements were used in the preview-inclusive and preview-f

change maneuver described in the preceding section was per-estimators. Additionally, for this experiment, the Gaassnoise
formed using CarSim, where sources of error and sensor noiseadded to each measurement available to each filter was comple

can be controlled. CarSim’s closed-loop path-followintpée

ior mimics the model proposed by MacAdam in [5]. This means
that the “driver” of the simulated vehicle in CarSim useswayk-
point preview controller and an inverse model of the vehilgle
namics to guide its motion. This is a significantly differeonn-

trol structure from the one employed by the closed-loopestat
estimator outlined above. While some effort was expended to
achievesimilar controller performance between CarSim and the
linear closed-loop model, some error was left intentignail
both the open-loop and closed-loop system dynamics fas-illu
tration purposes, and to try to make the simulation moreerepr
sentative of a real experiment. A comparison of the closeqb-|
responses of the CarSim (ground truth) vehicle and thedinea

mented by a smaII.QSE constant bias added to the accelerom-
eter measurement at each time step, which represents avxappr
imate 15° lateral accelerometer misalignment. This is a realistic
scenario for an actual implementation, and shows the adgant

of using previewed information, even in the presence of mod-
eling error and unmodeled sensor noise. This small amount of
accelerometer bias could result from an error in mountirgg th
IMU, or even from a traveled road’s cross-slope.

Fig. 10 and Fig. 11 show estimates of the two states found
in the last section to benefit most from the inclusion of peewi
For this simulation, the CarSim-generated vehicle staieshie
double lane change trajectory are considered ground trlith.
does appear from the plots that the preview-inclusive Kalma
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filter shows a smaller error magnitude over the trajectognth
the “preview-free” estimator, although bias is obviousetain
points along the trajectory due to modeling error. Even lse, t
large-scale drift present in theandy state estimates from the
“preview-free” estimator is not present in the closed-I|didpr.

At the very minimum, this is a good result when sub-lane posi-
tion accuracy is needed. This suggests that the additionesf p
view to the estimator helps to mitigate the effects of maugli
error and unmodeled sensor biases to a degree. While thallate
position error is clearly smaller with the inclusion of piewv

(see Fig. 12), the differences in error for the vehicle yaw an
gle are less clear. Examining Fig. 13 shows that modelingrerr
leads to bias in both filter schemes when the system dynamgcs a
excited for the vehicle yaw state, but that the previewtiairle
estimator shows a smaller RMS error over the system trajgcto
and has markedly better resistance to drift than its lowdeo
counterpart.

T T
s CarSim Truth

— - — preview-free estimate
estimate with preview H
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25F q

lateral position (m)

Time (s)

Figure 10. COMPARISON OF LATERAL POSITION ESTIMATES,
GROUND TRUTH, AND LINEAR MODEL PREDICTION

One important point is that it is clear from the state traces
from the linear model simulation in Fig. 10 and Fig. 11 tha th
closed-loop estimate appears to be “pulled” towards thealin
model dynamics, which are known to be at least partially-erro
neous. The balancing act, then, is

1. striving for the best possible driver-vehicle model fit o
given driver-vehicle combination

2. weighting the previewed states from the map with an expec-
tation of at least some modeling error

With respect for items 1 and 2 above, the inclusion of preview
in a model-based vehicle state estimator has promise faowvap

ing accuracy with low-cost sensors to a point suitable foredr
warning and assist technologies. Notice that in Fig. 10 the v
hicle’s lateral position was corrupted significantly by #red of

the maneuver. This could, at the very best, lead to false pos-
itives when used in conjunction with a lane departure waynin
system, and at worst, lead to a premature activation of a&driv
assist/intervention technology. The assistance of mapas-
timation could help alleviate such errors.
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Figure 12. COMPARISON OF LATERAL POSITION ERROR BE-
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Conclusions

This work presents a simulation-based evaluation of a novel
application of preview and map information for improvement
model-based state estimation in vehicle dynamics. Theueniq
relationship of a vehicle to the global geometry of the road o
which it travels hinges upon the behavior of the vehicleigeir
Humans, in pursuit of the steering task, use previewed inéer
tion to aid in lane tracking. By including a driver model wjire-
view in a model-based Kalman filter, and treating mapped pre-

0.02 T

— - —  preview—free estimator
estimate with preview

0.01

-0.01

-0.02

Yaw error (rad)

-0.03

-0.04

-0.051 [ i

-0.06 - 4 b

-0.07 L L

Time (s)

Figure 13. COMPARISON OF YAW ERROR BETWEEN PREVIEW-
FREE AND PREVIEW-INCLUSIVE FILTERS

view samples as measurements in the filter, estimates ofleehi
states were improved for a representative vehicle perfayrai
double lane change maneuver at 80kph. Then, the technicgie wa
extended to test the estimator’s performance in the facenf c
siderable modeling error in both the vehicle and driver nigde
as well as an unmodeled sensor bias error.

While it is clear that the inclusion of preview information
is extremely helpful when the closed-loop vehicle dynanaies
known, the waters are more treacherous when parametriclmode
ing error is introduced. This must be expected if this teghaiis
to be applied to real vehicles, since human drivers exhirisa-
erable variability in behavior. However, through intedlig and
careful modeling and selection of filter gains, the resultggest
that the inclusion of preview in a model-based estimatorigan
deed increase accuracy to a degree which renders the fiéteed us
for high-speed lateral control, driver warning, and driirger-
vention systems, even with commonly available, noisy Jehic
state sensors.

Future work in this area is necessary to explore this type of
estimator’s ultimate utility for road vehicles. Physicaiperi-
ments are planned to investigate whether the closed-loaiemo
used is sufficiently predictive of human behavior to impretate
estimates on a real vehicle driven by a human, and whether kee
ing track of the estimator’s predicted system covarianaddco
lead to a reliable predictor of driver inattention and/oreaner-
gency maneuver.
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