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GPS-Free Terrain-based Vehicle Tracking on Road Networks
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Abstract—Prior experiments have confirmed that specific
GPS-free terrain-based localization algorithms can perform
vehicle tracking in real-time on a single road segment at a time.
However, the ability of these algorithms to perform vehicle
tracking on large road networks, i.e. across intersections and
multiple road segments, has not been verified. In this study, it is
shown that it is possible to build upon the existing terrain-
based localization algorithms to maintain vehicle tracking in
large road networks. A set of estimators based on the
Unscented Kalman Filter framework is used to track the
vehicle in a section of a road network, i.e. across a few road
segments and an intersection. A multiple model estimation
scheme, based on comparing incoming attitude measurements
with a terrain map, is used to identify the road segment that the
vehicle is currently traveling over. Experiments indicate that it
is possible to maintain vehicle tracking as a vehicle travels
across an intersection in a road network.

1. INTRODUCTION

SEVERAL safety-critical and mission-critical applications
such as path planning and navigation require the ability
to accurately localize and track the position of a vehicle
within a large road network [1]. While currently the de facto
standard for performing these functions, the Global
Positioning System (GPS) has several limitations that can
impede the normal functioning of safety-critical and
mission-critical applications. Specifically, poor GPS signal
reception, the ability to jam GPS signals and the requirement
to maintain redundancy in vehicle automation and driver
assist systems necessitates the development of alternative
localization and tracking techniques [2]. Previous work has
shown that terrain-based vehicle tracking offers a promising
alternative to the Global Positioning System (GPS) [2].
While terrain-based localization algorithms have been
shown to work within a single road segment, their
performance for vehicle tracking in a large road network has
not been verified.

In the past, techniques for vehicle tracking on road
networks have utilized a combination of dead-reckoning and
GPS, along with a map-matching framework. [3] [4]. Map-
matching is generally performed using tools such as neural
networks [5], fuzzy logic [6], Hidden Markov Models [7],
Kalman filters [8] etc. The map-matching framework
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essentially tries to correlate the current yaw measurement (or
pose) of the vehicle with the yaw of various roads in the
network to identify the road the vehicle is currently traveling
on [3]. Typically, the road identification step is followed by
a vehicle tracking technique to track the position of the
vehicle within the identified road segment. The predominant
vehicle tracking technique for this purpose is dead-
reckoning, which is often fused with GPS measurements to
obtain a better position estimate [8] [9]. However, the
absence of GPS, combined with the errors inherent to dead-
reckoning, can lead to excessive tracking errors that cannot
be tolerated in safety-critical and mission-critical
applications. Consequently, alternative vehicle tracking
techniques for road networks are required.

The authors have previously proposed and experimentally
verified a GPS-free terrain-based vehicle tracking algorithm
that uses a pre-recorded terrain map and odometry to track a
vehicle [2] [10] [11]. The algorithm relies heavily on the fact
that the correct terrain map of the road being traversed is
known. However, in certain road geometry scenarios, such
as crossing an intersection, the correct terrain map may be
ambiguous because the intersection leads to multiple
potentially correct traversal paths, each with their own
terrain maps.

In this paper, the use of a multiple model estimation
framework is proposed where each of the set of potentially
correct terrain maps at an intersection is considered as a
possible model of the system. The proposed method relies
primarily on pitch measurements, though all three attitude
measurements, i.e. roll, pitch and yaw, can be used in
principle. The suggested method offers several advantages
over the traditional map-matching techniques which
primarily rely on yaw [5] [6] [7]. Specifically, the proposed
use of pitch measurements enables accurate vehicle tracking
even in the absence of supplemental measurements from
GPS. A key insight of this paper is to realize that the use of
pitch measurements enables the discrimination of the
currently traversed road segment among many choices, so as
to maintain vehicle tracking across multiple roads in a large
road network.

Section 2 provides a short overview of the GPS-free
terrain-based vehicle tracking technique. Section 3 discusses
vehicle tracking on a road network using a multiple model
estimation scheme. Section 4 includes a discussion of results
obtained from on-line simulation using data collected at a T-
junction. Section 5 concludes the paper with a summary of
the main results.
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II. GPS-FREE TERRAIN-BASED VEHICLE TRACKING

This section provides an overview of the GPS-free terrain-
based vehicle tracking framework. At the heart of the
framework is the idea that, as a vehicle travels over a road,
attitude measurements (pitch or roll or yaw or combinations
thereof) obtained from an inertial measurement unit are sent
to the tracking algorithm, which then correlates them to a
pre-recorded terrain map. Specifically, the algorithm uses an
Unscented Kalman Filter (UKF) to track the current position
of the vehicle [12] [13]. The current position (or state) of
the vehicle is defined as the distance of the vehicle from the
last traversed intersection. The system model is given by (1),
which represents the propagation of the system state, i.e. the
current position of the vehicle:

X1 = X + U + Wy (1

where x,, denotes the position of the vehicle at time k + 1,
x;, denotes the position of the vehicle at time k, u; denotes
the distance moved by the vehicle as determined through
odometry, and wy, denotes the zero-mean Gaussian process
noise in odometry measurements. The measurement model
is given by (2), which relates the current position of the
vehicle with the corresponding attitude measurement.

Vi = faL X + g 2

where yj, denotes the attitude measurement at time k and is a
nonlinear function of the vehicle position at time k, and vy,
denotes the measurement noise at time k. The nonlinear
function (or terrain map) is defined as a lookup table stored
in a database that relates the position along a road to a pre-
recorded attitude measurement.

An Unscented Kalman Filtering framework is used to
estimate the current vehicle position, as discussed in [14]. A
short overview of the algorithm is included here. The sigma
points, as described in [15], are initialized according to (3)
as follows:

Xk—l = xk_l, xk_l + C, xk_l -C (3)

where C = a N - Py_q, @ is an algorithm parameter, Ny is
the number of system states, and P,_; is the covariance of
the position estimate at time k — 1.

The time update (or prediction) step propagates the
system states forward in time according to (4), (5) and (6) as
follows:

Xk_=Xk_1+uk (4)
X = Xig - Wi ()
Po= Xe—x We X —x T+0Q (©6)

where X, denote the a priori sigma points, x; denotes the a
priori position estimate, P, denotes the a priori position
covariance, and W,,,, W, and @Q are algorithm parameters.
Next, the measurement update (or correction) step
processes the newly obtained measurement in order to
provide a correction for the a priori position estimate and
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covariance according to (7), (8), (9), (10) and (11) as
follows:

Ye = fio(Xi) )

Ve =Yy Wn ®)

Py = Y=y W, =¥ T +R )
Poyr= X =% We e —w T (10
K = Pypyp Py (an

Here, (7) represents the terrain map lookup step, where
the a priori sigma points are used to recover the
corresponding attitude measurements at those locations, yy
denotes the effective attitude measurement at the a priori
position estimate x;, and K represents the filter gain.
Finally, the a posteriori position and covariance estimate are
given by (12) and (13) as follows:

(12)
13)

where 0;, denotes the attitude measurement obtained at time
k. The filtering scheme represented by (3) — (13) is used to
track a vehicle on a given road segment using attitude
measurements, odometry and the correct terrain map. The
next section discusses how this scheme may be extended to
maintain vehicle tracking in a large road network.

X =X + K+ (6 — yi)
Pk= Pk_—K'Pyy_k'KT

III. MULTIPLE MODEL ESTIMATION FRAMEWORK FOR
LARGE ROAD NETWORKS

This section discusses the multiple model estimation
framework in the context of vehicle tracking on large road
networks. It has been established that in order to effectively
track a vehicle using terrain data, three elements are
required, viz. (a) odometry, (b) attitude measurements over
the current location, and (c) an accurate terrain map that has
pre-recorded information which relates attitude data to the
locations along the road. However, as a vehicle navigates
across a large road network, certain road geometry situations
may arise that raise doubts as to the veracity of the terrain
map at hand. Specifically, as a vehicle moves across an
intersection and onto a different road, the new terrain map
may be any one of the terrain maps corresponding to the
roads that lead away from the intersection. As a
consequence, in this scenario the correct terrain map is
unknown. Since it is known that one of a set of terrain maps
is the correct map, a multiple model estimation framework
may be used to maintain vehicle tracking.

The starting point of the multiple model estimation
framework is the filtering scheme discussed in the previous
section. In the GPS-free terrain-based vehicle tracking
problem, a specific terrain map was used in (7) to provide
the measurement update. However, in the current scenario
the correct terrain map is unknown. On the contrary, a set of
potentially correct terrain maps is available and one of them
must be chosen to maintain accurate vehicle tracking. In



order to solve this problem, N UKF estimators must be set
up to run simultaneously, where N is the number of roads
leading away from the intersection. Each estimator is tasked
with tracking the vehicle based on the terrain map assigned
to it, while a separate algorithm tries to identify the estimator
that possesses the ‘correct’ terrain map. The ‘correct’ terrain
map is defined as the terrain map within a set of potentially
correct maps that best represents the terrain that the vehicle
is currently traveling over.

Each estimator i is assigned an initial probability Pg =
1/N that denotes the probability that the terrain map (or
model) used in its measurement update step (7) is the correct
one. As new attitude measurements are received, these are
compared against the terrain map in each estimator and the
corresponding probabilities are updated. If T; represents the
event that the terrain map (or model) used in estimator i is
the correct one, then the probabilities are propagated
according to (14) as follows [16]:

P T; 0%t f(0,|T;, 6%°1)

P T, 6%
' N (P T 6kt f(8|T;, 0% 1)

(14)

where P T; 8% denotes the posterior probability that the
terrain map used in estimator i is correct given all attitude
measurement up to time k, and f(8,|T;, 8% 1) denotes the
likelihood of making an observation 8 given the terrain
map in estimator i and the attitude measurements 8%~ up to
time k—1. The likelihood function f(8,|T;, 8% 1) is
assumed to be a Gaussian with mean 1y, and
covariance Py, obtained from (8) and (9).

This algorithm can be better understood with a graphical
aid. Fig.1 depicts a situation where a vehicle has just crossed
an intersection and has two potentially correct terrain map
candidates to choose from. Only one of these terrain map
candidates actually represents the terrain that the vehicle is
now travelling over. As the vehicle progresses forward, it
receives terrain measurements that can be used to identify
the correct terrain map. When measurement @(k) is received
at time k, the likelihood that it belongs to either of Gaussian
distribution A or B is determined. In Fig. 1, the likelihood
that the measurement @ k is a result of the vehicle traveling
over the terrain represented by Candidate 1 is greater than
that of it being a result of the vehicle traveling over terrain
represented by Candidate 2. The likelihoods are incorporated
into a probability measure that is calculated recursively with
each new measurement, using (14).

As the vehicle progresses forward, only the correct terrain
map fares favorably since the incoming attitude
measurements better match the effective attitude predicted in
(8) resulting in a higher likelihood. Consequently, the
probability of that terrain map being correct goes to one,
while the probabilities of the remaining terrain maps being
correct go to zero. These remaining estimators are then
eliminated and vehicle tracking is maintained using the
single estimator that uses the correct terrain map. The
correct position estimate that is output by the multiple model
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estimation scheme is the one that corresponds to estimator
which uses the correct terrain map. In this regard, the
estimation scheme differs from traditional multiple model
estimation schemes where the final state estimate output is
usually a weighted average of the state estimates obtained
from each model. While this may be prudent in many cases,
in the current context of vehicle tracking it is not advisable
due to two reasons: (a) a weighted average of final position
estimates may put the vehicle at a location that does not lie
on a road, and (b) as a vehicle moves through multiple
sequential intersections, the number of potential pathways
and as result, the number of required estimators, would grow
exponentially unless they are eliminated in the manner
discussed above.

Fig. 1. Selection of correct terrain map. Newly available measurements are
compared against the possible terrain maps to determine the correct map of
the terrain that the vehicle is currently traveling over.

Iv.

This section discusses experiments and results obtained
from field testing the described multiple model estimation
implemented at a T-junction. The experiment was performed
at the intersection of Rock Rd. and Buffalo Run Rd. in State
College, PA. Fig. 2 depicts the intersection where the
experiment was carried out [17]. The experiment consists of
two phases: (a) the data collection phase, and (b) the test run
phase.

In the data collection phase, two terrain maps were
generated: one for the vehicle taking a right turn at the
intersection from Buffalo Run Rd. onto Rock Rd. (Terrain
Map 01) and another for the vehicle traveling straight
through the intersection on Buffalo Run Rd. (Terrain Map
02). The attitude data collected for the two routes are
included as Fig. 3. It is observed that there is a significant
difference in the pitch profiles of the two roads after the
intersection.

Next, in the test run phase, the vehicle position was
tracked as the vehicle traveled on Buffalo Run Rd. and took
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a right turn at the intersection on to Rock Rd. The set of
operations that execute in the vehicle tracking algorithm in
such a scenario, i.e. when an intersection is encountered,
include (a) recognizing that an intersection has been reached,
(b) constructing multiple estimators, one for each road
leading up to the intersection, (c) tracking the vehicle
position on each road leading up to the intersection, based on
the corresponding terrain maps, (d) selecting the estimator
that is using the correct terrain map based on the method
outlined in Section 3, and (e) eliminating the remaining
estimators and continuing to track the vehicle using the
selected estimator.

Fig. 2. Site of the experiment at the intersection of Rock Rd and Buffalo
Run Rd. Two terrain maps were created, one each for (a) taking a right turn
at the intersection From Buffalo Run Rd. onto Rock Rd., and (b) going
straight through the intersection on Buffalo Run Rd.

Fig. 3. Attitude data collected during terrain map generation process for
Buffalo Run Rd. and Rock Rd. Notice the difference in pitch values after
the vehicle crosses the intersection.

In this proof of concept study, two estimators were run
simultaneously as the vehicle neared the intersection. Each
estimator used its own unique terrain map as part of the
Unscented Kalman Filter framework needed to track the
vehicle. The tracking performance is included in Fig. 4. The
first plot indicates the vehicle tracking error when Terrain
Map 01 was used, whereas the second plot indicates the
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vehicle tracking error when Terrain Map 02 was used. Since
Terrain Map 01 corresponds to the route that the vehicle
actually took during the test run, vehicle tracking is
maintained and the tracking error remains bounded under 3.5
meters. On the other hand, since Terrain Map 02
corresponds to the other route which the vehicle did not take,
it is expected that the vehicle tracking performance will be
poor, as is observed.

Fig. 4. Vehicle tracking performance with two different terrain maps using
on-line simulations. {a) Using the correct terrain map (01). Incoming
measurements match the terrain map and tracking is maintained. (b) Using
incorrect terrain map (02). Incoming measurements do not match the terrain
map and tracking is lost.

To calculate the absolute tracking error, the algorithm’s
output was compared to ground truth, i.e. the position
coordinates obtained from GPS measurements. Note that
neither the absolute tracking error nor the GPS coordinates
themselves were used in the tracking algorithm. The tracking
error plots in Fig. 4 are only used to demonstrate the
behavior of the algorithm, rather than describe its internal
logic. Specifically, since one of the applied constraints is
that position estimates from GPS are not available, in
practice there are no means to calculate the tracking error or
identify which estimator is tracking correctly. In other



words, in the absence of ground truth, either estimator could
be tracking the vehicle equally well. In such a scenario, the
estimator that is performing the “correct” tracking can only
be found by comparing the currently observed measurements
with the pre-recorded map and calculating the appropriate
probability values. This is indeed the process being used, as
described in Section 3. The experimental results obtained
from using this multiple model estimation approach are
included below.

Fig. 5 depicts the probabilities that the terrain map being
used in each estimator is representative of the terrain that the
vehicle is actually traveling over. The probabilities are
calculated recursively as described in (14). It is observed
that before the intersection is reached both estimators are
equally likely since the terrain maps in both estimators are
identical up to the intersection. However, after crossing the
intersection, while the incoming attitude measurements are
similar to the pre-recorded attitude in Terrain Map 01, they
do not match the observations in the Terrain Map 02. Thus,
the estimator that is providing the correct position estimates
is the one that is using Terrain Map 01 and the probability of
Terrain Map 01 being correct goes to 1, while the probability
of Terrain Map 02 being correct goes to zero. The position
estimates from the estimator using Terrain Map 01 may then
be used for various applications such as navigation or path
planning, while the second estimator is eliminated.

Fig. 5. Probability associated with each terrain map candidate. The
probability associated with the correct terrain map goes to 1 in a short time
after the intersection is crossed, while the probability associated with the
second terrain map goes to zero.

V. CONCLUSIONS

The above work provides a proof of concept that the GPS-
free terrain-based vehicle tracking algorithm can be
extended to large road networks. Specifically, the work
shows the feasibility of using pitch data for discriminating
the road being traversed in a network (similar to yaw), as
well as tracking the vehicle within the identified individual
road segment. In summary, the above experiment and on-
line simulations indicate that the terrain-based algorithm and
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the multiple model estimate framework can be used to
maintain tracking across intersections in a road network
even in the absence of GPS.
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