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Abstract—This paper describes a novel method for the

location of road vehicles using vehicle pitch data obtained from
on-board sensors. The method encodes the road map data using

linear dynamical models, and then, during travel, identifies the
vehicle location through continuous validation of the previously

obtained linear models. The approach presented has several
advantages over previous approaches in the literature, namely

a smaller computational burden, a more definitive location
estimate, and a simplified and more direct way of handling

common types of noise. These benefits have the potential to
both increase the speed of the localization and to reduce the

implementation cost of terrain-based localization. The method
is tested in simulation using real-world road data collected in

State College PA, USA. Performance is demonstrated both in
a noise-free and noisy environments, and a bound is shown on

the convergence distance.

I. INTRODUCTION

This paper addresses the problem of localizing a road

vehicle without using the global positioning system (GPS).

Specifically, the paper focuses on terrain-based vehicle local-

ization using only vehicle pitch information gathered from

the inertial measurement unit (IMU). Localization using this

data has been previously studied by other authors [1]–[4].

Similar to other forms of alternate vehicle localization

which do not require an external position reference, local-

ization based on vehicle pitch suffers from several problems

in implementation. First, the volume of data generated by

the vehicle’s IMU is very large, requiring any localization

algorithm to tackle the task of efficiently storing and parsing

through the data. Second, localization through “brute force”

comparison is computationally inefficient for an on-board

computer. Lastly, because signal-to-noise ratio (SNR) of

the acquired the data is often uncontrollable, the vehicle

localization can often only be computed within some bounds

of uncertainty.

This paper will present a novel approach to vehicle

localization using switched linear systems. This approach

creates an efficient structure to compress and parse road map

data, while enabling localization to within an exact distance

specified by the extracted road map. In addition, this paper

will also present some initial approaches to mitigating the

effects of noise on the developed algorithm.
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A. Problem Statement

Vehicle pitch observed by the IMU is a filtered version

of road grade. One interpretation of the mapping of vehicle

position to vehicle pitch is shown in figure 1. In this diagram,

Fig. 1. Sensor Output Diagram

the variable x(t) represents the vehicle velocity; the variable

y(t) represents the distance traveled by the vehicle; the

variable z(t) represents the position of the vehicle relative

to its initial position, z(to); and the variable m(t) represents

the vehicle pitch measurement that is non-linearly mapped

from the vehicle’s position.

In this paper, road pitch data will be collected a priori, and

structured through the use of switched linear systems. The

switched linear system will create a set of linear dynamical

models that describe the continuous road map. During travel,

the vehicle will compare the collected pitch data and deter-

mine agreement with the pre-extracted models. Because the

models are linear, and extracted prior to localization, this ap-

proach will reduce the in-vehicle computational complexity.

Additionally, the linear treatment of incoming data will ease

the implementation of noise mitigation schemes for practical

implementation.

B. Previous Research

The problem of vehicle localization is similar to the

problem of autonomous robot localization. The overarching

goal for robot navigation is simultaneously building an area

map and locating the robot on it, termed the simultane-

ous mapping and localization (SLAM) problem. A good

overview of SLAM is provided in [5].

The most common approaches to SLAM are based on the

work of Smith and Moutarlier, which build a probabilistic

framework for the problem solution [6]–[8]. This approach

provides a recursive solution to the SLAM problem using an

Extended Kalman Filter (EKF), and an estimate of the uncer-

tainty in the vehicle location. However, the approach suffers

from computational complexity that scales quadratically with

the size of the state vector.

Alternative approaches to SLAM are either qualitative or

computationally based. For qualitative methods, the map and

vehicle location estimates are generated using the relative
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location of nearby landmarks [9], [10]. Computational ap-

proaches use varying types of uncertainty descriptions. For

example, Thrun [11] uses a Bayesian approach to avoid the

Gaussian assumption normally required by Kalman filters.

On the other hand, Gustaffson [12] avoids the same Gaussian

assumption through the use of particle filters.

The approaches of greatest interest here are the landmark

or map matching approaches where map data is collected a

priori [13]. In general these approaches assume the capability

to extract a set of features from sensor data which are then

used for localization [14]. As a broad outline, map data is

first collected offline and a pre-determined set of features is

extracted. The choice of features is designer and sensor spe-

cific and plays a pivotal role in the subsequent performance

of the algorithm. Typically, feature extraction algorithms are

non-linear and thus computationally expensive. There exist

many examples of features in the literature [1], [15]–[18].

These features serve the dual purpose of compressing the

map data while retaining only the most robust data points

with respect to sensor noise. Then, in the online phase, the

probability of the robot’s location and of the detected features

is calculated using any of the previously discussed methods.

As previously noted, alternative vehicle localization algo-

rithms carry significant computational costs. In fact, it was

not until the advent of low-cost fast microcomputers that

the solutions to this problem could be implemented. The

leading approach to reducing this computational cost is to use

approximations that maintain the sparsity of the information

matrix [19]. More recently, empirical observations about the

information matrix have led to the use of sparse extended

Kalman filters in localization [20]–[23]. This approach al-

lows for constant time updates but can lead to inconsistencies

in the global map.

The underlying assumption in all approaches to vehicle lo-

calization is that there is an inherently non-linear process that

describes the environment of the vehicle. Therefore, prob-

abilities of landmark and vehicle locations are determined

computationally in the vehicle itself, requiring significant

investment in on-board vehicle technology that can perform

those calculations.

II. ALGORITHM DESCRIPTION

This section describes the development of the localiza-

tion algorithm. Section II-A describes the extraction of

the switched linear system from pre-recorded vehicle pitch

data. Then section II-B describes the method by which the

switched linear systems are organized for efficient parsing

during vehicle travel. Section II-C develops the on-line

vehicle localization algorithm. Lastly, section II-D describes

the tracking of a vehicle whose location has been identified.

A. Model Extraction

The pre-recorded road pitch data is modeled using a

switched linear system. The switched linear system is

a set of auto-regressive (AR) linear dynamical models

that describe non-overlapping segments of collected data.

Auto-regressive models use data points collected prior to an

instant to estimate the data point at that instant. The error

between the estimate and the collected data is bounded by

a chosen bound ε. The general form of an AR model is

m[d] = a1m[d − 1] + ... + aNm[d − N ] + ε[d]

= A x[d] + ε[d], |ε[d]| ≤ ε (1)

where m[d] represents the current sample of data that is

collected, A = [a1, ..., aN] is a vector that contains the

coefficients of the linear model of order N , the vector

x[d] = [m[d − 1], ..., m[d − N ]] contains the previous N
samples of data, i.e., the so-called regressor vector, and ε[d]
is the model output error bounded by the above mentioned

bound ε.

The greedy algorithm for switched system identification

developed by Ozay et. al. in [24] is used to both obtain the

AR model specified above and to simultaneously segment

the collected map data into non-overlapping segments. This

algorithm is shown in table I.

The algorithm begins at the (N + 1)th data point, labeled

Greedy Algorithm

Initialize Constants:

model order : N
precision variable: ε

segment index: n = 0

initial loop index: d0 = N + 1
first “transition point”: τ0 = d0

Algorithm Loop:

FOR i = d0 :dmax

Find a vector A such that:
F : {|m[d] − A x[d]| ≤ ε ∀d ∈ [τn, i]}

IF F is infeasible
Store A from index i-1, set the data index bounds:
In = [τn,i], iterate the segment index: n = n + 1,

Store the transition point: τn = i
END IF

END FOR

In = [τn,dmax] and τ = {Ij}
n
j=0

Return n and τ

TABLE I

OPTIMAL GREEDY ALGORITHM

d0. Starting at this initial data point, the algorithm searches

for the largest interval for which it is possible to obtain a

single AR system that satisfies the error bound for every

point. Once this is not possible, a transition is declared and

the corresponding data index is labeled τo. The segment is

removed and this process is repeated until dmax is reached.

The resulting set of data segments spans the values of con-

secutive transition points: (d0,τ0),(τ0,τ1), etc. The optimality

of this algorithm is described by the following Proposition

[24].

Proposition: Given a bound on the error, ε, and a model

of order N , the algorithm described in Table I breaks the

collected data set into the smallest possible number of

segments.

B. Vehicle Localization Structures

The switched linear system can be used to both identify

the vehicle’s exact location and its proximity. For instance,
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a feasible model is a set of possible vehicle locations, while

a switch between two consecutive models identifies an exact

location. The latter occurs because at a model transition point

the data no longer agrees with one model but agrees with the

next.

There are relatively few transition points on any data set.

Furthermore, because the models describe the irregularities in

the road surface, and because these regularities are correlated

to specific locations, it is unlikely that two transition points

would satisfy the same data interval. Therefore, the frequency

of transitions between models is an important factor in the

speed of vehicle localization.

The frequency of transitions can be increased by lowering

the error bound ε. Ideally, the data would be segmented into

a large number of small segments with tight ε bounds. This

leads to two practical implementation problems. First, small

error bounds increase the susceptibility to noise and second,

increasing the number of segments directly increases the

number of computations performed initially.

These implementation problems can be mitigated through

the extraction of a series of progressively tighter switched

linear systems. These systems can be structured in a tree-like

structure with “coarse” models at the top and “fine” models

at the bottom. Figure 2 shows an example of this type of

model structure. The models are labeled as Ak,n, where k
denotes the model structure level, n denotes the segment

index kth level, and α denotes the error bound contraction

constant. Each model structure will have L levels, and Mk

models per level.

Fig. 2. An example model structure

C. Locating a Vehicle

During the vehicle travel, the observed pitch data is used

to determine agreement with the pre-extracted models. This

process is described in table II.

Similar to the greedy algorithm, the localization procedure

in Table II begins with the collection of N + 1 pitch data

points. The data index is set to d = N + 1, and the model

output error is calculated. For each model the output error

is compared to the corresponding error bound, εk,n. This

comparison can be written as,

|m[d]− Ak,nx[d]| ≷ εk,n (2)

If the model error does not exceed the bound, then the current

segment is a possible, or feasible, set of vehicle positions;

otherwise the segment is infeasible. At each successive level,

only segments whose data lies in a feasible segment from

the previous level are tested. This method of elimination

rapidly and monotonically reduces the computational burden

of localization with respect to distance traveled.

The localization loop continues until either a single seg-

ment on level L remains feasible or a transition point

Vehicle Localization

Initialization

Collect N + 1 Data points:

set loop index: d = N + 1
initialize data vector: x[·] = m[1 : N ]
Begin Localization Loop

WHILE localization flag == 0
FOR k = 1:L

FOR n = 1:Mk − 1
IF the parent segment ofAk,n is feasible:
ek,n = |m[d] − Ak,nx[·]|
ek,n+1 = |m[d] − Ak,n+1x[·]|
IF ek,n < εk,n

set Ak,n as feasible

ELSEIF ek,n > εk,n AND ek,n+1 < εk,n+1

then the data point m[d] is a transition point

obtain from map the corresponding τn

localization flag = 1
ELSE

set Ak,n as infeasible
END IF
END IF

END FOR
END FOR
Collect an additional data point

iterate the index: d = d + 1
iterate the data vector:x[·] = m[d − N : d − 1]
END WHILE

Following a Detected Transition Point

FOR k = 1:L
FOR n = 1:Mk

IF τn is inside the segment

Set the segment as feasible
ELSE

Set the segment as infeasible

END IF
END FOR

END FOR

Exit to Tracking Loop

TABLE II

VEHICLE LOCALIZATION ALGORITHM

between models is determined at some data index, d. The

latter case is preferable because at a transition point, multiple

inequalities are satisfied. These inequalities are shown below

in equation 3.

|m[d− 1]− Ak,nx[d− 1]| ≤ εk,n

|m[d]−Ak,nx[d]| > εk,n (3)

|m[d]−Ak,n+1x[d]| ≤ εk,n+1

The first inequality shows that the vehicle was in segment

n on level k at the data point immediately preceding point

d. The next inequality shows that the vehicle is no longer

in segment {k, n}, and the third inequality shows that the

vehicle is now in segment {k, n+1}. The latter two inequal-

ities have domains that only overlap at the transition point

and therefore provide strong evidence about the location of

the vehicle. Thus in order to quickly converge to the correct

vehicle location, the bottom structure level, L, must be finely

segmented, with multiple transition points.

D. Vehicle Tracking

Once the vehicle has been localized, the localization

algorithm can be used for tracking. Similar to localization,
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the observed data is used to verify model agreement with the

remaining feasible models. However, during vehicle tracking

only a single feasible segment is validated for each model

structure level.

Typically tracking begins at an identified transition point.

Each successive data point is then evaluated using equation

(2). During travel within a segment, the position on the

map is updated using odometery readings. When the vehicle

records a data point that does not agree with the model,

two tests are performed. First, vehicle travel since the last

transition point is compared to the segment size. Then second

the transition point check in equation (3) is performed. If

both tests agree, the models are iterated and the process is

repeated. Otherwise, the initial localization is assumed to be

erroneous, and the vehicle localization is repeated. In general,

once a correct transition point is located, only large changes

in the road surface or unexpected maneuvers lead to errors

in the tracking phase of the algorithm.

III. MEASUREMENT NOISE

In practice there are many sources of interference that

will affect the algorithm performance. The most common

and pervasive source of noise is the IMU. An IMU contains

three gyroscopes that are placed on the 3-dimensional coor-

dinate axes to provide an angular rate measurements. These

rate measurements are highly accurate over time, but when

integrated to obtain orientation and position estimates, even

small deviations lead to an accumulation of large estimate

errors. IMU noise is characterized by the manufacturers in

terms of Allan variance with primary components of angle

random walk noise and bias noise.

With respect to noise characteristics there is a wide range

of commercially available IMUs. A comparison of the noise

characteristics for several sensors was performed by Jerath

[3]. Figure 3 illustrates this analysis for a low-cost IMU,

ADIS16367; a mid-cost IMU, Crossbow 440; and a high

priced IMU, Honeywell HG1700. The top of the figure shows

the angle random walk component of the IMU noise and the

bottom of the figure shows the bias noise component.
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Fig. 3. IMU noise by sensor price. Top: Angle random walk noise Bottom:

Bias noise

The map data used in this paper to generate the local-

ization model tree was collected using the HG1700 IMU.

Because the noise coefficients of the HG1700 are at least

two orders of magnitude smaller than the coefficients of the

ADIS16367, this data is regarded as noise free. Then the

data was then corrupted using the simulation developed for

[3] and the parameters of the Crossbow 440 IMU. Testing

with the parameters of the ADIS16367 is beyond the scope

of this paper because SNR produced by this sensor is poor

and requires advanced mitigation strategies.

A. Bias Noise

The first mitigation strategy addresses the bias noise in

the IMU. From the bottom of figure 3, note that sensor bias

is relatively constant for neighboring data points. Thus it is

reasonable to assume that bias in neighboring points will be

approximately the same, and generate a map of differences

where each point is the difference between two neighboring

pitch values. This is illustrated by the following equation,

∆m[d] = m[d] + β[d] − m[d + 1]− β[d + 1] (4)

where m[d] and m[d+1] are adjacent pitch values with bias

β[d] and β[d + 1], respectively. The variable ∆m[·] is the

difference and is insensitive to bias noise. Hence, ∆m[·] can

be used during the extraction of the road map models and

structure and during the online localization to mitigate the

effects of bias noise.

B. Angle Random Walk Noise

The second mitigation strategy addresses the angle random

walk noise in the IMU. This noise is modeled as white

noise added to the angular rate. Otherwise stated, angle

random walk noise adds small perturbations to each acquired

data point. These perturbations cannot be eliminated by

subtraction like the bias noise. An alternative mitigation

strategy is to introduce a tolerance for each data point.

Assume that the perturbations can be bounded by some

ηB. Let each data point have a perturbation |η[d]| ≤ ηB .

Then a model is said to be feasible or agree with the data if

a set of constants η̄ = [η[d], ...η[d + N − 1]] can be found

such that,

|∆m[d]− A(x[d] + η̄)| ≤ ε. (5)

The optimal value for ηB must be sufficiently small such

that the errors at the transition points cannot be described.

In simulation it was determined that ηB values below ε/2
are sufficient for accurate detection of transitions.

One important observation is that because of the initial

integration into pitch values, the perturbations at each data

point are not independent. Therefore, testing a large horizon

of data points simultaneously provides the greatest degree of

noise mitigation. Practically, the number of simultaneously

tested points is limited by computational power. In this

paper, three consecutive points were used to demonstrate the

algorithm.

IV. NUMERICAL RESULTS

A. Testing Parameters

When setting up the numerical experiments the two critical

parameters are model order, N , and error bound, ε. Unfortu-

nately, there do not exist optimal values for the model order
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and error bound. Instead these parameters can be varied with

respect to one another to create different model structures

with similar localization properties. For this paper, the model

order was held constant at five, and the error bound was

allowed to vary for each model.

The initial value for the error bound is 0.2556 degrees of

pitch. This is the smallest value of ε such that at the top of

the model structure, a five-coefficient model can be used to

describe the entire data segment. For each successive level,

the error bound was contracted by a factor of 0.75. This

contraction factor was chosen so that each successive level

would have approximately twice the number of segments as

the previous level. This type of segmentation was chosen for

clarity in testing, but can be further optimized for a data-

driven in-vehicle process.

B. Noise-Free Environment Results

This section presents the numerical localization results

given a noise free environment and knowledge of vehicle

odometry. Without noise the localization algorithm converges

to the correct location for every experiment. For this rea-

son, the evaluation is focused on the localization speed.

The figures below demonstrate both the convergence of the

algorithm and the method by which the vehicle location is

discerned.

Figure 4 illustrates the convergence of the algorithm to

a single possible segment. In the figure, the horizontal axis

shows the number of steps d, and the vertical axis shows

the number of remaining feasible segments. Note that the

algorithm converges to a single segment in 18 steps. The

speed of convergence can be increased by segmenting the

map into a greater number of segments.

Fig. 4. Algorithm Convergence

The agreement of the data is evaluated using equation (2).

The errors for several models and data indices are shown

in figure 5. In these plots the horizontal axis shows the

number of steps d and the vertical axis shows the model

errors. Model errors are plotted even outside of the correct

segment to illustrate model agreement and transitions.

By observing the model errors in figure 5, and the elimi-

nation of segments in figure 4, it is possible to see the exact

time at which feasible segments are eliminated. During the

first time instant, d = 6, only models: A4,1, A4,2, A4,8 and

A4,9 are consistent with the collected data. These segments

are labeled feasible and reconsidered at the next data point.

At the next time instant, d = 7, the error associated with A4,2

exceeds ε4,2. This point is labeled as candidate transition

point.

At each candidate transition point, the data is evaluated

using equation (3), and the next model is checked for

agreement. Furthermore, the model error which exceeded the

precision bound, is compared to the error observed during

model extraction. If all conditions are satisfied a transition

point has been found.

At instant d = 7, A4,2 does not satisfy the data. Since

model A4,3, also does not satisfy the data, d = 7 is not

a valid transition point. Then at instant d = 11, A4,8 no

longer agrees with the data. However, since the observed

error does not correspond to the expected segment end error,

this is also not a transition point. For the next several time

instants A4,1 and A4,9 continue to agree with the data. At d =

18, A4,1 no longer agrees with the data. Because both A4,2

is feasible, and the expected error for A4,1 was observed,

this point is a transition point. At this point, the vehicle

has been localized, and tracking begins. The convergence

of the algorithm is directly proportional to the frequency of

the transition points on the pre-extracted map. For a noise-
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(a) Feasible model errors at step 6

Fig. 5. Model errors used during localization

free environment, it is possible to place an upper bound

on the speed of algorithm convergence. Because localization

happens most often at transition points, this bound is the size

of the largest segment at the bottom of the model structure.

For the example, suppose the model structure from above

has 10 levels; then, the longest possible distance a vehicle

can travel before selecting a candidate location is 165 data

points. Since the data used in this paper has a sample rate of

0.5 meters, this means that the slowest possible convergence

rate in this scenario is 82.5 meters.

C. Results in the Presence of Noise

To test the algorithm in the presence of noise, the data is

corrupted using the Crossbow 440 noise characteristics. Both

mitigation strategies from section III are used. To illustrate

the effects of noise, the estimated vehicle position is plotted

against the true vehicle position. An example of this plot is

shown in figure 6.

As in previous plots, the horizontal axis represents the

number of steps taken during localization. The vertical axis

represents the index point on the map corresponding to the
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Fig. 6. Position Convergence in the Presence of Noise

vehicle’s location. The plot shows that the vehicle began trav-

eling at map index 150. Prior to convergence, the estimated

vehicle position is held at “0”. After several time steps, an

erroneous transition is detected, and the vehicle begins to

track its path. This type of error is common in the presence

of noisy data. The erroneous path is tracked for about 40

meters, until a new transition point is detected. Following

this point, several more transition points are detected in quick

succession that correct the assumed vehicle location to its

true position.

The results from this trial are typical and illustrate the

algorithm’s performance in noise. While the initial estimate

of location is incorrect, continuous observation of the road

data leads to a correction of the vehicle path. This correction

time varies according to the underlying map and depends on

the regular and fine segmentation of the road.

V. CONCLUSIONS AND FUTURE WORK

This paper presents a novel algorithm for the localization

of road vehicles based on the segmentation of the road pitch

data using linear dynamical models. In the on-line phase, the

models are sequentially eliminated until a segment transition

is detected and only the vehicle’s path remains viable. In

addition to the algorithm some initial approaches to noise

mitigation are also presented.

In contrast to previous approaches that build a probabilistic

estimate of the vehicle’s location, this approach can provide

an exact vehicle location, an exact distance required to con-

vergence, and information regarding whether an update for

this section of the road is feasible. Furthermore, the treatment

of the data is linear which allows for more straightforward

treatment of process noise.

The results presented for this paper are exploratory and a

more developed version of the algorithm will be presented

in future publications. One immediate area of development

is the reliance on transition points for localization. The

significance of transition points must be reduced to increase

robustness to noise. Another area of study is the relationship

between the noise bound and the sensor noise description.

It may be necessary to add multiple sensors to provide

sufficient information to counteract poor sensor SNR.
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