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Abstract— Delays can be a critical property of control
systems, since they introduce a frequency-proportional phase
difference. In some applications, it is desirable to speed up the
dynamic behavior of such systems. In this paper, a control will
be provided that couples a delayed system that has a nonlinear
state space function and linear input/output functions with a
non-delayed model using a Smith Predictor, and criteria will
be determined for the system to provide the same output signal
as the model. In an ideal case, it will therefore be possible to
monitor the model instead of the system. It will be proven that
the given structure induces a synchronized state and a measure
for the suitability of the control for a monitoring problem
will be introduced. The results are then validated based on
an exemplary system.

I. INTRODUCTION

Synchronization and synchronizability are current topics

in physics and mathematics. [1]–[12] Synchronization is, in

this context, understood as identical solutions of systems

at a certain time, and denoted as an universal concept of

nonlinear and chaotic sciences [13], because it allows a

simplified analysis of complex systems. These methods have

been used in few excellent papers in control theory, [8], [9]

yet provide a mathematical framework that can coveniently

be expanded to a variety of control-theoretical problems. For

the expansion of synchronization theory to systems with time

delay, a sophisticated method of linear matrix inequalities

has been developed. [5]–[12] In this paper, the Lambert W

function will be employed for the analysis of the delay

differential equations. This approach follows the methods

outlined in some seminal publications [14]–[19]. Thus, this

paper will first outline both, the theory of synchronization

and the Lambert W function, and subsequently employ both

for a novel interpretation of the Smith Predicter, which will

consequently be analyzed.

Throughout this paper, italic letters denote vectors or scalars,

whereas bold letters denote matrices. The respective di-

mensions will be given explicitly. Operators and predefined

functions will, though, be formatted non-italic. The main

results of this text, as well as the main results of prior

publications, are formulated in lemmata.
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A. Synchronization

In a popular understanding, synchronized behavior is un-

derstood as an identical behavior of N systems at the same

time. In an engineering sense, these systems have indentical

state vectors at the time they achieve synchronization.

Definition 1. N systems are said to synchronize, as

‖xi − xj‖ = 0 ∀ i, j = 1, 2, · · · , N.

where xi,xj ∈ R
n are the state vectors of systems i, j.

The dynamic behavior of each of these systems is assumed

to be given by

ẋi = fi (xi) + hi (ui) ∀ i = 1, 2, · · · , N,

where ẋi = dxi

dt
∈ R

n is the time-derivative of xi ∈ R
n,

ui ∈ R
m is the input vector of system i and fi : R

n → R
n,

hi : Rm → R
n are vector-valued functions expressing the

dependency of ẋi from xi and ui. Since controls couple

system output with system inputs by feedbacks or other

control-theoretical structures, every input vector ui among

N can be rewritten as a function of the states of the other

systens. Thus,

ui = gi (xj , · · · , xN ) ,

where gi : R
n → R

m describes the dependence of the

input of the respective i from the other systems. Now it is

assumed, that controls couple its systems by summations,

subtractions, and gains. Thus, the function gi has to be a

linear combination resulting from these operations, so that

gi =

N
∑

j=1

γijxj

holds, where γ = K represents a gain, and γ = ±1 a sum-

mation or subtraction, respectively. Additionally assuming hi
to be a linear function Ki ∈ R

n×m, and fi = fj ∀ i, j =
1, 2, · · ·N and simplifying the dynamic representation by

imposing that all system dynamics are identical apart from

the control coupling between them, Ki = Kj ∀ i, j =
1, 2, · · ·N holds. The system dynamics thus simplify to

ẋi = f (xi) +

N
∑

j=j

γijK xj ∀ i, j = 1, 2, · · · , N,

where K is hereafter referred to as the inner coupling matrix

and all γij build a matrix Γ = [γij ] ∈ R
N×N that is

called the coupling configuration matrix. The purpose of this

notation is the formulation of one instead of N differential

equations, that is

χ̇ = F (χ) + [Γ⊗K]χ,
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where χ =
[

xT
1x

T
2 · · ·x

T
N

]T
∈ R

Nn and F (χ) =
[

fT (x1) f
T (x2) · · · f

T (xN )
]T

.

Definition 2. χ =
[

xT
1 x

T
2 · · · xT

N

]T
∈ R

Nn is the all-state

vector of N systems.

For the analysis of the nonlinear dynamics of the network,

the application of the first variation ξ of χ is required.

Definition 3. The first variation ξ of χ is the limit in θ of

ξ =

∫

dχ̇ (χ+ θp)

dθ

∣

∣

∣

∣

∣

θ=0

dt

with χ any solution to χ̇ and p a specific solution.

By this definition and the substitution of the special case

p = ξ, the dynamical behaviour of χ̇ may be rewritten by

using ξ [20], so that the network representation is denoted

as

ξ̇ =

[

IN ⊗
∂f

∂x
+ Γ⊗

∂h

∂x

]

ξ,

or, shorter,

ξ̇ =
[

IN ⊗ Df + Γ⊗K
]

ξ,

where D is a differential operator and IN =
diag {1, 1, · · · , 1} ∈ R

N . Since the unit matrix has

the eigenvectors [1 0 · · · 0]T,[0 1 · · · 0]T,[0 0 · · · 1]T, each

of these modes describes only the inner dynamics of each

system. The eigenvectors of Γ describe the combinations of

their respective modes. For a synchronous behavior, Γ should

have at least one eigenvector of the form [1 · · · 1]
T
∈ R

N ,

that implies a uniform time solution of all systems. This

eigenvector has to be the eigenvector of a purely imaginary

latent root, so that the synchronized movement is not

damped out, and all other eigenvectors have to correspond

with latent roots that have a non-positive real part, so that

these modes do not dominate the synchronous mode.

Lemma 1 ( [1]). System χ is said to have at least one

synchronized state when at least one eigenvector of Γ has

the form [1 · · · 1]
T
∈ R

N

Lemma 2 ( [1]). System χ is said to be synchronizable,

if the synchronized state is the eigenvector of a purely

imaginary latent root of Γ and all other eigenvalues have

non-positive real parts.

For proving the stability of all systems, it is now only

necessary to compute the set of Lyapunov exponents.

Definition 4. The set of Lypanuov exponents

(L1, · · · , LNn) is the set of elements of L = [L1 · · ·LNn]
T

satisfying

ξ ∝ eI
NnLtξ0.

Hence, positive Lyapunov exponents represent orbital

divergence and low predictability due to chaos, whereas

negative Lyapunov exponents represent orbital convergence,

high predictability and decay of perturbations [21], each

with respect to the initial values. Since the first variation ξ

has already been computed, the set of Lyapunov exponents

for one system can be found by substituting a coupling

coefficient Ω for each block of Γ, so that it scales the impact

of K in the same way as the eigenvalues of Γ do. Thus,

L = σ (Df +ΩK) ,

where σ is the set of latent roots.

Definition 5. The set of latent roots σ of a matrix M ∈
R

n×n is the set of solutions to |M − Inλ| = 0.

Hence, the the Lyapunov exponent is a function of Ω and

therefore a function of Γ. Now, both conditions bound the

stable synchronized region.

Lemma 3 ( [22]). A system χ has a conditional stable

synchronized region if its coupling configuration matrix Γ

fulfills

σ (Γ) ∈ {Ω ∈ C |max (L) < 0} .

By that, the given coupling coefficients correspond to a

stable trajectory in the state space, because these Ω induce

a negative Lyapunov exponent.

B. The Lambert W Function

Definition 6. The Lambert W function is the solution in

W (z) to z =WeW .

Thus, z is not injective, so that W is multivalued.

Definition 7. The k ∈ Z sets of solutions to W are called

the branches of W . The kth solution of W is denoted as Wk.

W0 is called the principal branch.

The Lambert W function can be used to find the infinite

set of solutions in transcendental algebraic equations. Its

application is especially useful in solving delay-differential

equations of the form

ẋ = A x (t− τ) +B x,

where τ > 0 is the delay and A,B ∈ R
n×n are state matrices

[14]. The roots of the state space equation are the solutions

in s to

sI = Ae−sτ +B.

Expanding by τe(sI+B)τ , this transcendental characteristic

equation can be rewritten as

(sI −B) τe(sI+B)τ = AτeBτ .

The equation has now the form to apply the Lambert W

function. Obviously, W
(

AτeBτ
)

= (sI −B) τ .

Lemma 4 ( [14]). The roots of ẋ = A x (t− τ) +B x are

the elements of σ
(

1
τ
W

(

AτeBτ
)

+B
)

.
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II. THE SMITH SYNCHRONIZER

The control introduced in this paper uses a traditional

Smith Predictor [23], [24] with the output signal of a

model of the plant as reference. This system could also be

considered as a signal generator. The control is depicted in

Fig. 1.

model M gain K plant S

model ∼ delay τ-

- -

Fig. 1. Smith Synchronizer

Definition 8. The control topology in Fig. 1 is henceforth

called Smith Synchronizer.

Furtheron, the reference model will be indexed with M

(master), the plant with S (slave), and the auxiliary model

with ∼. The gain is a scalar K. Let

ẋi = f (xi) +B ui

yi = C xi

be the state space equation of xi, i = M,S,∼, where B ∈
R

n×n is the input matrix and C ∈ R
n×n the output matrix.

It should be noted that these matrices can be expanded by

zero rows or columns when they have lower dimensions.

A. Modal Analysis

Formalizing Fig. 1, the input vectors can be rewritten as

a linear combination of all state vectors, as stated in the

introduction. In doing so, all inputs of S will be considered

as delayed inputs, as it represents the delayed plant, that is

supposed to synchronize with M , so that

uM = 0,

uS = CK [xM (t− τ)− x∼ (t− τ)− xS (t− τ)] ,

u∼ = CK
[

xM − x∼ − xS−

−xM (t− τ) + x∼ (t− τ) + xS (t− τ)
]

.

Using these relations and substituting them into the state

space equations of the respective systems, the system dy-

namics are of the form

ẋM = f (xM )

ẋS = f (xS)+BCK [xM (t− τ)− x∼ (t− τ)− xS (t− τ)]

ẋ∼ = f (x∼) +B CK
[

xM − x∼ − xS−

−xM (t− τ) + x∼ (t− τ) + xS (t− τ)
]

.

Now let χ = [xS xM x∼]
T
∈ R

3n be the all-state vector

of the Smith Synchronizer and χ̇ = dχ
dt

its time-derivative.

Then the dynamics of χ have the form

χ̇ =





f (xS)
f (xM )
f (x∼)



+





0 0 0
0 0 0

−K K −K



⊗B C χ+

+





−K K −K
0 0 0
K −K K



⊗B C χ (t− τ) .

The coupling configuration matrices will be substituted by

Γt and Γt−τ , respectively.

The crucial property of the coupling that is induced by the

given control is that it is nonlinear. In existing literature, lin-

ear matrix inequalities are used to show the synchronizability

of such couplings [5]–[12]. This paper will conduct a modal

analysis of the coupling dynamics ψ̇ = Γtψ+Γt−τψ (t− τ),
where ψ ∈ R

3 is a variable describing the solutions of

the three systems relative to each other, just as coupling

configuration matrices do. Hence, if ψ has a synchronized

state, then so has the Smith Synchronizer.

Lemma 5. The Smith Synchronizer induces a synchronized

state for M and S.

Proof: Using Lemma 4, the eigenvalues of ψ are the

elements of the set σ
(

1
τ
W

(

Γt−τ τe
Γtτ

)

+ Γt

)

. Let Λ =
diag

{

σ
(

1
τ
W

(

Γt−τ τe
Γtτ

)

+ Γt

)}

, then

V −1

(

1

τ
W

(

Γt−τ τe
Γtτ

)

+ Γt

)

V = Λ

denotes the well known similarity transform, where V is the

modal matrix of 1
τ
W

(

Γt−τ τe
Γtτ

)

+Γt with columns being

the modes of ψ. Applying Sylvester’s formula,

eΓtτ = QeDQ−1,

where D = diag (σ (Γtτ)) and Q the modal matrix of Γtτ .

Now, because σ (Γtτ) = {0, 0,−τK}, its eigenvectors build

the matrix

Q =





−1 1 0
0 1 0
1 0 1



 ,

so that the matrix exponential results in

eΓtτ =





1 0 0
0 1 0

e−τK − 1 −e−τK + 1 e−τK



 .

The argument of the Lambert W function is the matrix

Γt−τ τe
Γtτ =





−τKe−τK τKe−τK −τKe−τK

0 0 0
τKe−τK −τKe−τK τKe−τK



 .

Obviously, rank
(

Γt−τ τe
Γtτ

)

= 1 and σ
(

Γt−τ τe
Γtτ

)

=
{0, 0, 0}. The eigenvalue zero has the algebraic multiplicity

three but only a geometric multiplicity of two. There is no

similarity transform to this matrix, so that is is not possible to

apply Sylvester’s formula. But, since the matrix is nilpotent
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with
(

Γt−τ τe
Γtτ

)ϕ
= 0 ∀ ϕ > 1, the matrix Lambert W

function can instead be expressed as a fast converging sum.

Since the principal branch of the Lambert W function is

defined as

W0 (z) =
∞
∑

n=1

(−n)
n−1

n!
z,

it converges after the first element in this case, so that

W
(

Γt−τ τe
Γtτ

)

= Γt−τ τe
Γtτ .

The matrix that defines the latent roots and modes of the

Smith Synchronizer has therefore the form

1

τ
W

(

Γt−τ τe
Γtτ

)

+ Γt =

=









−Ke−τK Ke−τK −Ke−τK

0 0 0

K
(

e−τK − 1
)

−K
(

e−τK − 1
)

K
(

e−τK − 1
)









,

with σ
(

1
τ
W

(

Γt−τ τe
Γtτ

)

+ Γt

)

= {−K, 0, 0} and the

respective modal matrix

V =





− e−τK

e−τK
−1

−1 1

0 0 1
1 1 0



 .

The mode corresponding to the third eigenvector is a syn-

chronized state of S and M , that is undamped. All other

modes have eigenvalues with non-positive real parts. How-

ever, these modes do not affect the synchronized movement,

since they all have a zero entry in the second row. The

k 6= 0 branches of the Lambert W function can be ignored,

since the real parts of the roots are strictly monotonically

decreasing with increasing k.

B. Evaluation

The Smith Synchronizer is said to have a synchronized

state, but also has an asynchronous mode corresponding to

an undamped latent root of the variation. The asynchronous

mode is proportional to the time solution of ∼. From Fig.

1, the input of this system is porportional to the differ-

ence of the delayed and the non-delayed solution in x.

The structure would therefore induce synchronizability for

‖x (t− τ)− x (t)‖ = 0.

Lemma 6. The Smith Synchronizer is not synchronizable

for all τ > 0.

Proof: The second mode of the Smith Synchronizer is un-

damped with the eigenvector [1 0 − 1]. Without that mode,

systems S and M are synchronizable. Now there is an

additional motion of S antiproportional to the motion of

∼, so that ‖xS − xM‖ ∝ x∼. The input signal of ∼ is

proportional to 1− e−τs, that is > 0 ∀ τ > 0.

Definition 9. A system with a synchronized state, nonpos-

itive latent roots and at least one more latent root with real

part zero is said to achieve ragged synchronization. The

remaining error ‖xi − xj‖ = e is called synchronization

error.

Lemma 7. The Smith Synchronizer is said to achieve

ragged synchronization with a synchronization error bound

by ‖x (t− τ)− x (t)‖.

The mathematical evaluation of the synchronizability

yielded results that can be interpreted physically. Whenever

the dynamics of the system are faster then the delay, the

Smith Synchronizer is not suitable for monitoring M instead

of S. It is also possible to summarize this capability in a

numerical value ϑ, that will be normalized to

ϑ =
‖x (t− τ)− x (t)‖

‖x (t)‖
.

It can be noted, that this value is quite similar to the

transparency coefficient known from hardware-in-the-loop

publications [25], [26]. When ϑ is small, that is for very slow

functions, the Smith Synchronizer may lead to synchronous

behaviour. Those slow functions are often highly stable

functions.

As an example, the well known test function ẋ = −x + u

will be applied to the Smith Synchronizer. Though it might

not me a nonlinear function, it is still a good example for

employing the Smith Synchronizer, as its synchronous state

becomes more apparent to the reader. The solutions of the

states of the three systems are depicted in Fig. 2. In the

underlying simulation, arbitrary initial values xM (0) = −1,

xS (0) = 1, x∼ (0) = 0 have been applied to all three

systems. After t = τ , the states of M and S converge to

15

−15

0

0

0

ẋ
i

t
xi 1

−1

1

∼

M
S

xM (t = 0)
e → 0
xS (t = 0)

Fig. 2. Converging Modal Attractors

e → 0 due to the behaviour of ∼. It now results from the

modal analysis that for the deduced conditions, the damping

of the first asynchronous mode is proportional to K. The

test function from Fig. 2 can therefore also be evaluated for

different K. The solution for e versus time is plotted in Fig.

3. According to the time solution of the test function, the time

solution of e has an exponential behaviour with an exponent

antiproportional to K.
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0

0

t

5

K = 1
K = 10
K = 100

τ = 1
τ = 0.1
τ = 0.01

Fig. 3. Synchronization Errors

This example shows that the mathematical framework used

in synchronization theory can be applied to the coupling

of systems that is put into practice in control theory. It is

also possible to analyze that systems with relatively slow

dynamics induce a transparency coefficient that is small

enough to achieve ragged synchronization with a Smith

Predictor.

III. CONCLUSIONS

A framework for the modal analysis of controls has

been established and criteria for a synchronized state and

synchronizability have been cited. The Smith Synchronizer

was defined and its synchronized state proven, before its

modes have been analyzed and evaluated according to its

suitability for different systems. The physical meaning of

the mathematical results was interpreted and illustrated by

the time solutions of the test function ẋ = −x+ u. Further

exploitations could expand the Smith Synchronizer to a

control topology where the reference M is given by a signal

generator, that is not governed by the same equation as S

and ∼. This expansion would make the underlying theory

applicable to a wider range of problems.
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