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Abstract— Feature vectors encoded by using extrema are
known to be immune to different types of distortions of the
original time series [1]. This property enables them to be
effective in a wide range of pattern matching applications for
time series data [2] [3]. The process of extracting extrema is
usually preceded by a filtering step to reduce noise and to bring
out prominent features in a time series. The core contribution of
this paper is a methodology based on eigenanalysis to optimize
the filter that would lead to robust extrema being extracted from
the filtered signal. In this context, robustness is understood as
the ability of the extrema from a signal to remain intact in spite
of distortions to the signal. The paper then demonstrates that
the ‘optimally robust’ extrema outperform extrema obtained
from using traditional filters in a time series pattern matching
(subsequence matching) task on real and simulated datasets in
the presence of bias, scale factor, and outlier distortions in the
query signal.

I. INTRODUCTION

The task of extracting feature vectors from time series

data is of fundamental importance in accomplishing a wide

range of pattern recognition tasks. A wide array of solutions

have been proposed to solve this problem, and one could

classify these approaches into three categories, namely: di-

mensionality reduction methods, distance metric methods,

and interest point methods. A brief description of each

approach is provided below.

1) Dimensionality reduction methods: In these meth-

ods, given a particular time series, a window of a

certain length is chosen and the window is slid across

the time series to extract all possible subsequences [4].

This initial step is often referred to as the sliding win-

dow method. A dimension reduction technique is then

applied to each subsequence to obtain a feature vector

to describe it. Different types of dimension reduction

techniques have been proposed in literature. These

have included extracting coefficients from Discrete

Fourier Transform [4] , Discrete Wavelet Transform

[5], Discrete Cosine Transform [4], and Singular Value

Decomposition [6] of the subsequence. Methods have

also been developed to represent a subsequence using

piecewise constant values [7], piecewise linear func-
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tions [8], chebyshev polynomials [9], and via symbols

[10].

2) Distance metric methods: The distance metric based

methods completely circumvent the need for feature-

based encoding of time series by taking the windowed

raw signal as the feature vector and by introducing

different methods to compute the distance between the

raw signal and the query signal. It is important to

note that these methods are commonly used within the

sliding window framework. While euclidean distance

is the most straightforward method of comparison, this

metric has been found to be brittle [11]. Dynamic

time warping methods (DTW) have been proposed to

mitigate the brittleness associated with the euclidean

distance measure by allowing for temporal distortion

[11]. Euclidean and DTW based methods are not robust

to outliers, and this lead to “edit distance” methods.

The concept of edit distance was borrowed from

matching strings, and these methods enable matching

by ignoring the dissimilar parts of the given time series

[12] [13] [14].

3) Interest point methods: The fundamental difference

between the interest point method of generating fea-

tures when compared to the above methods is that it

is not necessary to use the sliding window method in

this case. Previous work has shown that interest point

based features are immune to many types of distortions

[1]. Thus, they have been utilized in commercial music

identification applications [15]. The computational and

memory benefits offered by interest point based encod-

ing have been clearly demonstrated [3] in a vehicle

localization application [16] amongst others. Relevant

to this work are extrema points, a particular category

of interest points which are easy to identify. The use

of features developed from the extrema points of a

signal has been presented in literature [1]. The terms

‘Extrema points’ or ‘Extrema’ refer to the maxima

and minima that occur in a signal and are used

synonymously throughout this paper. These prominent

artifacts are utilized in a number of interest point based

feature vector generation schemes [1] [3] [15].

Of the above methods, this work focuses on extrema

based methods as they possess certain inherent capabilities

that make them desirable in a number of different pattern

recognition / feature encoding tasks. Some of these properties

are listed below.

1) As the number of extrema in a signal loosely cor-
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responds to the amount of variation present in the

signal, this method of encoding will automatically lead

to more features at locations corresponding to high

variation and vice versa.

2) The number of extrema in a signal or data usually

constitute a small portion of the amount of information

in the signal. Thus, feature encoding with the aid

of extrema, has an inherent lossy data compression

associated with it.

3) The extrema themselves tend to be robust to a large

number of distortions, where robustness is the ability

to survive intact in spite of distortions being introduced

into the signal. Perng et al in [1] have shown that

extrema can survive certain severe distortions that

are expected to drastically effect the feature vectors

obtained from other methods.

Given the inherent advantages that extrema methods pro-

vide and the broad scope of their application, this paper

proposes an optimization technique to extract robust extrema

from time series. The capabilities of features generated from

these extrema are then demonstrated through a subsequence

matching problem. The remainder of this paper is organized

in the following manner. Section 2 details a generic outline

that is used to create feature vectors from raw data while

using extrema. Section 3 details an optimization based on

eigenanalysis that maximizes the robustness of the extrema

by identifying the filter that would lead to optimally robust

extrema. In the next section, an application for the proposed

framework is demonstrated where pattern recognition using

robust extrema is compared with extrema obtained from

using traditional filters on both real and simulated data.

Conclusions and directions for future work are discussed in

section 6.

II. BACKGROUND

Extrema based techniques create feature vectors by encod-

ing the amplitude, relative locations or other properties of the

extrema. A block diagram illustrating the steps involved in a

generic process that seeks to encode features from extrema is

shown in Fig. 1. The first step in the process is filtering the

signal to reduce noise and/or to enhance significant aspects

of the time series data. The second step involves extracting

the extrema from the filtered signal. The process of extracting

the extrema itself could be based on using simple thresholds

or by considering additional properties of an extrema that try

to ascertain whether each extrema is “significant” or not. The

properties of these extrema are encoded into feature vectors

in the last step.

Given a particular pattern recognition method involving

extrema, one could optimize each one of the above steps

(filtering, extrema detection, and encoding) to enhance the

result of the method. The optimization itself can be based

on the data or the type of distortions involved in the pattern

recognition problem. The next section presents an optimiza-

tion method for the filtering step.

Fig. 1. The filters used in the experimental tests.

III. OPTIMALLY ROBUST EXTREMA

A. Derivation for the Optimally Robust Extrema Filter

(OREF)

The most desirable extrema are those that remain identi-

fiable and unaffected when distortions are introduced into a

signal and can be reffered to as robust extrema. A filter that

results in the most robust extrema from being extracted from

the filtered signal can be defined as the “Optimally Robust

Extrema filter (OREF)” in this context. In order to find the

OREF that maximizes the robustness of the extrema, it is

necessary to geometrically visualize the process that occurs

when selecting an extrema. The following derivation demon-

strates that the extrema selection process is equivalent to a

geometric problem of selecting data points in a hyperspace.

It also shows that the filtering operation can be interpreted as

bounding the selected extrema by utilizing two hyperplanes.

The derivation is as follows:

For a given discrete signal x[n] and an acausal finite

impulse response filter h[n] with 2N + 1 coefficients, the

corresponding filtered signal is denoted by

y[n] =
N
∑

i=−N

bix[n− i] (1)

where bi are the filter taps for the filter h[n],

As h[n] has 2N + 1 taps, bi = 0, i /∈ [−N,N ] (2)

It is desirable to have an odd number of taps in the filter

so that the filter has an identical number of taps on either

side of a particular point. This selection is advisable for most

signals unless there are any specific reasons to choose a filter

with different number of taps on either side of a point.

If y[n0] is a maxima of the filtered signal then by definition

it must satisfy the following properties:

y[n0] > y[n0 + 1] and y[n0] > y[n0 − 1] (3)

Considering the first condition

y[n0] > y[n0 + 1] (4)

Substituting (1) into the above condition,

N
∑

i=−N

bix[n0 − i] >

N
∑

i=−N

bix[n0 + 1− i] (5)

⇐⇒

N
∑

i=−N

bix[n0 − i] >

N−1
∑

i=−N−1

bi+1x[n0 − i] (6)
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⇐⇒

N+1
∑

i=−N−1

bix[n0 − i] >

N−1
∑

i=−N−1

bi+1x[n0 − i]

as b−N−1 = bN+1 = bN+2 = 0(from (2))

(7)

⇐⇒

N+1
∑

i=−N−1

(bi − bi+1)x[n0 − i] > 0 (8)

Performing a similar computation for

y[n0] > y[n0 − 1] (9)

We obtain

N+1
∑

i=−N−1

(bi − bi−1)x[n0 − i] > 0 (10)

Let

αi = bi − bi−1 (11)

Then substituting i = i+ 1

αi+1 = bi+1 − bi = −(bi − bi+1) (12)

∴ bi − bi+1 = −αi+1 (13)

Substituting (11) into (10) we obtain

N+1
∑

i=−N−1

αix[n0 − i] > 0 (14)

Substituting (13) into (8) we obtain

N+1
∑

i=−N−1

−αi+1x[n0 − i] > 0 (15)

Given the two equations (14) and (15) that need to be

satisfied for y[n0] to be a maxima, these conditions can be

interpreted in a geometric manner. Consider the ‘2N + 3’

long sequence of x[n] where n ∈ [n0 −N − 1, n0 +N + 1]
as a point x in a 2N+3 dimensional space. Let the sequence

αi where i ∈ [−N−1, N+1] be denoted by a vector α1 and

the sequence −αi+1 where i ∈ [−N − 1, N +1] be denoted

by vector α2 in the same 2N + 3 dimensional hyperspace.

Then the conditions given by (14) and (15) are required for

Y [n0] to be a maxima can be interpreted in the following

manner:

1) Imagine a hyper plane passing through the origin and

perpendicular to α1. Any point x (2N+3 dimensional)

that lies to one side of this hyperplane will satisfy

N+1
∑

i=−N−1

αix[n0 − i] > 0 (16)

and all the points that lie on the other side will satisfy

N+1
∑

i=−N−1

αix[n0 − i] < 0 (17)

2) One can similarly imagine a hyperplane corresponding

to α2 that divides the entire hyperspace into two

regions corresponding to each of the below conditions

N+1
∑

i=−N−1

−αi+1x[n0 − i] > 0 and

N+1
∑

i=−N−1

−αi+1x[n0 − i] < 0

(18)

3) From the above information, the region where

N+1
∑

i=−N−1

αix[n0 − i] > 0 and

N+1
∑

i=−N−1

−αi+1x[n0 − i] > 0

(19)

are satisfied is given by the intersection of two of the

regions created by the hyperplanes perpendicular to α1

and α2.

The above explanation is illustrated in Fig. 2 which shows a

two dimensional projection of the 2N+3 dimensional space.
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Fig. 2. A two dimensional projection of the filter hyperplanes and the
regions associated with conditions given in equation (19).

From the above derivation, it can be seen that the hy-

perspace is divided into four regions. While one of the

four regions is the maxima region the conditions that are

satisfied in the other regions will lead to a corresponding

minima region, a decreasing region and an increasing region

for a particular filter. Fig. 2 illustrates a two dimensional

projection of the 2N + 3 dimensional space that identifies
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these regions. For a given signal x[n], one can extract all

possible 2N + 3 long subsequences of points and populate

them in a feature space and build hyper planes corresponding

to a particular filter. Then all the subsequences that lie within

the maxima region of the feature space will correspond to

maxima in the filtered signal. This concept is illustrated in

Fig. 2.

B. Robustness

Given that a noise signal could be added to the original

signal, robustness is defined as the ability of the maxima

and minima of the filtered signal to remain intact in spite

of the addition of noise. In terms of the above geometric

interpretation, that would mean that, after the addition of

noise, the subsequences present in the maxima region remain

in the maxima region and similarly other subsequences from

other regions (minima, decreasing, increasing) should remain

in their respective regions. This would ensure that all the

maxima and minima are intact and no new extrema are

formed.

Given the above explanation, the robustness of a sub-

sequence can now be defined as the sum of the squared

distances of a subsequence to both the hyper planes of a

filter. Given this definition, it should be possible to find

an OREF such that the sum of the squared distances to

the hyperplanes of all the subsequences corresponding to

that filter is maximized. It is important to note that the

particular definition of robustness has implications on the

nature of the distortions that the signal is likely to experience

in pattern matching. For example, if one assumes that the

noise to the signal is i.i.d, then the nature of distribution of a

particular subsequence in the 2N+3 dimensional hyperspace

would be spherical. The outer radius of such a sphere would

indicate the severity of the distortion and as long as this

outer radius is less than the perpendicular distance of the

subsequence to the filter hyperplanes, the point would not

change its state from being an extrema or non-extrema. Thus,

the current definition of robustness is apt in case of an

i.i.d noise whose distribution’s range is less than twice the

perpendicular distance of a point to the closest boundary

hyperplane.

C. Derivation for the Optimally Robust Extrema Filter

(OREF)

Given the vector

α1 = [α−N−1 α−N α−N+1 ... ... α0 ... ... αN αN+1 ]
(20)

As the filter is of length 2N + 1 so α−N−1 = 0. Let

α2 = −[α−N α−N+1 α−N+2 ... ... α1 ... ... αN+1 αN+2 ]
(21)

Similarly, as the filter is of length 2N +1 so αN+2 = 0. Let

the above two vectors represent perpendicular unit vectors

to the hyperplanes for a particular filter. Therefore, the

requirement that they be unit vectors imposes a constraint

for α1 and α2 which is given by (22).

N+1
∑

i=−N

α2
i = 1 (22)

From (2) and (11), one obtains the additional constraint

N+1
∑

i=−N

αi = 0 (23)

The above condition can be rewritten as

αN+1 = −(α−N + α−N+1 + .....+ αN ) (24)

The sum of squared perpendicular distances of a particular

point represented by a sequence

[x−N−1 x−N x−N+1 ... ... x0 ... ... xN−1 xN xN+1 ] (25)

is given by the square of the dot product of the subsequence

to α1 and α2

[

N+1
∑

i=−N

αixi]
2 + [

N+1
∑

i=−N

−αixi−1]
2 (26)

Therefore, the total sum of the squared perpendicular dis-

tances (UR) of all the ′M −N ′ points in the hyperspace is

given by

UR =
M
∑

j = N + 1

(Sum over

all points)

[[
N+1
∑

i=−N

αixi+j ]
2+[

N+1
∑

i=−N

−αixi+j−1]
2] (27)

where x0, x1, x2, x3, x4, ........., xM+N+1 represents the time

series for which an OREF is being sought. Substituting (24)

into the above equation we obtain

UR =

M
∑

j=N+1

[[

N
∑

i=−N

αi(xi+j − xj+N+1)]
2+

[

N+1
∑

i=−N

αi(xi+j−1 − xj+N )]2]

(28)

Let yj denote a 2N +1 vector whose ith element is denoted

by (x−N−1+i+j − xN+1+j). Next, let zj denote a 2N + 1
vector whose ith element is denoted by (x−N−1+i+j−1 −

xN+j). Finally, let α denote a 2N + 1 vector whose ith

element is denoted by α−N−1+i. Then the above equation

can be written in the matrix form as

UR =

M
∑

j=N+1

[αT yjy
T
j α+ αT zjz

T
j α] (29)

⇐⇒ UR = αT [

M
∑

j=N+1

[yjy
T
j + zjz

T
j ]]α (30)

Let XData =





M
∑

j=N+1

[yjy
T
j + zjz

T
j ]



 (31)

Clearly XData is positive semi definite from its very defi-

nition (28), but for most datasets for which N << M , the
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matrix XData will be positive definite. There are a few times

series which are deterministic, in which case the time series

satisfies a certain recurrence relation, and which satisfy the

condition N << M but would result in det(XData) = 0.

As analysis of such ‘special’ time series is not the objective

of this paper, further derivation is performed under the

assumption N << M and that XData is positive definite.

Then, (30) can be expressed as

UR = αTXDataα (32)

In order to maximize UR under the condition (22) one can

utilize the Lagrangian multiplier method [17].Thus L given

in (33) needs to be minimized

L = −αTXDataα+ ν[

N+1
∑

i=−N

(αi)
2
− 1] (33)

Using (24)

L = −αTXDataα+ ν[
N
∑

i=−N

(αi)
2+(

N
∑

i=−N

(αi))
2
−1] (34)

Let j1,2N+1 denote a 2N + 1 unit vector, then the above

equation can be simplified to

L = −αTXDataα+ ν[αT Iα+ αT jT1,2N+1j1,2N+1α− 1]
(35)

Let J2N+1 denote a 2N + 1 by 2N + 1 unit matrix,

L = −αTXDataα+ ν[αT [I + J2N+1]α− 1] (36)

Given that there is one quadratic program with one quadratic

inequality constraint, this problem is often referred to as the

trust region sub-problem in mathematical literature [18][19].

Following the Lagrangian multiplier method, the stationary

points are given by

▽αL = 0 and ▽νL = 0 (37)

The condition ▽νL = 0 results in the Karush-Kuhn-Tucker

condition

αT [I + J2N+1]α− 1 = 0 (38)

Once the α vector satisfying the condition ▽αL = 0 is

obtained, it can be multiplied by a constant to satisfy (38)

provided that the modified vector can still satisfy ▽αL = 0.

Solving for ▽αL = 0

▽αL = 2(−XDataα+ ν[I + J2N+1]α) = 0 (39)

∴ XDataα = ν[I + J2N+1]α (40)

As ν is a scalar,

[I + J2N+1]
−1XDataα = να (41)

The above equation is the generalized eigenvalue problem.

Given that XData is positive definite, one can rewrite the

above equation in the form

[I + J2N+1]
−1(XData)

1/2(XData)
1/2α = να (42)

where (XData)
1/2 can be obtained from eigenvalue decom-

position. Multiplying both sides of (42) with (XData)
1/2

(XData)
1/2[I + J2N+1]

−1(XData)
1/2(XData)

1/2α

= ν(XData)
1/2α

(43)

Substituting w = (XData)
1/2α into (43) results in the

regular eigenvalue problem

(XData)
1/2[I + J2N+1]

−1(XData)
1/2w = νw (44)

Thus the eigenvalues (νk) and eigenvectors (wk) corre-

sponding to the symmetric positive semi definite matrix

(XData)
1/2[I + J2N+1]

−1(XData)
1/2, will lead to the so-

lution (XData)
−1/2wk for the ′α′ vector. Given that the

following problem is a trust region sub-problem, it has

been shown that strong duality is satisfied [18] and so the

Lagrangian relaxation for this non-convex problem is exact

[19]. We define the Lagrange dual function as g : R → R
as the minimum value of the lagrangian over a.

g(ν) = infa∈Domain − aTXDataa+ ν[aT [I +J2N+1]a− 1]
(45)

As the stationary points satisfy (40), (45) can be simplified

to

g(ν) = infa∈Domain − aT ν[I + J2N+1]a+

ν[aT [I + J2N+1]a− 1]
(46)

Therefore, the Lagrange dual function is

g(ν) = infa∈Domain − ν (47)

Hence the optimal value for the function in (32) is given by

the largest eigenvalue. Thus, from the different eigenvector

solutions that are obtained, the most optimal solution is

given by the eigenvector corresponding to the maximum

eigenvalue. The above optimization process contained no

constraints on the number of extrema that result from the

filtered signal. Therefore, this procedure could theoretically

result in a filter for which no extrema are created or a

situation in which each and every point in the signal is

an extrema. In case one obtains no extrema points from

the OREF (corresponding to the maximal eigenvalue), then

one can utilize subsequent eigenvalues and eigenvectors that

follow the maximal eigenvalue to obtain OREFs that result

in extrema. In case all the values or a large percentage of

the signal values are chosen as extrema then it is advisable

to smooth the signal and then use the optimization process

to extract the filter.

IV. EXPERIMENTAL RESULTS

The purpose of this section is to demonstrate the advan-

tages obtained from using the extrema from the OREF as

compared to using other traditional filters in a given pattern

matching task. The datasets used in the experiments are

described in subsection IV-A and the experimental procedure

and final results are presented in subsection IV-B. The

traditional filters which are used in the comparison process

and the OREFs which are obtained from utilizing the method

described in section III on the different datasets described in

subsection IV-A are shown in Fig. 3.
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A. Data for experimental tests to illustrate robustness of the

derived filter

The following data was used as a part of the experiments:

1) Pitch Data (Real): The dataset consists of road pitch

data collected from an in-vehicle data acquisition sys-

tem [2]. The data was collected as a part of the NCHRP

22-21 median design project.

2) EEG Data (Real): EEG time series data obtained from

different trials on human subjects is concatenated to

obtain the time series used in this analysis. The data

was downloaded from the following source [20].

3) Gaussian Random Walk (GRW) (Simulated): The data

was obtained from a MATLAB simulation. The MAT-

LAB code to obtain the simulated data is given by

Data = cumsum(randn(216, 1));

B. Test for subsequence matching ability

The procedure used to compare the extrema obtained

from using different filters, shown in Fig. 3, in a pat-

tern/subsequence matching task is described in this subsec-

tion. The problem of matching a given query time signal

to an existing time series dataset is called time series sub-

sequence matching. The problem in encountered in various

applications [2] dealing with time series data. A wide variety

of solutions utilizing sliding window methods for dimension

reduction or using different types of distance measures have

been proposed [4],[11],[12]. However, extrema based meth-

ods offer certain advantages while solving the subsequence

matching problem because of their ability to handle complex

distortions [1]. For example, scale factor noise, bias noise and

outliers are commonly encountered distortions in time series

data. However, common index-based subsequence matching

methods based on euclidean distance [4] and DTW [11] can-

not handle outliers while certain edit distance based methods

like Longest Common Sub-Sequence (LCSS) [12] are not

designed to handle scale and outlier noise simultaneously.

In this particular set of experiments, 31 query signals are

extracted from a time series of 65536 points obtained from

the datasets in subsection IV-A. Each query signal contains

256 data points and is corrupted with bias noise, scale

factor noise, and outliers before being tested for subsequence

matching. The bias noise for a query signal was obtained by

randomly selecting a value from a uniform distribution in

the following interval [-std dev(query signal),+std dev(query

signal)]. Similarly, the scale factor noise was obtained by

randomly selecting a value from a uniform distribution in the

following interval [0.75,1.25]. The outliers are simulated by

multiplying a given number of randomly selected points in a

query signal by a large scale factor. The large scale factor is

chosen such that it results in a 15% matching accuracy when

the above subsequence matching task is performed using

the “standard” sliding window based euclidean distance

matching method [4] in the presence of three outliers in the

query signal. The query signal is also corrupted with a small

amount of Gaussian noise (approximately 14dB SNR) that

is often encountered in time series data in order to make the

matching process more realistic.

The subsequence matching was performed by using the

feature encoding / KD-tree methodology described in [2]

for all the different filters shown in Fig. 3. In [2], the

feature vectors are encoded at different scales by using

the wavelet transform. However, in order to simplify the

comparison process, features are extracted from a ‘single

scale’ (with a filter containing 12 taps) in this paper. The

entire subsequence matching process with all the 31 query

signals, for each dataset, is repeated 30 times so as to obtain

a statistical average of the performance accuracy.

A brief description of the subsequence matching process

from [2] is presented here for the sake of completeness. The

first step (Indexing phase) in the extrema based method is

to build a KD-tree using the features generated from time

series as described in section 2 of [2]. In the online phase, the

features generated from the query signals are matched with

the features present in the KD-tree database. The matches

in the database yield different estimates of the location from

which the query signal was extracted. These locations are

put into a histogram to obtain the most agreed upon location

estimate for the time series subsequence as described in

[2]. If the location estimate from the matching process was

within a certain threshold distance (within 25 data points

‘or’ approximately 10% of the length of the query signal)

from the true location of extraction, then the result is deemed

accurate. The main difference between the methodology in

section 2 of [2] and the methodology followed in this paper

is that, instead of using the wavelet transform for filtering,

this paper used the filters shown in Fig. 3.

It is important to note that the same distortions, noise

levels and accuracy thresholds were used while testing all

the different filters. In the feature generation process, the

threshold in the extrema detection step described in Fig. 1

is adjusted such that the number of extrema from each

filter are approximately the same. This process ensures that

the computational effort required for the different filtering

techniques is also identical so that no filter has any undue

advantages.

The results from these filters are compared in Fig. 4 to

Fig. 6 for the different datasets and for different number of

outliers introduced into the query signal. The results clearly

show that the extrema from OREF outperform the traditional

filters in the given subsequence matching task. The opti-

mization method presented in section III was mainly aimed

towards the robustness of the extrema created after filtering.

It can be seen that this property is an important determinant

of the performance in the above subsequence matching task.

However, it is important to understand that because the above

filter wasn’t optimized for returning maximum accuracy in

subsequence matching, it may be possible to find another

linear filter that may exceed the performance of the filter in

this particular subsequence matching application.

V. CONCLUSIONS AND FUTURE WORK

The core contribution of this paper is to demonstrate the

possibility of optimizing filters in order to enable extraction
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Fig. 3. The filters used in the experimental tests.
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Fig. 4. The subsequence matching results for Pitch data using extrema
features obtained from using different filters.
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Fig. 5. The subsequence matching results for EEG data using extrema
features obtained from using different filters.
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Fig. 6. The subsequence matching results for GRW data using extrema
features obtained from using different filters.

of extrema with desirable properties. The methodology de-

scribed here can be extended to a multi-scale extrema encod-

ing methodology like [2] by performing the optimization at

each scale separately. Future work could be directed towards

building methods for controlling other important properties

such as uniqueness or cardinality of the extrema extracted

from the data. Also, Fig. 3 shows that the OREFs for different

datasets have similar shapes and future work could also be

directed towards deriving an analytical equation to represent

this filter which could be useful for a wide range of datasets.
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