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ABSTRACT 
This paper presents a novel approach to find patterns in 

vehicle x-y-z acceleration data for use in prognostics and 

diagnostics. In this problem, vehicles are assumed to travel on 

the same routes and often times as a part of convoys but their 

GPS and other position information has been removed for 

privacy reasons. The goal of the pattern matching scheme is to 

identify the route or convoy associations within vehicles by 

using the acceleration data collected onboard these vehicles. A 

crucial step in solving this problem is to choose the right 

feature vector, as raw matching of acceleration signals is 

inappropriate due to different velocities, driving behaviors, 

vehicle loading, etc. In this paper, we demonstrate the 

feasibility of using ‘Multi-Scale Extrema Features’ for this 

application. The paper also addresses implementation details  

to enhance performance for in-vehicle acceleration data, 

corrupted by different sources of noise. A novel ‘Multi-Scale 

Encoding’ method is also proposed for the above feature vector 

and it leads to a significant improvement in the performance 

over traditional pattern matching methods. While the main 

focus of the paper is towards identifying feature vectors that 

effectively describe in-vehicle acceleration data, the feature 

vector could potentially be used with acceleration data 

obtained from other applications.  

1 INTRODUCTION 

Previous work that identified patterns in acceleration data 

was aimed at identifying the nature of terrain that the vehicle 

was travelling on [1] or identifying the driver behavior [2]. 

Recently, acceleration data is also being used to identify the 

activity of a person [3] as many smartphones come with 

accelerometers built into them. In this work we aim to extract 

location information by correlating patterns from acceleration 

data across multiple vehicles. This problem was encountered as 

a part of a broader research project where a large set of vehicle 

data (service records, acceleration data, etc) were collected over 

many years and on a number of different vehicles. While the 

acceleration data from these vehicles is known, the GPS data is 

unavailable due to privacy reasons.  For purposes of 

prognostics and diagnostics, one of the tasks of the original 

project was to identify patterns in the data collected from fleet 

vehicles that were operated as a part of convoys or which were 

operated in the same routes. As the GPS information was 

unavailable, it was deemed necessary to explore the possibility 

of being able to cluster vehicles into common locations on the 

basis of measured acceleration data. If this grouping can be 

performed, then a possible application could be to pair this new 

information with the service records and other information 

from the vehicles to identify relationships between driving 

behavior patterns, positions, and repair histories.  

Before solving the problem of clustering the vehicles, one 

must check feasibility of a signal-feature solution approach 

through a preliminary test where true positions are measured 

during the test. A preliminary test in this case would be to 

check whether the acceleration signatures of two vehicles that 

have travelled on the same road can be matched in the presence 

of vehicles. Also, the preliminary test data can be used to 

determine the most effective variant of a feature vector that can 

be used to solve the clustering problem. The main objective of 



  

this paper is to perform this preliminary test and identify 

feature vector formulations that will be effective in matching 

acceleration data collected from different vehicles. 

The general overview of the preliminary test is as follows.  

Two sets of vehicle data including both acceleration and GPS 

(for ground truth) are collected on the same set of roads with 

two different vehicles. One set of acceleration data is used to 

create a database while portions of different length are 

extracted from the second dataset and are used to obtain a 

match to the first acceleration profile. The GPS locations from 

both the datasets are used to measure the accuracy of the 

matching process.  

In its essence, the preliminary test consists of matching a 

signal with a large database of signals to find the most similar 

matches. This problem is often referred to as the subsequence 

matching problem [4]. The preliminary test is also similar to the 

map-based Global Localization problem in robotics [5,6,7]. In 

the Global Localization problem, a map (or database) is given 

to a robot, and robot must establish its location within the map 

by collecting sensor data and matching it with the map. Thus, 

this paper can be seen not only as a method to perform the 

feasibility test for grouping vehicles based on acceleration data, 

but also as a feasibility test for acceleration-based localization.  

A variety of sensors have been used for Global Localization 

over the years. LIDAR [5] and Vision sensors [6] are the most 

commonly used in robotics to perform Global Localization.  

Both LIDAR and Vision systems provide high dimensional 

data and the nature of these sensors is substantially different 

from inertial sensors such as an accelerometer and so the 

methods applicable cannot be directly utilized for pattern 

matching with acceleration data. In recent research, 

Vemulapalli et al [8]  have reported that global localization can 

be performed using pitch data.  

Global Localization with pitch data [8,9] has many 

similarities with respect to the ‘preliminary test’ problem using 

accelerations, but there are a number of key challenges that are 

specific to acceleration data. Pitch is generally easier to use 

because the pitch plotted against odometry does not change 

significantly with speed. The acceleration data, however, can 

undergo substantial distortion based on external conditions such 

as traffic. Moreover, the bias and scale factor variations in the 

pitch data are generally smaller than that for acceleration data. 

 While the paper utilizes the ‘Multi-Scale Extrema Feature’ 

vector framework developed for the pitch-based localization 

method, it evaluates different variants of the above feature 

vector and provides insights into the specific requirements and 

possibilities for acceleration data.  This paper also proposes a 

novel ‘Multi-Scale Encoding’ method that enhances the 

performance of the feature matching algorithm. While the 

current work presents the results in the context of in-vehicle 

acceleration data matching, this feature vector could potentially 

be used for other acceleration matching applications.  

 Section 2 explains the challenges in matching acceleration 

data from two different vehicles and presents a literature survey 

of the current subsequence matching techniques and their 

abilities to handle the above challenges. Section 3 presents the 

‘Multi-Scale Extrema’ (MSE) features and the novel encoding 

method that has been utilized to solve this problem. Section 4 

describes the experimental setup used to collect the data 

required to test the algorithm. Section 5 presents the results 

obtained from applying different variants of the MSE features 

to acceleration data. Conclusions then summarize the main 

results of this work. 

2 BACKGROUND AND LITERATURE SURVEY 

Before setting out to perform the ‘preliminary test’, one 

can visually verify whether acceleration data collected from 

two different vehicles on the same route have similar 

characteristics. Fig 1 shows the acceleration data collected on a 

vehicle that has travelled on a certain public route and within 

normal traffic patterns. One can clearly see the effect of the 

road layout on the acceleration data, wherein the turns of the 

route correlate to specific acceleration features. This implies 

that one can predict the acceleration of a vehicle, to a certain 

extent, based on the route that the vehicle is travelling on. Or 

conversely, one can use acceleration features to discern route 

location. The driver behavior, such as the speed at which one is 

travelling, external conditions, such as the traffic on the road, 

and the vehicle dynamics will also affect the acceleration data 

that is collected on a vehicle. This is in contrast to pitch based 

localization which is largely immune to these variations. 

 

 

FIGURE 1. THE EFFECT OF THE ROUTE ON IN-VEHICLE 
ACCELERATION DATA  

The key to acceleration-based pattern matching is the 

ability to extract the common features that can be matched 

irrespective of the nature of distortions that will be experienced 

due to human behavior and external conditions. Fig 2 shows the 

acceleration data collected on the same route as shown in Fig 1 

on two different runs by different drivers. While one can 

definitely notice similarities between the data, the nature of 

distortions that one can observe is substantial: the five 

distortions that one can easily notice are shown in Fig 2 include 
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temporal distortion, outliers, bias distortion, scaling distortion, 

and random noise. 

Given the nature of distortions in this case, a robust 

subsequence matching technique must be deployed. A number 

of different subsequence matching techniques have been 

proposed in the literature. Unfortunately, the similarity distance 

metrics that are used by these techniques have certain 

drawbacks that preclude them from being effective for 

acceleration data in particular. For example, the Euclidean 

distance has been reported as being brittle [10] to temporal 

distortions. Dynamic Time Warping (DTW) [10,11] has been 

introduced as a generalized form of Euclidean distance as it is 

robust to temporal distortion but it fails in the presence of 

outliers. This has led to ‘Edit Distance’ methods such as Edit 

Distance on Real Sequence (EDR) [11] and Longest Common 

Subsequence (LCSS) [12], which have drawn inspiration from 

methods used for matching strings in which dissimilar portions 

between the two strings are ignored. It has been reported in the 

literature that the edit distance methods are themselves 

sensitive to amplitude shifting and scaling [13].The above 

methods [10,11,12] are also computationally burdensome 

because of the long length of the query signal in this 

application. Researchers have recently used local pattern based 

techniques [14,15], but most of these methods have relied on a 

sliding window approach and perform an exhaustive search 

across all window sizes and are thus computationally 

expensive.  

 

 

FIGURE 2. THE DISTORTIONS THAT ARE EXHIBITED BY 
ACCELERATION DATA COLLECTED ON DIFFERENT RUNS. 

The recently proposed MSE Features for pitch-based 

localization [8] have been designed to perform under a range of 

distortions without using a sliding window approach. The 

following section presents a brief overview of the subsequence 

matching algorithm and MSE Features. The section also 

presents a novel ‘Multi-Scale Encoding’ method which is a 

generalization of the sequential encoding method used in 

previous work [8] and leads to better performance results.  

3 MULTI-SCALE EXTREMA FEATURES  

3.1 Algorithm Overview  

For the preliminary test, discussed in the first section, a 

query signal must be compared to a database of signals in order 

to obtain the locations of maximum agreement. Implementation 

of this algorithm can be divided into two phases: Preprocessing 

Phase and Testing Phase as shown in Fig 3. In the 

preprocessing phase, the signal-database is processed to obtain 

feature vectors, which are stored in an index-database (KD-

tree) along with the position from which each feature is 

extracted. In the testing phase, each query signal generates 

multiple feature vectors. Each of those features is matched to its 

closest neighbor, in terms of Euclidean distance, in the signal-

database with the aid of the KD-tree. Each feature match yields 

an estimate for the position from which the feature is extracted.  

All such position estimates are compiled into a histogram and 

the position with the highest number of votes in the histogram 

is output as the best position estimate for the query signal.  

 

FIGURE 3. THE TWO PHASES INVOLVED IN THE 
PROPOSED ALGORITHM AND THE CENTRAL ROLE PLAYED 

BY THE FEATURE VECTOR IN THESE PHASES. 

 

FIGURE 4. THE STEP BY STEP PROCESS INVOLVED IN 
OBTAINING THE MULTI-SCALE EXTREMA FEATURES.  

3.2 Multi-Scale Extrema Features   

This sub-section introduces the ‘Multi-Scale Extrema 

Feature’, which presents a very efficient wavelet scheme to 

generate feature vectors that capture the behavior of the signals 



  

over different resolutions. The individual steps involved in 

generating this feature vector are shown in Fig 4 and the 

corresponding descriptions are given below.   

1) Wavelet decomposition: To separate high-frequency 

features from low-frequency features, wavelet decomposition is 

performed to partition the signal into its components 

corresponding to dyadic frequency bands. The wavelet 

transform is performed by using the so-called “Derivative of 

Gaussian (DoG) wavelet” whose Fourier transform is shown 

below.  

                                    ̂( )      
  

                            (1)  

Where   is a variable that denotes frequency.  

2) Obtaining Key Points:  Local maxima of the output from 

the wavelet transform are then selected as candidate “key 

points”. This implies that, if a local maxima exists at time    

and scale    , then: 

                                
   (   )

  
            

                      (2) 

Where   (   )denotes the wavelet transformed version of the 

given signal and is a function of time     and wavelet scale    . 
Fig 5 (step 2) shows that the key points of the wavelet 

transform at different scales. This entire process of taking the 

wavelet transform and finding the local maxima in the above 

manner is called ‘Wavelet Modulus Maxima’ [16]. By 

encoding the shape information at recognizable key points, this 

algorithm is able to achieve shift invariance. This procedure 

does away the need for a sliding window approach, thus 

reducing the number of feature vectors required to encode a 

particular stretch of data.  

TABLE 1. DIFFERENT KINDS OF POINT FEATURE VECTORS  

 

3) Computing the point feature vector: Once the key points 

are obtained, the distance of a key point to its adjacent 

neighbors is used to compute a point feature vector. By using 

the neighboring key points, the feature vector is able to expand 

to a scale suited to the underlying variation present in the 

signal. Thus, the signal length that is encoded is larger if the 

key points are far apart because of little variation in the data, 

and vice versa. This adaptive nature of the proposed feature 

vector enables it to overcome ‘the one size fits all’ restriction of 

the sliding window technique. 

Step3 of Fig 5 shows how the Point Feature Vectors 

(PFVs) are generated from distances between adjacent key 

points. Depending on the nature of invariance that one would 

like to incorporate, a feature vector could be encoded in a 

variety of ways as shown in Table 1. The parameters 𝑎 𝑏 𝑐 𝑑 

shown in Table 1 are the relative distances of an extrema to its 

neighbors as shown in Step3 of Fig 5. The different PFVs in 

Table 1 are obtained by manipulating the distance parameters in 

order to remove certain types of information (Ex: Scale 

Information) in order to incorporate a certain invariance (Ex: 

Scale Invariance) into the vector. These vectors can be 

formulated in a number of different ways as discussed in Perng 

et.al [18]. The function   shown in step 3 of Fig 5 denotes a 

generic function used to encode the relative distance 

information into a dimension of the point feature vector and it 

does not have to be identical for all the different dimensions.  

 

 

FIGURE 5. THE FEATURE VECTOR CREATION PROCESS 
BY AN EXAMPLE.  

Table 1 offers different combinations of uniqueness and 

robustness that one could impart to the encoded feature vectors.  
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While one could define uniqueness and robustness in precise 

mathematical terms, an intuitive explanation is provided here 

for the sake of understanding.  Uniqueness pertains to the 

extent to which a given feature vector differs from all the other 

feature vectors created from a particular dataset. On the other 

hand, robustness can be understood as the ability of a feature 

vector to remain close to its original form in spite of it being 

created from a signal which has undergone a certain form of 

distortion. As information is removed from a feature vector it 

becomes less unique and more robust. For example, as a 

hypothetical scenario one could imagine an encoding scheme 

where all elements of the feature vector are zeros irrespective 

of the distances of an extrema to its neighbors and this will 

result in feature vectors that are the most robust and the least 

unique.  

The first encoding scheme in Table 1 allows the feature 

vector to be scale invariant (both temporally and amplitude 

wise) with respect to the input data. This robustness to scaling 

is provided because the scale information is removed from the 

encoded feature vectors and this leads to lesser uniqueness of 

the resulting feature vector. On the other hand, the third feature 

vector in Table 1 retains all the scale information and will 

therefore lead to a feature vector with higher uniqueness and 

lower robustness to scale distortions compared to the 

previously mentioned feature vector.  

As only the relative distances between key points are used 

to compute the feature vector, all the above feature vectors are 

bias invariant. It is important to note that “Time Bias” 

invariance is not mentioned in Table 1 as that corresponds to 

the basic subsequence matching problem and is present in each 

one of those cases. Given the uncertain nature of variations 

present in the acceleration data, an experimental study was 

performed to choose the best-performing point feature vector. It 

was found that the amplitude bias feature vector gave the best 

performance for acceleration data. This implies that in spite of 

large distortions that were observed in the acceleration data 

(Fig 2), the uniqueness that is imparted from the scale 

information outweighs the robustness advantages accrued from 

eliminating the scale information. The experimental results to 

this effect are presented in section 5.1.  

4) Creating the extended feature vector: Finally, adjacent 

Point Feature Vectors (P.F.Vs) are bundled together to create an 

extended feature vector in order to obtain an sufficiently unique 

representation of the signal’s shape around the key point. 

Increasing the dimensionality of the feature vector or increasing 

the number of point feature vectors that combine to form an 

extended feature vector seems to be an easy way to increase the 

uniqueness of a feature vector and therefore achieve a better 

matching result. It is important to realize that this might not 

always be the case. Increasing the dimensionality implies that a 

longer signal is encoded into a feature vector and so any outlier 

or other distortion related artifacts are likely to contribute to a 

large number of feature vectors. Therefore, the increased 

information content due to high dimensionality could lead to 

reduced robustness. Thus, choosing the length of an extended 

feature vector is a tradeoff between increasing the uniqueness 

of a feature and restricting the effect of an erroneous key point 

on the recognition of its neighborhood in order to increase its 

robustness. For query signals of shorter lengths, there might not 

be sufficient information in certain wavelet scales in order to 

encode a feature vector and this may again decrease the 

accuracy. It is also important to bear in mind that increasing the 

dimensionality of the feature vector will result in a much larger 

computational effort while searching the KDtree because of the 

curse of dimensionality [17]. The dimensionality has to be 

determined experimentally and section 5.1 shows that utilizing 

three point feature vectors to build an extended feature vector 

gives the best pattern matching result for the vehicle data 

collected thus far. An example extended feature vector created 

from three point feature vectors is shown in step 4 of Fig. 5.  

The extended feature vectors obtained from encoding 

adjacent Point Feature Vectors (P.F.Vs), as described above, 

will be referred to as Sequentially Encoded Multi-Scale 

Extrema features or SEMSE features. The next subsection 

presents a technique which allows for the encoding of non-

adjacent Point Feature Vectors (P.F.Vs) and the features 

generated from this process are called Multi-Scale Encoded 

Multi-Scale Extrema features or MEMSE features.  

3.3 Multi-Scale Encoding   

Multi-Scale Encoding is a technique to improve the matching 

accuracy by encoding more feature vectors for a given signal 

that in turn captures more information about the signal. In the 

Multi-Scale Encoding method, point feature vectors from 

different scales are combined together to form extended feature 

vectors. Fig 6 illustrates the encoding mechanism for SEMSE 

and MEMSE feature vectors. The figure shows the features 

vectors that are formed with a point feature vector 

(P.F.V)(shown in a red glow) in conjunction with other P.F.Vs 

(shown in a yellow glow) for both the sequential encoding and 

Multi-Scale Encoding methods.   Multi-Scale Encoding allows 

encoding of feature vectors from even those wavelet scales 

where there may be insufficient number of extrema in a 

particular scale to form a sequentially encoded feature vector. 

This leads to improved performance for shorter query signals. 

In this particular implementation, two point feature vectors 

(P.F.Vs) are combined to form a MEMSE feature and the 

amplitude bias invariant feature vector encoding from Table 1 

is used to generate the P.F.V. As a large number of 

combinations of point feature vectors across multiple scales are 

possible, it becomes necessary to limit the number of 

combinations by setting time and scale windows in which 

suitable combinations can be found. Choosing a larger window 

size will lead to the creation of a larger number of a features but 

this would also increase the computational effort required for 

the pattern matching task.  

 In this particular paper, each point feature vector (P.F.V) 

from a given scale was combined with point feature vectors 

from two subsequent scales. Within these scales, the original 

P.F.V was combined with other P.F.Vs which were within a 



  

certain time threshold interval from the original P.F.V. This 

time threshold has to be adaptive, as each wavelet scale 

represents the signal over different time lengths. The threshold 

for each scale was chosen to be twice the compact support of 

the wavelet filter at that particular scale. This allows for an 

adaptive threshold that adjusts itself to an appropriate extent 

corresponding to the filter. 

 

 

FIGURE 6. AN ILLUSTRATION OF THE SEQUENTIAL 
ENCODING METHOD AND THE MULTI-SCALE ENCODING 

METHODS.  

It can be seen that the Multi-Scale Encoding method is a 

generalization of the sequential encoding method, where the 

P.F.V’s from different wavelet scales and beyond adjacent 

neighbors are combined. It is also important to note that the 

extended feature vector will contain two additional dimensions 

which store information about the difference in the scales and 

the temporal distance between the two combined P.F.Vs. 

4 EXPERIMENTAL SETUP 

Acceleration and GPS data were collected along six 

predetermined routes. These routes ranged from 15-45 minutes 

in duration and included diverse driving conditions such as 

winding roads, mountainous roads, highways, downtown 

driving, etc.  The total distance for all the six routes combined 

was 135 kms and the routes are shown in Fig 7 and Fig 8. Each 

of the six routes was driven in two different manners to test two 

particular scenarios. 

1) Convoy Scenario: In the convoy situations, three cars 

drove the route simultaneously, with the cars safely following 

directly behind each other. The data collected in convoy 

scenario are expected to have similar characteristics as all the 

vehicles were travelling at similar speeds, in similar traffic 

conditions. However, there will be some variation due to the 

different drivers involved.  

2) Single Vehicle Scenario: In the single car situations, one car 

drove the route independently with no driving restrictions other 

than local traffic laws. The route was repeatedly driven under 

different times of the day (different traffic conditions). This 

provided a less controlled test where data collected was unique 

to driving style and traffic patterns. 

The equipment used to collect data included a GlobalSat BU-

353 GPS antenna sampling at 10 Hz, a SparkFun, three-axis, 

ADXL335 accelerometer sampling at 9600 Hz, a battery pack, 

and a data-logging box. The data-logging box housed the 

accelerometer and stored GPS and acceleration readings. The 

data-logging box was positioned behind the passenger seat and 

was firmly fixed to floor of the vehicle. The magnetized GPS 

antenna was mounted in the rear-window area of the car to 

provide higher satellite visibility. Throughout the tests, the 

equipment was positioned in the same orientation for data 

consistency. Refer to Fig. 8 for images of the equipment setup.  

 

 

FIGURE 7. THE ROUTES COVERED AS A PART OF THE 
DATA COLLECTION EFFORT 

 

FIGURE 8. THE SENSORS AND DATA ACQUISITION 
SYSTEMS USED IN THE EXPERIMENTS. 

The GPS and accelerometer data were collected separately in 

the data-logging unit. Post-processing was used to convert the 

data into MATLAB data files. To compensate for the different 

sampling rates, the GPS and acceleration data were resampled 



  

to 10 Hz for further processing. 

5 EXPERIMENTAL RESULTS 

This section presents the experimental results obtained by 

using Multi-Scale Extrema (MSE) features on the data from the 

two scenarios mentioned in the previous section. The tests are 

conducted using the subsequence matching procedure described 

in section 3.1. The testing procedure consists of a preprocessing 

phase in which the data collected on one of the vehicles is used 

to build the KD-tree data structure. In the testing phase, 

acceleration data obtained from another vehicle is used to 

create feature vectors and these features are matched with the 

KD-tree data structure. The position estimates from the matches 

are compiled into a histogram and the match with the highest 

number of votes provides a position estimate for the current 

vehicle. The accuracy of this estimate is compared to the 

separately measured GPS information and in this 

implementation, a distance threshold of 300 meters, in the 

database containing over 135000 meters of data, is used to 

verify if a resulting location estimate is accurate. A relatively 

lax threshold distance was utilized as this would be sufficient 

for the prognostics and diagnostics application which is the 

eventual target for the preliminary acceleration pattern 

matching problem.  

As described earlier, the acceleration data collected on a 

vehicle depends on the route, driver behavior and external 

traffic conditions. Given these variations, the convoy 

acceleration data matching problem is easier because all these 

variations are expected to be similar as the vehicles are 

travelling in a convoy formation. On the other hand, in the non-

convoy acceleration data, only the variations due to the 

roadways are expected to match while the variations due to 

driver actions and external conditions are expected to be 

different and therefore inhibit the matching process. Due to 

these differences in the data types, one can notice that in all the 

subsequent tests, the accuracy result for the convoy dataset is 

higher than the accuracy for the non-convoy dataset. Therefore, 

the two datasets are useful to understand the behavior of the 

algorithms under different levels of noise. Given the two 

datasets, the next subsection presents evidence to support the 

parameter choices that have been made in constructing the 

feature vector. The subsequent subsection delves into the 

experimental results of the acceleration matching problem 

using different variants of Multi-Scale Extrema Features.  

5.1 Parameter Tuning  

 5.1.1) Selecting the Point Feature Vector: The first 

design choice in constructing the feature vectors is to choose a 

point feature vector from among the different options presented 

in Table 1. An experimental test was performed using the 

SEMSE features to decide the appropriate point feature vector 

from among those listed in Table 1 and the results are presented 

in Fig 9 and Fig 10. The test followed the methodology 

described in section 3.1 and the two datasets described in the 

previous section were utilized.  

The results for the convoy dataset are shown in Fig 9 and the 

Amplitude Bias encoding from Table 1 results in the best 

performance. These results can be intuitively explained as the 

convoy data is expected to matchup very well as all the effects 

such as route layout, the driver behavior and external 

conditions are expected to be similar for all the vehicles. This 

implies that because of the low noise situation, one would not 

require a high degree of robustness from the feature vector. 

Therefore, the Amplitude Bias point feature vector which 

provides a unique but not very robust feature vector would be 

very suitable for this situation.  

 

 

FIGURE 9.  ACCURACY CURVES FOR LOCALIZATION IN 
THE CONVOY DATASET USING DIFFERENT TYPES OF 

FEATURE VECTORS. 

 

FIGURE 10. ACCURACY CURVES FOR LOCALIZATION IN 

THE NON-CONVOY DATASET USING DIFFERENT TYPES 

OF FEATURE VECTORS. 
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Fig 10 shows that the “Amp-Bias” point feature vector 

performs well even in the non-convoy situation, but it must be 

noted that the “Amp bias, time scale” feature vector also 

performs well. It is quite likely that in the case when non-

convoy data is collected with large variations in speed, then 

“Amp bias, time scale” feature vector can outperform the “Amp 

bias” feature vector in the non-convoy scenario.  

The results in Fig 9 and Fig 10 show that scale information 

in the feature vector makes an overall positive contribution to 

matching process because of the uniqueness it imparts in spite 

of the reduced robustness that might occur because of any scale 

factor variations between the matched signals.  

 

FIGURE 11.  EFFECT OF THE FEATURE VECTOR 

DIMENSIONALITY ON THE RETRIEVAL ACCURACY FOR 

THE CONVOY DATASET. 

 

 

FIGURE 12. ACCURACY CURVES FOR LOCALIZATION IN 
THE NON-CONVOY DATASET USING DIFFERENT TYPES OF 

FEATURE VECTORS.   

5.1.2 Extended feature vector dimensionality: The 

number of point feature vectors that are utilized to construct an 

extended feature vector is another important design choice that 

determines the dimensionality of the extended feature vector. 

Fig 11 and Fig 12 show the effects of the feature vector 

dimension on the retrieval result for the case of SEMSE 

features. It can be seen that, for both the datasets, the method in 

which the extended feature vector has three point feature 

vectors outperforms the other cases. The performance of the 1 

point feature vector case can be attributed to the lack of 

adequate uniqueness in the feature vector. On the other hand, 

the performance of the 5 point feature vectors case can be 

attributed to the decrease in robustness as an erroneous artifact 

such as an outlier is encoded into a larger number of feature 

vectors.   

 

FIGURE 13.  ACCURACY CURVES FOR LOCALIZATION IN 
THE CONVOY DATASET USING DIFFERENT TYPES OF 

FEATURE VECTORS. 

 
FIGURE 14. ACCURACY CURVES FOR LOCALIZATION 

IN THE NON-CONVOY DATASET USING DIFFERENT TYPES 
OF FEATURE VECTORS. 
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5.2 Experiments  

The pattern matching experiments are divided into two 

cases. In the single axis acceleration matching case, only the 

forward acceleration data is utilized in the matching process. 

On the other hand, the three axis acceleration matching case 

utilizes data from all X-Y-Z accelerations of a vehicle.  

5.2.1 Single Axis Acceleration Matching: The 

pattern matching results comparing the SEMSE, MEMSE 

feature based matching and the traditional Euclidean distance 

method are shown in Fig 11 and Fig 12. In order to simplify the 

explanation, the results of SEMSE method are first compared 

with the Euclidean distance method and then a comparison 

between the MEMSE and SEMSE features is delineated.  

 1) SEMSE features vs. Euclidean distance method: The aim 

of this analysis is to compare the results of a particular 

implementation of the MSE feature (Sequentially encoded) 

with the Euclidean distance method by evaluating them on the 

same dataset. The sequentially encoded feature has been 

described in section 3.2. In this particular implementation, the 

amplitude bias invariant feature vector from Table 1 was 

chosen on the basis of the analysis performed in section 5.1.1. 

A total of three point feature vectors were used in each 

extended feature vector as this gave the best performance as 

shown in section 5.1.2. The dataset consists of acceleration data 

measured along a single axis and the results corresponding to 

convoy and non-convoy datasets are shown in Fig 11 and Fig 

12 respectively.  

The low noise level in the query data of the convoy dataset, 

results in the excellent performance of both the Euclidean and 

the Sequentially Encoded MSE (SEMSE) feature vector. 

However, one can notice that the SEMSE feature outperforms 

the Euclidean method at longer query lengths and this can be 

attributed to the non-robust nature of the Euclidean distance 

metric. It must also be noted that the Euclidean distance method 

performs better than the SEMSE feature vector for shorter 

query lengths as there may not be adequate number of extrema 

in shorter query signals in order to create unique feature 

vectors. In the case of the non-convoy dataset, the SEMSE 

feature outperforms the Euclidean distance based method 

because of its capacity to withstand complex deformations in a 

signal. The performance difference is stark especially with 

large query lengths, because of the ability of the MSE method 

to encode low frequency features which are very unique. While 

the DTW [18] based methods might result in better 

performance than the Euclidean data, the high computational 

demands of these methods makes them infeasible for the 

current application. It must be noted that MSE method not only 

results in better accuracy but is also computationally very 

efficient. 

2) MEMSE features vs. SEMSE features:  

Fig 13 and Fig 14 also present the results of using different 

types of encoding techniques to build the extended feature 

vector. The MEMSE feature vector clearly leads to better 

performance than the SEMSE feature vector, but the nature of 

the Multi-Scale Encoding technique leads to large number of 

feature vectors and this in turn leads to a slightly larger memory 

footprint and computational effort in this case.  

 

 
FIGURE 15.  ACCURACY CURVES USING 3-AXIS 

ACCELERATION DATA FOR THE CONVOY DATASET. 

 .

 
FIGURE 16.  ACCURACY CURVES USING 3-AXIS 

ACCELERATION DATA FOR THE NON-CONVOY DATASET. 
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improves the accuracy of all the methods and that the MEMSE 

feature vector gives the best performance in all the cases.   

6 CONCLUSION AND FUTURE WORK 

Overall, the paper demonstrates the utility of Multi-Scale 

Extrema Features for encoding acceleration data. The paper 

also proposes the Multi-Scale Encoding method which leads to 

improvements in the performance under certain conditions, 

when compared to the sequentially encoded method. This 

analysis has shown that, given long query signals, the 

acceleration data from a vehicle travelling on a particular road 

can be matched in spite of differences in driver behavior and 

traffic conditions.  

The performance advantages of using the feature vectors are 

clear, especially, in the case of longer query signals. The 

feature vectors that have been developed can not only be used 

for the originally mentioned clustering task but also be applied 

to other pattern recognition applications which rely on in-

vehicle acceleration data.  

An interesting direction of future work would be to extract 

extrema from Iterative Mode Functions (IMFs) obtained from 

Emperical Mode Decomposition (EMD) [20] because of their 

ability to handle nonlinear and non-stationary characteristics 

that was observed in acceleration data. Future work could also 

be directed towards minimizing driver variability effects by 

preprocessing or by utilizing encoder data in order to correct 

for rate of travel through feature sets. Additionally, because the 

application of these results considers reliability of the same 

vehicle model in operation, all testing was done using identical 

Chevy Malibus as the fleet vehicles and therefore the present 

study does not account for distortions in the acceleration data 

due to the different dynamics exhibited by different vehicle 

types. Work is ongoing to study the dynamic influence of 

vehicle-to-vehicle differences.  
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