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Abstract-We quantify observability in small (3 node) neuronal 
networks as a function of 1) the connection topology and sym­
metry, 2) the measured nodes, and 3) the nodal dynamics (linear 
and nonlinear). We find that typical observability metrics for 3 
neuron motifs range over several orders of magnitude, depending 
upon topology, and for motifs containing symmetry the network 
observability decreases when observing from particularly con­
founded nodes. Nonlinearities in the nodal equations generally 
decrease the average network observability and full network 
information becomes available only in limited regions of the 
system phase space. Our findings demonstrate that such networks 
are partially observable, and suggest their potential efficacy 
in reconstructing network dynamics from limited measurement 
data. How well such strategies can be used to reconstruct and 
control network dynamics in experimental settings is a subject 
for future experimental work. 

I. INTRODUCTION 

An observer model of a natural system has many useful 
applications in nonlinear dynamics from weather prediction 
to neuronal systems [1]. A fundamental question that arises 
when utilizing filters to estimate the future states of a system 
is how to choose a model and measurement function that 
faithfully captures the system dynamics and can predict future 
states [2], [3]. An observer is a model of a system or process 
that assimilates data from the natural system being modeled. 
The key concept to employ in a "well designed" observer is 
observability, which quantifies whether there is sufficient infor­
mation contained in the measurement to adequately reconstruct 
the full system dynamics. From the theories of differential 
embeddings and nonlinear reconstruction we have a nonlin­
ear measure of observability from the so called differential 
embedding map, comprised of the measurement function and 
its higher Lie derivatives. The differential embedding map of 
an observer provides the information contained in a given 
measurement function and model, which can be quantified 
by an observability index [4]. Computed from the Jacobian 
of the differential embedding map, the observability index is 
a matrix condition number which quantifies the perturbation 
sensitivity (closeness to singularity) of the mapping created 
by the measurement function used to observe the system. 
Singularities in the map cause observability to decrease and 
information about the system to be lost. 

II. BACKGROUND 

A. Linear Observability 

In the early 1960s, Rudolph Kalman introduced the notions 
of state space decomposition, controllability and observability 
into the theory of linear systems [5]. From this seminal work 
comes the classic concept of linear observability for a linear 
time-invariant (LTI) dynamic system, which defines a 'yes' 
or 'no' answer whether a state can be reconstructed from 
a measurement using the Kalman rank condition check, i.e. 
rank( 0) = n of the observability matrix 0, where n is the 
dimension of the system (number of state variables). 

A dynamic model for a linear system can be represented by 

x = Ax+ Bu 
y= Cx (1) 

where x E �n represents the state variable, u E �m is the 
external input to the system and y E �p is the output (measure­
ment) function of the state variable. The linear observability 
matrix is defined as [6] 

0= 

C 
CA 
CA2 

CAn-l 

(2) 

The finite limit of the matrix comes from the Cayley-Hamilton 
theorem [6]. 

B. Differential Embeddings and Nonlinear Observability 

From early work on the nonlinear extensions of observ­
ability in the 1970s [7], [8] showed that the observability 
matrix for nonlinear systems could be expressed using the 
measurement function and its higher order Lie derivatives with 
respect to the nonlinear system equations. Again, the core idea 
is to evaluate a mapping ¢ from the measurements to the states. 
In particular, Hermann and Krener [7] showed that the space of 
the measurement function is embedded in �p when the map­
ping from measurement to states is everywhere differentiable 
and injective by the Whitney Embedding Theorem [9], [10]. 
In other words, an embedding is a map involving differential 
structure that does not collapse points or tangent directions 
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[11]. A map ¢ is an embedding when the determinant of the 
map Jacobian, Det( �� IVxEIRn), is non-vanishing (everywhere 
differentiable) and one-to-one (injective). In a recent series 
of papers [12]-[14], Letellier et al. computed the nonlinear 
observability matrices for the well-known Lorenz and Rossler 
systems [15], [16] and demonstrated that the order of the 
singularities present in the observability matrix (and thus the 
amount of intersection between the singularities and the phase 
space trajectories) was related to the decrease in observability. 

For a nonlinear system ANL in the form (1), the scalar 
measurement function is taken as y(t) = ex and the system 
equations comprise the nonlinear vector field f(x) = AN LX 
(note: if there is no external input, then Bu = 0). Differenti­
ating y(t): 

d de. de 
y(t) = 

dt ex = diX = diANLX = £jY(x) (3) 

where £jY(x) is the Lie derivative of y along the vector field 
f. The differential embedding map ¢ is defined as the Lie 
derivatives £1y(x) . . .  £'}-ly(X), and taking the Jacobian of 
the map we arrive at the observability matrix: 

0= a¢ = 
ax 

a£�y(x) 
------ax­
a£}y(x) 
------ax-

a£j-'Y(x) 
ax 

(4) 

which reduces to (2) for linear system representations. The 
key intuition here is that in the nonlinear case the observability 
matrix becomes a function of the states, where a linear system 
is always a constant matrix of parameters. 

C. Observability Index 

In systems with real numbers, calculation of the Kalman 
rank condition may not yield an accurate measure of the 
relative closeness to singularity (conditioning) of the observ­
ability matrix. It was demonstrated in [4] that the calculation 
of a matrix condition number [17] would provide a more 
robust determination of the ill-conditioning inherent in a given 
observability matrix. The observability index o(x) is given in 
[4], however we will use the inverted form in [18] so that 
o ::; o(x) ::; 1 

(5) 

where o(x) = 1 indicates full observability and o(x) = 0 
indicates no observability. 

III. QBSERVABILlTY OF 3-NODE FITZHUGH-NAGUMO 

NETWORK MOTIFS 

A. Fitzhugh-Nagumo System Dynamics 

The Fitzhugh-Nagumo (FN) equations [19], [20], comprise 
a general representation of an excitable neuronal membrane. 
The model is used as a 2-dimensional analogue of the well 
known Hodgkin-Huxley model [21]: an axonal excitable mem­
brane with ionic currents and voltage gated ion channels. The 

FN model can exhibit a variety of dynamical modes which 
include active transients, limit cycles, and chaos [19]. The 
nonlinear connection function takes the form of the sigmoidal 
activation function of neighboring activity (hyperbolic tangent) 
and an exponential decay with inter-nodal distance to convey 
the connection/coupling strength. 

The system dynamics at a node are given by the equations 
[19]: 

v3 
iJ = c( v - :3 + w + f N d v* , d) + 1) 

-1 
w = -(v - a + bw) 

c 

(6) 

where v represents membrane voltage, w is recovery, d the 
inter-nodal distance, v* the voltage of neighbor nodes, I = 
-1.15 the input current, and the standard parameters a = 
0.7, b = 0.8, c = 3. In the following analysis, we are interested 
in directed information flow between nodes as a function of 
various topological connection motifs. As such, each motif is 
representative of a unique combination of directed connections 
in between the 3 nodes. We utilize a hyperbolic tangent in the 
nonlinear connectivity function: 

fNdv*,d) = �(tanh(v* - h + l)e-dv* (7) 2 2w 
The sigmoid parameters k = 1, h = 0, w = 1/4, are set such 
that tanh outputs [0,1] for the input [-2,2], which is the range 
of the typical FN voltage variable. In this configuration inputs 
from neighboring nodes act in an excitatory-only manner, 
while the driving input current I = -1.15 was applied to all 
three nodes and provided a limit cycle regime to the network 
for certain network connection strengths. 

To contrast for the linear case, we piecewise linearize the 
Heaviside threshold function in the Wilson-Cowan equations 
[22], thereby removing the nonlinearity and admitting a net­
work with true linear nodal dynamics. The system dynamics 
at a node are given by the state space [23]: 

iJ = CIV + C2a + C3e-d H(v* - C4 ) 
(8) 

it = C5V + C6a 

where v represents actIvIty, a is recovery, d the inter-nodal 
distance, v* the activity of neighbor nodes, and H (.) the 
Heaviside function. 

B. Network Motifs 

As we are interested in the effect of connection topology 
on observability, we start with the simplest nontrivial network: 
a 3-node network. These 3-node network motifs are highly 
overrepresented in both neuronal and other complex system 
networks [24]. For each network motif shown in Fig. 1, 
we compute the observability index for various measurement 
functions, nodal equations, and connection strengths. Measure­
ments of v for each motif were from nodes 1, 2, then 3. 
Simulated data was used to compute the observability index 
for two cases: 1) the nodal dynamics comprise the nonlinear 
Fitzhugh-Nagumo equations, and 2) the nodal dynamics are 
linear Wilson-Cowan equations [22]. The data comprise 100 



Network Motif: Measure Node 1 Measure Node 2 Measure Node 3 Symmetry 

Valance 2 6Nl(X) = 1.5 x 10�11 6Nc!x) = 2.9 x 10�11 6Nc!x) = 1.5 x 10�11 
1) 

2) 

4) 

5) 

6 < 10-16 

6Nl(X) = 9.0 x 10.11 

6 = 9.2 X 10.6 

6Nl(X) = 6.9 x 10�1O 

6 = 4.2 X 1O�6 

� 6Nl(X) = 4.5 x 10.12 

2 3 6 = 8.5 X 10.6 

6Nl(X) = 1.1 x 10�1O 

6 = 8.8 X 10.6 

6 < 10-16 

6Ndx) = 1.6 x 10.11 

6< 10.16 

6Nc!x) = 2.4 x 1O�1O 

6 = 8.5 X 1O�6 

6Ndx) = 7.0 x 10.11 

6< 10.16 

6Nc!x) = 0 

6=0 

53 
6 < 10-16 

(123) 6Nl(X) = 8.8 x 10.11 
(321) 6 = 9.2 X 10.6 

6Nc!x) = 2.2 x 10�11 (123) 

6 = 8.8 X 10�6 

6Nl(X) = 0 (123) 

6=0 

6Nc!x) = 0 (123) 

6=0 

Valance 1 6Nl(X) = 8.8 x 10.11 6Ndx) = 1.0 x 10.10 6Nl(X) = 9.2 x 10.11 
(123) 

6) 
6 = 8.1 x 10� 6=8.1 X 1O�6 6 = 8.1 X 1O�6 

(231) 

(312) 

6Nl(X) = 2.7 x 10�11 6Nc!x) = 0 6Nl(X) = 0 (123) 
7) 6 = 8.1 X 10.6 6 = 0 6=0 

Fig. 1. Calculation of observability indices for each of the 7 network motifs, 
as measured from each node and averaged over a range of network connection 
strengths. In black, the observability indices represent the computations for 
nonlinear Fitzhugh-Nagumo networks, while in red are for linear Wilson­
Cowan networks. The calculations show the effect of network topology, 
nonlinearities, and choice of mesurement function on observability. 

seconds of FN system dynamcis with a time step of dt = 0.04 
integrated using the Runge-Kutta 4th order (RK4) method. 
These calculations are summarized in the Fig.l for the ob­
servability for the various network motifs, 

C. Construction of the Differential Embedding Map 

As an example case we begin constructing the observability 
matrix for motif 1 (shown in Fig.l) , the FN network equations 
form the nonlinear vector field f: 

f 

v3 
fl = C(VI - -t + WI + fNL(V2,V3,dI2,dI3)) 
f2 = � 1 (VI - a + bwd 

V� f3 = C(V2 - '3 + W2 + fNL(VI, V3, d21, d23)) 
f 4 = � 1 (V2 - a + bW2) 
f5 = C(V3 - v; + W3 + fNL(VI, V2, d31, d32)) 
f6= �1(V3 - a +bw3) 

(9) 

and the measurement function for node 1 in motif 1 is 
y = ex = [1,0,0,0,0, O]x = VI. Construct the differential 
embedding map by taking the Lie derivatives from £�y(x) = 
VI to £'}-Iy(x) shown in (10). 

y = VI 
v3 

fl = C(VI - -t + WI + fNdV2' V3, dI2, dI3)) 
8</>2 fl + 8</>2 f2 + 8</>2 f3 + 8</>2 f4 + 8</>2 f5 + 8</>2 f6 
8Vl 8Wl 8V2 8W2 8V3 8W3 
8</>3 fl + 8</>3 f2 + 8</>3 f3 + 8</>3 f4 + 8</>3 f5 + 8</>3 f6 
8Vl 8Wl 8V2 8W2 8V3 8W3 
8</>4 fl + 8</>4 f2 + 8</>4 f3 + 8</>4 f4 + 8</>4 f5 + 8</>4 f6 
8Vl 8Wl 8V2 8W2 8V3 8W3 
8</>5 fl + 8</>5 f2 + 8</>5 f3 + 8</>5 f4 + 8</>5 f5 + 8</>5 f6 
8Vl 8Wl 8V2 8W2 8V3 8W3 

(10) 
We obtain the observability matrix by taking the Jacobian of 
(10). In this FN network the observability matrix is dependent 
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Fig. 2. Trends of averaged observability as a function of connection strength, 
plotted for each node in motif 2. As connection strength decreases from left 
to right, the average observability changes for each node in motif 2, showing 
the effects of symmetry as measuring from nodes 1 and 3 is more observable 
at stronger coupling than measuring from node 2 (the symmetric case) 

on the state variables and thus a function of the location in 
phase space. In this situation, Letellier et al. [12] used averages 
of the observability index over the state trajectories in phase 
space as a qualitative measure of observability. We also adopt 
this convention in the results section when computing observ­
ability of various network motifs. The indices are computed for 
each time point in the trajectory, then the average is computed 
over all of the time points. 

IV. RESULTS 

For motif 1 (Fig. 1 ), the data (in black) show that a 
symmetry caused by the connection topology and identical 
nodal parameters generate very low observability indices. The 
values are averaged over a few system trajectories and the 
measurements from each node yield nearly identical values as 
we expect them to be for a sYlmnetric system. This is further 
evidenced by the several orders of magnitude decrease in the 
indices for the linear calculation (in red), where the symmetry 
creates fixed singularities in the reconstruction map. In motif 
2, observability is confounded when a reconstruction map is 
created from measurements of node 2, as the inputs from nodes 
1 and 3 become ambiguous and distiguishability is lost. In the 
cases where the indices are zero (motifs 4,5, and 7), the motif 
must contain an isolated or immeasureable node(s). From the 
viewpoint of observability this means that information from 
the 'isolated' node(s) cannot reach the measured node. This 
nodal 'isolation' is exemplified in motif 7 and fits well with 
the theory of Structural Controllability and Obsevability from 
Lin [25] and Rech and Perret [26]. 

In Fig.2, data points are shown for averaged observability 
indices for the nonlinear FN network in motif 2. These 
data are averaged over a time course of 2400 timesteps for 
each simulated trajectory for a different network connection 
strength value, as measured from each node. The results 
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Fig. 3. (a) The 3-node dynamics for a FN network of motif 2, showing 
trajectories for a range of connection strengths. Here the decrease in nodal 
connection strength facilitates faster firing, and the network symmetry present 
in motif 2 causes the dynamics of nodes I and 3 to synchronize despite 
differences in initial conditions. (b) The local network observability index 
measured from node 1 for motif 2. The black dashed line is the average 
obserability index value for motif 2 as measured from node 1. This averge 
value is used as a threshold for the points of local obserability above the mean 
value in Fig.4 

show the synchrony of nodes 1 and 3, demonstrated in Fig.3, 
confounds the reconstruction when measured from node 2. The 
observability is higher for stronger coupling strengths when 
measuring from nodes 1 or 3 as compared to measuring from 
node 2 where symmetry creates ambiguity (singularities) in the 
recontruction. This phenomenon is more clearly visualized in 
FigA, where locations in phase space with high observability 
are marked with an asterisk on the trajectories passing through 
these regions. The nonlinearities in a network cause observ­
ability to become a function of the state variables. Te dynamics 
in these systems can move near the singularities present in 
the particular reconstrucion map created from a single time 
series measurement function which causes poor observability. 
As our results demonstrate here, the observability is not only 
influenced by the nodal dynamics, but also by the strength and 
configuration of the network connections. 

V. DISCUSSION 

The effects of network topolgy, connection strength, non­
linearities, and symmetery on the effective observability 
were evaluated for Fitzhugh-Nagumo (nonlinear) and Wilson­
Cowan (linear) neuronal networks. To our knowledge, this is 
the first quantification of dynamical observability in networked 
biological models of neuronal activity. 

In certain cases of topologic symmetry (motif 1, motif 
2 measured from node 2) the identical nodal parameters 
cause the system to become unobservable in the linear case 
and nearly unobservable in the nonlinear case. These results 
agree with the views of symmetries presented in [13], which 
underscores the importance of careful model selection and 
measurement when reconstructing dynamics from data. Obser-
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Fig. 4. The 3-dimensional phase space for v, showing trajectories in motif 2 
for a range of connection strengths. The connection strengths that are on 
average more observable visit regions of phase space that are observable 
more frequently, which in the FN system case is a portion of the trajectories 
contained in a limit cycle. Connectivities that cause faster (limit cycle) firing 
lead to more observability (averaged over time). 

vation in motif 3 seems to suggest a relationship between the 
degree of connections into and out of a node and its effective 
observability. A more complete exploration of the relation of 
network structure to observability in the nonlinear context is 
clearly warranted. 
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