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List of Symbols and/or Abbreviations

4WS4WD – An acronym for one of the vehicles used in the IRS that has 4 wheel steering capability and a

standard 4 wheel drive system.

ABS (Automatic Braking System) - A system using computer actuated brakes such that maximum braking

is achieved without skidding.

DIL (Driver In the Loop) - A control system where the driver’s steering input is directly transferred to the

front wheels.  Hence, any modeling of the vehicle must incorporate the driver as participating in

the control loop.

DOF (Degrees of Freedom) - The number of independent motions utilized by a model.  For instance, a

vehicle model that only examines lateral motion and longitudinal motion is a 2 DOF model.

DOL (Driver Out of the Loop) – A control system where the driver’s steering input is transferred to a

controller, which then steers the front wheels.  The modeling of the control loop can hence ignore

the driver input (but use the driver input as a reference signal).

DYC (Direct Yaw Control) – The use of wheel torque to generate a yaw moment and hence steer the

vehicle.

IRS (The Illinois Roadway Simulator) – Abbreviation for the experimental testbed used to study vehicle

dynamics

LQR (Linear Quadratic Regulator) – A type of control utilizing a cost function whose minimization

guarantees an optimal control.

MRC (Model Reference Control) – A feedforward and feedback control method where the design

specifications are given as a reference model.

PWM (Pulse Width Modulation) – The use of a variable pulse length to transmit information.  This type of

system is often used for motor control because of its simplicity and immunity to noise.

Uberquad – A name for one of the vehicles used in the IRS.  This vehicle has 4 wheel steering capability

and uses an independent motor for each wheel to simulate torque control or braking maneuvers.
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1 Introduction

This thesis details the hardware/software integration, dynamic modeling, and control of a scale

vehicle system.  The complete system, known as the Illinois Roadway Simulator (IRS), provides a means

by which vehicle dynamics and vehicle control strategies can be studied on scale vehicles before

implementation on full-sized vehicles.  A research facility in the area of vehicle dynamics and controls that

is able to provide simulation work in combination with industrial data has been lacking: the Illinois

Roadway Simulator is the first of its kind to address this need.  The purpose of the IRS is to bridge the gap

between industrial experimentation and academic simulation research.  Lateral control, stability, sensor

placement for intelligent control, and intelligent cruise control are just a few of the topics studied on this

system. However, the scope of this thesis will be in detailing the technical issues associated with scale

vehicle testing and in describing a single area of advanced vehicle control currently under study on the IRS:

yaw rate control (spin control) of a vehicle.

The organization of this introductory chapter is as follows.  First, a motivation for vehicle research

is given, with specific emphasis on safety and performance.  Second, a short literature review of the area of

vehicle control is given.  The specific goals of this thesis are described, including a motivation for using

scale vehicles as well as the history of scale vehicle testing.  Finally, a summary of the remaining chapters

in this thesis is provided.

1.1 Motivation for Vehicle Research

There is a strong motivation to make vehicles “smarter”: that is, the vehicle will partially or

completely control its motion to improve safety and/or performance.  However, the goals of “safety” do not

always align with those of “performance”, and hence a discussion of each is presented separately below.  In

addition, the implementation of vehicle controllers generally falls into two arenas: full automation, and

human driver assistance (Peng et al. 1994).  Automation attempts to replace the driver with intelligent

control systems, while driver assistance attempts to monitor the driver behavior, provide warnings, assist,

and interfere the steering control of the driver when necessary.  Technically, the issues involved with each

are the same.  However, driver assistance must account for driver behavior, which is complex and often

unpredictable.  As a consequence, driver-assistance is often more difficult to achieve than full vehicle

automation.  However, driver-assist controllers seem to be the most promising route of research activity

and a natural prelude to complete automation.

The goal of this thesis therefore is not to develop an automated vehicle, but to instead assist the

driver using a controller.  A simple justification for this goal is that it is difficult to create a controller that is

as adaptive and intelligent as a human.  Until an automated controller can verifiably outperform a human

under all circumstances (and drivers are comfortable relinquishing control of their vehicles and lives to a
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computer), there will likely be strong resistance to vehicle automation despite arguments for increased

safety, efficiency, or economy.  Arguments against implementing complete vehicle automation as a first

step toward automated driving can be found in the literature.  Chen and Evrin (Chen and Ervin 1990) note

that there are three separate communities capable of funding and implementing complete vehicle

automation: the automotive industry, the electronics industry, and the highway community.  These three

areas are unlikely to join their efforts and budgets to develop the hardware and infrastructure

simultaneously for full automation.  For the automotive and electronics industries, it is difficult to justify

the need to spend their R & D dollars on vehicle-centered automated systems, especially when these

markets are outside their 3-5 year research horizon.  The highway community is not in a position to support

this research, especially when the needs of highway maintenance and operation outstrip authorized tax

revenues (Chen and Ervin 1990).  Without the equipment or infrastructure, vehicles will not “suddenly” be

autonomous.  Instead, the beginnings of automation must start by developing controllers that make the

vehicle perform better under human guidance.

 A question central to the study of vehicle controllers is whether an automated vehicle can

outperform a human driver.  This question is valid, but the answer (if there is one) depends on the driver.

To determine how well a human can drive, a model must be obtained of how the human actually controls

the vehicle.  Many authors include models of a driver to examine handling characteristics of the vehicle

system with the interaction of the human driver model (Cho and Kim 1996; Legouis et al. 1986; MacAdam

1981; Tousi, Bajaj, and Soedel 1988; Tousi 1991).   In the above papers, as well as (Weir and McRuer

1970), the driver is modeled as a feedback controller with an error estimation scheme.  In general, the

driver is modeled as a function containing gains and a time delay (Cho and Kim 1996).  A preview error is

obtained by using a look-ahead point and comparing it to a desired vehicle trajectory.  The distance

between the vehicle and the look-ahead point is often called the look-ahead distance.  Thus, the major

parameters in most driver models are the driver gain, the driver delay, and the look-ahead distance.  Since

these parameters are largely psychological, they are quite difficult to measure.

From published work, the primary focus on using an automated controller for vehicle emergency

driving is to improve the delay related to the time the driver takes to respond to an impending collision or

instability.  It is well known that the vehicle will become unstable in certain situations if the driver does not

react within a certain time frame.  It is also well known that the delay in emergency responses in general is

the biggest distinction between a poor and expert driver.  This reaction delay may include actuator

dynamics or human response time (Cho and Kim 1996).  Again, we foresee situations where computer

intervention or assistance in driving may improve the vehicle response significantly.

Finally, it is currently in the realm of university-sponsored research to bridge the gap between

theory and marketable product.  Considering funding limitations, vehicle automation will most likely begin

gradually in the form of human assistance and improvements in performance rather than complete one-step

automation.  For this reason, the vehicle controllers developed in this thesis focus on methods to assist,
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rather than replace, the driver.  The following sections outline different arenas where this focus may lie,

and the motivation for study in each area.

1.1.1 Safety

The modern automobile is one of the most complex and dangerous machines mankind has yet

developed.  It was in 1769 that Nicholas Joseph Cugnot made history by constructing and driving the first

road vehicle.  He also made history by having the world's first road vehicle accident (Nwagboso 1993).

Traffic accidents are one of the largest public health problems in the United States: more pre-retirement

years of life are lost due to traffic accidents than the combined deaths due to cancer and heart disease

(Evans 1991).  From 1928 through 1988, more than 2.5 million Americans were killed from vehicle

accidents.  To put this in perspective, traffic deaths from 1977 to 1988 exceeded all US battle deaths in all

the wars in American history (Evans 1991).  The annual cost for vehicle crashes in 1998was estimated to be

70 billion dollars, and worldwide 500,000 people are killed annually from automobile accidents (Evans

1991).  In the United States, there are an estimated 4.34 million injuries per year due to vehicle accidents,

with 94 injuries per fatality (Evans 1991).  That is, approximately 2% of Americans are injured due to

automobile accidents EACH YEAR, and roughly 30% of people are injured by an automobile accident

sometime in their life.

If we examine fatal accidents, more than half of all fatal accidents involve only one car (1986).

Consider that in 1988, 44.73% of fatalities were from vehicles colliding with inanimate, stationary objects

not found on the road (trees were the primary culprit) (Evans 1991).  Vehicle safety does not only extend to

the driver, but also it extends to others who may share the highway.  A German study conducted in 1985 of

12,000 injury causing accidents revealed that more than half the injuries and half of the deaths involving

vehicles were pedestrians, bicyclists, and motorcyclists (Danner, Langwieder, and Schmelzing 1985).

The focus on vehicle crashworthiness generally examines four aspects of a vehicle: crash energy

management, car size, occupant volume (a.k.a. “Flail Space”), and human factors (Hyde 1992). What is

often neglected, or lumped into “human factors”, is the ability of the crash to be avoided or lessened by

faster or “smarter” driver inputs.  If we consider the use of a computer to continually evaluate and intercede

when dangerous situations arise, we may foresee situations where a small amount of intervention results in

a significant improvement in safety.  While improvements in the crashworthiness of vehicles is at a point of

diminishing returns, the field of automated collision warning and avoidance is in its infancy (Chen and

Ervin 1990).  An example of this type of work would be the automatic road-departure warning system for

motor vehicle drivers (LeBlanc et al. 1996).

1.1.2 Performance

The motivation for vehicle control lies not only in improved safety, but also in improved

performance.  To examine the motivation for using control to enhance vehicle performance, one simply has

to examine modern vehicle control systems.  These motivations include improved engine performance



4

(idle, throttle, emissions), transmission control, suspension, traction control (ABS), longitudinal control

(cruise control, automated handling systems), and improved directional stability (yaw rate control, spin

control, automated driving, and automated handling systems) (Nwagboso 1993).  There is some overlap

between safety-related control and performance-improving controllers.  For instance, an ABS system

improves braking performance in icy conditions, which clearly improves vehicle safety.  As another

example, Smith and Benton (1996) reduced the distance needed to change lanes in an emergency maneuver

by 17% by using a controller to steer the rear wheels of a vehicle.  The ability of a computer to control an

aggressive lane-change maneuver may be important for performance and for safety.

1.1.3 Improved Vehicle Measurements

An often neglected but increasingly utilized area of vehicle control is to simply monitor the status

of the vehicle and/or driver and "passively" feedback the situation to the driver.  The controller is not

“actuating” anything other than the human (or another controller), but the structure in terms of feedback /

estimation / sensing etc. are very similar to a controller that actually has some type of physical actuation.

An example of this measurement type of controller would be one that simply calculates fuel usage (or

miles/gallon) as the vehicle is driving.  The intent would be that the driver satisfaction (and hopefully fuel

economy) is improved.  Another example using a more advanced measurement controller would be one

presented by Pasterkamp and Pacejka, where the tire is used in conjunction with a neural network to sense

the road friction as the vehicle is driving.  The driver is then alerted if dangerous road conditions are

detected (Pasterkamp and Pacejka 1997b).  Based on this type of measurement, a dashboard type alert

system could be developed that notifies the driver of  possible skidding, lane change obstacles, impending

collisions, and unsafe headway conditions (Kamal 1990).

1.2  Summary of Dynamic Ranges to Motivate  Controller Design

The dynamic range of a vehicle is very dependent on its velocity.  As an example, it is well

understood that aerodynamic forces begin to become significant between 40-50 m/s (Doniselli, Mastinu,

and Gobbi 1996).  The non-uniform stiffness of an ordinary tire causes the longitudinal dynamics to have

much faster pole locations than the dynamics associated with steering input.    By examining the dynamic

range of each effect, it becomes clear not only what obstacles each controller will face, but also the

limitations and the most likely sources of disturbances and unmodeled dynamics.  If we examine the

frequency range of the vehicle, tires, and aerodynamic forces previously discussed, we obtain the following

diagram.
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Figure 1.1: Frequency range of driver inputs, lateral dynamics, longitudinal dynamics, actuator dynamics,

and aerodynamics.

The above chart shows three regions of interest in terms of vehicle control.  Region 1 is where the vehicle

is traveling slowly, and the intent of the controller is to improve the vehicle response.  This is often

achieved by the use of rear-wheel controllers at low speeds that effectively reduce the turning radius of the

vehicle.  Region 2 represents non-emergency highway driving, where comfort and performance is more

important than safety in terms of the controller approach.  Region 3 represents the regime where emergency

maneuvers may be necessary because driving conditions or emergency situations may impair the driver.

The focus of controller development for this thesis is Region 2 and to a small extent Regions 1 and 2.  In

Region 3, nonlinear dynamics may become significant, while in Region 1 there are very little dynamic or

slip contribution.

Velocity

Nat. Frequency of Pole
Locations/Dynamic Influence
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10 m/s
(22 mph)

20 m/s
(45 mph)

30 m/s
(67 mph)

40 m/s
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(111 mph)

Phase shift in lateral tire
forces due to Relaxation
Length of Tire (Linear
function of velocity)

Steering Actuator
Dynamics (Velocity

Independent)

Bicycle Model
Dynamics

(nonlinear function of
velocity)Aerodynamics become

largely influential in this
region

Effective
Operating Speed of

4WS4WD Slow
Actuator Tests

Effective
Operating Speed of

4WS4WD Fast
Actuator and

Uberquad Tests
Actuator pole locations

for each test

Longitudinal Dynamics
of Tires (1st Mode)

Driver dynamics at low
frequency limited by

ability to steer quickly

Driver dynamics
may become very
slow depending on

preview (fog,
winding roads,

etc.)

1

2
3
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1.3 Literature Review on Vehicle Dynamics

The following section is a brief overview of the field of lateral vehicle control.  A more in-depth

analysis of specific control algorithms is provided in the “Controller Development” section of Chapter 4.

1.3.1 Survey Articles

For the interested reader, a short list of survey articles outlining the areas of vehicle control is

presented.  A good overview of general vehicle control systems is provided in Tomizuka and Hedrick

(1995) where the focus is given on engine/transmission modeling and control, suspension systems, traction

control and ABS, cruise control and vehicle longitudinal control, and steering systems including vehicle

lateral control.  There are several books that themselves serves as broad overviews of the field of

automotive research.  A useful book regarding the basics of vehicle dynamics is written by John Ellis

(1989).  The book by Nwagboso (1993) is a good introduction to vehicle systems and instrumentation used

in vehicles.  For vehicle automation, a key issue is feedback of vehicle position.  A good article reviewing

the state-of-the-art in vehicle sensing can be found in (Peng and Tomizuka 1990a).  The merits, drawbacks,

and robustness of vision based, magnetic marker, magnetic rod, radar, laser, beacon, reflective, ultrasonic

and other guidance systems are discussed. Finally, a broad overview of 4WS steering strategies is presented

in the paper by Furukawa and others (1989).

1.3.2 Published Methods for Yaw or Lateral Control of a Vehicle

The published control approaches can be divided topically in many different ways: by method of

control input (2WS, 4WS, DYC), by controller design methods (optimal, neural network, parameter space

design), or by controller implementation structure (feedforward, feedback, or combinations).  For this

section, the controller structure (feedforward versus feedback) is chosen as the metric of comparison.

Although the use of feedback will make a system more robust to unmodeled dynamics and disturbances,

the same feedback may increase system cost and lead to worse performance in the event of sensor/actuator

failures.  Many authors, notably Inoue and Sugasawa (1993), recognize that this tradeoff is central in the

choice of vehicle controllers.  To simplify the presentation of the control methods, the figure below is taken

from the above authors to outline the different control approaches presented in the literature.
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Figure 1.2: A block diagram of a general 4WS-vehicle control system.

If not stated otherwise, it can be assumed in the controllers described below that the driver retains

control over the front wheels.   There are vehicle control designs, however, where this may not be the case

(Okuno, Kutami, and Fujita 1990).  These systems are often referred to as drive-by-wire controllers

because the steering is controlled directly by the computer, and indirectly by the driver who sends steering

signals to the steering computer.  Other types of control include safety-monitoring and driver assist.  A

safety-monitoring controller is one where the driver steers the vehicle, and the controller has no control

over steering.  A driver assist controller is one where the driver maintains direct control over the vehicle,

but the controller can augment the steering by some other control input such as the rear wheels or brake and

torque input. Throughout this literature review, special note is given to controllers that remove the driver’s

direct input by including a controller for the front wheels.

Additionally, we can divide the controller methods by the acceleration region for which they were

designed (Nagai, Hirano, and Yamanaka 1997).  In general, the more acceleration forces on the vehicle, the

more non-linear the vehicle behavior and consequently the more complex the controller structure required

for appropriate vehicle control.  Referring to Figure 1.3 below, we can see that a system that provides good

performance in one region may not provide good performance in another.  For instance, a Direct Yaw

Controller (DYC) that utilizes brake input to aggressively correct a vehicle in Region 6 would not be suited

to Region 1, where only minor steering corrections are needed.  Table 1.1 gives a summary of the regions,

along with descriptions of the maneuvers encountered in each region and the types of controllers used.  It

should be stated beforehand that the acceleration regions are not strictly defined and that the performance

and slip of a tire is a more appropriate metric.  For instance, a controller suited for Region 10 may be more

suited to a wheel that is skidding over gravel with a deceleration of 0.1 g’s, even though the diagram above

may not suggest this.  In extreme cases or under changing operating conditions, the best metric will nearly

always be the relationship between available forces from the tire and steering angle/torque input.
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Unfortunately, it is very difficult to determine the tire model on-line, and hence acceleration may be a more

feasible, but less precise, metric.

Figure 1.3: An acceleration plot describing general areas of research activity.

Table 1.1: A summary of regions of operation.

Region Behavior Situation Controller

1 Lat. vehicle dynamics are linear, long. dynamics  are negligible Steady highway driving AHS Controllers

2 Linear long. dynamics and lat. dynamics Highway accelerations Adaptive Cruise Control

3 High long. acceleration, nonlinear long. tire models Skidding or "Peeling Out" ABS, TCS

4 Nonlinear long. deceleration, nonlinear lateral accelerations Skidding AND Spinning None

5 Negligible or linear long. dynamics, non-linear lat. dynamics Spinning DYC

6 Nonlinear long. acceleration, nonlinear lat. Accelerations "Peeling Out" AND Spinning None

A description of each region in the above diagram follows.  Region 1 is the area where control

systems based on linear vehicle models have demonstrated good performance in experimental testing (Peng

et al. 1994; Smith and Starkey 1994; Smith and Starkey 1995).  This area, with lateral accelerations less

than 0.3 g’s (Lee 1997), is where the vehicle velocity is approximately constant and there is little

acceleration in the longitudinal direction. This region would characterize non-emergency highway driving,

and is the focus of the vast majority of vehicle automation research.  Region 2 is the area where a linear tire

model remains valid for acceleration and deceleration and the lateral acceleration is small (very little

steering).  This area would be where adaptive cruise control systems usually perform.  Most highway-type

driving remains in Regions 1 and 2. Region 3 refers to an area where there is very aggressive acceleration

to the point where a linear tire model is no longer valid.  The non-linear tire effects such as traction come

into play in this region, and hence Traction Control Systems (TCS) often operate in this region.  It should

be noted that on roads where the tire friction is low (gravel, snow, etc.), the vehicle behavior may be best

controlled by systems suited for Region 3 even though the formal acceleration criteria are not met. Region

4 refers to the area where there is very aggressive longitudinal and lateral acceleration.  This area is usually

lateral acceleration,
g’s1.0

1.01.0

Region 1

Region 5

Region 6

Region 2

Region 7 Region 3

Region 4

longitudinal
acceleration,

g’s
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not encountered on the roadway, and very little published data describing controllers for this region have

been encountered.  Region 5 refers to situations where very aggressive steering maneuvers are performed

such that the vehicle model is no longer governed by a 2 DOF model.  Examples would include a severe

avoidance maneuver or unintended roadway departure.  Several authors describe this region to begin

around 0.3 g’s (Lee, Mariott, and Le 1997; Peng and Tomizuka 1990a; Peng and Tomizuka 1990b; Smith

and Benton 1996; Smith and Starkey 1994; Smith and Starkey 1995) and continue up to the tractive limit of

the tire (usually about 0.8 g’s).  Again, this region is not strictly determined by acceleration, and is assumed

to start where the tire model is no longer linear. The speed in this region can be assumed approximately

constant, but there is more variation than Region 1 due to harsher maneuvers.

1.3.3 Publishing Authors and their Vehicle Research Institutions

The authors and institutions presented here in no way represent all of the publishing authors

worldwide.  Instead, it is a list of publishing authors encountered while conducting literature searches in the

field of vehicle dynamics.  It is divided between overseas and domestic research institutions.

The leader in vehicle controls in terms of new methods that are being implemented in commercial vehicles

remains the Mercedes-Bosch group led by Robert Bosch GmbH.  This group currently has a commanding

lead in the field of interactive chassis systems, and was the first group to feature commercial yaw-rate

control systems (Sherman 1995b).  Authors associated with this group include E. Zabler, F. Heintz, R.

Dietz, among others.  The Delft Institute in the Netherlands has conducted a volume of very practical

vehicle research by the Road-Vehicles Research Institute.  This work has been published under the authors

Besselink, Higuchi, Jansen, Van Oosten, Palkovics, Pacejka, Pasterkamp, J. van der Weide, R.F.

Wolffenbuttel, J.A. Foerster, and Zegelaar among others.

Other foreign vehicle research centers include the Honda Research and Development group,

whose articles are generally published originally in Japanese journals and translated to English.  Authors

publishing with Honda include Yoshimitsu Akuta, Nobuyoshi Asanuma, O. Furukawa, Manabu Ikegaya,

Y. Shibahata, K. Shimada, T. Tomari, and Kiyoshi Wakamatsu.  Toyota sometimes publishes work under

Yutaka Hirano, who works closely with Tokyo University with Masao Nagai and Sachiko Yamanaka,

among others.  Additional Toyota authors include Katsutoshi Horinouchi, Takashi Yonekawa, M. Mutoh,

Tamio Kanou, Seisyu Utsumi, and Yoshihisa Nagahara.  Mazda has published work through its Technical

Research Center by Kenji Fujita, Atsushi Kutami, and Akihiro Okuno.  Their particular focus in recent

years has been the development of automated cruise control systems that utilize vision sensing (Okuno,

Kutami, and Fujita 1990).  Mitsubishi Motors Corporation has released vehicle dynamics articles associated

with riding comfort under the authors Kazuya Hayafune and Hiroaki Yoshida.  Nissan (a.k.a. Nippondenso

Co. Ltd.) has developed recently a variable dynamic vehicle called the Simulator Vehicle that is capable of

varying yaw rate and lateral acceleration response characteristics independently via software (Sugasawa,

Irie, and Kuroki 1992).  Authors publishing from Nissan include F. Sugasawa, N. Irie, and J. Kuroki.  In

their IC Engineering Department, publishing authors include O. Ina, Y. Yoshino, and M. Iida among
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others.  In Europe, articles are presented by the ITT Automotive Europe by B. Lammen, F. Kemmler, U.

Judaschke, and S. Muller.

In the United States, domestic manufacturers have published a significant amount of vehicle

research.  E. Ahring has published vehicle dynamics articles at Ford A.G. in Germany.  Tom Pilluti of Ford

has published several articles related to differential brake steering (direct yaw control).  General Motors

Research Laboratories publishes vehicle control articles through Mounir M. Kamal and others.  The two

most significant academic institutions currently conducting vehicle research in the United States are the

University of California, Berkeley with the PATH project, and the University of Michigan, under the

University of Michigan Transportation Research Institute (UMTRI).  U.C. Berkeley’s California PATH

program (Partners for Advanced Transit and Highways) was developed with a long-term implementation

and application of automated vehicle controllers in mind.  The university currently maintains the Richmond

Field Station where vehicle controllers are tested.  The objective of this program is to develop a system that

is not only high-performance, but also platform independent.  The ultimate goal is to develop systems

suitable for large-scale implementations with minimal lead-time in the development and implementation

phase (Peng et al. 1994).  Authors associated with the PATH program are: Huei Peng, Masayoshi

Tomizuka, Weibin Zhang, Steven Shladover, S. E. Desoer, J.K. Hedrick, J. Walrand, W. D. McMahon, S.

Sheikholeslam, N. McKeown and others.  At the University of Michigan, vehicle research papers are often

presented under the authors Kan Chen, Robert D. Ervin, Gregory Johnson, W.B. Ribbens, and Charles

MacAdam among others.  Research on vehicle dynamics has been conducted for decades at this research

institution; the extent of their studies is too extensive to list in this short discussion.  During the 70’s and

80’s, Fenton and colleagues at the Ohio State University conducted a long term and large-scale project.

Work is still being published at their Center for Automotive Research under Young Cho, Dennis A.

Guenther, G. Rizzoni, Bong-Choo Jang, Matthew Y. Rupp, and Charles M. Woodburn among others.  The

well-published authors Smith and Starkey conduct vehicle dynamic research at their respective universities.

Dr. Smith’s research was formerly conducted by the Integrative Modeling Research Laboratory at

Louisiana State University before his leaving the university.  Dr Starkey conducts research at Purdue,

where the authors Anthony Will, Stanislaw Zak have also published papers.

1.4 Goals of This Study

The intent of this research is to demonstrate new techniques for vehicle control that improve

vehicle performance and safety.  For the work discussed in this thesis, the specific goal is to improve

vehicle handling and stability.  As will be shown in later sections, there are many controller methods

available to achieve this goal; however, a Model Reference Controller (MRC) approach is selected for this

study due to the “intuitive” nature of the performance specifications, and the “standard” form of

implementation.  When a driver wishes to improve vehicle performance, they usually do not specify that

the pole locations be moved, or that the rise-time or overshoot be changed.  Instead, the performance is

described in terms of other vehicles.  For instance, a driver may wish that their station wagon behaved like
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a Porsche while in the city, but handle like a Lincoln Towncar on the highway.  Each vehicle can be

represented dynamically by a different reference model, thus suggesting a model-reference type of

controller structure.

A primary purpose of the Illinois Roadway Simulator is simply to validate the performance of

vehicle controllers.  Thus, ease of implementation, adaptability, and evaluation are important

considerations. From the beginning, the primary intent in selecting MRC methods was to maintain a simple

controller structure that is easily adaptable so that the driver may change performance specifications “on-

the-fly”.  In terms of implementation, MRC methods in the transfer-function domain are relatively easy to

implement.  In terms of adaptation, Model Reference Controllers are used in adaptive situations as Model

Reference Adaptive Control, so the structure developed in this thesis can easily be extended to adaptive

situations.  In terms of evaluation, the performance of the resulting control is easily evaluated because of

the use of a reference model.  As a comparison, the performance measures for some control techniques

such as LQ, optimal control, neural networks, or fuzzy logic are not always clear.  It is easy to obtain good

vehicle performance when the evaluator chooses the metric of performance measurement.  For this thesis, it

is relatively simple to evaluate the performance of the vehicle controller.  If the vehicle tracks the reference

model, the controller is probably working well.

One final goal of this thesis is to validate the use of scale automobiles for dynamics and control

studies.  Scale testing as a science is usually applied to capital-intensive situations such as cargo ships,

aircraft, and spacecraft.  However, the advantages of using a “real-life” system instead of a simulation

become obvious in the implementation stages of the controller.   To restate this goal, this thesis is an

attempt to unify the results of what today seems to be three separate fields of vehicle dynamics study:

simulation based studies using theoretical equations of motion, full-sized vehicle testing based on semi-

empirical analysis, and the third method based on scale vehicle testing.  The following section is intended

in part to motivate the use of scale vehicles to refine performance before risking capital, drivers, and time

transferring a control method from simulation to full-scale vehicles.

1.4.1 Motivation for Using Scale Vehicles

From a research standpoint, the primary advantage of using scale vehicles over full-sized vehicles

is cost.  The use of a full-sized vehicle testing is prohibitively expensive to most academic institutions.  The

few research sites conducting vehicle testing require very sizable grants to conduct their research, and most

of this capital goes simply to infrastructure development such as equipping the vehicles.  The cost of the

entire Illinois Roadway Simulator to date is well under $30,000, which includes the cost of 5 vehicles (2 of

the 3 vehicles have been completely rebuilt twice), three computers (also upgraded twice), the treadmill,

the transmitter system, the amplifier systems, and motors including spare parts.  This price tag also includes

operating costs for 4 years.  For comparison, it is estimated that the cost of equipping a full-sized vehicle

for autonomous control is in excess of $100,000 (Note: this cost does not include any research).  This price

tag is simply out of the range of ordinary research institutions.  In comparison to scale testing, the
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intellectual return on each research dollar spent cannot be very large for full-sized vehicles when the

majority of the allocated money is spent simply on equipment and road usage.  Although these costs buy

“realism”, this realism is sacrificed by the cost intensity.  Full-sized autonomous vehicles at research

universities are rarely put in real-world situations that push vehicle performance to its limits.

There is an additional economy of time using a scale vehicle system.  The time required to change

or modify a scale vehicle is very small compared to full-scale vehicle testing.  From the standpoint of

commercial vehicle development, a primary cost consideration is the start-up and turn-around time needed

to attempt a new control idea. If all the parts are at-hand, it is quite easy for a single student to build an

entire scale vehicle "from scratch" in a single day.  The variety of commercially available parts means that,

if a novel part is needed, only small modifications of an existing part are usually required.  The durability

of the R/C vehicles and the ability to physically intervene during an accident mean that the downtime due

to vehicle breakage is small.  The use of a treadmill system means that no scheduling of roadway usage is

needed, and on-site real-time evaluation of vehicle performance can be conducted at any time or any hour

in the day.  More importantly, the road conditions remain as constant as required by controller testing.

Frequency responses requiring a full day of testing can be conducted continuously on the vehicle using

swept-sine techniques.  This feat would not be achievable with full sized vehicles unless very expensive

GPS systems were employed.

The final motivation for scaled vehicles is the most important: they are simply safer than full-sized

vehicles to test.  No drivers are put at risk as the computer drives the car at scaled highway speeds.  There

are no pedestrians or roadside traffic to worry about.  The treadmill surface can be varied quickly and easily

to simulate various road surfaces that may be dangerous for a driver to be on, and the treadmill itself is

designed for consumer safety (finger guards, belt protection, and pinch guards).  The use of the treadmill

surface as a driving road makes testing safe, consistent, and repeatable.  Because of the increased safety,

more aggressive vehicle testing can be conducted on the IRS than will likely ever be tested with a full sized

vehicle with a passenger inside.  New controller ideas and techniques can be tuned “on-the-fly” without a

significant worry for safety (and sometimes stability).  It is not uncommon to “crash” the vehicle a half

dozen times in a single day of aggressive testing, with no adverse effects on the vehicle.  In fact, the biggest

safety hazard encountered thus far is the tendency of the author to forget that the treadmill is moving after a

long night of testing, lean against the moving surface, and be quickly “scooted” to the floor.

1.4.2 History of Using Scale Vehicles

As stated earlier, there are two distinct methodologies to examine vehicle dynamics.  The first is to

establish the governing equations of motion and conduct a simulation-based study, and assume that the

vehicle is strictly governed by the theoretical differential equations and the parameters used in those

equations.  The resulting controllers are in general solved in terms of these parameters.  Fundamental to the

controller is the assumption that the unmodeled dynamics are insignificant enough to be compensated by

feedback.  Well over 90% of the controllers encountered in literature are based on this methodology.  The
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second methodology is to test a full-sized vehicle and conduct semi-empirical analysis (black-box

approach) of the full-sized vehicles using input/output modeling.  The use scale vehicles generally allows

both approaches.  An advantage of scale vehicles is that they encourage both methodologies: the theoretical

analysis is used to validate scale dynamic similitude, but the use of a physical model ensures that critical

dynamics will not likely be neglected.

Before the advent of simulation-based modeling, nearly all vehicle testing was conducted using

scale or full-sized vehicles.  Naturally, the use of scale vehicles was preferred because of cost reasons, and

consequently there was extensive use of scaled vehicles through the mid-1960’s due to cold-war military

research and space-race sponsored studies.  Although the traditional association of scaled vehicles is with

wind tunnels, the use of scale vehicles has extended to automobiles in the areas of crash reconstruction,

vehicle-soil interaction (tire forces), suspension analysis and dynamics, and roll dynamics.

Scale testing of amphibious vehicles was conducted extensively at the Army’s Land Locomotion

Laboratory in Detroit (Bekker 1969).  Studies conducted using these scaled vehicles led to the development

of shrouded tires on amphibious vehicles (Rymiszewski 1965) (Bekker, 1969) (p. 636).

To begin discussing land vehicles, it should be noted that the primary likelihood of disagreement

between scale vehicles and full-size vehicles at higher speeds is in the tire-road interaction.  Extensive scale

model studies were conducted in the 1960’s that specifically examined tire forces of scale models and their

scaling, and showed that scale vehicle testing was the best way to determine the vehicle turning radius

(Bekker 1969) (p. 671).  These studies, although likely motivated by the first use of a vehicle on the moon,

demonstrated themselves as very good analysis tools for the use of experimental determination of overall

vehicle dynamics.  An example would be the use of a scaled vehicle to analyze vehicle performance over

rough terrain (Bekker 1969).  Ironically, the vehicle used in this study and others (Pavlics 1966) to examine

full-sized vehicle motion on extraterrestrial surfaces seems to be the inspiration for replacing those same

vehicles.  Today, small robotic vehicles dominate over "man-sized" robotic rovers.  The scale, wheel

placement, and climbing motions of the scale vehicles of the 1960's are nearly identical to the full sized

Mars Sojourner robot used for exploration today.  This is a good example where the use of scale vehicles

eventually became a separate field of study.

In the field of automobile accident reconstruction, detailed analysis was conducted examining

automobile crashes of scale vehicles before the advent of computer simulation based studies.  Conditions

for dynamic similitude between scale and full sized vehicles governed by similar crash forces have been

derived and examined historically.  Experiments have been conducted that demonstrate experimental

agreement between scale and full-sized automobiles in non-crush dynamics of automobile accidents (Emori

1969).

Scaled vehicles have been used to study dynamic behaviors of complex multi-body vehicle

systems.  This work has focused especially tractor-trailer combinations, with specific focus on trailer

snaking.  As far back as 1930’s, Huber and Dietz (1937) used a “running roadway” (a treadmill) to conduct

experimental work with small-scale models of tractor-trailer combinations  (Bekker, 1969) (p. 538).  This
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method of using a treadmill to study vehicle dynamics was also used by Zakin (1959) to study trailer

stability  (Bekker, 1969)(p. 538).  A comprehensive study during the 1960’s by the U.S. Army Land

Locomotion Laboratory was conducted examining the turning behavior of two-unit, tracked, articulated

locomotion using scale vehicles (Clark 1960) (Bekker, 1969)(p. 539).  This study included nonlinear

turning behaviors as well as steady-state turning for a variety of vehicle configurations. A validation of the

turning radius was conducted for tracked vehicles using scale vehicles in the 1950’s by Nuttal and others

(Nuttal) (Bekker,1969) (p. 539). Nuttal’s tests were conducted at very low speeds and low slip angles.

For very complex multi-mode vehicle behavior, it has been suggested that the use of scale vehicles

may be limited (Bekker 1969).  An example provided by Bekker would be the use of scale vehicles to tune

the suspension systems of vehicles over very rough terrain (obstacles larger than the vehicle itself).

Marquard conducted preliminary work using scale vehicles in this manner.  His research suggests that scale

vehicles might, in fact, scale correctly even in this usage, although dynamic similitude is difficult to prove

(Marquard 1937) (Bekker, 1969) (p. 558).

Today, there currently very little use of scale vehicles when compared to previous research

institutions.  However, there has been a recent revival in the use of full-sized vehicles where each vehicle is

“tuned” beforehand to express variable dynamics.  The concept of using a single vehicle with varying

parameters was first considered by General Motors Corporation in the 1970’s (McKenna 1974). The Nissan

Motor Company has followed this example in 1992, developing a vehicle capable of independent yaw and

lateral acceleration response characteristics (Sugasawa, Irie, and Kuroki 1992).  Recently, researchers at the

California Institute of Technology in conjunction with the National Highway Safety Administration and

NASA developed a vehicle with variable dynamics and have used it for model-following controllers as well

as dynamic evaluations (Lee 1997; Lee, Mariott, and Le 1997).

1.5 Overview of Remaining Chapters

The remaining chapters are organized as follows.  In Chapter 2, a system description is given of

the Illinois Roadway Simulator (IRS), including the vehicles, computer systems, and control loops.

Chapter 3 discusses modeling and system identification covering treadmill dynamics, longitudinal vehicle

control, theoretical vehicle dynamics, and measured vehicle dynamics.  In Chapter 4, a control strategy

using Model Reference Control (MRC) is introduced, and alternative methods of control are discussed.

Chapter 5 details the results of using this control strategy.  Conclusions and future work are discussed in

Chapter 6.
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2 IRS System Description

2.1 A General Description of the System

The focus of this research has been to develop a scale version of a vehicle and a roadway for safe

and economic testing of vehicle controllers.  To that end, the Illinois Roadway Simulator (IRS) has been

developed.  The IRS is an experimental testbed consisting of scaled vehicles running on a simulated road

surface, and can be thought of as a vehicle counterpart of a wind tunnel.  Instead of moving wind around a

stationary scale aircraft, a roadway (treadmill surface) is moved under a scale vehicle.

As discussed earlier, there are several advantages of the IRS over full scale vehicle testing.  First,

the availability of scale vehicle components makes construction simple and very cheap.  The durability of

these vehicles and the ability to intervene during an accident makes testing safe and repeatable.  The

scheduling and use of public or private roadways is not an issue.  No drivers or pedestrians are put at risk

during testing of aggressive vehicle controllers.  The roadway surface can be varied quickly and easily to

simulate changing road conditions.  The simulator is dynamically realistic in that it includes actuator,

sensor, tire, and communication dynamics and nonlinearities that are seen in actual vehicles, but often

neglected in computer simulations.  Finally, testing and theoretical analysis has shown that scale vehicle

dynamics follow the same trends as full-scale vehicles under certain operating conditions.

The Illinois Roadway Simulator (IRS) testbed begins with the scaled roadway surface, which

consists of a 4 x 8-ft. steel-framed treadmill capable of top speeds of 15 mph.  The belt is kept in place by a

plywood running board underneath the surface with 1/4” channels down the length of the board.  These

channels provide a path for two small rubber-toothed belts that run the inside length of the belt to keep the

belt straight.  The belt itself has a very smooth surface and was constructed to not have a seam or notch to

affect the testing of a vehicle.  Two rollers support the treadmill surface, where one roller is geared to a DC

motor drive by a timing belt.  Some modifications were made to the original simulator as precautionary

measures.  A barrier was originally built around the belt of the simulator to prevent a vehicle from running

off the side of the treadmill.  However, in the case of an accident where the car impacted the barrier, the car

would bounce back onto the moving treadmill often at the wrong orientation, thus resulting in an even

larger collision.  For this reason, the barriers were later removed.  Also, the “hood” of the treadmill was

altered to provide easy access to the drive and sensors.

Scale vehicles are run via a standard transmitter on this treadmill.  The remainder of the IRS

consists of a driver console, a 400 MHz Pentium II computer (formerly a 75 MHz Pentium), a

transmitter/receiver system, and a vehicle position sensor system.  Each of these subsystems is described in

great detail later in this chapter.

The controller/hardware loop begins with a reference signal.  The signal can come from either the

driver console or from a function imbedded in the controller code.  The entire system is sampled at 1 kHz.

The computer then applies the desired vehicle controller, and outputs control commands to the vehicle via a
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transmitter (for the 4WS4WD vehicle) or amplifier system (for the Uberquad vehicle).  If a transmitter is

used, a receiver system on the vehicle transforms the transmitter’s FM signals into a pulse-width modulated

signal, which are then sent to the vehicle actuators.  Each actuator has a built-in controller that converts the

pulse-width-modulated signals into reference commands.

To maintain the vehicle on the treadmill, a longitudinal controller uses the vehicle's inertial

position as feedback and sends an output voltage signal to the treadmill.  The treadmill uses an industrial

motor controller that converts the input voltage level to a reference speed, and adjusts the DC drive motor

current to match this speed accordingly.  The diagram below gives an overview of the entire system:
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Motor 
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Motor
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Figure 2.1: Diagram of the control loop used on the IRS (left), and a picture of the IRS system in its early stages (right).

The feedback loop begins with a position sensor mounted on the vehicle.  The sensor consists of a

3-bar linkage with potentiometers or encoders at each joint.  The angles from each joint are then used to

determine the position of the vehicle on the treadmill.  The treadmill speed is monitored through an encoder

wheel mounted on the drive shaft of the motor.  Depending on the vehicle, wheel velocities can also be

measured via encoders.

There are currently three vehicles in use on the IRS, each with different operating capabilities.

The simplest car is a 2WD vehicle with front wheel steer, and is used to test following strategies and

sensors.  The second is a 4WD vehicle with independent front and rear steering.  This vehicle is used to

conduct basic vehicle dynamics and controller analysis.  The most advanced vehicle is a custom built,

independent wheel torque vehicle.  It has a separate motor on each wheel, is front and rear steerable, and

has encoders on each wheel monitoring wheel velocity.  This vehicle is used to test ABS and integrated

chassis controller strategies.

2.2 Types of Vehicles

There are currently three scale vehicles in use on the IRS: the follow car, the 4WS4WD vehicle,

and the Uberquad.  The follow car is a 1/10-scale rear-wheel-drive vehicle with front wheel steering.  It is

used to test following strategies and vehicle roadway sensing.  It is equipped with four optical sensors that

are used to sense a light source in front of the vehicle.  By measuring the resistance change across the

photoresistors, the location of the light source can be determined and used for tracking another vehicle.
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Professor Alleyne of UIUC presented work on this follow vehicle at the 1998 IEEE Transactions on

Mechatronic Systems.

Figure 2.2: The follow vehicle.

A second vehicle, referred to in this thesis as the 4WS4WD vehicle, has been the focus of most of

the vehicle testing to date.  This vehicle has front and rear steering capability and is driven by a single

motor via a standard 4 Wheel Drive (4WD) type system.  The vehicle is 27 cm long (front to rear axle) with

a track of 19.5 cm.  Early versions of this vehicle utilized a bar mounted on top of the vehicle that allowed

the position sensor to be moved laterally along the vehicle.  This was used for studies of vehicle dynamics

and its dependence on sensor placement.  As shown theoretically in later sections of this thesis, the sensor

placement was shown to be a type of feedback.  After reaching this conclusion, the author remounted the

position sensor for the vehicle to the top of the center-of-gravity (CG) of the vehicle.  In addition, encoders

were mounted coaxial to the actuators to monitor actuator angles.  This allows studies of the actuator

dynamics in the closed-loop system.  The first actuators used were Futaba S9304 series, and were found to

have dynamics that were slower in bandwidth than the vehicle dynamics.  Modifications were made to the

vehicle to make its dynamics slower (primarily by increasing the mass and moments of inertia), and faster

Futaba S9402 servos were substituted to improve performance.  The dynamics of the vehicle and actuators

under both configurations is discussed in great detail in later sections.

  

Figure 2.3: The 1997 4WD4WS vehicle (left), the 1998 version (center), and 1999 version (right).

The most advanced vehicle is known as the Uberquad and is completely custom-built.  It has a

separate motor to drive each wheel, and has front and rear steering capability.  Each wheel and steering

actuator utilize coaxial encoders to monitor wheel rotation and steering angle.  To overcome limitations
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encountered with an R/C transmitter system, the Uberquad was modified to utilize direct-drive DC motors

for the wheel torque and steering actuation rather than servos and RC-drive motor controllers.  Also, unlike

the previous two vehicles the Uberquad was designed from the beginning to dimensionally scale very close

to a real vehicle with a track of 1.5 meters and length of 2.7 meters.  The track and length of the Uberquad

is 0.21 meters and 0.39 meters, maintaining a ratio from scale to full-size vehicles of approximately 1 to

7.1.  The Uberquad is used to study torque control of the vehicle's yaw rate and lateral position, as well as

more advanced control techniques.  These controllers are presented in Chapter 5 of  this thesis.

                

Figure 2.4: The 1998 versions (left) and 1999 versions (right) of the Uberquad vehicle.

2.3 The Computing System

2.3.1 The Performance Limits of a Non-Dedicated CPU System

Because of cost and implementation reasons, it was decided that a non-dedicated CPU system

would be used for data-acquisition.  The term "non-dedicated" refers to the use of a PC based I/O system,

rather than a microcontroller or a DSP to control the vehicle.  Because the PCs CPU must in part run the

software associated with background tasks, disk access, etc., it is not capable of the same sampling and

performance capabilities as a dedicated DSP.  Hence, the performance capabilities of this system are more

limited.  However, the PC-based system is much more affordable, easier to upgrade, and provides a better

platform for rapid-prototyping of control systems.  In addition, the current system provides real-time

graphing capabilities that are ordinarily not affordable on a DSP system.

The original design of the IRS used two 75-MHz Pentium computers to control the vehicle.  The

concept was to use one computer to control the vehicle and another to control the treadmill.  A network

system was developed where the computers communicated control and feedback information between each

other utilizing digital I/O and flags to coordinate timing.  This network system proved difficult and

unwieldy to use in practice and the full computational capabilities of each computer were being used more

for communication than control.  Eventually, the entire I/O system was consolidated onto one computer,

with the resulting system being much easier to debug and much easier to code.

As the speed of commercial PCs increased, the system was eventually upgraded to the current

computing platform.  Currently, a 400 MHz system is being used with 128 Megabytes of RAM.  One

problem with the upgrade to the new system was the need to maintain ISA slots for the I/O cards.  The PC

industry is phasing out the use of ISA slots; however, the controller boards previously used were
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completely based on the ISA bus.  As a consequence, one of the previous 4 ISA boards was replaced with

its PCI bus counterpart in order to be implemented on the new system.

2.3.2 Data Acquisition Boards

For the PC based system used in these experiments, the central limitation to the data acquisition

speed of the control loop is the I/O boards.  The time it takes the computer to read an external voltage, send

a voltage out, read an encoder, or read digital inputs and outputs depends primarily on the hardware used

by the computer. The following time-loading values were obtained by doing 1,000,000 consecutive

samples on the 75 MHz Pentium and timing the length of time needed to complete each of the following:

1 Channel Analog Read on the 815 board 75.46 micro sec

1 Channel Analog Write on the 802 board  8.62 micro sec

1 Encoder Channel Read 19.39 micro sec

Reset the timer on the 800 boards (with error checking) 60.36 micro sec

Reset the timer on the 800 boards (w/o error checking) 58.49 micro sec

Read the timer on the 800 boards 34.44 micro sec

These times represent the minimum time needed to perform each reading of external voltages, and are

limited primarily by the I/O boards.  These sampling times place hard limitations on the speed of the

controller used.  Unless otherwise stated, all inputs and outputs are conducted at a 1 kHz sampling

frequency.

There are currently 4 boards used in the PC system: two Western Digital ISA 4-channel encoder

boards, one Computer Boards RTI-802 ISA analog output board, and one Computer Boards RTI-815 PCI

board.  With the use of an encoder-sensing arm, a minimum of 4 encoder measurements is needed: 3 from

each arm joint and one to monitor the treadmill velocity.  With the addition of actuator or wheel position

encoder measurements, another encoder board is needed.  The RTI 802 board has the capability of

outputting 8 analog channels.  The RTI 815 board can input 16 analog channels, output 2 analog channels,

and can input or output 24 digital channels.

2.3.3 Software

In the original system, DOS-based C-code was used for the implementation of the control loop.

When the author took over the vehicle implementation from the previous student, it was relatively easy to

code simple controllers; however, complex high-order controllers required a conversion to state-space

formulations and consequent coding and debugging.  The timing of the system was conducted by polling

the RTI timer located on the 815 board.  This process turned out to be very computationally intensive and

wasteful.  Consequently, there was no effective method to analyze in real-time the performance of the

system graphically or numerically.
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Later versions of the software retained the use of the C-code, but the author moved the system to a

Windows platform.  The use of timer polling was replaced by the use of the interrupt vector chip on the

CPU to call an interrupt service routine to implement the controller code.  This system allowed real-time

display of controller performance in the form of screen-printing; however, Windows software and hardware

interrupts were disabled and thus disk I/O and real-time graphics were not available.

In the final version of the system, the author adopted and modified the commercial software

produced by Wincon® for MATLAB®.  This software uses the MATLAB's Real-Time Workshop®

compiler to compile a Simulink diagram into c-code.  The c-code is then compiled into an executable and

downloaded to the CPU.  The Wincon software provides the time polling capability, graphics, and disk I/O.

However, the Wincon system assumes that the user is utilizing the Wincon I/O board.  With the help of

Dan Block, the control systems lab technician at UIUC, the Wincon and MATLAB compiler routines were

modified by this author to create new I/O software driver routines to support the RTI-802 ISA, RTI-815

ISA, RTI-815 PCI, and U.S. Digital Encoder board input and outputs.  These drivers are currently available

to UIUC students.

2.4 The Transmitter and Communication System

For the experimental testing discussed in this thesis, two communication loops were used to

control the two different vehicles.  For the 4WS4WD vehicle, a modified R/C transmitter/receiver system

was used to control the vehicle.  For the Uberquad, a standard DC-motor/amplifier system was used for the

control.

The 4WS4WD vehicle used a modified off-the-shelf R/C transmitter system for communication.

The figure below shows the transmitter system used from a joystick command on a hand-held transmitter to

servo or motor motion.   The signal begins with the handheld transmitter, where the user normally moves a

joystick or switch to change the voltage produced by a potentiometer.  The potentiometer signal for each

channel is converted into a pseudo-PWM signal, which is then modulated by R/C electronics into a FM

signal.  An R/C receiver demodulates this signal, and sends the appropriate pulse commands to each servo

and to the motor controller.  The motor controller provides power to the receiver and to each servo, and

converts the PWM signal into a voltage command to each motor.
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Figure 2.5: A schematic of the communication system used for the 4WS4WD vehicle.

The original motivation for the IRS was to utilize off-the-shelf components for as much of the

system as possible; thereby minimizing cost and setup time.  Although this did allow fast implementation

of control techniques, the transmitter system and servos were ill suited for control applications from a

dynamics and electronics standpoint.  The primary issue was that the transmitter system by design had a

large variable-delay in the transmission.  Electronically, the voltage range needed to produce the full range

of actuation was very small (0.2 volts), and hence noise, voltage drift on the I/O boards, and digitization all

introduced noticeable and sometimes significant effects in the control loop.  From a dynamics standpoint, it

was discovered that the R/C servo pole locations were close to those of the vehicle dynamics.  Furthermore,

the actuator had a rate limiting term due to the torque limits on the motor.  Later sections address actuator

dynamics and the methods used to measure them.

2.4.1 The Pseudo – PWM Servo Control Signal

Shown in the figure below is an R/C servo.  The servo connects to the receiver and is the actuator

that steers the vehicles.  For the work conducted in this thesis, two different kinds of servos were used: the

Futaba S9304 servos and the Futaba S9402 servos.  The performance of each type of servo is discussed in

more detail in later sections of this thesis.
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Figure 2.6: The servo used for the 4WS4WD vehicle.

Each servo is connected to the receiver by three wires.  Two of the wires are high voltage (red)

and ground (black).  The supply voltage is generally between 5 and 7.5 volts DC, but depends on the

battery system.  The third wire (white or yellow) is used to transmit a control signal.  The control signal

received by the servos is best described as pseudo Pulse-Width-Modulation (PWM).  Classic PWM signals

consist of a square wave whose duty cycle is varied from 0 to 100 percent to control the speed, position, or

toque of a motor.  The servo signal, using the same concept, is also a square wave that is repeated every 20

to 30 milliseconds, with a pulse height approximately the same voltage as the “high” voltage line (whose

numerical value depends on the battery supply voltage, typically between 5 and 7.5 volts).  The position of

the motor is transmitted via the pulse length.  The pulse length is varied from a minimum of 1 millisecond

to a maximum of 2 milliseconds, where 1 millisecond pulse length would represent full counterclockwise

motion, and 2 milliseconds represents full clockwise motion.  Thus, the center pulse-length would be

approximately 1.5 milliseconds (Note: some servos can actually utilize pulse lengths outside of this range,

but the above values represent the “standard” for the R/C industry).  The figure below shows a sample

pulse-train to an R/C servo and how the pulse-length may be varied to change the rotation of the servo-

horn.  For further information on servo systems, refer to Scott Edward’s book where computer control of

servo systems is discussed in detail in Chapter 9 (Edwards 1998).
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Figure 2.7: The relationship between the pulse command and the servo output.

An important drawback to the servo controller is that there is a small dead-zone built into the

controller.  If the servo-horn is within approximately a degree of the desired reference angle, but not

exactly on the reference value, the servo will not respond.  The intent of this feature is to prevent the servo

from responding to noise and thus allow the servo to remain "off".  If the servo did not have a dead-zone, it

would continually "jitter" about a nominal position in response to noise when not actively being used.  In

commercial R/C systems, this would rapidly wear down the batteries, which already have a very short life

span (Note: there is no battery system for this project since an external power supply is used).  The impact

of this dead-zone on the dynamics of the system will be discussed in more detail in later sections.

In order for the servo to receive the signal from the receiver, the receiver must first obtain a signal

from the transmitter.   To determine the nature of this signal, the trainer port of the transmitter was used.

Regarding the trainer port, scale aircraft transmitters often are equipped with a port that is used to connect

an instructor’s handheld transmitter to a student’s transmitter.  The plane is set up to only accept signals

from the instructor’s transmitter.  Once the instructor flies a plane into in the air with sufficient altitude, the

instructor can flip a switch on his/her transmitter to allow the student to fly the plane via a cable connection

to the student’s transmitter.  The student's control inputs then fly the aircraft as long as the instructor has

the switch depressed.  If the student looses control of the plane, the instructor can release the trainer switch

to regain control of the aircraft.  Note that the trainer cable also provides power from the instructors'

transmitter to the student's transmitter, because the student’s transmitter does not even need to be on to fly

the aircraft.

There are two advantages to using the trainer port: it allows the servo signals to be examined

directly and it allows us the computer to be directly connected into the transmitter without any rewiring of
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the transmitter system.  Examination of the wires inside the trainer cable reveals that there are four main

wires.  These wires consist of a high and a low power line that connect the power systems of the two

transmitters, the line that transmits the instructor’s servo controls to the student, and a line that transmits

student’s servo controls to the instructor.  If we examine the signal lines from a 4-channel transmitter with

an oscilloscope, we might find a signal that looks like the following:

Figure 2.8: A sample servo signal on the trainer cord.

If we move the flight joystick relating to servo 3, the signal would change like the following:

Figure 2.9: How the transmitter signal changes with joystick input.

Examination of this signal reveals that the transmitter and the receiver “communicate” via a pulse-

type modulation similar to that used to control the individual servos.  The signal for servo 2 is simply

appended to the signal for servo 1; the signal for servo 3 is appended to signal 2, etc.  This creates a single

chain of pulses, where the number of “troughs” is equal to the number of channels the transmitter transmits.

The chain repeats itself every 20 milliseconds.  The transmitter very likely takes this low-frequency signal

and modulates a fixed frequency (by a crystal) FM signal and transmits it to the receiver.  The receiver then

demodulates the signal and de-multiplexes the signal to send a single pulse to each servo during each 20-

millisecond cycle.  Once point to note about this method is that the signal is very immune to noise by the

its' digital nature.  The figure below shows how the demodulation might be done:
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Figure 2.10: The demodulation of the transmitter signal at the receiver.

On a normal R/C transmitter, the human sends driving/flight commands to the vehicle by moving

joysticks or knobs connected to a potentiometer.  The transmitter reads the voltage produced by the

potentiometer, and produces a pulse train (described above) that is proportional to each potentiometer

voltage.  The potentiometer voltages usually vary between 1.9 to 2.1 volts over the entire range of input.

That is, if the driver pushes a joystick full right, the potentiometer might read 1.9 volts, while full left may

read 2.1 volts.  Experimentally, we have found that the “center” voltage may vary between joysticks from

1.9 to 2.5 volts.  The small voltage range, about 0.2 to 0.3 volts between full servo on and full servo off,

means that any small voltage drift or noise significantly affects the servo performance.

At this point, there are three clear methods to drive a scale vehicle by a computer using an R/C

transmitter.  To describe these methods, assume that there are 6 different servo systems (or channels) that

are to be controlled on the vehicle.  The first method of control is to use the computer to generate the servo

pulses directly to each servo.  The computer would then need to change the pulse length of each of the six

pulses separately, and output the pulses on 6 separate digital or analog lines that are connected directly to

the vehicle.  No transmitter or receiver would be needed, the car would not be autonomous, and a timer

board or conversion circuit would be needed by the computer to generate the pulses.  The second method is

to use the computer to generate a single pulse train using digital or analog output that would be input into

the trainer port: i.e. the computer would act as the “student” on the trainer cord.  This method would require

only one line and allow "autonomous" cord-free vehicles, but again a timer board or conversion circuit

would be needed.  This method was actually used experimentally for a short period of time by using a

conversion circuit build on cascaded 555 timers to convert voltages to pulse-length.  The third and final

method is to bypass the potentiometer used to measure the joystick position inside of each handheld

transmitter, and use the computer to input its own potentiometer voltage into the transmitter via analog

output.  This is the method utilized in current system for the 4WS4WD vehicle.  This system is very
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simple, but suffers from the noise and voltage drift drawbacks previously mentioned.  These drawbacks are

discussed in greater detail in the next section.

2.4.2 Delays, Variation in Communication Intervals, and Noise

Using the joystick-voltage approach has caused significant difficulties in controlling the vehicle

remotely.  For instance, attempting to control the vehicle at a nominal speed of 2 m/s may be quite difficult

because the voltage difference between 2 m/s and 3 m/s may be only 0.05 volts.  In some cases, this voltage

change used by a controller may be within the range of background noise and hence the servos may act

erratically.  A larger problem is that the base voltage from the computer board and the voltage supplied to

the vehicle may drift very slightly, causing small changes in the servo output.  These small changes may

require re-calibration of the servos and speed every several hours during testing in the presence of an

electrically noisy environment.  Extensive work was done to ensure adequate shielding and drift

prevention, including shielding of source wires, prevention of grounding loops, and ground isolation

between signal and power supply lines.  This significantly improved performance, but did not completely

eliminate the problem.

Another inherent problem in using the above transmitter system is the communication delay.

Because the transmitter signal is essentially only updated every 10 ms at maximum, faster vehicle

responses are quite difficult to obtain.  To make matters worse, the delay itself is not constant.  For

instance, if a step response on actuator 3 takes place immediately before the pulse train starts, then the

delay associated with this step response is simply the amount of time needed for the pulses of actuator 1

and 2 to pass.  If the step response on actuator 3 happens after the pulse train reaches actuator 3, then the

delay is the entire 10-20 milliseconds of the pulse cycle in addition to the delay from actuators 1 and 2.

The effect is a “quantized-like” delay, where step responses may appear to start only on set intervals of 10

ms, rather than a true “random” delay.  This non-random delay is seen quite clearly in a series of step

responses conducted on the front steering actuator of the vehicle, as seen below:
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Unfortunately, there is no method to determine beforehand the specific delay of the system

because the delay determined by the transmitter itself instead of the computer.  This creates nightmarish

problems in modeling fast vehicle dynamics or servo dynamics because the starting time of the control

input can vary over a range of 20 milliseconds (as seen above).  As a compromise in modeling, this delay

can be approximated as a constant delay of 0.012 – 0.015 seconds.  This delay problem is inherent in the

use of the pseudo PWM signal used by the servo actuator controller itself.  Hence, the same delay problems

will occur if the vehicle control signal is sent into each servo directly, into the trainer cord, or into the

joystick voltage.  Dan Block here at the University of Illinois has developed a method where the controller

internal to the servomotor is bypassed, thus producing a system that can be sampled and controlled without

time-delay limitations.  Basically this required "gutting" the analog controller used by the servo system.  As

a consequence, a feedback loop must be created for each servo system.  With this amount of complexity,

the only advantage of the servo system is that it is a small, packaged motor and sensor.  If we compare the

cost of a quality (high-bandwidth) servo system to a DC motor and integrated encoder with the same

bandwidth, the costs are comparable.  The DC system, however, will not likely be rate limited to the extent

exhibited by the servo system.

2.4.3 Alternative Implementation Methods – Direct Motor Control

The “standard” method to control the position of a motor without using a transmitter system is to

utilize an amplifier on a DC motor with position or velocity feedback.  The computer outputs a voltage to

the amplifier, which then converts it usually into a standard PWM signal whose current (or voltage) is

proportional to the source voltage.  The motor’s position is then monitored to complete the feedback loop.

Figure 2.12: A block-diagram of the DC-amplifier circuit.
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There are several advantages and disadvantages to using a tethered DC-amplifier system.  The

biggest disadvantage is the cost: each amplifier costs approximately $200 and requires a dedicated power

supply (about $150).  The motors, although high performance, cost as much as a high-quality servo.  In

addition, the vehicle is no longer capable of being “untethered” by cables or power supplies.  Because the

amplifiers are bulky and require a 120-volt power source, it is simply not feasible for the 1/8 scale car to

carry amplifiers onboard the vehicle.  The advantage of using the “standard” system is primarily that they

are well-known well-identified systems and remarkably linear.  The DC motor control is a standard plant

examined in beginning controls laboratories.  The motors can provide high-bandwidth actuation with very

little non-linearities.  If non-linearities or lower bandwidth are desired in the actuators at a later point, they

can be added by software without any hardware changes.

2.5 The Driving Console

To include a human driver in the control implementation, the Illinois Roadway Simulator is

equipped with a driving console.  The console is a modified video-game driving unit, and consists of a

steering wheel, a shift bar, two buttons, a gas pedal, and a brake pedal.  The shifter and two buttons are

simply digital switches that connect to ground.  Hence, there are a total of 4 outputs available (2 on the

shifter and one for each button).  The steering wheel, brake, and gas pedals use potentiometers to measure

incremental changes.  Thus, three analog outputs are available.  A picture of the driving console is shown

below:

Figure 2.13: A picture of the driving console.

The steering wheel is used in several ways. When the vehicle is autonomously driving, the

steering wheel is used to input a reference lateral position.  The steering voltage is scaled by some factor to

correspond to some lateral position.  When a Driver Assist Controller is being tested, the steering wheel is

used to input a steer input into the front tires.  For each steering wheel measurement, the centered steering

wheel voltage is subtracted off the measured voltage to obtain the steering input.
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2.6 The Method of Sensing Vehicle Position

The Illinois Roadway Simulator is somewhat unique in that the vehicle position can be measured

absolutely from a fixed ground position.  As discussed in the literature review section of this thesis, full-

size vehicles can sense their position on the road by a number of techniques including radar, vision

systems, magnetic markers, laser telemetry, and GPS.  During the design of the IRS, many different sensing

systems were considered including optical, magnetic, and vision systems.  However, the cost of the fixed-

arm sensing and the simplicity of implementation were significant factors in the selection of the arm

system.  This section details how the arm is used to measure the vehicle states.

2.6.1 Arm Configuration

The position of the vehicle is determined via an arm attached to the vehicle.  The arm has two

segments, with three potentiometers or encoders attached at the ends of the segments.  From the

potentiometers or encoders, the angle of each segment can be determined.  Given the length of the arms, the

position of the vehicle can then be found.  The diagram below shows the angle conventions used to

determine vehicle position from the arm angles:

    

Figure 2.14:  The angle conventions used to determine vehicle position using link angles on old arm (left)

and new arm (right).

The arm has two segments, with three sensors attached at the ends of the segments.  From the sensors, the

angle of each segment can be determined.  Given the length of the arms, the 3 planar degrees of freedom of

the vehicle can then be found.  The figure above shows the angle conventions used to determine vehicle

position from the arm angles.  From these angles, trigonometric relations give the vehicle’s position:
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The vehicle velocities in the plane are determined via numerical differentiation instead of using analytical

derivatives of Equation (2.1).  The resolution is approximately the same.  The measurement of the linkage

angles has been tested using two different methods: potentiometers and encoders.  The following is a

discussion of the advantages and disadvantages of each measurement technique.

2.6.2 Digital versus Analog Position Sensing

Over the course of this thesis work, there has been some contention whether encoders or

potentiometers should be used for vehicle position feedback.  The original vehicle feedback system utilized

low-resolution incremental encoders that were unsuitable for yaw-rate feedback and very prone to

breakage.  For these reasons, the encoders were replaced with potentiometers.  Initially, the performance

improvement was substantial.  However, the performance of the potentiometers deteriorated rapidly, and

the system was then upgraded to high-resolution impact-resistant encoders.  The intent of this section is to

outline the methodology used to design the feedback system, with specific focus on the mistakes made

during each design iteration.

In selecting between encoders and potentiometers to measure angular rotation, one must realize

that both systems have limited resolution.  The resolution of the encoder is simply the digital number of

counts per revolution multiplied by the encoder multiplication factor (usually 4), which is determined via

software.  The multiplication factor increases the counts of the encoder by using a second pulse detector to

measure the location of each edge.  This is often called “edge detection”.  Using software, the information

from each pulse counter is combined to increase the encoder resolution.  The resolution of the

potentiometer is limited theoretically by the resolution of the A/D conversion of the Analog-to-Digital

Converter (ADC) chip.  Considering that most boards have a 12 bit resolution with inputs ranging from 10

to –10 volts, the number of increments per revolution of the potentiometer is roughly 7000

“counts”/revolution.  In actual practice however, the analog inputs are very prone to noise, and hence the

working resolution is much less.  It is clear that an “average” encoder with 2000 counts per revolution

(8000 counts with the 4 times multiplication available from the encoder board) will have equal or better

performance to a potentiometer using a 12-bit ADC to input the voltage signal.  It is important however to

ensure that the software multiplication is used.  In the original system, encoders were used without edge-

detection, and hence the maximum resolution of the encoders was limited to 1000 counts/revolution.

If an encoder is selected with poor resolution (as in the original system), the position signal

becomes so quantized as to introduce a large amount of noise, especially when the derivative of the

position signal is obtained numerically.  An example of this can be found in Mark DePoorter's thesis, where

yaw-rate control was attempted and abandoned due to poor yaw-rate feedback.  The original encoder

system, because of poor resolution, had a significant amount of noise in the yaw rate measurement.  To
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compound the problem, the frequency of the “noise” generated by taking the derivative was in the same

frequency band as the dynamics being measured.  Initially, filtering was attempted by Mark DePoorter to

correct this problem, but the phase lag introduced by the filtering was too significant.  Further discussion

regarding this problem, as well as plots showing the poor signal conditioning, can be found in Mark

DePoorter’s thesis (DePoorter 1997a).

When the encoder system was replaced with potentiometers, it was found that calibration of the

system became significantly more difficult.  First, the potentiometer was calibrated to find the

voltage/angle ratio.  Afterwards, an offset angle dependent on the mounting of the potentiometer to the arm

was subtracted.  It was discovered that care must be taken with potentiometers not to pass into the non-

linear resistive sensing area.  Also, if the source voltage to the potentiometers changes slightly, the

potentiometer response will also change.  In summary, calibration of the potentiometers must be conducted

on the assembled arm, and is quite difficult.  Experience showed that the easiest way to calibrate the arms

was to mark roughly a dozen known locations on the treadmill surface, and then use the arms to measure

the potentiometer voltages with the arm centered at each of these locations.  A search routine was then

conducted in code that found the correct slope and intercept on EACH potentiometer that matched the

predicted arm position with the known arm positions.  Even with this method, manual refinement was often

required afterward to obtain quality position feedback.

One of the first problems discovered in using the potentiometers was the possibility of having a

non-linear response from a potentiometer.  Often a new potentiometer will exhibit a non-linear response.  A

calibration setup was constructed that connected a potentiometer to an encoder; the potentiometer shaft was

connected to an encoder, and then the potentiometer was swept back and forth through the appropriate

operating angles.  The voltage was recorded from the potentiometer at each angle, and the resulting data

was plotted.  The figure below shows a comparison between linear and non-linear potentiometers.
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Figure 2.15: The calibration curves non-linear (left) and linear (right) potentiometers.

After being calibrated on the above stand, potentiometers were then selected for use on the arm based on

their observed linearity.

The resolution of an encoder in practice never changes with time; however, repeated use of a

potentiometer causes wear and hence change in resolution.  It was found that after repeated use, the
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calibration would change and the potentiometer response would become non-linear.  An example of how

this drift can affect the response can be seen in the plots below, which compare the encoder and

potentiometer arms.  Both responses were made by using the end of the arm to follow a circle traced out on

the track.

Figure 2.16: responses of each arm tracking a circular path (encoder left, pot right).

When the calibration drift was first encountered, it was thought that the original potentiometer calibration

was incorrect.  When feedback of the yaw rate signal was examined, the yaw rate response was found to

have large spikes that made the signal unsuitable.  Suspecting that arm-bounce may be causing this error,

the arms were shortened by a factor of 2.  The two different yaw rate responses from each arm (using

potentiometers at each joint) are compared below.
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Figure 2.17: The open-loop response of the long arm (left) and short arm (right) at a speed of 1.2 m/s.

Although this change made the arm physically much stiffer which decreased the vibration amplitude and

increased the frequency of vibration, no significant change in the amplitude or frequency of the feedback

spikes was observed.  Concluding that the spikes are unrelated to the bounce motion, it was hypothesized

that the potentiometers may be the cause of the error.
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During calibration of the potentiometers for the shorter arm, it was noticed that the calibration

coefficients (such as the slope and intercept of the regression fit) changed significantly with each

calibration.  Examining the potentiometers with an oscilloscope during a constant motion of the

potentiometer shaft, the voltage response was clearly non-linear and showed a stair-step tendency.  It

appeared there were small regions, approximately evenly spaced, where the voltage did not change with

angle.  It was then suspected that the potentiometer element wore away at these points due to repeated use

such that the voltage response was no longer linear.  To test this theory, the potentiometers in the arm were

replaced by encoders one-at-a-time, as shown below.  The encoder resolution was 1000 counts/rev.
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Figure 2.18: The open loop responses of the short arm at a speed of 1.2 m/s using one encoder at the vehicle

(left), two encoders at the vehicle and middle joint (center), and all encoders (right).

After realizing the potentiometers were the cause of this error, one of the "used" potentiometers was

recalibrated to observe if it was causing the error.
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Figure 2.19: Non-linear potentiometer response due to excessive wear.  Note that the figure on the right is a

zoomed-in portion of the left plot.

Overall, the resulting calibration was deceptively linear; however, closer examination revealed step-like

nonlinearities in the response.  These nonlinearities are likely due to uneven wear in the potentiometer path

due to fretting.  Fretting occurs when there is constant rubbing between two surfaces that are moving only

slightly with respect to each other.  It is possible to purchase potentiometers that have a higher immunity to
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this kind of wear (by using precious metals as conductors), but the price of these potentiometers is

equivalent to their encoder counterparts.

After replacing the potentiometers with newer, higher-quality encoders, a primary concern was

that the shaft load on these more-expensive encoders would not bend the shaft as with previous encoders.

The previous low-cost potentiometers were very impact resistant (in fact, the arms themselves would most

likely break before a potentiometer would fail).  Encoders, on the other hand, will readily break upon

impact.  Fortunately, one of the specifications provided by encoder manufacturers is the amount of torque

and normal load the encoders will sustain without breaking.  Examining these specifications revealed that

the first type of encoders purchased had a normal force limit of 5 oz., which is much less than the weight of

the vehicle.  Consequently after one severe crash, one of the encoder shafts bent during a test rendering the

encoder unusable.  New encoders were chosen with a rating of 5-lbs. impact force, which is approximately

the weight of the vehicle.  In addition, the mounting of the encoders was redesigned to incorporate a flexi-

coupling to the encoder shaft to isolate impact damage away from the encoder.  Additionally, a bearing

system was added to the encoder arm to prevent force or moment transmission to the encoder arm.

Figure 2.20: The new encoder mountings showing how the encoder shaft was isolated.

The resulting system proved to be very reliable and impact resistant, and was used for the vehicle tests

discussed in this thesis.
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3 Modeling And System Identification

This chapter is intended to provide a complete dynamic description of the systems, and includes

the methods used to obtain this description.  The chapter begins with a description of the treadmill

dynamics, useful for understanding the limits of the treadmill system to track an accelerating or

decelerating vehicle.  The next section deals directly with the longitudinal control of the vehicle, and

provides results for this control.  Lateral control is then begun in the next section, with the introduction of

the theoretical bicycle model.  Afterwards, scaling issues are discussed using the bicycle model as the

dynamics of comparison.  The methodology used to obtain the vehicle transfer functions is then presented,

followed by the specific results of the dynamic fit for the three vehicle conditions examined in this thesis.

Finally, a summary of the vehicle dynamics encountered experimentally and measured in this thesis is

given.

3.1 Treadmill Dynamics

To monitor the treadmill velocity, an encoder was mounted on a wheel that “rode” on top of the

treadmill surface.

     

Figure 3.1: The original location of the treadmill speed sensor (left), and the modified location of the sensor

(right).

Originally the encoder was mounted by Mark DePoorter to be in the middle of the treadmill.  However,

after a catastrophic bearing failure, it was decided that the encoder should be mounted somewhere less

obtrusive.  The above pictures show the “before” and “after” location of the treadmill speed sensor.

To obtain the relationship between treadmill velocity and encoder measurement, the treadmill was

then moved through 10 complete rotations, and the number of encoder counts was recorded.  There were

4000 encoder counts per encoder revolution, and 47.048 (average) encoder revolutions per complete track

revolution.  The length of each treadmill revolution (i.e. the “circumference” of the treadmill surface) was

also measured to obtain a distance per unit encoder count.  The measurement revealed a length of exactly

205.5 inches.  Thus, by knowing the number of encoder counts that have passed per unit time, the treadmill

velocity can be determined.  One problem with this technique is that the encoder-determined velocity is

Treadmill sensor
moved from here

(left) to here (right)
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inherently quantized.  Originally, running averages of 10 samples were used to measure the encoder

velocity (before the author learned about causality and phase lag in sampled systems).  Later, a true low-

pass filter was used (4th order) to obtain the treadmill velocity.  It was found that the error between the

averaged responses and the filtered responses was in actuality quite small.  Figure 3.3 shows the “smooth”

response of the averaged responses, while Figure 3.6 shows the more “jagged” filtered response obtained

by true low-pass filtering of the signal.  This last signal is the one currently used on the treadmill velocity

control.

In order to understand the treadmill response, the treadmill dynamics were determined.  Before

introducing the dynamics, an important aspect of the treadmill must be presented: the motor used on the

treadmill does not allow negative control torque.  Acceleration of the treadmill is accomplished by a DC

motor that applies torque to the treadmill belt, while deceleration is accomplished by shutting off the motor

and allowing friction to slow the treadmill down.  Hence, two separate models can simulate the treadmill

dynamics: a torque-friction model for acceleration, and a friction-only model for deceleration.  We begin

by examining the friction-only modeling.

The governing equation used to find the treadmill dynamics is given by:

controllerTFB
dt

d
J +−ω⋅−=

ω
⋅

(3.1)

where J is the treadmills rotational moment of inertia, B is the treadmills viscous damping, and F is the

sliding friction term.  We can rewrite this as

J

T

J

F

J

B

dt

d controller+−ω⋅−=
ω

(3.2)

To solve for the various coefficients of this equation, we examine in the time-domain the separate

responses to step decrements, steady-state changes, and step increments in the reference velocity that the

treadmill is attempting to track.

To obtain the treadmill velocity, the treadmill position was differentiated at each time increment

by simply dividing the change in encoder counts in the past time sample by the time sample.  The treadmill

position in meters was determined by measuring the length of the treadmill surface for one revolution, and

measuring the number of encoder counts to complete the revolution.  The number of counts was found to

be 47048 counts per revolution, and the track length was found to be 205.5 inches.  Because the treadmill

velocity is measured using an encoder, the velocity signal is quantized and hence has a significant high-

frequency component.  Initially, a running average filter was used to filter the signal.  The signal was very

smooth, but the delay produced by this technique made it difficult to model the treadmill dynamics very

accurately.  The design of the treadmill filter, as with any causal filter, was a tradeoff between phase lag

and signal smoothness.
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3.1.1 Step Decrement Treadmill Responses

To solve for B/J and F/J, the treadmill was allowed to reach a steady-state operating speed, and then the

reference speed was suddenly set to zero.  Because the treadmill cannot apply any reversing torque, the

dynamic response to this input provides information regarding the amount of friction present in the system.

The response of the system can then be fitted to the linear ordinary differential equation

J

F

J

B

dt

d
−ω⋅−=

ω
(3.3)

Which can be rewritten as by taking the Laplace transform,

sJ

F
)s(

J

B
)s(s 0 ⋅

−=Ω⋅+ω−Ω⋅

(3.4)

or
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Which becomes in the time domain
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(3.7)

In order to obtain the values F/B and B/J, we guess

C
F

B
=

(3.8)

and do least-squares regression on the linearized form of Equation (3.7) to obtain best fits to Figure 3.3

below:

( )( ) ( )ln lnω ωt C C
B

J
t+ = + − ⋅0 (3.9)

Using the fit of this above equation, we can determine the difference between the actual data and the fit

data, which then defines an error.  We then can iterate on estimates of F/B to minimize this error.  This

minimum-error value of F/B is assumed to be the best fit.  A graph of the curve fits to this equation using

this process is shown below for various initial speeds.  Note that treadmill velocity is used instead of

rotational speed in the equation fit.  The treadmill speed is determined  from an encoder mounted on the

treadmill.  As mentioned, the treadmill length is 205.5 inches, and the encoder records an average of 47048

counts per treadmill length.  Hence, it is simply a linear gain to change angular velocity coordinates to

treadmill linear velocity coordinates.
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Figure 3.2: The velocity decay of the treadmill showing experimental data and theoretical fit.

There were 5 curves generated for each step-down speed shown above, for a total of 20 different estimates

for F/J and B/J.  The values found for these curves are given in the table below and plotted.
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Figure 3.3: The dynamic equation coefficients determined for the treadmill  theoretical fit.

The coefficients obtained for the treadmill have minor velocity dependence.  For simulation purposes, the

experimenters assume constant parameter values at all velocities.  However, as will be shown in simulation

results (presented later), this assumption does create some error during the velocity decay portion of the

treadmill response.  This error is acceptable in terms of vehicle experimentation and modeling.  Based on

the treadmill performance at different velocities, we suspect that the parameter velocity dependence is

primarily due to the changing nature of the treadmill belt friction.  As the belt speed increases, the torque
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contribution due to viscous drag decreases, since the sliding surface tends to float on a small air surface at

higher velocities.  This explanation remains simple conjecture, since further friction analysis is at this point

unnecessarily exact.  Shown below are values obtained for the parameters of the governing differential

equation at several initial velocities:

Table 3.1: The values obtained for F/B, B/J, and F/J for various steps.

Data Start Stop F/B B/J F/J Average Average

File Speed Speed Estimate Estimate Estimate Estimate Estimate

(m/s) (m/s)  (rad/s) (rad/sec) (unitless) B/J (rad/s) F/J (unitless)

stpdwna1.dat 0.5 0.00 1.80 0.1508 0.2715

stpdwna2.dat 0.5 0.00 2.01 0.1334 0.2682

stpdwna3.dat 0.5 0.00 1.33 0.1900 0.2528

stpdwna4.dat 0.5 0.00 1.30 0.1888 0.2455

stpdwna5.dat 0.5 0.00 2.11 0.1250 0.2637 0.157632 0.260343

stpdwnb1.dat 1.0 0.00 2.11 0.1226 0.2586

stpdwnb2.dat 1.0 0.00 2.47 0.1113 0.2749

stpdwnb3.dat 1.0 0.00 2.15 0.1211 0.2605

stpdwnb4.dat 1.0 0.00 2.46 0.1090 0.2682

stpdwnb5.dat 1.0 0.00 1.69 0.1475 0.2494 0.122324 0.262326

stpdwnc1.dat 2.0 0.00 3.28 0.0871 0.2859

stpdwnc2.dat 2.0 0.00 4.55 0.0704 0.3205

stpdwnc3.dat 2.0 0.00 3.98 0.0767 0.3053

stpdwnc4.dat 2.0 0.00 3.48 0.0851 0.2962

stpdwnc5.dat 2.0 0.00 3.43 0.0851 0.2919 0.080899 0.299933

stpdwnd1.dat 3.0 0.00 4.93 0.0640 0.3157

stpdwnd2.dat 3.0 0.00 4.95 0.0641 0.3172

stpdwnd3.dat 3.0 0.00 4.77 0.0755 0.3601

stpdwnd4.dat 3.0 0.00 5.74 0.0638 0.3663

stpdwnd5.dat 3.0 0.00 5.30 0.0673 0.3568 0.066947 0.343211

Clearly the parameters show some variation.  For simulation fitting, the parameters were varied to best fit

the model: F/J ~ .24 (unitless) and B/J ~ 0.30 (rad/sec).

3.1.2 Steady-State Treadmill Response

With the values for F/J and B/J known, the steady state response of the system can be modeled as (from

Equation 1).
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VKFB0 ⋅+−ω⋅−=
(3.10)

or

ω = − + ⋅F

B
K V

(3.11)

Setting the treadmill at a particular velocity and recording the voltage, velocity becomes the dependent

variable and a line is obtained where F/B is the intercept of the line and K is the slope.  This determination

was done for five different ramps of velocity from 0 to 3 m/s at .01 m/s increments, and the values obtained

are shown below.

Table 3.2: The determination of F/B and K from steady-state response

data slope intercept

file (F/B)

ss_tred1.dat 0.416820 -0.060806

ss_tred2.dat 0.416510 -0.063346

ss_tred3.dat 0.410120 -0.072563

ss_tred4.dat 0.418712 -0.063298

ss_tred5.dat 0.418396 -0.063955

A graph of a sample run is provided below
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Figure 3.4: The steady state velocity with respect to applied motor voltage showing experimental data and

linear fit.

3.1.3 Step Increment Treadmill Responses

The treadmill has a built-in motor controller pack that makes system identification difficult.  As

discussed in the earlier section, we can model the treadmill quite well at steady state and with the motor off,

but the addition of a motor controller to the system adds an additional torque term which is unknown.  If we

assume that the controller controls the current, then the voltage command in essence initiates a current (and
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hence torque) response from the controller.  The motor used on the treadmill is a DC motor, so we would

expect a first order system from input reference voltage to treadmill velocity.

Experimentally, several responses were obtained on the treadmill after a step-up and step-down

reference voltage command was sent.  These responses were then fit to a simple first order system when the

reference velocity is larger than the treadmill velocity, and fit to the previously determined 'decay' system

when the reference velocity was less than the treadmill velocity.  We noted that the treadmill controller

pack contained a time-delay likely to be caused by the velocity sensor.  The experimental and fit data are

shown below for the treadmill system.  Sampling took place at 100 Hz.  The filter used here was a 3rd order

Butterworth at a cutoff frequency of 10 Hz.  The following SIMULINK diagram shows the treadmill model

currently used.
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Figure 3.5: Step-up treadmill responses (left), and the resulting model (right).

3.2 Longitudinal Vehicle Control

There are two methods to run a vehicle at a particular velocity on the treadmill.  The first method

is to set the vehicle motor at some speed which is approximately the correct velocity, and the treadmill can

be forced to track the vehicle.  The second method is to set the treadmill at some speed and the car can be

forced to track the treadmill.  The choice between the two methods depends on the experiment being run,

but the basic difference is between which piece of hardware is the "leader", and which piece of hardware is

the "follower".

3.2.1 4WS4WD Vehicle (R/C system) Longitudinal Control

The longitudinal control of the 4WS4WD vehicle was made difficult by the DC motor controller

in the loop.  This controller is apparently designed to have a non-linear response to have the most

sensitivity at low speeds and little throttle sensitivity at high speeds.  If not otherwise stated, the

longitudinal speed of the vehicle is measured from the base of the measurement arm, where it attaches to

“ground”.
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3.2.1.1 Repeatability and Adjustment of R/C DC Motors

To drive the car at a set velocity, a constant voltage can be sent to the vehicle motor.  Initial testing

sought to find the voltage/velocity relationship, and its repeatability.  The vehicle was driven on a straight

line on the treadmill, and the treadmill speed was monitored over a long period of time.  This test was

repeated over many voltages to obtain a calibration curve relating voltage to car speed.  To test the

repeatability of this curve, the curve was generated several times.  The results of this test are shown below.

Given a set velocity, it is of interest to note how much the car varies in speed over a single test.  The figure

below shows the average, highest, and lowest velocities recorded while obtaining one calibration curve.

0

0.5

1

1.5

2

2.5

3

3.5

0 0.2 0.4 0.6 0.8 1
Voltage (volts)

V
el

oc
ity

 (
m

/s
)

Trial 1
Trial 2
Trial 3

0

0.5

1

1.5

2

2.5

3

3.5

0 0.2 0.4 0.6 0.8 1

Voltage (volts)

V
el

oc
ity

 (
m

/s
)

 Velocity
 High
 Low

Figure 3.6: The repeatability of the motor voltage/velocity relationship (right), and the variation in speed of

the vehicle at a constant voltage (right).

There are three switches available on the motor controller pack labeled "Reverse Time Delay",

"Neutral", and "Throttle".  The effects of these switches are as follows: the reverse time delay sets the time

that the motor controller pack will wait before activating reverse.  This was set to be infinite time, thus

preventing the vehicle from ever going into reverse on the treadmill.  The effect of the other two buttons is

not as clear, but can be seen easily in the following figures.
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3.2.1.2 Steady-State Motor Voltage/Velocity Relationship

We can see from the above plots that the relationship between voltage and velocity is certainly not linear,

and appears to be a power relationship.  Using a non-linear solver routine to minimize the sum-of-squares

error, the data was fit to the following relationship:

( ) ( )n
00 SSAVV −⋅=−

(3.12)

Where the terms and best fits were found to be

V = Applied Motor Voltage

V0 = “Zero Speed” Motor Voltage 0.089867

S = Motor Speed

S0 = “Zero Voltage” Motor Speed -0.059285

A = Power Coefficient 0.12858

n = Order 1.5698

3.2.1.3 Treadmill Tracking the Vehicle

The performance of the longitudinal controller is strongly dependent on the gains chosen for the

controller.  The following plots show the performance of a controller with very tight gains of P–gain: 1.5

m/s per m, I–gain: 0.0001 m/s per m-s, D–gain: 2.0 m/s per m/s.
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Figure 3.8:  Time responses showing the performance of the longitudinal controller.

The following plots show the performance of a controller with medium gains of:

P–gain: 1.50 m/s per m, I–gain: 0.0001 m/s per m-s, and D–gain: 0.150 m/s per m/s.
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Figure 3.9:  Time responses showing the performance of the longitudinal controller.
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In general, the treadmill is not used to track the vehicle, simply because the treadmill surface or belt is

much more difficult to replace than the vehicle motors or tires.  In general, the treadmill is run at a constant

velocity and the vehicle is used to track the treadmill, as detailed in the next section.  When situations arise

where the treadmill must track the vehicle, in general the medium gains shown above rather than the “tight”

gains are used to save on wear-and-tear on the treadmill.

3.2.1.4 Vehicle Tracking the Treadmill

The longitudinal controller can be designed so that the vehicle tracks the treadmill.  This requires

an accurate open-loop model of the relationship between motor voltage and velocity.  This relationship is

described in detail in the previous section “Motor Dynamics”, and it is assumed at this point on that the

relationship is well known.  The design of the controller is straightforward PID controller design.  The

results of the controller using gains P–gain: 1.5 m/s per m, I–gain: 0.0001 m/s per m-s, D–gain: 0.15 m/s

per m/s is as follows:
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Figure 3.10: The control effort used to have the vehicle motor track the treadmill.

3.2.2 Uberquad (DC Motor system)

The Uberquad has the capability of direct torque input into each wheel.  As a consequence, the

longitudinal control of the Uberquad is quite simple.  A PID control with unagressive gains is used to make

the Uberquad track the treadmill.  The controller outputs the same torque command to the drive motors (2

or 4, depending on choice of the user) and this torque command is added to the differential torque steering

command (if any) that is sent to the wheels.

3.3 Theoretical Vehicle Lateral Dynamics

The intent of this section is to describe the vehicle dynamics from a theoretical approach.  First,

the history of the modeling of vehicle dynamics is discussed.  The vehicle notation used throughout this

thesis is then presented.  The equations of motion are obtained by resolving the acceleration components

for the vehicle in terms of a coordinate system centered on the moving vehicle.  Tire forces are then

discussed.  Linearization of the tire and body dynamics is then performed to obtain the bicycle model.  A

specific case of this model, the steady-state solution, is then discussed.  Transfer functions relating vehicle

input to output are then given, and general vehicle dynamic trends are then deduced from these functions.
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Finally, a comparison is made between the bicycle model and other methods of modeling, including higher

order simulations and experimental results.

3.3.1 History of the Bicycle Model

Vehicle lateral dynamics has been studied since the 1950’s.  To describe a vehicle’s roll, yaw, and

lateral motions at a constant velocity, Segel developed a 3 DOF vehicle model (Segal 1956).  If the roll

motions are ignored, a simpler model is obtained that is known as the bicycle model (Whitcomb and

Milliken 1956).   At the Royal Military College of Science in 1960, Professor W. Steeds published

Mechanics of Road Vehicles presenting Newton’s equations applied directly to the bicycle model.  A

conflicting model was later published by one of Steeds associates at the college, Dr. John R. Ellis.  This

model used a path deviation model that approximated Newton’s equations for a vehicle in motion.  This

approximated model has become the standard method of modeling vehicle dynamics (even seemingly

applied to situations directly in conflict with the assumptions made in developing the model) (Smith and

Starkey 1995).  The bicycle model has been widely used for control purposes (Fenton 1976; Shladover

1978).  For small angles and accelerations, the approximated Newtonian and full Newtonian methods give

identical transfer functions.

3.3.2 Vehicle Diagram and Notation

We will first consider a three degree-of-freedom (3 DOF) model, for purposes of establishing

notation as well as a physical system of equations.  The notation used is the standard notation used by the

Society of Automotive Engineers (SAE).  We consider the car to be a rigid mass, with a coordinate system

centered on the center of mass of the car.  The figure below shows the convention to be used throughout

regarding vehicle dimensions.

Figure 3.11: A diagram showing the definition of the dimensions used to obtain the bicycle model.
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The notation associated with the above diagram is consistent throughout this thesis.  The meaning of each

term is as follows:

a Distance from C.G. to front axle

b Distance from C.G. to rear axle

d Distance from car centerline to each wheel (1/2 the Track)

X, Y Earth-fixed coordinates

U Vehicles longitudinal velocity

V Vehicle’s lateral velocity

3.3.3 Methods of Dynamic Tire Modeling

The number of tire models that are presented in literature is quite large.  In this thesis, we use the

linear Dugoff tire model without exception.  However, the Magic Tire Model by Pacejka is introduced

because of its use in controller design.  In addition, neural networks are increasingly being used to estimate

both friction potential and friction usage for each tire.  An example would be the neural network developed

by Pasterkamp and Pacejka to create an input/output model of tire dynamics (Pasterkamp and Pacejka

1997b).

3.3.3.1 The Dugoff Tire Model

The Dugoff tire model is one of the simplest tire models used in simulation.  It states that the force

exerted by a tire is proportional to the slip angle of the tire.  The slip angle is the angle that the tire is

making relative to the direction the tire is moving.  A diagram defining the slip angle is given below.

Figure 3.12: A definition of the tire slip angle.

To solve for the wheel forces, it is assumed that the torque inputs to each wheel act directly in the

wheel plane, and that the steering forces act perpendicular to the wheel plane.  Note that the torque input

could either be a brake or acceleration input.  The steering forces are assumed to be proportional to the

wheel slip angle.  The wheel forces then become:

steer angle, δi (negative angle shown)

wheel plane vector, 
r
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slip angle, αi

tire velocity vector, 
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where 
i

α is the slip angle of the ith wheel (Will and Zak 1997), (Cho and Kim 1996), (Alleyne 1997b).  The

slip angle of a wheel is defined to be the angle between the tire’s velocity vector and the wheel plane.  If we

assume that the unit vectors î  and ĵ  are directed along the vehicle’s longitudinal axis and lateral axis

respectively, then the velocity of the ith tire is given by:

i
rk̂ĵVîU

i
r

.G.C
V

i
V

×⋅ψ+⋅+⋅=

×ω+=

& (3.14)

where ri is the radius vector from the C.G. to the tire.  The radius vectors for each tire are as follows:

ĵdîb
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ĵdîb
3
r

ĵdîa
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ĵdîa
1
r

⋅−⋅−=

⋅+⋅−=

⋅−⋅=

⋅+⋅=

(3.15)

Knowing the ith wheel’s velocity in the vehicles lateral direction, Vi, and longitudinal direction, Ui, the slip

angle of the wheel is simply:
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where Vi and Ui are the velocity vectors of the ith tire in the vehicle coordinate system.  Thus, the slip

angles for each tire are as follows:
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(Alleyne 1997a; Alleyne 1997b) (Will and Zak 1997) (Smith and Starkey 1995) (Note that Alleyne’s sign

convention on the slip angle is non-standard, but this is corrected later by his use of negative cornering

stiffness coefficients).  For small angles, each slip angle can be simplified like the following:
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Again, these results agree with (Will and Zak 1997), (Cho and Kim 1996).  The use of this model is

explained in detail in (Will and Zak 1997) and (Dugoff, Fancher, and Segel 1970).

3.3.3.2 Transient and Non-Linear Tire Dynamics: The Magic Tire Formula

It is important to note that the above discussion of tire dynamics neglects any non-linear dynamics

between the tire and the road.  It is well known that the tire itself is best modeled as a transfer function

under light loading conditions, but that the model rapidly becomes nonlinear when significant tire forces

are generated.  The frequency range where this transition occurs is important because it represents the

limits of frequency analysis of the vehicle and the transition from a linear tire model to a non-linear system.

The linear tire dynamics are critical, simply because they are invariant with respect to the vehicle

controller.  The controller cannot change the pole locations of the tire without changing the physical

properties of the tire as the vehicle is driving.  First, the linear dynamics of the tire, i.e. the pole locations,

are examined in the literature.  Secondly, the non-linear dynamics are examined.  Combining this

information reveals the dynamic range over which a linear vehicle model should be valid.

The linear dynamics of a tire can be inferred by frequency domain tests conducted on full-sized

tires.  These tests have been conducted experimentally by several researchers with different motivations

(tire testing for manufacturing, vehicle dynamics, emergency maneuvering, etc.) and their results can be

summarized as follows.  For lateral tire motions (steering inputs) the phase change between 1 and 15 Hz for

a 205/60 R15 tire is given as 90 degrees, with a magnitude drop of 15 dB.  This suggests a tire “pole”

location between 3 and 5 Hz (Mastinu et al. 1997).  Several authors represent this pole as a distance-

dependent tire “lag” due to the distance needed for the tire to deform to develop lateral forces and

moments.  This distance is referred to as the relaxation length of the tire.  This concept is supported by

experimental results indicate that the tire pole becomes faster as a linear function of tire velocity (Higuchi

and Pacejka 1997).  This lateral force transient has also been observed in truck tires (Fancher et al. 1997).

The non-linear dynamics of tires have been fit with semi-empirical modeling.  The magic tire

model is an empirical model developed by Pacejka and colleagues at Delft University that has been verified

experimentally to be quite accurate (d'Entremont 1997).  In the formula (Pacejka and Besselink 1997),

some constants can be inferred by examine physical tire characteristics.  However, as noted by some

authors (Leister 1997), this model is updated almost annually, resulting in many versions of the formula.

The focus of this model is for use on simulation studies of vehicle dynamics.  Because of its complexity



49

and non-linearities, it is rarely used to design controllers, and is almost solely used for validation of

controller codes in simulation.

At a constant velocity, therefore, the tire’s lateral forces can be considered in the linear case as an

approximate 2nd order system from steering input.  The pole locations associated with longitudinal forces

(braking, torque) have been experimentally shown to be much faster than the lateral modes, and

demonstrate a fourth order, double mode of vibration with modes at 33 and 77 Hz (Zegelaar and Pacejka

1997).  For basic approximation of tire slip alone in the longitudinal direction, several authors suggest a 1st

order model for both the lateral and longitudinal directions (Salaani, Chrstos, and Guenther 1997).  It is

important to emphasize that each tire model depends on a tradeoff between complexity and model

accuracy.  The complexity of tire lag and its influence on vehicle stability and control is addressed by

(Heydinger, Garrot, and Christos 1991; Heydinger, Garrot, and Christos 1994).

3.3.4 Equations of Motion

Before discussing the equations of motion, the notation used for vehicle control is introduced:

Figure 3.13: A diagram showing the notation for vehicle motions (scanned from (Nwagboso 1993)).

The vehicle dynamic equations can be obtained from Newton’s law,

∑ ⋅= amF
rr

 (3.19)

by substituting the appropriate expression for acceleration (Will and Zak 1997).  Given the forces,

jFiF yx
ˆˆ + , that can be generated at the ith tire, the moment of the i th tire is given by

iii FrM
rrr

×= (3.20)

Substituting,

( ) k̂FyFxM xiiyiii ⋅−=
r

(3.21)
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The sum of moments for the vehicle must be equal to

2

2

zi dt

d
IM

ψ
=∑

r

(3.22)

 There is some contention over the best coordinate system to use to model vehicle dynamics, and

the answer to this question depends too strongly on the application to allow an answer.  For the “in-plane”

dynamics under study, moving coordinate systems are most often utilized that are fixed to the vehicles’

center-of-gravity.  This allows the equations of motion to be re-written so that the dynamics are studied in

relation to the car (which in fact is the location that they are most measured from).   It is important to note

that if the coordinate system is not fixed to the body, then the angular velocity of the vehicle is not the

angular velocity of the coordinate system (Steeds 1960).

To fix this problem, the preferred method is to orient the coordinate system along the vehicle’s

longitudinal axis so that the moments of inertia of the body are constant.  If a fixed (stationary) coordinate

system were used, the moments of inertia would vary as the body changes orientation to the fixed axes

(Steeds 1960).

The first difficulty is in defining the acceleration of the moving coordinate system.  It is often

necessary to transform a vector from one coordinate system to another.  The transformations between a

vector in the moving frame, A i B jmoving moving⋅ + ⋅$ $ , and a vector in the stationary frame, C i D j⋅ + ⋅$ $ , are as

follows:

( ) ( )[ ] ( ) ( )[ ]A i B j A B i A B jmoving moving⋅ + ⋅ = ⋅ + ⋅ ⋅ + − ⋅ + ⋅ ⋅$ $ cos sin $ sin cos $φ φ φ φ
 (3.23)

( ) ( )[ ] ( ) ( )[ ] movingmoving jDCiDCjDiC ˆcossinˆsincosˆˆ ⋅⋅+⋅+⋅⋅−⋅=⋅+⋅ φφφφ
 (3.24)

where φ is the angle between the moving and the stationary frame, measured with respect to the x-axis of

the stationary frame (Alleyne 1997b).  These transformations can be written in matrix form as:

( ) ( )
( ) ( )

r r
X Xmoving =

−








 ⋅

cos sin

sin cos

φ φ
φ φ (3.25)

and

( ) ( )
( ) ( )

r r
X X moving=

−







 ⋅

cos sin

sin cos

φ φ
φ φ (3.26)

To obtain the acceleration components in the fixed-body coordinate system, a perturbation along

the path is examined as the vehicle undergoes a change in orientation (see the figure below).
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Figure 3.14: Coordinate axes rotation and translation used to derive acceleration components in body-fixed

coordinates.

Let U and V represent the velocity components at time t of the vehicle along the longitudinal and lateral

directions of the vehicle when the axis of measurement is fixed to the vehicle’s body.  Note that these

velocity components are sometimes referred to as the components of the vehicle velocity relative to the

moving axes.  This is misleading, since there is no motion of the vehicle with respect to the vehicle’s axes.

The motion is of the axis itself relative to a fixed coordinate frame (Steeds 1960).  To derive the

acceleration, the change in velocity is determined in the moving coordinate system in the directions X1-Y1

when U, V, and the orientation are incremented by a differential amount.  Note that the change in resolved

velocity depends not only on the change in velocities U and V, but also on the change in orientation.  The

change in velocity parallel to X1 is:

( ) ( )
Ψδδ+Ψδ+−Ψδδ+Ψδ=

Ψδ⋅δ++−Ψδ⋅δ+=δ

sinVsinVUcosUcosU

sinVVUcosUU
1X,res

V

(3.27)

(Steeds 1960).  The acceleration is obtained by dividing by δt.  In the limiting case as δt goes to zero, the

acceleration in this direction becomes:

Z
VU

dt

d
V

dt

dU
X

a

ω⋅+=

Ψ
+=

&
(3.28)

The component dU/dt is due to the changing velocity, while the remaining term is due to the rotation of the

axes.  Similarly, the acceleration component parallel to Y1 is:

Z
UV

Y
a ω⋅−= &

(3.29)

These planar accelerations agree with published data from (Will and Zak 1997), (Cho and Kim 1996).
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These accelerations represent the planar accelerations of the vehicle, and neglect any bounce,

pitch, or roll motion.  If this perturbation analysis is continued into all three dimensions, then the

acceleration component in vehicle body coordinates becomes:
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(3.30)

 (Horinouchi et al. 1997) (Steeds 1960).   Note that if the angular acceleration components are much larger

than the positional acceleration components, the moment equation will also require a transformation

(Steeds 1960). For this thesis, we will be assuming that the spin of the vehicle will be small enough that the

modified moment equation is not needed.  We next assume that the vehicle travels at a constant velocity, U,

as measured in the vehicle’s frame.  For these simple studies, only a 2 DOF model is used (lateral position

and yaw angle).  Higher-order modeling such as roll, pitch, deceleration, or suspension dynamics will

require additional acceleration components.  Assuming a 2 DOF model, we can now write the equations of

motion as:

F
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(3.31)
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(Alleyne 1997b).  It is rare to see a controller where all four wheels are steered independently.  At this point

it is assumed that the two front wheels are steered by the same angle, δf, and the two rear wheels are steered

by the same angle, δr.  It is then assumed that the Dugoff tire model applies, then the lateral forces are

determined solely by the steering input, and both front wheels produce the same lateral force.  By summing

the forces produced in the front two tires as yf and the rear tires as yr , the dimension of the force states can

be reduced to:
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The forces, xi and yi, can be resolved from the wheel forces, Fxi and Fyi, by the following expression:
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(Alleyne 1997a; Alleyne 1997b), (Smith and Starkey 1995).  This is simply a rotation from wheel

coordinates to body coordinates, where the rotation angle is the steering angle of the wheel.

For the dynamics under study, the x-direction forces are used solely to produce a moment on the

system.  As a simplification, we can assume that the x-forces produced by lateral steering forces,

represented by the term ( )
i

sin
i

Fy δ⋅ , produce moments that cancel each other.  This term is neglected

hereafter.  In addition, for small steering inputs the cosine and sine terms may be approximated.  Thus,
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Substituting the tire forces from the Dugoff Tire Model, we obtain:
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Using the linear representation of the slip angles:
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where Cαf = (Cα1 + Cα2)/2, Cαr = (Cα3 + Cα4)/2.

It is clear from the above formulation that the control inputs between torque and front steering are

coupled.  To decouple these control inputs, some simplifying assumptions are made.  First, we assume that

the torque input consists of two terms, a steady-state term and a transient term that represents the torque

control effort sent to each wheel.

i
T

i,nom
T

i
T ∆+=

(3.38)

Note that the torque input into the x-direction on each axle is now only affected by the transient term

because the steady-state terms generate equal and opposite moments.

ii
r
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i
x

∆
≈ (3.39)

Finally, it is assumed that the differential torque multiplied by the steering control input is much smaller

than the steady-state torque multiplied by the steering control input.  In essence, this is assuming that the

control torque input into the wheels does not produce significant lateral forces even if the wheel is being
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steered while a torque is being applied.  It is also assumed the tires have (approximately) the same radius.

The lateral forces are:
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With this last assumption, the control inputs are completely decoupled and the tire forces are now linear in

the inputs and states.  We can now conclude the model development by representing the system in state-

space format as:

u
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The linear vehicle dynamics can now be derived by substituting the above expression into (3.31):
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where:
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and:

m = the vehicle mass

V = the vehicles velocity (assumed to be primarily in longitudinal direction)

δi = the steer input into the ith vehicle

a, b = the longitudinal distance from the C.G. to the front and rear axle

ψ = the yaw angle of the vehicle, measured w.r.t. the ground

Iz = the moment of inertia about the z-axis

Caf, Car = front and rear wheel cornering stiffness (see definition in text above)

Tnom,F,R = the nominal torque produced by the front and rear tires

∆Ti = the controlled torque input into the ith tire

If the torque input is ignored, the resulting linear state-space model agrees with published dynamics from

(Smith and Starkey 1994), (Cho and Kim 1995), (Alleyne 1997b), and (Will and Zak 1997) among others.

This linear model is referred to as the bicycle model, because the dynamics represented by this model are

equivalent to those of a bicycle whose motions are restricted to a single plane.  The importance of the

bicycle model requires further discussion.

In some instances, such as tracking problems where the coordinate system is fixed to the reference

path, it is more convenient to use a fixed coordinate system to resolve the state positions rather than the

state velocities.  The dynamics of the fixed system are the same, except that the slip angles are defined as

follows:
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The remaining modifications become:
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With this last assumption, the tire forces are now linear in the inputs and states, and can be written in state-

space format as:
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Thus, the A and B matrices become:
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This agrees with (Peng and Tomizuka 1993).

3.3.5 Linearized Vehicle Dynamics – The Bicycle Model

Today, the bicycle model is one of the most widely used for purposes of vehicle lateral controllers.

A derivation of this model is based on the assumption that the two front tires and two rear tires can be

lumped together effectively as one tire in front and in back of the vehicle, like a bicycle. To obtain the 2

DOF vehicle model (yaw and lateral vehicle motion), several aspects of the vehicle dynamics are ignored;

specifically, any dynamics associated with vehicle roll, bounce, or pitch are neglected.  Included in the

neglected dynamics are those associated with suspension, weight shift due to braking or acceleration, and

other out-of-plane motions.  Depending on the tire model chosen, a linear or non-linear 2 DOF model is

obtained.  The major inputs into this system are the front and rear steering angles, while the throttle angle

and brake forces act as secondary inputs (Tomizuka and Hedrick 1995). Studies conducted on full sized

vehicles and high-order models (LeBlanc et al. 1996; Smith and Starkey 1994; Smith and Starkey 1995)

show that the bicycle model matches relatively well to a full sized vehicle and to high-order simulations for

low-g (0.3) cases.

Higher-order models are sometimes used both for design and for validation of vehicle controllers.

A sample development of these models can be found in (Lugner 1977; Lugner 1982; Peng and Tomizuka

1990b).  The higher complexity of these models usually arises from examining increasing number of

vehicle states and more complex tire forces.  Since the forces for vehicle motion must arise from the

contact of the tires to the ground, the tire model is a critical element of any vehicle dynamics model

(Bakker, Nyborg, and Pacejka 1987; Bakker, Pacejka, and Lidner 1989).  As discussed earlier, non-linear

tire dynamics arise under high loading and high frequency conditions.  However, it is important to note that

the bicycle model ignores tire nonlinearities, and hence should not be expected to fit the measured vehicle

responses under aggressive conditions.

3.3.6 Vehicle Transfer Functions

The transfer functions for the vehicle dynamics can be obtained by the standard state-space

conversion: C*(s*I-A)-1*B, where A is the state matrix, B is the control input matrix, and C is the output

matrix.  From this approach, it is clear that the pole locations will not change with the state under control or

with method of control input or placement of the sensor. Using MATLAB’s symbolic solver, the

characteristic equation for the 2 state model was obtained (Note: L = a+b).
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The transfer functions become:
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An interesting point to note is that both the poles and zeros related to the steering inputs are invariant with

respect to the average (nominal) torque input.  However, the DC gain of the transfer function increases with

increasing torque (assuming the nominal torque is approximately a constant).  Thus, the “responsiveness”

some drivers associate with front-wheel-drive vehicles is likely attributable to an increased DC gain on

these transfer functions.  The transfer functions associated with the differential torque input are:
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Significant discussion has been given in the literature regarding “optimal” placement of vehicle

positions sensors.  Using the four-state model just developed, we can obtain the vehicle transfer function to

position as long as we have an output equation.  If the lateral position is measured from a sensor located a

distance ds (a preview sensor distance) in front of the center of gravity, then the output equation becomes:
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where the states are as shown.  If the lateral position is measured at the center of gravity, then the d term in

the output matrix becomes zero.

It is clear that the dynamics of the system with a preview sensor distance are the same dynamics as

a state feedback feedback controller based on yaw angle and lateral position feedback.  The feedback gain

on the yaw state is proportional to sensor distance, as shown in the above equation.  Conceptually, this is

the same framework as a lateral position controller with additional yaw angle feedback, where the feedback

gain is proportional to sensor distance, ds.  Because sensor preview gives the same effect as feedback, it is

not used in this thesis.  The characteristic equation for the 2 state model is then obtained (Note: L = a + b):
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Interestingly, the pole locations are the same whether a fixed or a moving coordinate system is used.

However, the order of the transfer function for lateral position and velocities are different.  The transfer

functions become:
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Note that the yaw-rate transfer functions are again invariant with respect to the coordinate system used.

The torque-input transfer functions are as follows:
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At this point, 5 separate models were developed to compare the methodologies presented here.

The first model was a 2 DOF model where the small angle approximations for each wheel were not made,

and the slip angle calculations were determined using inverse tangents rather than a linearization.   The

remaining four models consisted of two state-space models and two transfer function-based models (which

are equivalent theoretically, but treated separately to confirm numerical equivalence in Wincon

implementation), where one of each model type represented the dynamics derived using a moving

coordinate system, and one set of dynamics represented the fixed coordinate systems.   These five models

were tested using a step steer input into the front and rear wheels, and a step steer input into each of the

tires.  Naturally, we expect the moving coordinate systems to provide the same results, and the stationary

coordinate systems to provide the same results.  However, there should be discrepancy between the two

systems for large angles of yaw or steering.  The figure below shows the data obtained from a 0.05 radian

front steer step input at time t=0.  The parameters used in this set of simulations were the measured bicycle

parameters for the 4WD4WS vehicle.
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Figure 3.15: Lateral acceleration (left) yaw rate (center) and position (right) responses from 2 different

vehicle coordinate frames.

In the model responses, the simulation was allowed to run long enough for the vehicle to begin to

turn around.  No differences were notable in comparing the nonlinear 2DOF model (utilizing nonlinear

rotation and inverse tangent slip angle calculations) and the linear models that utilized body-centered

coordinate systems.
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In the above simulations, an increasing error is seen between the fixed coordinate system models

and the moving coordinate system models.  For fixed coordinate systems, it was expected that modeling

errors will increase at large yaw angles because the slip angle calculation for these cases assumes that the

vehicle is only at a small angle from the fixed axes.  As seen in the figure above, the two systems utilizing a

fixed coordinate reference frame failed to model the vehicle well as the yaw angle is increased.   However,

it is clear that at small yaw angles both methods gave identical results.  At larger angles, the error due to the

slip angle approximation rapidly increases until the velocity responses diverge as expected.  In all cases, the

yaw angle and yaw rate responses were nearly identical.  Again, this result is expected because identical

yaw-rate transfer functions were obtained for the above models.  The results of the above simulations

appear to provide good preliminary evaluation of the modeling approaches.

3.3.7 Steady State Solutions to Bicycle Dynamics

If a vehicle is traveling at a constant velocity around a turn of a constant radius, it is relatively easy

to solve for the steady-state vehicle response to the turn because a fixed polar coordinate system can be

used. At steady state, the acceleration vector tangent to the vehicle path is zero.  A derivation of the

relationship between steer angle and turning radius was originally done by R.T. Bundorf in “A Primer on

Vehicle Directional Control” in 1968 (Bundorf 1968).  The derivation provided in that paper is presented

here in more detail.  A diagram used in the derivation is shown below.

Rear wheel Velocity Vector

Front Wheel Slip
Angle, αf

Wheel Plane,
Front Tire

Turning radius, r

Ackerman Angle, φ

φ

Rear wheel path

Rear Wheel Slip Angle, αr

Front Steer
Input, δf

Vehicle’s
 Longitudinal
 Axis

Front Wheel Velocity Vector

Front
Wheel Path

90 - αf - φ

90 + αf - δf

90 - αr

Figure 3.16: A diagram used in the derivation of the relationship between steer angle and turning radius.
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When the vehicle is traveling as shown, the vehicle makes a triangle with the wheel axis as one leg, the

front radius vector another leg, and the rear wheel radius vector as the final leg.  The internal angles to this

triangle can summed so that

rff
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(3.73)

The forces produced by tire 1 and tire 2 can be approximated to be
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Which can be combined with Equations (1) and (4) to solve for r
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This agrees with results presented in (Cho and Kim 1996)  The steady-state slip angles are as follows:
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(Cho and Kim 1996).  From Equation (3.79), we can see that if a vehicle has a center of gravity moved

toward the front of the car, then the vehicle will pitch inside a constant-velocity turn.  If the vehicle has a

center of gravity toward the rear of the car, then the vehicle will pitch out of the turn.  More importantly,

Equation (3.78) gives the radius that we should expect a vehicle to turn at steady state if the vehicle

dynamics are correct.

We can test the transfer functions we obtained earlier by comparison with this steady-state

analysis.  For a vehicle traveling around a circular track at steady state with constant steering input, we can

assume that the yaw rate is the same as the change in angle of the vehicle about the center of the track.  The

time for the vehicle to travel around the track is given by:
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where phi dot is the yaw rate at steady state of the vehicle.  The distance traveled by the vehicle in this time

is simply
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where r is the radius of the turn.  Thus

ss

U
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ψ
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&  (3.82)

This equation gives the following insight: any controller attempting to maintain the vehicle on a constant

radius turn at a constant velocity is simply attempting to control the inverse of the yaw rate.  To compare

Bundorf’s result with the planer dynamics just derived, note that the steady-state yaw rate given by the DC

gain of the yaw-rate transfer functions obtained previously for a front steering input:
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The steady state radius given by these transfer functions is thus:
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Which is identical to the value obtained by Bundorf and others using their polar type of analysis and

making no small angle assumptions.  The fact that each approach (polar coordinates versus fixed body

coordinates versus globally fixed coordinates) gives the exact same turning radius at high speeds validates

the model development for each method.

3.3.8 Bicycle Model Trends

In the conventional, front-wheel steering systems found on nearly all vehicles, only the front

wheels are actively involved in controlling the lateral motion of the vehicle.  In the basic vehicle response

to a steering input, there are usually two characteristic degrees of freedom: yaw rate and sideslip angle (or

lateral velocity).  The sideslip angle is related to lateral acceleration by:

( )β+ψ⋅= &&&& Vy
(3.86)

where V is the vehicle velocity, phi is the yaw angle, and beta is the body sideslip angle (Furukawa and

Abe 1997).  With two wheel steering, the phase lag of the lateral acceleration increases with respect to the

yaw rate response.  This is caused by the decrease in the steady-state gain of the body sideslip angle with

increasing speed.  At some velocity, the steady-state gain becomes negative, and the possibility for unstable

vehicle motion increases.  Several control approaches discussed in the literature review specifically focus

on minimizing this effect.

In the studies conducted in this thesis, we were more concerned with the yaw dynamics of the

vehicle rather than the sideslip.  Because the dynamics for both yaw rate and sideslip share the same pole

locations, a discussion of one will serve for both.  Hereafter, only yaw dynamics are considered, and
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specific focus is given to speed related dynamic changes as well as model sensitivity to changes in

cornering stiffness.

One of the most common causes for driver (and controller) errors is that the vehicle may be

driving on a surface with changing road friction coefficients, such as ice or water.  Later testing addresses

controller robustness to such variations; however, a theoretical analysis of the effect of parameter changes

on the bicycle model is needed.  The parameter that most significantly affects the bandwidth vehicle

response is the cornering stiffness.  As noted in (Jansen and VanOosten 1995), as the cornering stiffness

increases, the bandwidth of the system increases, the damping of the system increases (decreasing

overshoot).  Jansen and VanOosten also outline the model sensitivity to the roll damping and tire relation

length.
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Figure 3.17: A root-locus of the bicycle model (for average full-sized vehicle) with respect to velocity (left)

and cornering stiffness (right).

The above root-locus plots, generated using the nominal vehicle parameters presented in (Alleyne

1997a; Alleyne 1997b), illustrate the linear dynamics’ pole dependence on velocity and cornering stiffness.

Both the speed and cornering stiffness greatly affect the bandwidth, but changes in velocity also affect the

damping ratio of the system in addition to bandwidth.  Both of these variations have significant

implications in controller dynamics of the closed-loop system, and are very difficult to account for.  One

method is to use robust control theory to create a controller that is robust to all classes of plant changes.

Clearly from the above Bode plots, this approach is quite difficult because of the amount of variation in

plant dynamics.  Another method has been to use gain scheduling; however, this assumes that plant

parameters are known exactly and that the model is very closely described by the bicycle model.  One final

method is to use adaptive algorithms to identify either the plant or the parameters, and then design a

controller structure suitable to these dynamics using standard control techniques.

3.3.9 Comparison of Bicycle Model to Full Dynamics

Currently there is a lack of well-documented vehicle response measurements that include all of the

required data for accurate simulation (Smith and Starkey 1995).  In the paper by Smith and Starkey (Smith

and Starkey 1994; Smith and Starkey 1995), a comparison is made between 2D, 5D, and 8D models and
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experimental vehicle data obtained by other authors.  For low-g maneuvers, a good agreement was obtained

between all of these models.  However, above 0.6 g’s, the tire response becomes non-linear and an

automated steering control system based on the 2D or 5D models may produce unexpected results (Smith

and Benton 1996).  The authors demonstrate via controller implementation that ignoring these dynamics

can significantly affect the performance (including destabilizing the vehicle) during aggressive maneuvers

(Smith and Starkey 1994).  The tire lag dynamic was cited in this paper as being the primary cause of

modeling error; however, for the validation data used to make this conclusion, the effect of tire lag cannot

be separated from actuator dynamics.  The authors do note that inclusion of tire dynamics in the linear

model results in a linear model that is seemingly valid up to 0.6 g’s.

Historically, the question of how well the bicycle model matches measured vehicle responses has

been questioned.  It is easy to confirm that the model accurately predicts the steady-state behavior of the

vehicle, but controller implementation is most concerned with transient performance (drivers usually don’t

have several minutes to avoid an accident when driving a car!).  In recent history, several authors have

directly addressed this issue, notably the papers(LeBlanc et al. 1996; Smith and Starkey 1994; Smith and

Starkey 1995).  The general conclusions of these experimental studies can be inferred by the previous

paragraphs: the linear bicycle model (2-DOF) is valid for controller design as long as accelerations do not

exceed 0.3 g’s and obvious tire saturation (such as black-ice) does not occur.  Accepting the conclusions of

other researchers, we may now assume that the bicycle model can model full-sized vehicles.  However, the

question remains of how well do scale vehicles model full-sized vehicle.  To develop an answer to this

question, we use the bicycle model as the method of comparison.

3.4 Comparing Scale and Full-Sized Vehicle Dynamics

A natural question asked when one system must dynamically match another is what is the quality

of the representation?  It is not enough to say that a scale vehicle has the same trends, similar dynamics, or

about the same performance.  What is needed is a method to quantify the exact agreement between scale

system and full sized vehicle.  The dynamics of the vehicle must be central to this quantification, because

the purpose of the control presented here is to determine methods to affect the vehicle dynamics.  The

method of quantification presented here is the Buckingham Pi Theorem of Dimensional Similitude, dating

from 1914.  First, an overview of the theorem is presented.  After this, the methods of the theorem are

applied to vehicle dynamics to determine the testing conditions required for dynamic similitude.

3.4.1 Introduction to the Buckingham Pi Theorem

The Buckingham Pi theorem is based on dimensional analysis whose central idea is to substitute a

set of dimensionless numbers for the dimensional physical variables that describe the dynamics of a

system.  Because the dimensionless numbers are products or ratios of the physical variables, this process

always reduces the number of variables needed to physically describe a problem.  From a dynamical

standpoint, the effect of this reduction is to non-dimensionalize the differential equations describing the
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dynamics of the system.  The Buckingham Pi theorem states that two systems are dynamically similar if

both systems, by selection of the same dimensionless numbers, yield the same non-dimensional differential

equation (McMahon and Bonner 1983).

To determine the number of dimensionless parameters (known as Pi groups), the fundamental

quantities must be determined.  The fundamental quantities of a system consist of the minimum number of

unit dimensions needed to describe each parameter.  For instance, the units of measure for density are mass

units/ (length units)^3.  The fundamental quantities generally discussed in literature are Mass/Length/Time

(MLT) or Force/Length/Time (FLT).  Other fundamental quantities include Temperature, Power, Charge,

etc.  The Buckingham Pi theorem states that for m physical values defined in terms of n independent

fundamental quantities, there are (n – m) independent dimensionless groups, known as Pi groups

(Buckingham 1914).  Before discussing the analysis of Pi groups, a simple example is presented from

(McMahon and Bonner 1983) that motivates the discussion.

Consider using the Buckingham-Pi Theorem to predict the period of a pendulum (McMahon and

Bonner 1983).  Assuming that air resistance does not affect the pendulum dynamics, we may note

beforehand (by experiment perhaps) that the period of the pendulum is invariant with the mass, but changes

with changing length of pendulum arm.  Because the fundamental quantities of the length and period of the

arm are L and T, there is no way of combining these two parameters to cancel their units.  If we guess that

the formula for the period will depend somehow on gravity, we may add the gravitational acceleration as

another parameter for our guessed formula.  We then would obtain as a possible Pi group the term T2*g/l.

If we conduct experimental studies for various pendulums at small amplitudes, we would find that the

above term in fact does remain constant! A derivation of the period from first principles would also confirm

this and reveal the numerical value of this constant.

To approach the much more difficult problem of predicting the period of a pendulum at larger

amplitudes, it would be natural to use numerical studies or repeated experiments to obtain a prediction for

period based on measured parameters.  However, by simply guessing that the longer period may

additionally depend also on the length of the arc, another Pi group may be formed of a/l, where a is the arc

length.  Conducting a simple experiment, we would find for a constant a/l for any pendulum that the other

pi group remains constant!  The use of the Buckingham Pi theorem is demonstrated further in later sections

where it is applied to the dynamics of scale automobiles.  

3.4.2 Situations Where Dynamic Analysis May Fail

Dimensional analysis sometimes reveals that multiple pi groups affect the dynamics of a model

such that matching one pi group causes mismatch with another.  An example would be the testing of a

1/50-scale submarine in a tank of water.  The drag on a submarine depends on the Reynolds number

(viscous friction) and the Froude number (energy lost to wave propagation).  The Reynolds number

predicts that the submarine would have to travel at 50 times the full-size speed, while the Froude number

predicts 0.14 times the full-size speed.  In this case, both conditions cannot be met.  To overcome this
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problem, the surface of the scale model is often roughened to increase the Froude number artificially by

gluing a strip of sandpaper to the model near the bow.  The same dimensional matching problem is

encountered with scale aircraft, where both the Mach numbers and Reynolds numbers must be matched.

To change the Reynolds number, a trip wire is often introduced near the leading edges of the wings and

body to cause turbulence.  This "compensation" is not always exact, yet scale model testing remains a

primary method to test aircraft and ship designs.  In the next section, it is shown that the dynamic scaling of

vehicles is relatively easy to obtain (when compared to aircraft or submarine testing), and yields insightful

results into the governing differential equation known as the bicycle model.

3.4.3 Similitude of the Bicycle Model

Originally, the dynamic similitude of the vehicles used in the IRS was validated with the notion

that pole/zero equivalence between full sized and scale vehicles justifies dynamic similitude.

Experimentally, it was found that the input/output pole/zero locations were similar to those of full-sized

vehicles.  However, it was later shown by work conducted in this thesis that the dynamic matching was

obtained via the actuator dynamics, rather than true vehicle body dynamics.  In this section, it is shown that

dynamic similitude does in fact guarantee identical pole locations, but that the reverse is not true.

To apply the Buckingham-Pi Theorem to the control of a scale vehicle, the governing dynamic

equations are first examined.  From analysis of the bicycle model, we assume that the lateral position and

yaw rate will be a function dependent on the scaled parameters:

( )r,T,
r

C,
f

C,b,a,V,I,m,fY z ααδ=
(3.87)

If we assume that Y exists, then we can always define a function, g(s), where:

( )r,T,
r

C,
f

C,b,a,V,I,m,,Yg0 z ααδ=
(3.88)

As a reminder, it was assumed in the development of the bicycle model that the net velocity of the vehicle,

V, is approximately equal to the longitudinal velocity, Vx.

The Buckingham Pi theorem states that any function that can be written in the above form can be

rewritten in a dimensionless form without changing the solution to the differential equation.  As discussed

earlier, similitude is achieved by grouping the parameters into  (n – m) independent dimensionless

parameters, where n is the number of parameters and m is the dimension of the unit space occupied by the

parameters.  The parameters with units used above, along with their primary unit dimensions, are:



68

[ ]

[ ]












=











 ⋅
=





=



 ⋅=












=











 ⋅
=α=α

======





====

==

2T

2ML
2sec

2mkg
T

2ML2mkg
z

I

2T

ML
2s

mkg
r

C
f

C

LrdbaLY

T

L
s/m

y
V

x
VV

Mkgm

(3.89)

Note that the angles such as the steer angle and slip angle are unitless and thus form their own Pi groups

(all angles are unitless because they represent the ratio of an arc length to the radius of the arc). It is clear

that the basic unit dimensions are time, length, and mass.  Thus, there are 3 primary dimensions in the unit

space, and 6 parameters in question (assuming consistent length scaling throughout the vehicle).  If we

choose m, V, and L as repeating parameters, we can express the remaining 3 parameters as dimensionless

groups, to create 3 pi groups. First, a dimensional equation is formed in powers of the repeating parameters.
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Equating the powers, three equations are obtained:
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Solving the equations gives a = -1, b = -2, and c = 1.  Hence, the first pi group is Cα1L/mV2.  Solving for

the second Pi group:
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Equating the powers, three equations are obtained:
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Solving the equations gives a = -1, b = 0, and c = -2.  The second pi group is Iz/mL2.  Solving for the third

Pi group:
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Equating the powers, three equations are obtained:
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Solving the equations gives a = -1, b = -2, and c =0.  The third pi group is T/mV2.   A summary of all pi

groups:
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The Buckingham Pi theorem states that if two dynamic systems are described by the same differential

equations, then the solution to these differential equations will be the same if the pi groups are the same.

This becomes clear during non-dimensionalization of the governing non-linear differential equations.  To

perform the non-dimensionalization, note that the differential equations are performing derivatives of

velocity, time, and yaw angle.  By using the repeating parameters chosen above, we can select:
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Note that the yaw angle measured in radians is non-dimensional and needs no parameter transformations.

Examining small perturbations of each parameter, we obtain the differential relationships between the

above parameters.
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(3.98)

Note that substitution of the above values into the differential equations representing the bicycle model

yield a non-dimensional bicycle model.

To determine the validity of the use of scaled vehicles on the IRS, originally the pole locations of

the scale vehicle were compared to the full sized vehicles.  These pole locations are determined by the

eigenvalues of the ‘A’ matrix for the bicycle model.  These eigenvalues are the solution to the polynomial

equation in the Laplace variable, s:

( ) 0
r

bC
f

aC
z

I

1
2mV

z
I

2L
r

C
f

Cs
r

C2b
f

C2a
V

z
I

1
r

C
f

C
mV

12s =α+α−αα+













α+α+α+α+ 














(3.99)

Note that the s term has units of (sec-1), so we may make a scale transformation to non-dimensional

coordinates:
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Clearly, if the pi groups exactly match between two systems governed by the bicycle model, then both

characteristic equations will be the same and the normalized pole locations will be the same.  If we

compare the relationship between pi groups and pole locations in the above equation, five pi groups are

used to match two coefficients.  Although the five pi groups uniquely characterize the two coefficients of
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the characteristic equation, clearly many different combinations of pi-groups can achieve the same

characteristic equation.  Thus, the characteristic equation does not uniquely characterize the pi groups.

To test for dynamic similitude of the IRS, full sized and scale vehicle parameters, pole locations,

and pi groups were compiled (see Appendix 1) (compare.xls).  Discussion of the agreement between scale

and full-sized vehicles is discussed in detail in later sections of the thesis.  To summarize these results,

analysis shows experimentally and theoretically that exact agreement can be achieved between scale and

full sized vehicle dynamics if testing conditions are chosen correctly.

3.4.4 Measured Vehicle Parameters

The transfer function previously derived for the lateral dynamics behavior of a vehicle was

previously derived via bicycle model parameters. We can note that these parameters consist of many values

that are experimentally measurable, such as vehicle speed, mass, and moment of inertia.  If these values are

measured and substituted into the transfer function given above, then a reasonable approximation of the

vehicle’s transfer function should be obtained. Although the measurement of the vehicle mass is trivial,

measuring the other values is not obvious.  This section describes the measurement of these parameters and

the resulting parameter trends determined by these measurements.  A summary of these parameters is then

provided.

3.4.4.1 Vehicle Weight and Center of Gravity Location

Determination of the vehicle weights and location of the center of gravity was almost trivial.  The

vehicles were weighed using a postal scale.  The center of gravity, by definition, is the point where the net

force vector on an object would pass through if the object were acted upon by a gravitational (or inertial)

force. To determine the vehicle’s center of gravity, the vehicle was suspended at various angles and it was

noted where the suspension line passed through the vehicle. The center of gravity is the point at which

these lines cross.  The picture shown below shows this being done for the vehicle.

          

Figure 3.18: A picture of the hang method used to find the center of gravity (left) and the oscillation test

stand with car (right).
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Once the center of gravity was determined, the wheel displacements from the center of gravity (xi) were

measured, and the vehicle length was determined from these measurements.  Note that X1 is the distance

from the C.G. to the front axle and X2 is the distance from the C.G. to the rear axle.  In addition, the normal

forces produced from the front and rear axles was measured separately, and a force/moment balance was

used as a second method to verify the C.G. location.

3.4.4.2 Measurement of the Z-Axis Moment of Inertia

To determine the z-axis moment of inertia, each vehicle was suspended by a spring (shown

above), and the period of oscillation about the z-axis was measured.  For a mass that is suspended by a

spring whose force is proportional to angle, the governing equation is given by the equation:

θ−θβ−=θ∑ = k
z

I
z

M &&&
(3.102)

where β is a damping term [N*m*sec/rad], Iz is the z-axis moment of inertia [kgm2] and k is a spring

constant [N*m/rad].  If we take the Laplace transform of the equation and set it equal to zero (our input),

we obtain:
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If we solve for s, we obtain
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If the system is underdamped, the terms inside the square root will be imaginary, and the system will be a

sinusoid with exponentially decaying amplitude.  The time constant of the decay, -β/(2⋅Iz) = λ, can be

measured as well as the spring constant k and the frequency of the response.  From these measurements,

note that

z
I

k22 +λ−=ω (3.105)

22
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(3.106)

Thus, a measurement for Iz is obtained.  To measure the torque spring constant, a scale was applied on the

suspended vehicle at a known distance from the pivot point.  The force required to maintain a displaced

spring angle was then measured.  The graph below shows a sample data run.
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Figure 3.19: The experimental determination of the spring torque constant (left), and oscillatory response of

the system suspended from the spring(right).

After the spring constant is determined, a time response of the system is obtained (shown above).  This

response is then examined to determine an exponential fit to determine lambda.  In the above figure,

lambda is approximately 0.051 rad/sec and the period of 6.51 seconds.  The frequency of the system is

hence 0.965 rad/sec.  From the moment equation previously developed, the moment of inertia is calculated

in this case to be 0.0730 [kg-m2]. Note that the inclusion of the damping term only affects the Iz

determination by 0.2 percent.  Hence, the system can be approximated as a simple harmonic oscillator with

no damping.   

The measured Iz value can be verified by approximating the vehicle as a solid block and then

calculating the z-axis moment of inertia.  The equation for the moment of inertia for a block is:

Iz = 1/12 M * (a2+b2) (3.107)

where a and b are the length and width of the block, and M is the mass.  If the density of the block is

known, then the equation can be rewritten as:

Iz = 1/12.ρ.a.b.h.(a2+b2) (3.108)

(Serway 1990).  If the vehicle is approximated as a slab of aluminum (density 2.7x103 kg/m3) with

dimensions of 1.5-cm height, 40-cm length, and 20-cm width, then Iz is 0.054 kg.m2.  Note that the weight

of this theoretical slab is 3.24 kg, which is in rough agreement with the measured vehicle weights, and the

Iz moments also approximately agree.

3.4.4.3 Cornering Stiffness

Before beginning an explanation of the experimental testing, it is assumed that the reader is

familiar with the Dugoff tire model and the corresponding importance of the cornering stiffness, Cα .  A

discussion of this model is provided in the previous "tire forces" sections of this thesis work.
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The tire forces produced by the wheels of the scale vehicles were determined in two methods:

holding the slip angle constant and measuring the wheel force, and by applying a known force to the system

under feedback control, and measuring the steady-state wheel angle.  The setup used to experimentally

measure the cornering stiffness via known slip angles is shown in the test stand shown below.
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Figure 3.20: The cornering stiffness measurement stand (left) and sample cornering stiffness runs using this

stand (right).

Initial testing of the vehicle focused on the effect of changing loads on the tire cornering stiffness.

As seen in the above graph, the normal force on the tire primarily affect the roll-off of the tire forces.  The

cornering stiffness was obtained by conducting a linear regression on the above curves at small slip angles

(where the plots were approximately linear).  Some slight variation in the cornering stiffness were

observed: at 500 g, Cα of a single tire measured to be 1.5 N/deg., 1000 g measured 1.60 N/deg., and at 2000

g measured to be 2.09 N/deg.  At high slip angles (above 4 degrees slip), the tire forces increased slightly,

but the tire tended to “roll” under the axle of rotation.  At extreme angles, above 8 to 10 degrees of slip, the

rubber rolling under the tire would begin to show stick-slip effects, and would rapidly deform under the

hub of the wheel and bounce back onto the hub, causing the wheel and stand to literally bounce.  At higher

angles, this bouncing actually caused loss of contact with the road surface and a consequent decrease in

measure forces.

Depending on the tire model used, the cornering stiffness is usually assumed to be independent of

wheel loading.  To investigate this assumption, the slip angle was held constant at an aggressive turning

angle of 3 degrees, and the load on the tire was varied.  The forces were measured, producing the

relationship shown in the figure below on the left.  The tire forces seem to scale linearly with normal force

on the tire.  To determine any velocity dependence, the load was held constant on the tire, and the velocity

was varied at constant slip angles.  Two slip angles were tested, 1 degree and 3 degrees.  The resulting

relationships are shown below in the figure on the right.  Clearly, at constant normal load and cornering

stiffness, the tire forces seem to be independent of vehicle velocity.
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Figure 3.21: The variation of tire force with normal force (left) and velocity (right).

The angle at which the tire forces saturate was assumed to be the point where the tire roll-under

becomes significant.  This was assumed to be the point where notable wheel oscillation was observable due

to the rubber stick-slip cycle.  The change in critical slip angle with respect to velocity and normal force

was examined, and the relationship is shown below in the figure on the left.

To determine how sensitive the cornering stiffness was to tire make and type, an experiment was

conducted where two tires are compared: one with slick tread and one with knobby tread.  The slick tire

was the tire used for low-speed (1.2 m/s) testing where dynamic matching was not yet considered.  The

knobby tire was the tire used for high speed (3.0 m/s) testing, where emphasis was placed on dynamic

matching.  The choice of a knobby tire was not a random one.  Previous researchers have reported that the

cornering stiffness of scale vehicles tends to be too high for comparison with full-sized vehicles, and as a

compensation knobby tires were used.  Naturally, the ability to change cornering stiffness is important with

respect to dynamic matching of full-sized vehicles. The cornering stiffness relationships are shown below

in the figure on the right.

Figure 3.22: The variation of the critical slip angle with velocity for the 4WS,4WD tires (left), and a

comparison of each tire type (right).
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With the Uberquad vehicle, the cornering stiffness was measured in the closed-loop as previously

described.  Thus, the normal forces and operating conditions on the vehicle are identical to those of the

experimental testing.  The following figure summarizes the cornering stiffness experiment results.  To

measure the slip angle, the steering motor angle was recorded.  This angle is simply a constant

(approximately 1.3 for the front wheels, 1.1 for the rear wheels) larger than the wheel angle.  Note that the

closed-loop identification provided a much better "quality" of data.  The linearity at small cornering angles

AND roll-off of the tire forces at large angles is quite evident.  At very large angles, the force/slip-angle

relationship levels off to a nearly horizontal line.
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Figure 3.23: The cornering stiffness for the Uberquad vehicle at 3.0 m/s.

For the Uberquad, the rear cornering stiffness was approximately 2/3 less than the front cornering

stiffness.  Most published values for cornering stiffness make the assumption that both the front and rear

cornering stiffness values are the same.  However, those publications that report two separate

measurements (implying that each was measured separately) show that the rear cornering stiffness on full-

sized vehicles are approximately 2/3 the cornering stiffness of the front tires.  In the comparison below

between the "average" full-sized pi groups and the vehicle’s cornering stiffness, it should be noted that the

full-sized cornering stiffness “average” is biased by those data that assume the same cornering stiffness for

both tires.  Noticeable exceptions are the data presented by Lee and Pillutti.  For instance, (Lee 1997) report

the following values for (front, rear): Ford Escort, (72,500,49600); Buick Skylark (80790,58300); and Ford

Taurus (120400,90980).

Note that the above tire analysis does not include any transient dynamic effects in the tire model as

discussed in earlier sections.  In the testing of full-sized vehicles, several authors have noted that the

transient effects on tires can have a significant effect at higher frequencies on the model fit (Jansen and

VanOosten 1995).  Smith and Starkey go further and demonstrate that linear models that do not include tire
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dynamics will severely underestimate the distance needed to perform emergency lane changes (Smith and

Starkey 1994).  These authors cite tire lag as the primary cause for discrepancies between linear models and

experimental data during high-g maneuvers.  One note must be said of this result: based on the data the

authors use to validate their conclusions, the effects of tire lag cannot be separated from actuator dynamics.

3.4.4.4 Summary of Measured Values

Table 3.3:  Summary of the Measured Physical Values

Parameter Follow 4WS4WD 4WS4WD Uberquad

Vehicle at 1.2 m/s at 3.0 m/s at 3.0 m/s

testing testing testing

Mass (kg) 1.47 2.61 4.02 6.52

Iz (kg-m2) 0.0236 0.66 0.13 0.183

a (m) 0.13 0.15 0.1387 0.155

b (m) 0.18 0.185 0.1893 0.235

Caf (N/rad) 87.7 85.9 20.00 96.00

Car (N/rad) 87.7 85.9 45.00 65.00

The parameters on the 4WS4WD are intentionally changed during the second test (at 3.0 m/s) to obtain

better dynamic matching.  This vehicle was originally designed and tested at 1.2 m/s without knowledge of

dynamic scale matching (which is evident in the poor pi matching shown below).  The following table

shows the pi-group matching conducted on the 4WS4WD vehicle between the 1.2 m/s and 3.0 m/s

experiments.  Clear improvement is seen in the pi-group matching between.

Table 3.4:  Summary of the Pi-matching for the 4WS4WD vehicle

4WS4WD Vehicle Summary Smooth Tires

No Added Mass

(Original

Configuration)

Knobby Tires

No Added Mass

Knobby Tires

Added Mass

(Final

Configuration)

Ave. Full

Speed (m/s / mph) 1.2/2.61 3/6.52 3/6.52 23.8/51.8

Poles -55.7,-73.5 -9.0+/- 1.7j -4.8+/- 3.5j -4.6+/- 3.3j

a/L 0.4878 0.4878 0.4229 0.4203

b/L -0.5122 -0.5122 -0.5771 -0.5797

Cαf·L/(mV2)* 7.5293 0.4176 0.2698 0.2698

Cαr·L/(mV2)* 7.5293 0.4176 0.2698 0.2622

Iz/(mL2) 0.1859 0.1859 0.2755 0.2593

* These two values can be matched by varying car speed
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From the above chart, it is clear that there is a significant change in the bandwidth of the system due to the

changing cornering stiffness.   Results have been published supporting a similar bandwidth dependence on

the cornering stiffness of the vehicle (Jansen and VanOosten 1995).   The following table shows a similar

summary for the Uberquad vehicle.

Table 3.5:  Summary of the Pi-matching and poles  for the Uberquad vehicle

Uber Pi Groups Uber "Average" 2 sigma

Pi 1 a/L 0.40 0.40 0.086

Pi 2 b/L 0.60 -0.60 0.086

Pi 3 Caf*L/(mU^2) 0.64 0.64 0.295

Pi 4 Car*L/(mU^2) 0.43 0.60 0.272

Pi 5 Iz/(m*L^2) 0.18 0.23 0.080

Uber Poles Uber Average Min Max

Real -9.49 -7.40 -13.68 -4.53

Im 0.76 3.55 1.14 5.77

A more complete comparison is given in the Appendix showing a comparison of scale and Full-sized

vehicles.

3.4.5 Methods of Obtaining Dynamic Similitude

The following procedures outline the method used to obtain dynamic similitude in the second and

third experimental vehicle tests described in this thesis:

1) Build a vehicle to a predetermined scale.

2) Pick an operating velocity (full-scale) to match.  This numerically fixes the pi-groups for the

full-sized vehicles and provides a “goal” for matching the scale-vehicle parameters.

3) Add additional mass to the vehicle until dimensional matching is obtained for the length

related pi groups a/L and b/L.

4) Measure the Iz moment and determine the related pi group.  If the Iz moment is too small, add

mass symmetrically about the C.G. until it is near the required value.

5) Measure the cornering stiffness of the scale vehicle tires.

6) Determine the operating velocity of the scale vehicle by finding the velocity matches the

cornering stiffness pi-groups with those of the full-sized vehicle.
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7) Ensure that at this velocity the remaining pi-groups agree.  If not, select different tires or add

additional mass to the system, and repeat steps above.

3.5 Experimental Methods to Verify the Dynamic Model

For control purposes, it is not enough to develop a theoretical model of a system without some

type of verification that the theory indeed matches the physical system.  Traditionally, two methods are

used in engineering practice to confirm system dynamics: time-domain and frequency-domain

measurements.  This section details the use of each of these methods, among others, to determine the

vehicle dynamics.

3.5.1 Frequency Domain Measurements

This subsection outlines the background of frequency-domain methods used to measure the

vehicle dynamics.  The vehicle system from a lateral control standpoint is assumed to be linear with

justification presented in earlier sections.  In addition, the vehicle dynamics are unstable.  As a result, the

determination of the OPEN-LOOP dynamics is not trivial, and considerable effort was expended

developing and confirming the following methodology to measure these dynamics.

3.5.1.1 Frequency Range of Fits

If a vehicle model, linear or nonlinear, is to be obtained from frequency response data, then

consideration must be given to the range at which the frequency fitting should occur.  As a reference, the

range used by several authors is presented. (Jansen and VanOosten 1995)obtain a fit of a full-sized vehicle

model shown on plots of the frequency domain (linear in frequency, rather than logarithmic) up to 3 Hz.

(Nagai, Ueda, and Moran 1995) perform model validation and fitting again using a linear scale from 0 to 3

Hz.  Vehicle fits including a tire model were obtained up to 2 Hz by Roos et al (Roos, Rollet, and Kriens

1997).  In validating the National Advanced Driving Simulator models (NADSdyna) with an experimental

vehicle (Ford Taurus), bode plot fits were attempted up to 20 rad/sec for yaw rate, and magnitude matching

up to 10 rad/sec (1.5 Hz) was achieved.  The predicted phase at this frequency (3.5 Hz) was too high by

approximately 30 degrees (experimentally, the phase was about –100 degrees at this frequency) (Salaani,

Heydinger, and Guenther 1997).
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Figure 3.24: A sample frequency response reported in Steeds, 1995 for a full-sized vehicle.

A note must be made in comparing frequency domain to time-domain modeling.   Jansen and Van

Oosten note that validation using time responses can give ambiguous results, and that frequency response

functions are much more usable in validation (Jansen and VanOosten 1995).  Although this conclusion is

debatable (and depends on testing conditions), in general the author has found that frequency-response

testing yields consistently better model matching than time domain.  In this thesis, an effort has been made

to combine the two methodologies as appropriate (for instance, the rate-limited servo actuator modeling).

3.5.1.2 Initial Tests

3.5.1.2.1 Repeatability Tests

Before obtaining any system Bode plots, it was first determined if a Bode plot, once measured, is

repeatable.  The following responses were conducted on the 4WS4WD vehicle with slow servos and at low

speed (i.e. before consideration was given to pi matching).  The frequency responses are of the CLOSED-

LOOP system.  The DSA was used to generate a reference sinusoid trajectory, and the lateral P-controller

was made to follow this trajectory, and the measured lateral position was fed back to the DSA.
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Figure 3.25: The reproducibility testing done on the vehicle being pulled by the treadmill at 1.2 m/s using

P-control tracking a reference lateral position input from DSA of a 15-cm amplitude sinusoid.

As expected, some discrepancy is observed between each trial, especially at high frequencies.  For

controller design purposes, it is clear that the system identification performed on each plot is consistent.

3.5.1.2.2 Longitudinal Controller Sensitivity

Frequency (rad/sec)

1 10

M
ag

ni
tu

de
 (

dB
)

-40

-30

-20

-10

0

10

20

 
Frequency (rad/sec)

1 10

Ph
as

e 
(d

eg
re

es
)

-180

-135

-90

-45

0

Figure 3.26: Bode plots for the same testing conditions (1.2 m/s, 15 cm amplitude) using different

longitudinal controllers.  The dotted line is the treadmill tracking the vehicle.  The remaining two are for

the car tracking the treadmill and for the car being pulled on the treadmill.
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3.5.1.2.3 Sensitivity to Amplitude of Frequency Sweep
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Figure 3.27: The amplitude reproducibility testing done on the vehicle being pulled by the treadmill at 1.2

m/s using P-control to track reference lateral position on sinusoid amplitude 15-cm.

We can see that the system responses are relatively insensitive to the amplitude of input.  This is

fortunate, because it indicates that the lateral dynamics (and as a result the yaw dynamics) are in quite

linear with respect to amplitude of the lane change maneuver.  This also reveals that the rate-limit of the

servo is not very active at these lower velocities, even when attempting to track a large-amplitude sinusoid

signal.

3.5.1.2.4 Velocity Trends

The bicycle model is highly dependent on the vehicle’s velocity.  This is easily seen in the Bode

plots of the system at various velocities:
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Figure 3.28: The velocity effect on the system Bode plots.
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3.5.1.3 Methods Of Obtaining Open-Loop Frequency Responses from Closed Loop Data

As stated earlier, there is a significant difficulty in determining the open-loop frequency response

from closed-loop testing.  This section details various methods that have been attempted to determine open-

loop dynamics from closed-loop data.

3.5.1.3.1 Using Complex Number Theory

To convert the closed loop bode plots of the system response into those of an open-loop response,

we begin by examining a block diagram of the system.  The following can represent the system:

Figure 3.29: The block diagram used to measure the vehicle lateral dynamics via complex number theory.

To obtain the transfer function of the unknown plant, we note that the output of the plant can be represented

as:

 
( ) ( ) ( )Y s P s V s= ⋅ δ

(3.109)
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The magnitude and phase of Yout/Yref is recorded by the DSA.  We can then find P(s) by noting that the

magnitude and phase create an imaginary number, which can be represented as:
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(3.113)
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Substituting into above:
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The magnitude of P is given by

P
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And the phase is
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A code was written to perform the above conversion from closed to open systems.  To test this theory, the

open-loop vehicle dynamics were inferred from the closed-loop system responses using several different

gains. The following plots reveal the different “open-loop” dynamics determined for four different

controller gains:
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Figure 3.30: The effect of gain on the closed loop responses, at 1.2 m/s and 9 cm peak to peak change in

reference lateral position.
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Figure 3.31: The effect of gain on the open loop responses, at 1.2 m/s and 9 cm peak to peak change in

reference lateral position.
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From the above plots, it is clear that the open-loop system ID depends strongly on the gain used in the

closed-loop system.  This implies that the open-loop identification is sensitive to closed-loop parameters,

i.e. the open-loop identification is not entirely decoupled from the closed-loop dynamics.  Because this is

the intent of this method, clearly this method is inadequate to transform closed-loop responses into open-

loop responses.  Consequently, other methods are considered.

3.5.1.3.2 Using Input Feedback

The 35670A HP Dynamic Signal Analyzer used by this lab has the capability of inputting both the

input signal AND the output signal into a system.  The DSA has the capability of analyzing the correlation

between the input and output and thus form a frequency response of the system.  To use this feature to

identify the open-loop dynamics of the system under closed-loop control, the front steer command was

used as the input feedback to the DSA on the input line.  The yaw angle was then fed back to the DSA as a

response.   The sine wave from the DSA was used to create a sine wave reference position that the lateral

controller was made to track.

Figure 3.32: The block diagram of the frequency response measurement technique used to determine open-

loop dynamics via correlation between plant inputs and outputs.

Initially, the input/output correlation technique was tested on the vehicle directly, with results shown

below:
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+
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Figure 3.33: The Bode plots for the yaw angle dynamics using input/output correlation.

From the above plots, it is clear that the approach seems to work significantly better than the

previous method, but suffers to some extent.  The expected yaw angle dynamics were that the system had a

free integrator.  The yaw angle dynamics, because of the 1/s free integrator term, should start out at a phase

angle of -90 degrees.  The above plots indicate that the phase is off by 180 degrees, indicating that a sign is

missing somewhere in the system identification.   If this error is included, it is seen that the frequency

response does begin at approximately –90 degrees as expected.  However, there is a significant amount of

error at low frequencies.  This suggests that the results at very low frequencies, and possibly high

frequencies, are probably erroneous.  As a result, this method was abandoned for use in system

identification for the 4WS4WD vehicle.

By the time frequency testing was needed for the Uberquad, computing capabilities had improved

to where input/output correlation could be adequately tested.  By using the SIMULINK-based code

generation, we were able to simulate an artificial plant in code to determine the viability of the I/O

approach.  The dynamics were chosen to represent the bicycle model yaw-rate dynamics and lateral

dynamics.  The closed-loop controller normally used for the vehicle was then implemented on this artificial

system, and the inputs and outputs to the system were sent to the DSA as described above for correlation.

The following figure shows both the model and the resulting identification:
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Figure 3.34: The Bode plots for the artificial yaw angle dynamics and resulting open-loop model

determined from closed-loop input/output correlation.

Continued thought into why the original attempt would correlate so poorly on the original

4WS4WD system revealed a possible cause to the poor low-frequency correlation: at low frequencies, the

vehicle is basically tracking a constant signal.  Thus, the controller is not exciting the system in a sinusoidal

manner but instead is regulating itself about some slowly varying setpoint.  The primary system excitation

is not a result of the input reference signal as intended but rather system disturbances.  Thus, the correlation

between control input and plant output would be very poor at these frequencies, simply because the signal-

to-noise ratio is very small in this region.  Knowing this, the controller used on the Uberquad system was

made to be as "tight" as possible: that is, the controller was made to track the reference input very closely

and reject disturbances VERY quickly.  The resulting frequency identification on the actual system proved

to work quite well, as will be shown in later sections.

3.5.1.3.3 Frequency Domain Identification Using Multiple Bode Plots

The third and final system ID approach attempts to correct the miscorrelation of the sinusoid input by

examining the transfer function from change in reference lateral position, yref (t) to the command voltage

u(t), and the transfer function from yref (t) to the output yaw angle, ψ(τ).
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Figure 3.35: The block diagram of the frequency response measurement technique used to determine open-

loop dynamics using multiple bode plots.

The transfer functions ψ(s)/yref(s) and u(s)/yref(s) can be measured directly using the DSA.  However, the

transfer function of interest is the open loop dynamics, ψ(s)/u(s).  If the system is linear, this would simply

be:
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Since frequency domain is in general presented in logarithmic form, division in the above expression can in

actuality be obtained by subtraction of the logarithmic measurements of the frequency plot (Note: another

researcher has also used this method for a closed-loop system by saving the frequency response in complex

notation.  Division was conducted in the complex space and the magnitude and phase were simply the mag

and phase of the resulting complex number).  After subtracting the Bode plot for u(s)/yref(s) from the Bode

plot for ψ(s)/yref(s), Bode plots were obtained that represent the open-loop response.

To test this concept, the following open-loop bode plots were obtained using this method for the

yaw dynamics using the front wheel as input.  These plots show responses that agree very well with the

expected yaw state dynamics.  Based on the magnitude plot, it would appear that the plant (open-loop)

behaves almost exactly like a free integrator (as theory predicts).  The phase begins at a constant –90

degrees, which also agrees with the theoretical expectation. One aspect of the yaw dynamics system

identification was that the previous graduate student, Mark DePoorter, identified a system pole at a location

of s = 10 rad/sec.  Since this location is at the limits of the above plot, a refinement was added to increase

the resolution of the plot at high frequencies in an attempt to determine the location of the faster pole.  To

do this, the amplitude of the input reference tracking signal was increased to +/- .1 meters (from +/- .075

meters) and the integration and settling times were increased to 30 cycles each.  Originally, the frequency
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was swept from 0.05 Hz to 3 Hz, but to refine the higher frequencies, the frequencies were swept from 1 Hz

to 10 Hz.  The two plots were then combined and plotted.  The results of this refinement are included in the

above plots.

Frequency (rad/sec)

1 10 100

M
ag

ni
tu

de
 (

dB
)

-50

-40

-30

-20

-10

0

10

20

30

 
Frequency (rad/sec)

1 10 100

Ph
as

e 
(d

eg
re

es
)

-450

-360

-270

-180

-90

Figure 3.36: The yaw angle bode plots obtained from the transfer function subtraction approach, with an

additional refinement at high frequencies to determine these pole locations.

3.5.2 Time Domain Modeling

Often, vehicle dynamics are obtained using time domain methods alone.  As an example of the

common usage of time domain tests for vehicle testing, there is an international standard on methods of

conducting step steering input tests on vehicles (ISO 7401).  A natural question arises as to what trajectory

to use for validation.  Naturally, some obvious choices are sinusoid and ramp maneuvers (referred to as J-

turn maneuvers because of the vehicles trajectory follows a J when conducting a ramp steering input).

However, each maneuver emphasizes different aspects of the vehicle dynamics, and nonlinear effects can

dominate parameter tests, such as step-inputs.  A particular question often addressed in literature is the

question and theoretical determination of the "best" maneuver to use to change a lane (Sledge and Marshek

1997).

3.5.3 Random Steering Tests

One final method to obtain a frequency domain fit is called the Random steering test (ISO 7401

and ISO/TR 8726).  This method attempts to correlate the input and output of a plant that is under open-

loop or closed-loop control by introducing a random input into the system.  This method was not used in

this thesis, but is detailed here for completeness.  The use of this technique for full-scale vehicle testing is

described in (Jansen and VanOosten 1995).  As noted in this paper, the advantages of this test are listed as

follows:

- it is an open-loop test

- it is easy to perform

- preparation and execution time are short
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- the results are statistically most accurate since the measurement time is long

- for model validation purposes the resulting transfer functions are very suitable to use.  The

transfer function of the system is obtained by obtaining a correlation between the inputs and

the outputs via spectral analysis.  Based on results published by other authors, this method

may be a valid alternative to the lengthy and difficult swept-sine approach used in this thesis.

This paper does not note the disadvantages of using random steering inputs.

- they are more susceptible to errors and depend strongly on data “quality”

- it is difficult to determine if the random input has provided enough excitation such that the

frequency response is representative of the true system.

For these reasons, the random input testing is NOT used in this thesis, but may be considered later as a

comparison to (not a replacement for) swept-sine testing.

3.6 Vehicle Model Fits

This section can be divided into two major sub-sections: a discussion of actuator dynamics and a

discussion of vehicle dynamics.  With regard to vehicle dynamics, three major system identifications were

performed.  The first was on the 4WS4WD vehicle at a velocity of 1.2 m/s using low-bandwidth Futaba

S9304 servos.  The second was on the 4WS4WD vehicle at a faster velocity of 3.0 m/s using high-

bandwidth Futaba S9402 servos.  The third was on the Uberquad using DC motors as the steering actuator.

Each vehicle test displayed noticeably different dynamics (by design); hence, a separate discussion of each

test is necessary.

3.6.1 Actuator Dynamics

Typical controllers developed for full-sized vehicles using bicycle model dynamics often do not

include the dynamics related to the steering actuator. Because the steering command must be directed

through a motor, gears, and other actuators whose response may not be immediate or exact, resulting in a

response far different than predicted by the bicycle model

Previous work using R/C scale vehicles on the Illinois Roadway Simulator (IRS) (DePoorter,

Brennan, and Alleyne 1998) has shown that neglecting these dynamics can lead to invalid design models,

and hence invalid controller design.  In the paper by Smith and Starkey, a large amount of mismatch was

observed in the phase and magnitude of the frequency responses of actual vehicles above frequencies of 6

radians/second (Smith and Starkey 1995).  This suggests that either tire dynamics or actuator dynamics

may be present.  Studies conducted by other researchers discussed in this thesis note that tire dynamics are

significant above 20 Hz, so it is quite likely the phase drop and magnitude drop seen beginning at 6 rad/sec

are due to steering actuator dynamics.  Research conducted by other research institutions supports this

concept.  The bandwidth of the actuation for the Pontiac 6000 vehicle used by the California PATH

program was found to be about 2 Hz with load for a +/- 2 degree amplitude steering angle (Peng et al.
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1994).  Clearly, for actual vehicle systems with actuator poles around 1-2 Hz, the actuation bandwidth

presents a serious constraint on the possible system performance.

Previous work performed on the IRS identified the actuator as first order based on the difference

between the expected vehicle response and the experimentally obtained vehicle response from input to

output analysis (driver steer command to yaw rate).  This work did not isolate the actuator itself, and

instead inferred the actuator response by assuming it was the fastest pole location identified.  Closer

examination discussed in this section revealed that this assumption was not valid, and that the actuator

dynamics for the servo used by previous researchers  (the Futaba S9304) was much slower than previously

thought.

3.6.1.1 Actuator Dynamics of Full-Scale Vehicles

It is difficult to find published data regarding full-sized vehicle actuators for several reasons: first,

measurement of the actuator dynamics requires non-standard sensing capabilities (such as measurement of

wheel angles) generally not found outside of research institutions.  Secondly, most vehicle researchers

ignore actuator dynamics as a first approximation of the dynamics of the entire vehicle.  Finally, car

manufacturers likely do not want to publish vehicle limitations such as actuator limits that may benefit their

competition or agitate their customers.

The rate limiting effect previously identified on the steering actuator of the 4WS4WD vehicle may

also been seen in full-sized vehicle actuators.  Although published data on this subject has been lacking

from industry (for obvious reasons), the possible presence of a rate limiter on steering systems can be

inferred.  The actuators commonly used on full-sized vehicles for automated or driver assisted vehicle

control are electric motors mounted on the steering column or modified power-steering hydraulic systems.

Regardless of the system, very fast actuation can saturate the hydraulic or the DC motor system because of

rational design limits on actuator size.  For hydraulic systems, if the required rate of volume change of the

actuator piston is larger than the available flow rate through the valve opening, the system will become

rate-limited.  For DC motors, a motor large enough to move the wheels directly would be impracticably

large; thus, gearing systems are used.  With gearing systems coupled with DC motors, rate limiting effects

commonly are seen (such as in the servo motor on the R/C systems!). Without verification from industry or

direct measurement of full-sized vehicle systems, the presence of this type of non-linearity in full-scale

vehicle systems remains a question.  Without a doubt, such nonlinearities could become a large obstacle in

the implementation of vehicle automation on full-sized vehicles.

From the previous arguments, it is clear that there is a large discrepancy between the actuators that

actually exist on today’s vehicles and the actuators control engineers would like to use.  In a paper by  TU

Delft and Volvo, an actuator with damping ratio of 0.6 and natural frequency of 65 rad/sec is specified by

the control engineers for rear steering applications (Roelofsen 1995).  This corresponds to approximately a

10 Hz actuator (in practice, vehicle actuators are in the 1-2 Hz range).  In research conducted by (Lee,

Mariott, and Le 1997), it was found that steering actuators with a bandwidth of 4 Hz gave a much larger

rise time in a J-turn maneuver.  These researchers also specify an actuator bandwidth of at least 10 Hz.
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The drawbacks of electric motor torque limits or hydraulic saturation and bandwidth can be

overcome with large actuators.  In fact, this is partially the approach with the Uberquad redesign: using

high-torque motors to achieve the desired bandwidth.  A problem with this approach (other than cost) is

that large actuators decrease vehicle efficiency and add weight to a vehicle.  From an efficiency standpoint,

it may not be good economics to use a big motor or pump that gives slightly better vehicle performance at

the tradeoff of fuel economy.  As pushes toward more fuel-efficient or electric vehicles continue, actuator

dynamics will play an increasing role in vehicle dynamic studies.

3.6.1.2 Slow Servos – Futaba S9304

The first method to identify the steering actuator dynamics was to remove a servo actuator from

the vehicle and identify the servo dynamics separately.  Initially, a swept-sine frequency response was

conducted on the servo at different amplitudes, and it was revealed that the response was very dependent on

the amplitude of the swept sine.  Close examination of servo step responses revealed that the system is rate

limited.  A swept-sine frequency response was then conducted using very small steering inputs that do not

saturate the actuator at the frequencies corresponding to the pole locations.  Using this frequency response,

a linear model was obtained for the servo for small-amplitude inputs.  Finally, a second-order, rate-limited

Simulink model of the steering actuator was developed, and the model results were compared to

experimental results using step responses.

To determine the actuator dynamics, some method of angular feedback was necessary.  The servo

actuator was connected with an encoder mounted coaxial along its output shaft so that the shaft angle could

be measured.  Because the particular encoder had a low resolution, it was not suited for system

identification at low frequencies.  Noting that the servo contained a potentiometer inside, the potentiometer

voltage was measured with respect to the encoder, and the angle of the servo was monitored with respect to

the voltage input into the transmitter.  The figures below show the functional relationship between

measured voltage and servo angle, and transmitter voltage and servo angle.
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Figure 3.37: The relationship between transmitter voltage and servo angle.

Clearly the above relationships suggest a linear relationship between transmitter voltage and servo angle.

Accordingly, five trials were conducted and a linear regression was performed on each trial to fit the slope

for these two relationships.  The results of these trials are presented in the table below.  Using these
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relationships, either encoder or potentiometer feedback could be used to obtain the frequency response of

the servo.

Table 3.1: The regression fit between servo angle, applied transmitter voltage, and measured servo

potentiometer voltage.

Trial Slope

Servo Angle (deg.)/

Transmitter Volts (volts)

Slope

Pot Voltage (volts)/

Transmitter Voltage (volts)

1 90.3 deg./volt 0.816 volt/volt

2 90.2 deg./volt 0.822 volt/volt

3 87.2 deg./volt 0.785 volt/volt

4 89.7 deg./volt 0.820 volt/volt

Using commercial DSA equipment (HP 45670A Dynamic Signal Analyzer), the frequency response of the

system was measured as the following:
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Figure 3.38: The initial frequency responses obtained for the servo actuator.

The above responses clearly reveal amplitude dependence in the frequency response.  Because the

servo utilizes a DC motor for shaft motion, a second-order fit of the system was expected.  However, we

note that the DC motor does not have infinite torque, and instead is geared significantly to magnify the

available torque from the motor.  A consequence is that the resistance of the gearing limits the servo to a

maximum speed corresponding to the point where the gear torque is equal to the maximum torque available

from the motor.  This results in a rate-limited response.  To obtain the numerical value of the rate-limited,

time-domain step-responses were conducted.  The following plot summarizes the results:
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Figure 3.39: The step responses obtained for the Futaba S9304 servo actuator.

From the above plots, a rate limit on the response is clearly present.  Because of this rate-limited

dynamic, frequency domain analysis was conducted at very small amplitudes to identify the linear non-rate-

limited actuator dynamics.  Because of the uncertainty of how “small” an amplitude is necessary to

correctly identify the system, frequency responses were conducted at decreasing amplitudes until

convergence was seen in the bode plots.  Convergence was seen at amplitudes less than 5 degrees.  A

discussion on the measurement of the rate-limit follows in a later section.  The resulting linear model was

obtained as:
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2
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After obtaining a dynamic model of the servo system experimentally, this model was tested by creating a

Simulink model of the system and comparing it with experimental step-responses.  It should be noted that

the experimental data could not be fit with reasonable error without including a time delay on the

transmitter.  Based on the nature of the communication system discussed earlier, a small delay was

expected between 10 and 20 milliseconds. The time delay was found experimentally to be approximately

0.015 to 0.02 seconds.

Combining the time delay, rate limit, conversion and transfer functions, the following Simulink

model was obtained representing the servo dynamics:

Figure 3.40: The Simulink model of the servo actuator.
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This model was used to compare simulated actuator responses to measured responses in the time domain

using step inputs.  Note that this model was formed after the controller design and implementation to

validate that the servo pole locations were much faster than the vehicle dynamics.  However, this was not

the case, and new servos were selected that would give a higher bandwidth.  Consequently, the exact “fit”

of the above servo is unimportant because it was never used to design or evaluate any vehicle controllers

presented in this thesis.

3.6.1.3 Fast Servos – Futaba S9402

The dynamic modeling of the faster Futaba S9402 series servos follows that of the previous servo,

except that the servo angles were measured via an encoder rather than the internal potentiometer.  Hence,

the results are presented below, with a side-by-side comparison with the slower Futaba S9304 servo where

appropriate.

Initial testing was conducted to confirm that there was approximately a linear relationship between

the command voltage and the servo horn angle at steady state.  This relationship was obtained by slowly

varying the servo voltage and measuring the horn angle after a long settling time.  After establishing the

steady-state relationship for the servo, the dynamic transient relationship between the voltage sent through

the transmitter and the output of each servo was sought.

Knowing that the system was likely to be rate-limited (as was the previous servo), frequency-

domain testing was again conducted on the front servo where the amplitude of the swept-sine was

decreased until convergence was observed.  The figure below shows a clear non-linearity in the system (the

rate-limited effect).  A linear model-fit for the servo dynamics was again obtained by fitting the curves for

very small amplitudes of input (where the system will not likely be rate-limited).  The below frequency

responses also clearly show an increased bandwidth of the actuator (by approximately an order of

magnitude).
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Figure 3.41: A comparison of the frequency responses of the Futaba S9304 (right) and S9402 (left)

actuators showing an order-of-magnitude improvement in actuator bandwidth.

The servo dynamic model identified from the above frequency responses is given by the following second-

order transfer function:

( )
( ) 





+⋅+
=−θ

volt

rad

1764s5.60s

2700

srtransmitteV

sservofront
2 (3.120)

Again, a second-order transfer function is expected because the servo utilizes a DC motor for actuation, and

a DC motor is theoretically represented by second order transfer function from voltage to position.  The

poles of this transfer function are:

[ ]sec/radi2930Poles ⋅±−=
(3.121)

It is interesting to note that the bandwidth of the actuator presented in (3.120) is in fact slower than that of

the actuator represented by (3.122), even though the frequency responses of the new actuator clearly show

an increased bandwidth.  It is important to note that the model fit for the slow actuator was obtained using

time-domain analysis of the step responses; the transfer function was chosen to give the best fit of the

system WHEN THE SYSTEM IS NOT RATE-LIMITED.  When comparing the rate limit of the two

actuators, the newer actuator is clearly faster.  If we fit the slower actuator dynamics of the slow actuator in
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the same manner as the fast actuator by INCLUDING the rate limiter by fitting the frequency domain data

alone, we would obtain the pole locations identified by the previous student Mark DePoorter for the slow

actuator: -8 rad/sec and –20 rad/sec.  Hence, from a linear input/output standpoint, the pole locations

confirm a higher actuator bandwidth.  It does agree with intuition that the “slower” actuator may have

faster LINEAR dynamics than the faster, higher-torque actuator.  The higher torque actuator uses a larger

motor with metal gearing, causing the motor to have a higher effective rotational inertia.  For very small

angles, the smaller motor may in fact have a faster response than the larger motor.

The above tests were conducted with the vehicle stationary and the front wheels lifted off the

track.  Because there is relatively little load on the servos, a question arises of how the linear fit might

degrade when the wheels actually have an operating load acting upon them (as with driving).  Two

validation tests were conducted: a stationary test where the actuator dynamics are obtained with the wheels

down, and a moving test where the actuator dynamics are identified in the closed-loop with the vehicle

operating.  The stationary test with the wheels down very likely represents the largest load the wheels will

encounter, and hence present a "worst-case" fit.  The intent of the closed-loop fit is to verify that the

system, in closed-loop, actually acts more like the linear "best-case" rather than worst case (high load)

scenario.  The closed-loop tests will naturally show some large errors at low frequencies due to the low

signal-to-noise ratio mentioned in earlier sections of this thesis.  At high frequencies, the actuator dynamics

will be dominated by the rate-limiter.
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Figure 3.42: A linearity test where the frequency response is compared to heavy wheel loading (left) and

closed-loop (right) operating conditions.
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Similar tests were conducted to obtain the open-loop, up/down, and closed-loop frequency responses for

the rear actuator, shown below.  Note that the model fit for the rear servo was obtained using the open-loop,

"wheels up" plot shown below.
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Figure 3.43: A linearity test where the frequency response is compared to heavy wheel loading (left) and

closed-loop (right) operating conditions.

The linear rear servo dynamics were found to be:
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whose poles are:

[ ]sec/radi1718Poles ⋅±−=
(3.124)

Note that the rear servo is slightly slower in bandwidth than the front servo.  The physical design of the

4WS4WD vehicle is such that the rear servo must actuate over a longer and more complicated steering

mechanism to move the rear wheels.  As a consequence, the load torque on the servo motor may be higher

thus resulting in a lower bandwidth.

After determining the linear dynamics of the system, the non-linear rate-limiter slope was

determined experimentally via step responses, and the resulting fit was incorporated into the model.  The
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newer, higher-torque actuators were expected to have a much higher rate-limiting slope, and this is clearly

seen in the figures below:
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Figure 3.44: A comparison of the step responses of the slower Futaba S9304 (right) and high-

speed S9402 (left) actuators.

The rate-limited slope was modeled for the front and rear actuators to be:

[ ]secdeg/300frontmax,m =
(3.125)

[ ]secdeg/300rearmax,m =
(3.126)

The above step responses of the high-speed S9402 servo includes the model fit (dots) and have had the time

delays subtracted off the response.  The quasi-random time-delay discussed in the previous section made

modeling of the system in the time domain quite difficult.  Consequently, time-domain confirmation of the

servo dynamic response should be conducted with the expectation of some error regarding this delay and a

consequent error in the phase of the closed-loop system.

3.6.1.4 Limitations of Control Systems Using R/C Servos for Actuation

There are four primary limitations in the use of servos to steer scale vehicles.  In order of

influence, these are the rate-limited nonlinear dynamics, the dead-zone and flexibility in the steering

linkages, the time-delay associated with the transmitter, and the nonlinear kinematic relationship between

servo output and wheel angle.  A separate discussion is given to each topic below.

The rate limited actuator dynamics previously discussed are likely the most detrimental in

obtaining a linear approximation of the system.  The rate-limit is due to a torque limit on the motor.  It is

unknown what torque the steering actuator will need to steer the vehicle at high speeds, so the modeling

was conducted on the steering actuator with the actuator separated from the vehicle or on a stationary

vehicle.  Consequently, the rate limiter slope used in this model is probably not very accurate.  The error is
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probably a non-linear relationship with respect to steering angle and speed, because it is strongly dependent

on tire forces.  The rate-limit effect can clearly be seen in the actuator time and frequency responses.  For

the frequency responses, the rate-limiter is probably responsible for the shift at high frequencies to lower

bandwidths.

In order to measure the rate limit on the actual vehicle, a large frequency and amplitude sinusoid

was fed into the vehicle steering actuator such that the actuator was rate limited over nearly the entire wave.

The angles the actuator swept through were then recorded, and the time to take one cycle was measured.

From this information, the slew rate could be determined.  As an example, we measured the Futaba S9304

servo sweeping 200 degrees (100 degrees in each direction) 41 times in 60 seconds.  This implies that the

slew rate is approximately 135 degrees/second.   When the same servo was tested while disconnected from

the vehicle, the slew rate was measured to be 2.2 Vpot /sec.  To convert this to degrees per second, we note

that the conversion from pot voltage to servo angle was obtained from the previous calibration as θ/Vpot =

(θ/Vtrans)/(Vpot/Vtrans) = 90/0.82 = 110 deg/volts pot. The model slew rate is then 2.2 Vpot/sec*110

deg/Vpot = 240 deg/sec.  Obviously, the addition of the steering linkage significantly affects the rate-

limiter and possibly the actuator dynamics, and hence the rate-limit should be measured under conditions as

close to running conditions as possible.  In summary, the rate limit (tested on the vehicle) found for the

S9304 servo was approximately 130 degrees/second, and the rate limit for the S9402 high-speed servo was

found to be between 300 and 330 degrees/second.

A second servo non-linearity consists of a deadzone.  As mentioned earlier, the controller on the

servo motor has a deadzone designed into the system to prevent the servo from constant actuation that

would drain the battery on an R/C vehicle.  This deadzone on the servo-horn is approximately a degree in

size.  In addition, the steering linkage itself contains ‘slack’, thus introducing additional deadzone.  The

sum contributions of the deadzones are difficult to quantify in the frequency responses.

The third servo non-linearity is the random time delay caused by the transmitter system.  The

delay itself, if constant, can be included in the system model and maintain a linear system.  However, the

delay of the vehicle system caused by the transmitter is clearly variable and quantized-random (as seen in

previous plots).  The effect of this non-linearity is not easily seen in the frequency domain responses, but is

quite evident in the time-domain step responses shown earlier.

The fourth servo non-linearity arises from the steering linkage.  The figure below shows the

linkage used to transform the servo angle into the steering angle.
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Figure 3.45: The steering linkage of the 4WS, 4WD vehicle used on the IRS.

The lengths of the links in the above steering linkage were originally as follows: L1 = 8-mm, L2 =

24-mm, L3 = 52-mm, L4 = 3-mm,  L5  = L6 = 30-mm.  Note, because of the following analysis, these

lengths were modified between the 1.2 m/s tests and 3.0 m/s tests later to provide a linear relationship

between servo angle and wheel angle for both the front and rear linkages.  The following equation

development therefore only applies to the testing conducted at 1.2 m/s (and a very small subset of data

presented at 3.0 m/s).

Examination of the geometric arrangement of the linkages reveals that the steering angle θsteer is

equal to the angle ∠CDC’.  To solve for ∠CDC’, we can examine the system as a four-bar linkage.  In

standard vector notation,
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If we solve numerically for r2 and r4, we find r2 = 55.02 mm and r4 = 52.09 mm.  We can also note that θ4 is

the angle of the ground link, and does not change.  Solving for θ4:









=θ −

4

31
4 L

L
tan

(3.129)

we find θ4 = 176.7 degrees numerically. If we continue the vector equation by expanding the imaginary

vectors, we can then collect the real and imaginary portions of the vectors to obtain:
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If we square both equations and add them, we obtain:
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Collecting terms relating θ3:
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It is easier to solve this if the following substitution is made
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The equation then becomes

( ) ( )33 cosCsinBA θ+θ=
(3.134)

This can be solved using the trigonometric relationships:
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2

tan1

tan1
cos

tan1

tan2
sin

(3.135)

Substituting, the equation becomes

( )( ) ( )( ) ( )( )Ctan1Btan2Atan1 3
2

33
2 θ−+θ=θ+

(3.136)

Which is quadratic in tan(θ3),

( ) ( ) ( ) ( ) 0CAtanB2tanCA 33
2 =−+θ−θ+

(3.137)

Solving

( ) ( )( )
( )CA2

CACA4B4B2
tan

2

3 +
−+−±

=θ
(3.138)

( ) 










+
+−±

=θ
CA

CABB
tana

222

3 (3.139)
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A plot of this relationship reveals the nonlinear relationship between servo angle and wheel angle for the

4WS4WD vehicle.  Shown below are the slope and derivative of this relationship:
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Figure 3.46: Relationship between servo angle and wheel angle (left) and slope of this relationship (right).

The graph of the slope of the system provides insight into the control of the system: a linear controller

assumes that the slope is constant.  This is similar to fitting the above left plot to a line.  Clearly the left plot

shows that the slope varies with operating point.  Ideally, the system is nominally operated at 0 degrees but

in practice there are errors in calibration.  The resulting effect on the controller is to change not only the

magnitude of the response, but also the phase of the response.  The phase is seen if we imagine a point on

the curve having to travel over the "hump" on the slope plot to contribute a steering input: the resulting

non-linear change would affect the phase of the system as well.  In practice, it was found that the frequency

domain and time domain fits were VERY sensitive to the initial conditions on the steering actuator angle,

and precise alignment of the actuator was needed.  In other words, the system dynamics changes

significantly with a small error in operating point of the system.  Because the vehicle was both front and

rear steering, a small error in one steering input would be canceled by control effort in the other input

during closed loop operation, so these types of errors were very difficult to remediate and had to be

conducted on a trial-and-error basis.

To simulate this linkage in a Simulink model, the following model was created.

Figure 3.47: The SIMULINK model to determine wheel angle.
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In the above figure the A, B, and C terms perform the corresponding calculations developed in the previous

equations.  The effect of this linkage non-linearity is demonstrated in later sections where the same MRC

controller is implemented first on a system with strong steering linkage non-linearities, and secondly on

one with minor nonlinearities.

The linkage nonlinearity can be approximated as a DC gain between actuator angle and wheel

angle. This DC gain varies strongly with respect to the point where the above non-linear relationship is

linearized.  This "operating point" depends on the initial transmitter calibration.  For the vehicle testing

discussed in this thesis, DC values for the front wheels were found to be approximately 1.3 degrees (front

wheel) per degrees (front actuator) and 0.76 degrees (rear wheel) to degrees (rear actuator).  The resulting

transfer functions are as follows:

( )
( ) 
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
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These transfer functions were used in the later sections to represent the actuator dynamics of the system.

3.6.1.5 Direct Actuation – DC Motor System

Compared to the difficulties encountering in modeling the non-linear actuator dynamics for the

servo systems, the modeling of the DC motor steering system was trivial.  A PID controller was created to

control the position of the system, and a frequency response was conducted to measure the tracking

performance of this controller.  The following figure shows the resulting frequency responses at three

different amplitudes of steering input: 5 degrees, 10 degrees, and 20 degrees where the angle is measured in

servo-motor degrees (as opposed to true wheel angle).
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Figure 3.48: The frequency responses of the front steering actuator.
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The bandwidth of the above steering actuator is clearly about 300 rad/sec, or between 40-50 Hz.  This is

nearly another order of magnitude faster than the R/C servo actuators!  A small amount of amplitude

dependence is seen, however it is unlikely that these differences will be seen simply because the

mechanical system, with pole locations around 1-2 Hz, will act as a low pass filter for these actuator

dynamics.

If the steering dynamics were used directly for steering of the vehicle, higher performance would

be obviously achieved, but at the sacrifice of realism.  In reality, the actuators on real full-scale vehicles are

in the 5 Hz range (at best).  The controller of the DC motor steering actuator was modified to emulate a 5

Hz actuator by placing a filter on the reference input of the controller with two poles at 5 Hz, critically

damped.  To test how well this tracking method would work, the frequency response of the actuator

emulating a 10 Hz actuator (more difficult to track than a 5 Hz actuator) was obtained.  The figure below

shows the resulting response:
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Figure 3.49: The frequency responses of the front steering actuator.

The system displays adequate tracking up to nearly 100 rad/sec, well past the dynamic range we would

expect to observe from the vehicle.  The 5 Hz, second order, critically damped actuator model was used for

both the front and rear steering actuators hereafter.

The Uberquad vehicle can also steer via differential torque input.  To approximate the available

dynamics from the "torque" motors, again a PID tracking controller was constructed, and the system was

made to track a sinusoid input from the DSA.  The DSA was then used to obtain the frequency response

from reference input to measured steering age to obtain a closed-loop frequency response.  The figure

below shows the resulting responses for 3 different inputs (again 5, 10, and 20 degrees as measured at the

motor):
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Figure 3.50: The frequency responses of the torque steering actuator.

Clearly, the system responses demonstrates a very high bandwidth of at least 40 Hz. Because each

motor used for torque actuation has the same gear train and mounting geometry, it is assumed that the

dynamics of each torque motor are identical.  Thus the frequency response for the above steering motor and

torque motor is assumed to apply to the remaining one steer motor and remaining three torque motors.

In a full-sized vehicle, the bandwidth of differential torque steering is much higher than that of

turning the wheels to steer.  To simulate this on the Uberquad system, no dynamic prefilter was used on the

torque steering system, in essence leaving the motor to act as roughly a 40-Hz torque actuator.  On real

vehicles, the actuation bandwidth would depend largely on the speed of the ABS or torque control system

and associated actuators, in addition to tire dynamics.  As mentioned earlier, experimental longitudinal tire

dynamics full-sized vehicles have a bandwidth of approximately 40-Hz, which justifies in some limited

sense the choice of dynamics for torque control.

3.6.2 4WS4WD Yaw Dynamics at Low Speed (1.2 m/s) + Slow Servos

This section introduces the measured vehicle dynamics measured for the 4WS4WD vehicle at low

speed (1.2 m/s).  This work was conducted as a continuation of the studies conducted by the previous

graduate student.  When this experimentation was conducted, there was no consideration of pi-matching.

Hence, the actuator dynamics were very slow because poor actuators were being used (without knowledge

of their limitations), the wheels on the vehicle had cornering stiffness a factor of 2-4 times too high, and the

weight distribution of the vehicle (notably the Iz moment) was arbitrary.  To make matters worse, the data

collection was initially conducted with the analog arm, which resulted in incredibly poor yaw-rate

feedback.  With so many caveats on the experimental results, one may question the intent of presenting this

data.  Ignoring the justification of continuing previous research techniques, many lessons can be learned

from this experiment outside the realm of vehicle testing.  The feedback, scaling, modeling, and controller

development issues solved during this experiment allowed the success of the future vehicle tests.
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 System identification was first performed on the yaw response using the front wheel as the

control input using the multiple bode-plot method previously discussed, resulting in the following fits:
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Figure 3.51: The fit of the yaw angle dynamics using the front wheels as the control input.

The above plots were fit for denominators ranging from 2nd to 5th order, and the best fit was found for

denominators of 3rd order.  The numerator order was then varied from 0th order to 3rd order, and the best fit

was found to be at 0th order.  The fit was performed using the INVFREQS command in MATLAB, with

weighting at the corner frequencies to refine the fit.  The solid line in the above plot corresponds to the

transfer function:

( )
( ) ( )

ψ s

V s s s sf

=
⋅ + ⋅ +

13480

10 3 1802 . (3.142)

Note that the yaw angle is measured in degrees for this transfer function, which affects the D.C. gain on the

transfer function.  Also note that the yaw angle was scaled by 1/10 when the yaw position was returned to

the DSA, so that the transfer function identified in the above Bode plot was multiplied by 10 to obtain the

transfer function from voltage to yaw angle.  The poles of this function are:

Poles j= − ±513 12 4. .
(3.143)

This represents a system that is slightly oscillatory in the open-loop time-domain response, which is

expected.

Consideration of the above model fit shows some discrepancy in the model fit: the actuator

dynamics (a DC motor) have 0 zeros and 2 poles, while the vehicle dynamics have one free integrator, two

poles in the left-half of the complex plane (LHP), and one minimum-phase zero.  Thus we expect the

system to have 1 zero, 4 LHP poles, and one free integrator.  Instead, the above fit has 0 zeros, 2 LHP

poles, and one free integrator.  The explanation for this discrepancy is clear when the bicycle model

parameters for the system are measured.  The bicycle model predicts (from these parameters) that the LHP

vehicle poles are at approximately 20-30 rad/sec and 110 rad/sec, and the zero is located at around 30

rad/sec.  The actuator dynamics are unknown (because of the rate-limiter), but examination of the actuator

bode plots reveals are likely less than 20 radians per second when the combined rate-limiter and linear

dynamic effects are combined.  Thus, an explanation of the vehicle dynamics is as follows: the 110 rad/sec

pole is being “washed out”, there is an approximate pole/zero cancellation between the remaining bicycle
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model pole and zero, leaving only the actuator dynamics and a free integrator to explain the observed

model order.

To obtain the rear-steering dynamics, system identification was again performed as just described

using the rear wheel as the control input, resulting in the following fits:
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Figure 3.52: The fit of the yaw angle dynamics using the rear wheels as the control input.

Again, the order of the denominator was searched between 2nd and 5th order, and the order of the numerator

was searched between 0th and 3rd order, with the best fit as shown below.  Also, the results were weighed

again at the corner frequencies to produce a more precise fit.  The transfer function obtained from the

voltage sent to the rear wheels to the yaw angle was found to be:

( )
( ) ( )

ψ s

V s s s sf

=
⋅ + ⋅ +

26500

850 3102 . (3.144)

The poles of this transfer function were found to be:

Poles j= − ±4 25 17 1. .
(3.145)

Again, the resulting poles indicate a time domain response that is slightly oscillatory.  Before continuing to

the next vehicle, note that the time-domain verification of open-loop dynamics are presented in the

controller implementation section later in this thesis (to serve as a comparison between open-loop and

closed-loop responses).

3.6.3 4WS4WD at High Speed (3.0 m/s) + Fast Servos

When Buckingham-Pi analysis was conducted on the vehicle, it was discovered that the operating

velocities needed to represent a full-sized vehicle were much higher than the testing speeds of 1.2 m/s.  It

was also discovered that the low-frequency dynamics previously thought to be vehicle dynamics were in

fact actuator dynamics.  This section details the frequency-domain and time-domain identification of the

system at a higher velocity of 3.0 m/s.  This velocity corresponds roughly to a full-sized vehicle traveling at

65 mph, or approximately 30 m/s.  The low-bandwidth actuators were replaced with the highest-bandwidth

(and most expensive!) R/C actuators available.

As detailed in earlier sections, frequency-domain identification was conducted using swept-sine

input, allowing 20 cycles for integration and 5 seconds to settle each frequency.  The figures below were
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obtained using 400 separate sweeping frequencies.  To obtain a dynamic model of the system, two separate

methods were used: a theoretical approach and an input/output approach.  To obtain a fit using the

theoretical approach, the system was assumed to fit the bicycle model.  To obtain a fit using the

input/output approach, the system was assumed to be represented by a linear, causal transfer functions from

driver input to vehicle state outputs.  To fit the frequency response to the theoretical bicycle model, the

unknown parameters in the bicycle, namely the cornering stiffness and the z-axis moment of inertia, were

varied until a minimum error was found between the model and measured frequency responses.  When the

minimum error was sought, the actuator dynamics were included in the model, as well as the servo delay of

0.012 seconds.  To obtain an a fit using the input/output approach, the frequency response was fit using

causal transfer functions from 1st to 10th order until a minimum error was found.  The arbitrary input-output

transfer function fit was forced to have the same actuator dynamics between the front and rear transfer

functions for yaw rate and lateral velocity.  The plots below show three fits: the fit using the bicycle model

alone (no actuator dynamics), the fit using the bicycle model with the actuator dynamics, and the fit using

the input/output approach of using an arbitrary transfer function:
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Figure 3.53: Frequency-domain fits of yaw-rate dynamics using the front (left plots) and rear (right plots)

wheels as the source for steering inputs.
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Figure 3.54: Frequency-domain fits of yaw dynamics using the front (left plots) and rear (right plots)

wheels as the source for steering inputs.
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Figure 3.55: Frequency-domain fits of lateral dynamics using the front (left plots) and rear (right plots)

wheels as the source for steering inputs.

The identified models for the bicycle model were obtained using the following parameters substituted into

the bicycle model transfer functions derived earlier:

V (velocity) =  3.0 m/s

m (mass) = 4.025 kg

Iz (z-axis mom.) = 0.13 kg-m^2
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a (dist. C.G. to front) = 0.1387 m

b (dist. C.G. to rear) = 0.1893 m

Cαf (cornering stiffness front tire) = 20 N/rad

Cαr  (cornering stiffness rear tire) = 45 N/rad

Tnomf (average front wheel torque) = 0 N-m

Tnomr (average front wheel torque) = 0 N-m

This results in the following transfer function for the bicycle model where the actuator is approximated as a

simple gain:
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For the bicycle model with actuator dynamics, the above expressions for yaw rate remain the same, but the

actuator dynamics become:
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Now that frequency-domain identification is complete, a verification of the dynamics is conducted by

considering the system responses in the time domain. When practical, time domain verification was

conducted with the driver-in-the-loop, that is with someone physically driving the vehicle.  The following

figures show the time-domain fits both with and without actuator dynamics.
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Figure 3.56: Time-domain fits of yaw rate showing the desired model, the predicted model, and measured

yaw rate when actuator dynamics are ignored using front steering.
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Figure 3.57: Time-domain fits of yaw rate showing the desired model, the predicted model, and measured

yaw rate when actuator dynamics are included using front (left) and rear (right) steering.

It can be seen quite clearly from the above time-domain plots that there remains some amplitude and phase

error, and that the modeling with actuator dynamics produces a much better fit of the system response.  It

should be noted that the fit in the frequency domain was obtained by forcing both the front and rear steering

dynamics to follow a bicycle model.  Hence, the parameters (instead of the poles) are the degrees of

freedom.  The frequency domain and time domain “fits” are coupled across states and control inputs: the

front-steering yaw rate, rear-steering yaw rate, front-steering lateral position, and rear-steering lateral

position bode plots all had to be fit simultaneously solely by varying bicycle model parameters.  Because

only two parameters, cornering stiffness and z-axis moment of inertia, had errors large enough to justify

“tweaking” the system away from the measured values to obtain a better fit, therefore the degrees of

freedom are only 3 (Iz, Caf, Car) to obtain a fit of 4 bode plots.

Measured

Measured

Reference Model
Open-Loop Fit

Open-Loop Fit

Reference Model
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A better “fit” would be obtained if the system were not constrained so tightly by the bicycle model

dynamics; however, arguments regarding dynamic similitude using the bicycle model would then be

unjustified.  This “better fit” using arbitrary input/output transfer functions is shown in the above frequency

domain plots.  For comparison,  a controller design based off of these fits was compared to one based off of

the bicycle model, and no difference could be seen in their performance.  In light of this in for sake of

simplicity, the results of this experiment are not presented in this thesis.

Given that the above fits represent a “parameter-based” identification, it is remarkable that the

system dynamics did in actually fit quite closely to measured values.  This fact in itself justifies and

supports the bicycle model as a dynamic model for the system, which in turn justifies to some extent the

dynamic similitude arguments presented earlier.

3.6.4 Uberquad at High Speed (3.0 m/s) + DC Motor

The final vehicle identification conducted in this thesis was on the Uberquad vehicle.  Again, the

state-variable of interest was yaw-rate, and the fits were conducted by varying the bicycle model

parameters.  The Uberquad was unique in that the transfer function from wheel angle to yaw-rate could be

measured during testing in order to generate the bicycle model transfer functions with no actuator

dynamics.  This greatly simplified the model verification for the Uberquad.

The following figures show the frequency-domain system identification for the Uberquad for the

three types of steering input: front steering, rear steering, and torque steering.  The torque steering was

conducted using the front two motors on the vehicle to both drive the vehicle and provide torque steering.

Understandably, this can be quite simply modified into any number of configurations.  This particular

configuration was chosen out of convenience.
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 Figure 3.58: Frequency-domain fits for the Uberquad using front (left), rear (center), and differential-

torque steering (right).
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In order to evaluate the frequency-domain fit, the controller was made to track a sinusoid input to verify the

amplitude and phase relationships of the frequency-domain fit. Three different frequencies were examined

(only one is shown below): low (1-2 rad/sec), medium(4-5 rad/sec), and high (10 rad/sec). In addition, a

square-wave tracking response was recorded for each type of input.  A square wave was chosen because

square wave tracking tends to emphasize high-frequency model mismatch, and intentionally shows model

error during the square-wave steering command.  The square wave tracking in essence requires an

instantaneous change in yaw rate, which is impossible given that the steering angles for the wheels cannot

instantaneously change.  Thus, we do NOT expect the square wave responses to match between open-loop

model and measured yaw-rate.  The sine wave tracking was so well that a square wave tracking signal was

a logical method to compare each type of input.
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Figure 3.59: Time-domain fits for the Uberquad using front steering under different tracking trajectories:

high frequency sinusoid (left) and step input (right).
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Figure 3.60: Time-domain fits for the Uberquad using rear steering under different tracking trajectories:

high frequency sinusoid (left) and step input (right).
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Figure 3.61: Time-domain fits for the Uberquad using differential torque steering under different tracking

trajectories: high frequency sinusoid (left) and step input (right).

Several important points must be made about the previous model fits.  The bicycle model

parameters that gave the best dynamic fits in the frequency domain were nearly identical to the off-line

measurements.  This was not the case with the 4WS4WD vehicle, where some of the parameters varied

from the measured values by as much as 50%.  The above responses in both the frequency and time domain

fit much closer to the bicycle model than those of the 4WS4WD vehicle.  These overall trends suggests that

the Uberquad is perhaps a much “tighter” system dynamically, and does not (as much) show the non-linear

effects that plagued the 4WS4WD model testing such as rate-limited actuation and dead-zones in the

steering linkages.
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4 Control Approach

In previous sections, the motivational and theoretical basis for vehicle control was developed.

Before continuing to the next natural step of implementation, the concepts and intent of control are first

introduced.  This chapter is written to provide an overview of the control methodology used in this thesis,

and is written toward prospective control students who may be interested in the concept but unfamiliar with

the practice of Model Reference Control.

4.1 Alternative Methods

Before delving into one particular control algorithm for pages and pages, alternative methods

currently in use are described.  The focus of this section is on practicality.  It is quite easy to develop a

“new” control theory or idea.  It is wholly a different matter to ensure that the concept is clear and easily

understood, as well as beneficial toward the end of controlling vehicular behavior.

4.1.1 Commercial Methods

Each car manufacturer is working to develop specific controllers for vehicle chassis handling, and

with each controller is a new acronym.  The first manufacturer to feature commercial yaw-rate or stability

control was Mercedes-Benz in the form of the 1996 V-12 S class series.  These vehicles were the first to

feature the Electronic Stability Program (ESP).  With the ESP, a yaw-rate sensor senses excessive side-slip,

and compensates the vehicle by applying appropriate braking maneuvers.  Based on an article by

(VanZanten, Erhardt, and Pfaff 1995), it appears that the control is based on minimizing the sideslip

velocity, and is likely a model-following approach based in the transfer function domain, with the feedback

control designed using optimal control theory.  It appears that the sampling rate is every 40 milliseconds

(Arnholt 1995).  As one writer notes, a Mercedes so equipped is the closest thing yet to the crash-proof

automobile (Sherman 1995a).

Two years after Mercedes introduced their system, ITT Automotive introduced an Automotive

Stability Management System (ASMS) that is currently used on the BMW 3-series sedan starting in 1998

(Sherman 1995b).  This system also uses yaw rate and lateral acceleration feedback in conjunction with

wheel-slip sensors and steering sensors.

4.1.2 2WS

Because of the actuation requirements for 4WS vehicles, some researches are instead focusing on

the automation of vehicles using simply 2WS.  Peng et al use a Pontiac 6000 vehicle to validate a feedback-

type controller, where the error signal is actually previewed slightly.  The resulting controller in effect

becomes a feedback/feedforward controller (Peng et al. 1994).
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4.1.3 Feedforward 4WS

The use of feedforward control was the first method attempted on vehicles with regard to rear-

wheel steering.  Feedforward control has the advantage a feed-forward control can achieve fast vehicle

responses to steering wheel commands, without the lag or error necessary to achieve control input from a

feedback system.  This advantage is retained even if reduced-order approximations for the plant are used.

Additionally, feedforward terms can contain non-linear dynamics simply because they do not affect the

closed loop stability (Lee 1997).

4.1.3.1 Proportional Feedforward

Originally researchers were more interested in 4WS because the front and rear steering inputs,

when used in conjunction, can in some way decouple the yaw and sideslip degrees of freedom.  The

simplest method to do this is to use a rear-wheel controller that is a feedforward proportional controller

with variable gain.  That is, the controller makes the rear wheel angle some ratio of the front wheel angle.

One class of simple proportional controllers would be the controllers developed by Sano et al. from 1979

on (Nakaya and al. 1982; Sano 1986; Sano and al. 1979; Sano and al. 1980).  In these controllers, the rear

steering ratio was a predetermined function of speed where the ratio was determined by minimizing the

steady-state side slip angle of the vehicle in the high speed range.  The resulting ratio can be expressed as:
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where the above parameters are the standard notation used in the bicycle model (reference 2 and 3 in VSD,

p680 1995 ) and (Cho and Kim 1995; Sano 1986).  This method is often referred to as the Vehicle Sped

Function (VSF).  It is also often expressed as:
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where Ef and Er are the steering compliance of the front and rear wheels.  In the low speed range, the rear

wheels were steered in a direction opposite the front wheels to make the turning radius of the vehicle

smaller.  To simplify the system, a mechanical link was used to connect the front and rear wheels, which

relies on the concept that the driver corrects the steering angles with smaller magnitudes as the vehicle

speed increases.  With the rear wheel steering in the same direction as the front wheel, the phase lag of the

lateral acceleration can be reduced while keeping the vehicle yaw rate response unchanged (Furukawa and

Abe 1997).

An alternative approach to maximize vehicle stability is presented by (Cho and Kim 1995) called

the Maximum Stability method.  At each velocity, root locus diagrams of the closed loop system are made

using the front-to-rear steering ratio as the locus parameter.  The value that gives the closed-loop pole

locations farthest in the left-half plane is then used.
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The inherent problems with the proportional feedforward approach are that the controller minimizes only

the steady-state sideslip angle.  A significant amount of transients may be introduced by use of the rear

wheels.  Additionally, the lack of feedback can introduce undesirable performance degradation with

varying models, road conditions, etc.

4.1.3.2 Proportional + Delay Feedforward

The steady-state methods described previously improve vehicle stability, but the response will still

contain undesirable transient dynamics.  By applying suitable transient control, the vehicle response can be

improved without sacrificing stability (Inoue and Sugasawa 1993).  Several authors have observed that the

rear-steer command is approximately proportional to the front steering input, but delayed.  Cho and Kim

(Cho and Kim 1995) use a time delayed rear-steering type of controller where the control law for the rear

input is:

)()( sfr ttt −⋅= δγδ
(4.3)

where gamma is a velocity-scheduled gain, and ts is a velocity-scheduled time delay.  This technique was

introduced earlier by (Shibahata and al. 1985).  With this method, the phase lag at lower frequencies for

yaw rate and lateral acceleration will be reduced, but this effect diminishes in the range of 0.7 – 1.0 Hz.

This trend is characteristic of feed-forward types of rear-wheel control (Furukawa and Abe 1997).  We see

that the use of the time-delay with the proportional term improves the transient effects of the rear steering

input, but suffers from the similar drawbacks of purely proportional control.

4.1.3.3 Transfer-Function Feedforward Methods

The use of a time-delayed input to the rear wheels improves performance, but can also introduce

undesirable transient performance.  There are two basic types of dynamic (non-proportional) rear wheel

control: in phase and phase reversal.  The method of using a delay always steers the rear wheels in the same

phase as the front wheels.  However, if we allow the rear wheels to be steered momentarily in the direction

opposite of the front wheels, the vehicle will be more responsive (Inoue and Sugasawa 1993).  Naturally,

this approach requires higher levels of actuation, but the performance improvement is significant.

Takiguchi et al. obtained a front and rear steering ratios such that the phase difference between lateral

acceleration and yaw rate is zero (Takiguchi and al. 1986).  Examination of the relationship between side-

slip angle, yaw-rate, and lateral acceleration reveal that this result is identical to the previous work by Sano.

However, the concept was expanded by Takeuchi (Takeuchi and al. 1985) when they derived the transient

theoretical relationship needed to maintain the body side-slip angle to zero.  These results are in complete

agreement with work conducted by Fukunaga who reported that by actively steering the front and rear

wheels in relation to the steering input, the phase lag between lateral acceleration and yaw rate could be set

to zero (Fukunaga and al. 1987).

A paper by (Ahring and Mitschke 1995) notes that if we attempt to make the yaw rate and sideslip

angle invariant to vehicle loading and cornering stiffness, then rear-wheel control alone will not work
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because the system is coupled between these two state variables.  Hence, two inputs are needed.  Invariance

of yaw-rate and side-slip angle with respect to loading and cornering stiffness will only be obtained if the

controller has access to the steering input for both the front and rear wheels independent of the driver.

Although this is not likely to be adopted in practice (simply because the driver will have no control over the

vehicle if the controller electronics fail), their paper does point out limitations on performance achievable

by using the rear wheels alone to assist the driver.

4.1.4 Feedback 4WS

The use of feedback for vehicle control has several advantages over purely feedforward control.

Perhaps the most important advantage, the use of feedback maintains stable vehicle characteristics during

changes in driving conditions (Inoue and Sugasawa 1993).  As pointed out by the same author, the use of

feedback must achieve the same level of steering input response as feedforward control to be considered.

In addition, it can be shown that stability against external disturbances cannot be set independently of

driving performance for a purely feedback system (Inoue and Sugasawa 1993).  From a standpoint of

model following, the zeros of a system are invariant; feedback control cannot affect the zeros of a vehicle

model.

4.1.4.1 Proportional Feedback

It is possible to force the vehicle, via feedback, to have neutral steer characteristics.  Assuming the

bicycle model parameters are known, the bicycle model predicts neutral steer characteristics with feedback

gain:

ψ⋅⋅=δ &longVC)t(
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where Vlong is the longitudinal velocity of the car, Ψ&  is the yaw rate of the vehicle, m is the mass of the

vehicle, L is the length of the vehicle, CI are the cornering stiffness of the front and rear tires, and a and b

are the length from the CG to the front and rear axles, respectively.  This model was presented by (Senger

and Schwartz 1987), and tested in simulation and compared to other methods by (Sridhar and Hatwal 1992)

and found to be the easiest to drive among several parameter-based methods.

4.1.4.2 State Feedback

The performance of the closed-loop system is often examined by incorporating a model of the

driver in the control loop.  Cho and Kim design an optimal four-wheel steering system via a LQR approach,

where the driver is assumed to be modeled as a purely feedback PD-controller with a time delay of 0.2
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seconds.  Three optimal approaches are considered: minimizing four state variables (lateral error, yaw rate,

and derivative of both), minimizing the side-slip velocity (lateral velocity), and minimizing the side-slip

velocity and the yaw rate equally. The resulting controller in all cases resembles a state-feedback type of

control.  Cho and Kim note for their controller that the results of an optimal control structure reveal nearly

identical performance as the proportional  + delayed feedforward controller, with slightly less oscillation.

4.1.4.3 Nonlinear Control

One option to obtain perhaps the maximum vehicle performance is to account for system

nonlinearities (like sliding or strange deformations in the wheel).  As an example, Smith and Benton design

an emergency controller to maneuver the vehicle as rapidly as possible from one lane into another using a

non-linear optimization scheme (Smith and Benton 1996).  The purpose of the non-linear scheme is to

account for vehicle tire non-linearities during a very aggressive maneuver.  The controller attempts to

minimize the distance traveled before the vehicle leaves a lane; hence, the tire forces are saturated for much

of the maneuver.

Obviously, accounting for tire non-linearities will improve vehicular performance.  However,

there seem to be two primary issues with using a non-linear model or control.  The first is obtaining the

model: most controllers based on complex tire dynamics assume that the vehicle has knowledge of the road

surface before arriving at the road surface, or can at least achieve robust estimation of road parameters.

This has historically been very difficult to achieve.  The second issue is design of the controller.  It is quite

difficult to “tune” a non-linear controller, simply because the system response can be non-intuitive.  As a

general rule, highly nonlinear controllers tend to be best suited for two extremes: to marginally improve a

system that is already under control using linear methods by accounting for known model nonlinearities, or

to stabilize a system that is not stabilizable or difficult to approach using linear controllers.  For this reason,

nonlinear controllers are for the present time avoided in this vehicle research.

4.1.4.4 Driver Out of the Loop – PID

In the paper by (Ahring and Mitschke 1995), a PID regulator is used to control both the front and

rear wheels, with a transfer function coupling the two via feedforward terms.  The resulting coupling

network is sensitive to vibration if the gains are incorrectly chosen; however, the authors are able to obtain

a yaw-rate and side-slip response that is invariant to cornering stiffness and vehicle loading given only yaw

rate and lateral acceleration feedback.  A drawback to this method is that the use of feedback very often

introduces the vibration the authors comment on.  This vibration is inherent in the coupling between the

two free modes because of the poor damping inherent in the bicycle model.  This vibration is seen in later

experimental testing of the vehicle using a purely feedback type of control.

4.1.4.5 Driver Out of the Loop – Neural Networks

In recent years, non-standard “modern” neural networks have been introduced to control the

vehicle.  In the paper by (Nagai, Ueda, and Moran 1995), a neural network is trained and used to control a



120

4WS vehicle.  However, the network was trained and tested only in simulation.  Because neural networks

are inherently sensitive to the method by which they are trained, it is unlikely that this method will be

adapted for control of an actual vehicle in the near future without a significant amount of further validation.

4.1.5 Feedforward + Feedback 4WS

In designing feedforward and feedback systems in conjunction, several important aspects must be

considered.  The division of control tasks between feedforward and feedback control must be clearly

defined, including considerations of problems that might arise when all tasks are entrusted to feedback

control.  The combined use of feedback and feedforward control should not complicate the control system.

Finally, controller robustness to external disturbances and model changes should not change significantly

with the use of feedforward control as compared to feedback control alone (Inoue and Sugasawa 1993).

The tradeoff decision between feedforward and feedback control is critical with regard to

controller implementation.  It is possible to examine the merits of each type of controller if we isolate the

effect of each term (Inoue and Sugasawa 1993). For this discussion, we choose yaw rate as the state

variable of interest; however, any vehicle state can be chosen without loss of generality.  The yaw rate of

the vehicle is given by:

distrrff ψ+ψ⋅δ+ψ⋅δ=ψ &&&
(4.6)

where 
rf ,ψψ &&  are the relationships (transfer function or time domain) between steering inputs, 

rf ,δδ , and

yaw rate output, ψ& . The subscript “dist” notes a disturbance input at the output of the system.  From the

previous diagram, the rear steering input is:

FBeFFfr ⋅+⋅δ=δ
(4.7)

where FF is the feedforward transfer function, FB is the feedback transfer function, and e is the error.

ψ−⋅δ= &TFe f
(4.8)

where TF is the Target Function for the yaw rate (i.e. the reference model).  We can combine these

equations to obtain:
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Let us assume that we can obtained the exact desired yaw rate response by feedforward control.  We can

then specify that the target function, TF, be:

rf FFTF ψ⋅+ψ= &&
 (4.10)

The resulting transfer function using this target function is:
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We thus have completely decoupled the desired reference model from the disturbance rejection

characteristics.  We can see that if FB can be chosen to invert rψ& , then the disturbance rejection term will

not contribute any additional dynamic terms into the yaw response.

A feedforward/feedback system was used by Lee (Lee 1997) consisting of a filtered front steer

input and proportional yaw rate feedback (using filtered yaw rate):
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From dynamic inversion arguments, it is clear that the above method will work well only if the vehicle

response can be adequately described by a first order transfer function.

Basic feedforward and feedback rear-wheel steering controllers are discussed in (Lee, Mariott, and

Le 1997).  It was found that the vehicles became more responsive (smaller J turn rise time) if the wheels are

steered in phase with negative yaw rate feedback.  The vehicle becomes less response if the wheels are

steering in phase with positive yaw rate feedback.

Several authors, namely Cho and Kim, include driver feedback models in order to examine closed

loop stability (Cho and Kim 1995; Cho and Kim 1996).  The driver model is feedback based with a delay,

with a preview amount of the tracking error proportional to the square of vehicle velocity.  The resulting

controller can be thought of as a feedforward-feedback system.

Simple mixed feedforward/feedback structures have been tested that are based on the theoretical

bicycle model.  Sridar and Hatwal suggest the following structure (Sridhar and Hatwal 1992):

ψ⋅⋅+δ−=δ &longfr VC)t()t(
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The motivation for this form was taken from the paper by (Sato et al. 1983).  If we examine the controller,

we find it is very similar to the control used in the feedback section to produce neutral steering

characteristics.

Shiotsuka et al demonstrated the use of a Neural Network to predict the tire friction for changing

mu values and changing velocity.  Using this estimator, they iteratively design an optimal controller for

both a feedforward and feedback controller.  They demonstrate their performance with time-domain

simulations (based seemingly on their neural network), and show good performance for high acceleration

maneuvers (Shiotsuka, Nagamatsu, and Yoshida 1993).

An excellent paper is presented by the Honda research group where the road friction parameter is

estimated based on the yaw rate measurements.  Using the estimated friction value, an adaptive

feedforward and feedback controller is designed to track a reference model.  The feedforward controller is

designed to minimize the steady-state and transient vehicle slip angle in spite of changes in friction, while
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the feedback controller is designed using an Internal Model Control structure to compensate for

nonlinearities and achieve robust performance.  The feedback gains are then determined used a mu

synthesis approach.  This paper is distinguished in that the experimental results are validated both in the

time and frequency domain on an actual vehicle (Wakamatsu et al. 1997).

Often the questionable assumption is made that the bicycle model parameters are known

beforehand for a particular vehicle/roadway combination.  With this in mind, the dynamics of the vehicle

can be inverted and a controller designed to produce invariant and/or optimal performance.  Yaniv uses this

approach to achieve speed-invariant performance for a bus with a controller that commands both front and

rear wheels (Yaniv 1997).

4.1.6 Mixed Steering and Braking

One method to control the vehicle orientation is to use the torque produced by each wheel during

braking or acceleration to generate a yaw moment.  This is often referred to as Direct Yaw Control (DYC).

If the traction and braking forces are distributed appropriately, the yaw moment and thus the lateral motion

can be accurately controlled (Fukunaga and al. 1987).  An advantage of the DYC method is that the

longitudinal forces of a tire do not saturate as quickly as in the lateral direction (Abe, Ohkubo, and Kano

1996).  As was shown in earlier section sections, the tire has a more linear response with higher bandwidth

in the longitudinal direction than in the lateral direction.  Hence, more precise yaw moments can be

generated to control the vehicle lateral motion using DYC rather than RWS.  Finally, the system is

somewhat fail-safe since DYC is more robust to changing vehicle conditions as the longitudinal forces do

not saturate as fast as the lateral forces, and the driver maintains control over the front steering input

(Fukunaga and al. 1987) (Nagai, Hirano, and Yamanaka 1997).

We must realize that the use of longitudinal tire forces can influence actuation of longitudinal

controllers such as ABS or Traction Control Systems (TCS), thus increasing the complexity of the vehicle

dynamics (Fukunaga and al. 1987).  Hence, these brake/torque controllers are most often used in accident

prevention/ skid control rather than vehicle directional control.  The Mitsubishi group has developed a

controller method that emphasis comfort (based on minimizing the jerk of the vehicle) that recognizes in

some part that driver discomfort must be considered.  In their study, the determined that jerk was a key

indicator of whether a maneuver was conducted for comfort or for collision avoidance (Hayafune and

Yoshida 1990).

 It is important at this point to make a distinction between DYC and ABS or TCS systems.

TCS/ABS systems should be considered fundamentally different types of vehicle control technology.

TCS/ABS control the longitudinal force on each wheel independently to prevent lockup or spin during

braking or traction efforts.  Even though these systems may stabilize the vehicle lateral motion, they do not

actively control the vehicle’s overall motion (Fukunaga and al. 1987).  This becomes intuitively clear if the

acceleration diagram shown in Chapter 2 is examined.
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A model reference tracking controller was developed by Will and Zak of Purdue that utilizes

brakes, front steering, and rear steering for control input (Will and Zak 1997).  The design of the controller

is based on the Lyapunov direct method.  The controller is designed using the bicycle model, and validated

using step inputs using a higher order (roll and pitch DOF) model.  Both feedforward and feedback terms

are used; however, the feedforward is simply a direct feedforward command (unity), so the system zeros

may deteriorate performance.  The resulting control ends up behaving like a sliding-mode control where the

reference model trajectory is the invariant manifold.  One problem with this control is that the control

naturally chatters to maintain tracking with the reference model (Will and Zak 1997).

A Direct Yaw Moment control system based on model following technique using state feedback is

described in detail in a paper by Nagai et al (Nagai, Hirano, and Yamanaka 1997).  A controller utilizing

both feedforward and feedback is designed to achieve model following.  The feedforward and feedback

terms are decoupled, this providing freedom to design the feedback controller using robust control

methods, pole placement, or optimal control.  In this paper the authors choose an optimal control technique.

As a note, this paper is perhaps one of the closest published work yet discovered in terms of similarity to

the thesis work presented here.  Another paper using transfer function based Model Reference Control to

control the yaw rate and sideslip responses with 4WS and DYC is given by (Abe, Ohkubo, and Kano

1996).   Specifically, they show that DYC is more responsive than 4WS because the yaw rate response by

DYC is proportional to steering wheel input while the response to 4WS is a first-order lag.  A feedforward

and feedback controller is used, with the feedforward term intended to produce zero side slip.  Simulation

studies demonstrated a consistent lag in the yaw rate tracking using 4WS, while the DYC showed good

tracking.  In addition to yaw rate control, the authors introduce a cooperative control where zero sideslip as

well as model-following with the yaw rate.  The authors also note that when the tires begin to saturate, the

yaw-rate feedback tends to destabilize the system by requiring excessive feedback actuation.

There are very few papers comparing 4WS vehicles with DYC.  Notable exceptions are the two

papers by Dr. Alleyne where different control input strategies are compared in the steady-state (Alleyne

1997a) and during transient maneuvers (Alleyne 1997b).  The strategies compared were Four Wheel

Steering, Front Wheel Steering, Four Wheel Brake Steering, Front Wheel Brake Steering, and Rear Wheel

Brake Steering.  Each of these techniques were evaluated when using an optimal controller design approach

(LQ) based on the bicycle model where the metric of comparison was the ratio of the amount of tire usage

to the maximum available tire force.  It was found that the 4WS is as efficient in it tire usage as front wheel

steering, and that rear wheel braking should be avoided.  Differential braking was not as efficient as these

other two steering methods; however, it is in general preferred for liability reasons (Alleyne 1997b).

One of the few papers dealing with aggressive cornering and acceleration/braking was presented

by Shibahata et al from Honda.  In this paper, a parameter-based controller based on a stabilizing yaw

moment is introduced.  Good performance is achieved; however, the controller assumes that the tire model

(friction, lag, etc.) is known exactly.  The resulting feedforward controller is not discussed, and

experimental verification is not presented in this paper.  In this paper, a performance curve in the
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acceleration domain is presented that nearly encompasses nearly all of the acceleration domain (Shibahata,

Shimada, and Tomari 1993).  Based on the structure of the controller, the concept is sound but many

assumptions are made with regard to road friction, tire model, etc. for this controller to be of practical use.

4.2 Introduction to Model Reference Control

Model reference control (MRC) is a control technique where the performance of a system is

specified by the performance of another system.  The area of Model reference control is well studied, and

includes non-linear and time-varying systems .  In general, MRC is presented in the context of adaptive

control, where an adaptive routine iteratively identifies new plant parameters, and the controller is modified

“on-the-fly” to achieve model tracking.

4.2.1 Dead-Beat Control

If the general purpose of MRC is to achieve model tracking, then we must consider the simplest

method to do so for a stable, non-minimum phase system.  Simply “flip” the transfer function, multiply it

through the reference model, and use the resulting transfer function as the new controller. This method is

often referred to as model inversion, but it is highly sensitive to modeling errors, and is not suited for non-

minimum phase systems.  One aspect of control is that a sampled system is always non-minimum phase if

the sampling rate is high enough.  Clearly, the issues associated with Dead-Beat control tend to outweigh

its simplicity.  However, in the following derivation of MRC with disturbance rejection, we borrow on the

idea of model inversion.

4.2.2 Theory and Implementation of MRC

This section outlines the procedure used to transform the dynamics of the vehicle so that the

vehicle performance behaves like a different, reference vehicle.  In essence, the Model Reference

Controller approach can be looked at as a simultaneous pole AND zero placement approach, with a

feedforward term that anticipates the vehicle response.  The following derivation is a modification of the

derivation provided by Astrom and Wittenmark in their publication, Adaptive Control (Astrom and

Wittenmark 1995).

To begin, we consider the general case of a plant that receives a control input u and has a single

output y.  We assume at this point that the plant is linear; that is, the plant can be represented by a transfer

function that is a polynomial of s for both the numerator and the denominator.
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Figure 4.1: The feedback/feedforward structure of the MRC method.

 We can represent the output of the plant with the following equation,

( ) ( )Y s
B

A
U s= ⋅

(4.15)

Where A and B are the denominator and numerator, respectively, of the transfer function.  We would like

the plant to behave like:
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where Am and Bm are the desired denominator and numerator, respectively, of the plant, and Uc is the input

into the controller.  To obtain the desired behavior, we may implement a controller that has both a feedback

and a feedforward portion, such as:

u
T

R
u

S

R
yc= ⋅ − ⋅

(4.17)

Here T/R is a feedforward transfer function intended to cancel the dynamics of the plant, and S/R is a

feedback transfer function to compensate for any error in the feedforward design.  If equation for control

effort is substituted into the plant equation and solved for y, the following result is obtained:

( )y
B T

A R B S
uc=

⋅
⋅ + ⋅

⋅
(4.18)

We can see that to obtain the desired closed loop poles, then Am must be a common factor of (AR+BS). We

can also see that if we wish to cancel any zeros of B, we must also include these terms as additional factors

of (AR+BS).  To understand this more clearly, we can factor B into two portions:

B B B= ⋅+ −

(4.19)

Where B+ contains the terms to be cancelled and B- contains the remaining terms.  Since there is an infinite

number of ways to factor out B+, we must assume that B+ is monic (i.e. the coefficient of the highest power

is 1).  In addition, we must assume that B+ is stable and well damped.

One final factor of (AR+BS) is the observer poles of the system.  The term (AR+BS) represents

the characteristic polynomial of the system, and that the terms B+⋅Am may not have the same order as the

characteristic polynomial.  To increase the order, we include an additional factor of Ao, which represents

the observer poles of the system.  In general, we want these poles to be much faster than the model poles,

Am.  We can combine all of these requirements to obtain the Diophantine equation:

A R B S B A Ao m⋅ + ⋅ = ⋅ ⋅+

(4.20)

T(s)
R(s)

+

u
B(s)
A(s)_

y

S(s)
R(s)

uc
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If we factor B in the above equation into B+ and B-, we can see that B+ must also be a factor of AR in order

for a solution to exist.  We know that A will not factor B+, because if it did factor, then the original

formulation of B/A would not be a minimal realization of the plant.  Hence, B+ must be a factor of R.

R B R= ⋅+
1 (4.21)

If we divide the Diophantine equation by B+, we obtain:

A R B S A Ao m⋅ + ⋅ = ⋅−
1 (4.22)

In this modified form of the Diophantine equation, we can provide the conditions that guarantee that there

exist solutions that give a proper (in continuous-time) or causal (in discrete time) control law.  To do this,

we note that the controller must be causal.  Thus, we require

RdegTdeg

RdegSdeg

≤
≤

(4.23)

Note that if Ro and So are solutions to the Diophantine equation, then so are

QASS

QBRR

o

o

−=
+=

(4.24)

where Q is an arbitrary polynomial.  Since Q is arbitrary, there are an infinite number of solutions to the

Diophantine equation. We select the solution that gives the lowest degree controller, which is called the

minimum-degree solution.  We note that these conditions are:

deg deg deg deg

deg deg deg deg

A A A B

A B A B
m

m m

0 2 1≥ ⋅ − − −
− ≥ −

+

(4.25)

The second inequality is a requirement on the relative degree of the reference model, also known as the

pole excess. In order to solve for the T polynomial, we must require that the term B- divides Bm; otherwise,

no solution exists.  We can then write:

m
'

m BBB −=
(4.26)

T A B m= ⋅0 '
(4.27)

which allows us to solve for the T polynomial, completing the MRC controller design.  There are additional

causality conditions in the use of MRC methods that are outside the scope of this thesis work, but these

conditions can be found in the adaptive control books referenced in the appendix.

To summarize the terms for future reference: 

u: The control input into the plant

uc: The control input into the controller

B: The numerator of the plant

B+: The factors of B that are to be cancelled to

Bm: The desired numerator of the plant

A: The denominator of the plant
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Am: The desired denominator of the plant

R: The denominator of the feedforward and feedback transfer functions used in the control

R1: The portion of R that does not factor B+

S: The numerator of the feedback transfer function used in the control

T: The numerator of the feedforward transfer function used in the control

4.2.3 Examples of Using MRC on SISO Systems

Model reference controller design is best explained by using examples, and naturally we begin

with a SISO system first.  As a first approach, we consider the “drive-by-wire” controller where only the

front wheels are used for control input.  Because of the obvious safety problems associated with this, this

method is not implemented, but serves as an example of implementation of MRC methods.

4.2.3.1 MRC for a First Order SISO System

As an example, we will transform the system, 
5s

10

U

Y

+
=  into 

1s

2

U

Y

+
= .

The second transfer function was chosen to match the DC gain of the open-loop plant dynamics.  We can

immediately note that B = 10, A = s+5, Bm = 2, and Am = s+1.  If we choose the degree of B+ to be zero, all

of the degree inequality requirements are met.  If we assume that no observer is desired, then we can

choose A0 to be 1, and B+ to be 1.  Substituting the known values into the Diophantine equation, we obtain:

( ) ( )s R S s+ ⋅ + ⋅ = +5 10 1
(4.28)

If we assume that R and S are simple constants, then there are a sufficient number of equations to solve for

R and S.  Again, these equations are obtained by equating the coefficients of the each polynomial power of

s.  Solving these, we obtain S = -0.4 and R = 1.  To solve for T, we note that we can solve for B- from the

equation B = B-B+.  We then find B- to be 10.  We then solve for Bm’ to be 0.2.  Solving for T gives T =

0.2, which completes the MRC design.

To verify the design, we can simply solve for the transfer function of the resulting block diagram,

noting that u = T/R*uc – S/R*y.  The result confirms the design.

4.2.3.2 MRC for a Particular Second Order SISO System

As an example, we will transform the system, ( )
2ss

5s10

U

Y
2 ++

+⋅
=  into 

2s3s

50

U

Y
2 +⋅+

= .

Again, we can choose the second transfer function to match the DC gain of the open-loop plant dynamics.

We note that B = 10s+50, A = s2 + s + 2, Bm = 50, and Am = s2 +3s + 2.  We can see that we must choose B+

to be (s+5) to cancel the zeros.
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At this point, a check of the required degree of the observer polynomial reveals Ao to be of order

0.  For convenience, we choose Ao to be 1. Once Ao and B+ are known, we can solve for T.  From the

equation B = B-B+, B- is found to be 10.  Solving for Bm’ gives Bm’ = 5, and so T = 5 since Ao = 1.

At this point, the Diophantine Equation can be formulated as:

( ) ( ) ( ) ( ) ( ) ( )s s r s r s s s s s s s2
1 2 1 2

22 10 50 5 3 2+ + ⋅ ⋅ + + ⋅ + ⋅ ⋅ + = + ⋅ + ⋅ +
(4.29)

By assuming that R and S are first order, then there are a sufficient number of equations to solve for R and

S.  At this point, many solution steps are skipped in obtaining R and S, but it is found that R = s+5, S =

0.2s, and T = 5.  To verify the design, we can plot the response of the system to ensure that tracking is

achieved:
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Figure 4.2: The response of the second order MRC design.

4.2.3.3 MRC for the General Second Order SISO Yaw Rate System

The yaw rate dynamics can be represented in a general form as

0
as

1
a2s

0
b

A

B

+⋅+
= (4.30)

If the desired dynamics are represented as:

0m
as

1m
a2s

0m
b

m
A

m
B

+⋅+
= (4.31)

Then the order of the observer that must be used is of minimum 1st order. If the observer is represented as

0
vs

o
A +=

(4.32)

and R, S, and T are represented as:
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0
ts

1
tT

0
ss

1
sS

0
rsR

+⋅=

+⋅=

+=

(4.33)

Then each coefficient of R, S, and T can be solved for to be:

( )
2

a
1

a
1
r

2m
a

0
v

1m
a

1
v

0
r

⋅−⋅+⋅
= (4.34)

0
b

0
a

0
r

0m
a

0
v

0
s

⋅−⋅
= (4.35)

( ) ( )
0

b
0

r
1

a
0

a
1
r

1m
a

0
v

0m
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1
v

1
s

⋅+⋅−⋅+⋅
= (4.36)

0
b

0
v

0m
b

0
t

⋅
= (4.37)

0
b

1
v

0m
b

1
t

⋅
= (4.38)

A MATLAB script was developed that solves this specific case of MRC design and all general cases of

MRC design by forming the Sylvester matrix and performing the appropriate matrix manipulations to solve

for the R, S, and T polynomials.

4.2.4 Sensitivity Functions of MRC Controllers

The purpose of examining sensitivity functions is to determine how the system will perform given

a particular error input.  To do this, consider the following diagram, which is the MRC system with two

error inputs: a disturbance on the input and a disturbance on the output:

Figure 4.3: The block diagram of the closed-loop system including disturbance terms.

The plant dynamics, output, and control law are given by:

( ) ( ) ( )( )ssuBsAx ν+=
(4.39)

exy +=
(4.40)

)t(Sy)t(Tu)t(Ru c −=
(4.41)

We can write:

T(s)
R(s)

+ +

u
B(s)
A(s)

+
+

_ x
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R(s)

v e

uc
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Ae)u(BAy +ν+=
(4.42)

Substituting in the control and solving for y gives:

e
BSAR

AR

BSAR

BR
u

BSAR

BT
y c +

+ν
+

+
+

=⇒
(4.43)

which, when substituted in equation above, gives a solution for x:

e
BSAR

BS

BSAR

BR
u

BSAR

BT
x c +

−ν
+

+
+

=⇒
(4.44)

We can finally solve for the control input, u:

e
BSAR

AS

BSAR

BS
u

BSAR

AT
u c +

−ν
+

−
+

=⇒
(4.45)

Note that these equations are presented in (Astrom and Wittenmark 1997).  If we examine the above

sensitivity functions in detail, we see that portions of the above sensitivity functions are used in the two-

input MRC method previously developed.

4.3 Alternative Representation of MRC Loops

The choice of the S and R polynomials is not unique.  In fact, the Youla-Kucera Parameterization

Theorem states that if S0(s)/R0(s) is a stabilizing controller to the system B(s)/A(s), then all rational

stabilizing controllers are given by:

( )
( )

( ) ( ) ( )
( ) ( ) ( )zBzQzR

zAzQzS

zR

zS
o

o

−

+
=

(4.46)

where Q(s) is stable.  Note that the above proof is presented in the z-domain.  The details of this proof are

presented in Astrom and Wittenmark's, Computer Controlled Systems (Astrom and Wittenmark 1997).

An alternative representation of a Model Reference Controller is also derived where the complete

separation between response to command signals and disturbances is obtained.  The model structure

remains a 2 DOF controller, but robustness properties can be examined in a much more intuitive manner.

The structure is as follows:

Figure 4.4: The block diagram of the closed-loop system including disturbance terms.

Note that the feedforward term T(s)/R(s) is no longer explicitly in the design, but that the above

design is as a consequence not causal.  This model structure is commonly seen in the literature with a filter

on the feedforward term to guarantee causality.
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4.4 Stability of MRC Methods

We can see from the above closed-loop diagram that system stability is primarily dependent on the

S/R terms.  A formal statement of system stability has been obtained by researchers regarding closed-loop

stability of the above form.  Given a controller in the form:

y
R

S
u

R

T
u c ⋅−⋅=

(4.47)

It has been proven that the system, if linear, is stable if the difference between the true plant,
( )

)s(
0

A

s
0

B  , and

the modeled plant, ( )
)s(A

sB  is bounded by the inequality (Lee 1997):

( )
( )

( )
( )

( )
( )

1

sR

sS

s
0

A

s
0

B

sA

sB
−

≤− (4.48)

where |a| denotes the modulus of the complex number a.  This represents a design tradeoff between closed-

loop bandwidth, which is large if S/R is large, and modeling error.  If the closed-loop bandwidth is too

high, the system may become unstable if the modeling error is too large.  If the bandwidth requirement is

reduced (by reducing the gain of the system), then the requirement on model accuracy can be relaxed at the

sacrifice of tracking performance.  This tradeoff historically has been best approached using a robust

controller design method (Sun, Olbrot, and Polis 1994; Tamaki et al. 1986) to design the observer

polynomial.

4.5 MRC on Systems with Known Disturbances

For a vehicle control system, there is always a chance that a controller will fail; therefore, the

controller design itself should consider this possibility.  If a single input, such as the front wheels, is used

for both the controller and for the driver input, any failure in the controller may prevent the driver from

being able to steer the vehicle.  For this reason, it is more desirable that the driver and controller use

separate inputs.  To do this, it is possible that a controller steer the rear wheels, while the driver steers the

front wheels.  Thus, the driver would always have limp-home capability if the controller or sensors fail.

With the driver controlling the front wheels of the vehicle, the vehicle response can be modeled as

MRC with a known disturbance.  We attempt in this section to obtain a theoretical method to "cancel" the

driver input using the rear wheels to obtain the desired reference model.  The following diagram pictorially

represents the goal of this section:
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Figure 4.5: The block diagram of the closed-loop system including the driver as a disturbance.

Assume that the output disturbance, ε, can be separated into two parts: known dynamics and unknown

disturbances.  Assuming a rational, causal transfer function representation for the disturbance gives:

{

edisturbanc
unknown

dynamics
known

d

d )s(')s(
f)s(A

)s(B
)s( ε+δ=ε

321
(4.49)

The term, 
f

δ , is defined as the disturbance generator for the known disturbance and in this case is the

driver's front steering input.  The unknown disturbance term, ε', contains both unmodeled dynamics of the

system as well as external disturbances (e.g. wind) that are not known.  Substituting this disturbance into e

above gives:
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d
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=⇒ (4.50)
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+
=⇒ (4.51)

For the moment, ignore the output error, ε, in the equation for y above.  We wish to cancel the effect of the

disturbance (driver input) by use of a control at the input of the plant.  To do this, an input disturbance is

used to reject the output disturbance.  Clearly the choice of v to cancel the disturbance is:

fB

A

dA
dB

v δ−=
(4.52)

The controller becomes (note that uc is the driver front steering input, 
f

δ ):
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We see that we recover the traditional form of the MRC.  We now want to formally include the disturbance

term into the controller be defining a new control effort, u':
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 (4.54)

This control approach was presented by Brennan and Alleyne this spring (Brennan and Alleyne 1999).

This control is somewhat intuitive if we rewrite the output equation ignoring the disturbances and assuming

there is no compensation for the front steer input:

f
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B
1
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B

B
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dB

f

R

S
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B
1

R
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A

B

y δ
+

+δ
+

= (4.55)

it is clear that the MRC closed loop structure is kept, but that a feed-forward term has been added.  It is

therefore natural to use feedforward cancellation to correct the equation and regain the original model

structure.

4.6 Simulation Study of Disturbance-Based MRC

To confirm that the above methodology would work on the vehicle, a simulation study was

conducted.  The plant model used the bicycle model using the measured parameters obtained for the

Uberquad, with velocity U = 3.0 m/s, m = 6.52 kg, Iz = 0.18 kg-m2, a = 0.155 m, b = 0.235 m, Caf = 48,

and Car = 32.5.  The actuator dynamics were assumed to be second order at 5 Hz with a damping ratio of

0.7 and a gain of 1/1.3 (the gain is due to steering linkage kinematics).  To simulate the noise inherent in

the yaw-rate measurement, a white-noise signal is added to the yaw-rate output of the state-space model.

To generate a driving command, a PID controller was used to track a square wave reference lateral

position.  A square wave of amplitude 0.15 meters was fed into a PID lateral position controller whose

gains were as follows: P = 0.1 rad/m, I = 0.015 rad/m-sec, and D = 0.07 rad-sec/m.  The integral term was

limited to +/- 1.5 radians maximum output, and the derivative was obtained by passing the derivative

through a first-order filter with a pole at s = 1000 rad/sec.  This controller was thus generating a steering

command to track a square wave in lateral position.

The steering command was then passed into the a disturbance-based MRC controller, which

generated the rear steering command.  The following diagram shows the simulation setup:
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Figure 4.6: The simulation setup to test the disturbance based MRC.

The MRC setup is as follows:
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Figure 4.7: The MRC setup to test the disturbance based MRC.

A reference model was chosen to have a higher DC gain than the previous system, faster pole locations,

and a cancelled zero.  Using the above bicycle model values, the following polynomials were obtained.

Note that an observer must be used, and was chosen to be much faster than the bicycle model dynamics:
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( ) 5050s502ssObserver 2 ⋅+⋅⋅+=
(4.59)

( ) 28737s4433s2.119ssR 23 +⋅+⋅+=
(4.60)

( ) 3785s2.488s07.18s323.0sS 23 −⋅−⋅−⋅−=
(4.61)

( ) 75906s3036s36.30sT 2 −⋅−⋅−=
(4.62)

The resulting vehicle responses with the above controller is as follows. Clear tracking of the desired yaw

rate is seen.
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Figure 4.8: The simulation results of the disturbance based MRC with actuator dynamics included in the

design.
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4.7 History of MRC Methods on Vehicle Control

Previous researchers at this university (Mark DePoorter) have used the MRC method to control

the lateral position and yaw angle of a vehicle.  However yaw-rate control was first achieved at the Illinois

Roadway Simulator during this thesis work.  Other researchers have had more success in their

implementation of MRC methods for yaw rate control.  Specifically, Lee et al at Cal Tech indirectly derives

the MRC method (Lee 1997) and uses it for vehicle control.  To obtain a model reference controller, they

attempt inversion of the plant dynamics  using a feedforward term using the feedforward inversion and

filter technique described earlier.  The authors note that this is only realizable if the relative order of the

reference model is larger than that of the plant.  They continue their development to show that for non-

minimum phase systems, some zero cancellation is required.  This is similar to the more formal

requirement stated earlier regarding the factorization of the zeros polynomial "B".  To examine the

controller performance, a cost function is developed and used to evaluate the system.

At Michelin Americas, a Model Reference Adaptive Controller was developed and tested in

simulation (Post et al. 1997).  The adaptation was used to identify the plant model online.  The simulation

plant consisted of an ADAMs model with over 200 DOF (however, the authors do not specify if any of

these DOF were tire/actuator dynamics).
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5 Implementation of Controllers Using the IRS

This section outlines the three sets experiments where Model Reference Control was used to

control the yaw rate of a vehicle.  The first set of experiments was conducted using the 4WS4WD vehicle

at 1.2 m/s.  In previous vehicle studies using the IRS, the MRC technique was applied to a vehicle traveling

at a low speed of 1.2 m/s using the 4WS4WD vehicle with good results (DePoorter 1997b).  As a starting

point, these conditions were chosen as appropriate testing conditions simply to replicate previous results

with the same vehicle.  For the reasons discussed in earlier chapters, it was determined that dynamic

similitude was not being achieved, and new operating conditions were more appropriate.

The second set of experiments was also conducted on the 4WS4WD vehicle (after many structural

modifications) at the speed of 3.0 m/s. The testing velocity was chosen to represent an “average” full-sized

vehicle traveling at about 50 mph.  This set of experiments is distinctive from the previous experiments

because significant efforts were taken to achieve dynamic matching in the bicycle parameters and in

actuator dynamics.  In addition, the improved arm feedback system discussed earlier was implemented in

this set of experiments.

The third and final set of experiments utilized the Uberquad vehicle operating at 3.0 m/s.  Because

the Uberquad’s parameters are different than the 4WS4WD vehicle, the test represents an average full-sized

vehicle operating at approximately 35 mph.  The novelty in this final set of experiments was that the

vehicle has additional steering capability through torque input.  In addition, significant effort was taken to

not only achieve bandwidth of actuation but also prevent non-linear dynamics from interfering with the

bicycle model.

A summary of each set of experiments follows below.  Each summary begins with a description of

the open-loop dynamics.  Because the open-loop dynamics are used to design the closed-loop controller,

the level and type of model mismatch during the system identification can be used to interpret the controller

performance in the closed-loop system.  In addition, the open-loop responses can be used as a gage against

which the closed-loop responses can be compared.  Each section then details the MRC methods used to

control the plant and the resulting closed-loop performance.  Finally, alternative control strategies and

sensitivity tests conclude each experiment.

Note that nearly every state plot in this chapter is a  yaw rate plot.  Because the yaw rate is

obtained via numerical differentiation of the yaw signal, which is obtained from encoders, the yaw rate on

each plot is the "noisy" data.  On each yaw rate plot, an additional plot is given that is a smooth response

that (hopefully) is dynamically similar to the measured yaw rate.  This response is the output of the model

used to predict yaw rate given the same input as the plant.  It is important to understand that this

"prediction" model is an artificial simplification of the actual plant dynamics.  If both the measured and

artificial model agree almost exactly in their dynamic response, then it is likely that the predicted model is

close enough to the "true" dynamics of the system that controllers can be designed using the simplified

artificial model rather than by trial-and-error.  In addition to the measured and predicted responses, a third
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response is often included in the yaw plots that is larger in amplitude (by design)  than the predicted

response.  This "larger" response is the response of the design model, also known as the reference model.

The closed-loop responses should track this response perfectly if the controller worked perfectly, and thus

can be thought of as a desired closed-loop yaw rate.  In summary, three responses are shown on each yaw

rate plot: measured yaw rate, a predicted open-loop yaw rate, and a desired closed-loop yaw rate.

5.1 4WS4WD at Low Speed (1.2 m/s) + Slow Servos

These first low-velocity tests were conducted using two methods of vehicle position feedback

discussed earlier: the potentiometer arm and the encoder arm.  The resulting performance using each

feedback technique is quite different due to the differing quality of feedback.  First, the testing with the

analog arm is discussed and results are given showing the poor quality of the feedback and how this quality

hinders controller performance.  Next, a discussion of controller implementation results is given for a MRC

design using the encoder arms.  The dynamics of the system at low speeds were previously found to be:

( )
( ) ( )

ψ s

V s s s sf

=
⋅ + ⋅ +

13480

10 3 1802 . (5.1)

( )
( ) ( )

ψ s

V s s s sf

=
⋅ + ⋅ +

26500

850 3102 . (5.2)

These dynamics will be used hereafter as the plant.  

5.1.1 Yaw Rate Feedback with Analog Arm Sensing

The first MRC tests at 1.2 m/s utilized an analog arm.  Initially, the DC gain of the desired plant

dynamics was chosen to be approximately the same as the open-loop plant, so that the driver input

command does not change significantly at steady state.  From the above equations, the DC gain for the

front is 74.9 and for the rear 85.5 deg/volt.  As a median value, 80 deg/volt was chosen as a DC gain for the

reference model.  The pole locations of the desired plant dynamics were chosen to be the same locations

previously used by the previous researcher, Mark DePoorter for his system identification, at s = -5 +/- 3j.

These poles correspond to slightly less than critical damping, so that there is a slight amount of overshoot.

It was found through driving tests that these poles gave a good “feel” to the system.  Combining the DC

gain and pole locations, the desired yaw transfer function becomes:

( )( )
& ( )

( )

ψ desired s

V s s j s j
=

+ + + −
2720

5 3 5 3 (5.3)

( )
( )
&ψ s

V s s sf

=
+ ⋅ +

2720

10 342 (5.4)

The MRC design technique produces R, S, and T matrices:

( )R s s= + 515.
(5.5)

( )S s s= − ⋅ −0 0081 0 5383. .
(5.6)
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( )T s s= ⋅ +01026 51321. .
(5.7)

A comparison between the open-loop and closed-loop responses is shown below:
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Figure 5.1: The open loop (left) and closed-loop (right) responses of the system.

As seen in the above responses, the amount of noise in the model makes it difficult to distinguish between

the predicted model fit yaw rate and the desired model yaw rate.  It is even difficult to even determine

without prior knowledge which plot represents the closed-loop responses!  To obtain a better measured yaw

rate, filtering was attempted; however,  this introduced a significant phase lag such that the reference model

response is indistinguishable from the open-loop model response.  It appears that the reference model is too

close to the actual model to determine if the controller is working adequately.

The first attempt to implement a model reference controller attempted to control the yaw rate

using a MRC design approach and a reference model that was, in retrospect, quite close to the original

model.  In a second attempt to implement a MRC controller, the reference model was chosen to be

significantly different from the original model by increasing the DC gain and moving the pole locations

significantly:

( )
( )
&ψ s

V s s sf

=
+ ⋅ +

97730

30 2612 (5.8)

The MRC design technique produces R, S, and T matrices:

( )R s s= + 715.
(5.9)

( )S s s= ⋅ −0 0318 0 3440. .
(5.10)

( )T s s= ⋅ +3 688 184 4. .
(5.11)

The open-loop and closed-loop responses are shown below:
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Figure 5.2: The open-loop (left) and closed-loop (right) responses of the system.

As seen in the above responses, again there is a significant amount of noise in the yaw response, but there

is a distinct difference between the reference model and the open-loop model responses.  Again, a 5 Hz

oscillation dominates the yaw rate signal.  Comparing the closed and open loop responses, it is clear that

the controller is acting to move the yaw rate response closer to the reference model.  However, the response

is not tracking the desired model (although, the driver noted that the difference between the first design and

the second design feels significantly different).  Initially, it was expected that the feedback term (S/R)

would compensate for this error.  If we compare the DC gain of the S/R term for the slow design (= 1.04 E-

2) to the fast design (DC gain = 4.81 E-3), it is clear that there is less feedback with the faster poles.  To

have a larger amount of feedback, it appears that either a slower MRC reference model must be selected, or

an integrator term must be added to make the response track the reference model.  The error seen in the

model tracking is likely due to the limitations of the steering actuator.  Because the servos used on the

vehicle are rate-limited, it is unlikely that they will correctly compensate for a very fast MRC design

(where fast refers to pole locations).  Regardless of the actuator bandwidth, it is clear that a better feedback

signal is needed.

5.1.2 Yaw Rate Feedback with the Encoder Arm

To improve the vehicle yaw-rate feedback, the analog arm was replaced with an arm consisting

entirely of encoders.   The reference model was again chosen to be:

( )( )j35sj35s

2720

)s(V

)s(desired

−+++
−

=
ψ&

(5.12)

The R, S, and T polynomials again become:

( ) 50000.51ssR +=
(5.13)

( ) 5383019.0s008066038.0sS −⋅−=
(5.14)

( ) 1320755.5s1026415.0sT −⋅−=
(5.15)
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The following figures show the open-loop response of the system using front and rear steering

inputs.  Overlaid on these plots is the output of the models for front and rear yaw rate response.  The yaw

rate was filtered using a low-pass differentiator with a cut-off frequency of 70 rad/sec.  The yaw angle was

filtered using a second order Butterworth filter with a cutoff frequency of 100 Hz.  Clearly, the predicted

and measured yaw-rate agree.
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Figure 5. 3: Model fit and yaw rate response in time domain of 4WS4WD vehicle at 1.2 m/s using front

(left) and rear (right) steering input.

To compare the performance of the MRC design with existing control strategies for yaw rate

control, a P controller was chosen as a metric of comparison.  A derivative term is avoided simply because

the yaw-rate signal is itself obtained from a derivative.  If an additional derivative were taken of this signal,

then the noise terms would be quite large.  An integral controller is avoided simply because the integration

of a small error, such as a calibration error, would cause the car’s orientation to be perpetually skewed.

The error term that was used for the P controller is the difference between the reference model and

measured yaw-rate output.  Thus, the P controller is attempting to force model tracking using feedback.

The figures below show the vehicle response without a controller, and the vehicle response with a P

controller.
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Figure 5.4: The vehicle response with and without the proportional controller, showing a reference model

and the open-loop transfer function for front steer.
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The P controller obviously improves the model tracking performance, but tracking is only achieved with a

high gain.  As seen in the above plot, this high gain causes a high frequency yaw oscillation in the vehicle

(P gain was 0.03 volts/(deg/sec)).

5.2 4WS4WD at High Speed (3.0 m/s) + Fast Servos

Following the methodology presented at the beginning of the chapter, the open-loop dynamics of

the system are examined and compared to the predicted dynamics.  The system dynamics for the 4WS4WD

system were modeled using two methods: bicycle model with actuator dynamics and bicycle model with no

actuator dynamics (only a gain).  The following time responses show the time response of the system where

no actuator dynamics are included in the system model.  The open-loop model without actuator dynamics

was previously presented as the following:

( )
( ) 6.170s21s

752s7.42

s
f

s
2 +⋅+

+⋅
=

δ
ψ& (5.16)

( )
( ) 6.170s21s

752s131

s
r

s
2 +⋅+

−⋅−
=

δ
ψ& (5.17)

( )
( ) 99.1
s

c,f

s
f =

δ

δ (5.18)

( )
( ) 20.1
s

c,r

s
r =

δ

δ (5.19)

Resulting in design models of the following:

( )
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( )
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−⋅−
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δ
ψ
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The responses below show the comparison between the measured yaw rate response and the yaw rate

response predicted by the bicycle model when no actuator dynamics are include.  The dynamic match

shows some modeling errors, with a noticeable and phase and amplitude error in the tracking responses.
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Figure 5.5: The open-loop vehicle response from front steering input without actuator dynamics included in

the predicted model.

For a system including actuator dynamics, the above expressions for bicycle model yaw rate

remain the same, but the actuator dynamics are no longer represented by a simple gain:

( )
( ) 1s0342.0s000567.0

99.1

s
c,f
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f

2 +⋅+⋅
=

δ

δ (5.22)

( )
( ) 1s05765.0s0016.0
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s
c,r

s
r

2 +⋅+⋅
=

δ

δ (5.23)

Thus, the open-loop dynamics for the model WITH ACTUATOR DYNAMICS become:
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Although the "fit" of each of the two different dynamic representations of the vehicle were presented in

Chapter 3, they are presented again here as a means to compare the open-loop and closed-loop performance

and to cite possible causes for poor closed-loop model matching.  If actuator dynamics are included in the

vehicle model, the predicted yaw rate more accurately tracks the measured yaw rate.  The improvement in

modeling is seen clearly in the responses shown below.

Desired Yaw response

Measured Yaw
response

Open-loop model
Yaw response

Desired Yaw response
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Figure 5.6: The open-loop 4WS4WD response from front steering input with actuator dynamics included.

There remains a small amount of phase lag in the above responses for both the front and rear

steering input, regardless of the form of the actuator dynamics.  This lag is most likely due to steering

linkage nonlinearities present in the 4WS4WD vehicle.
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Figure 5.7: The open-loop 4WS4WD response from rear steering input with actuator dynamics included.

A significant deadzone exists by design in the steering actuators (as discussed in the vehicle

modeling section of the thesis).  This deadzone is most evident in the rear steering linkage, where the

measured response has an offset that seems to "drift" up and down (as seen in the above figure).  These

modeling errors propagate to some extent to the performance of the closed-loop system.  Naturally,

feedback will (hopefully) tend to account for these modeling errors and unknown disturbances.  However

this disturbance-MRC control approach, using both a feedforward term and an inversion term, may be more

sensitive to modeling error than a purely feedback-based system.

It is important to point out that the improved prediction of the yaw rate by the vehicle model with

actuator dynamics was NOT obtained by simply adding more poles to the system to obtain a better fit.

Clearly, one can arbitrarily add dynamics to the system to obtain a higher-order representation of the

system, but this does not address the physical source for the dynamics.  In previous sections, the dynamics

Desired Yaw responseOpen-loop model
Yaw response

Measured Yaw
response

Open-loop model
Yaw response

Measured Yaw
response
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of the actuator were identified independent of the vehicle, and were found to be the actuator dynamics

presented above.  Thus, these dynamics are not added in an arbitrary fashion.

The closed-loop system responses are shown in the figures below, and show a definite tracking of

the desired model response.  The reference model was chosen to increase the DC gain of the system by a

factor of 1.5, move the zero farther into the LHP, and place the poles such that the damping is critical with

the same natural frequency of the original system.  Two sets of controller responses are given, and they

differ in the type of  controller.  The controller depends on the open-loop model used to design the R,S, and

T polynomials.  For the open-loop model with no actuator dynamics, the controller polynomials are:

( )
( )

( )
( ) {

44444 344444 21

&

dynamics

elmod

bicycle

ifiedmod
6.170s12.262s

1s20/1
7525.1

dynamics

actuator

front
99.1

s
c,f

s
desired

s
m

A

s
m

B

+⋅+

+⋅
⋅⋅⋅=

δ

ψ
=

(5.26)
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For the open-loop model where actuator dynamics are included, the controller requires an observer.  The

control polynomials are:
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( ) 409s118s30.7s152.0sS 23 −⋅−⋅−⋅−=
(5.33)

( ) 25159s2147s19.60s7862.0sT 23 −⋅−⋅−⋅−=
(5.34)

The closed-loop performance of each of the above controllers can be seen in the time-domain yaw-rate

plots given below.  Note that two graphs are given for EACH controller to show controller consistency (and

inconsistencies) under different steering commands.
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Figure 5.8: The closed-loop 4WS4WD response using disturbance-MRC controller based on a bicycle

model with no actuator dynamics.
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Figure 5.9: The closed-loop 4WS4WD response using disturbance-MRC controller based on a bicycle

model with actuator dynamics included.

Clearly, the controller based on the plant with actuator dynamics performs much better than that of the

controller without actuator dynamics.  If the actuator dynamics are ignored, the controller assumes that the

steer command is instantly sent to the wheels, which in fact is not happening.  The actuator requires a

certain rise time to reach a setpoint.  As a result, the controller ignoring this required rise time will

overpredict the responsiveness of the vehicle.  The measured yaw-rate will thus lag behind the predicted

yaw rate, which is precisely what is seen in the controller response for the controller without actuator

dynamics above.  Clearly, ignoring actuator dynamics can have a severe impact on the closed-loop vehicle

performance, so hereafter the discussion will focus on the controller design where actuator dynamics are

included.

The above closed-loop responses for the controller that includes actuator dynamics still shows

some tracking error, especially where the derivative of the yaw rate is zero (i.e. near the peaks and troughs

of the response).  Because these areas correspond to where the steering wheels are changing direction, it is

likely that this error is due either to the rate-limit non-linearity or the dead-zone non-linearity.  If we

examine the open-loop responses previously presented, it is clear that a similar model-mismatch is seen in

Open-loop model
Yaw response

Desired Yaw
response

Open-loop model
Yaw response

Desired Yaw
response

Open-loop model
Yaw response
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the open-loop responses.  If these non-linearities are the source of the tracking error, than it is unlikely that

the performance will be improved significantly further with linear controllers.

As demostrated earlier in the thesis, the bicycle model is very sensitive to velocity.  As a

consequence, the vehicle controller should also be sensitive to velocity.  To determine how sensitive the

controller was to velocity, controller responses were obtained at 2.0 m/s and 3.5 m/s.  The results of these

tests are shown below.
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Figure 5.10: The closed-loop 4WS4WD response using disturbance-MRC controller based on a bicycle

model with actuator dynamics (identified at 3.0 m/s) tested at 2.0 m/s (left) and 3.5 m/s (right).

At lower speeds, the bicycle model predicts that the poles of the vehicle dynamics are faster and more

damped, and at higher speed the poles are slower and less damped.  Thus, a controller based on the pole

locations at 3.0 m/s will under-predict the vehicle responsiveness at 3.0 m/s.  Thus, the vehicle will be

"easier" to turn at lower speeds, and more difficult to turn at higher speeds.  This is observed in the above

plots: at low speeds, the car's yaw rate changes at much lower steering inputs resulting in "undershooting"

of the desired response. At high speeds, the car's yaw rate changes much more slowly than expected by the

controller, resulting in large "overshooting" of the desired response.

To compare the MRC method to other controllers currently in use commercially, the above

controller with actuator dynamics is compared to a proportional controller.  The MRC and proportional

controllers can be chosen to have arbitrary feedback gains, therefore for comparison purposes the feedback

gains of both systems were chosen to be the same.  Thus, the proportional controller gain was selected to be

the DC gain of the S/R term (the feedback term) in the MRC design: -0.05138 volts/m.  The resulting P-

controller responses are given below:

Open-loop model
Yaw response

Desired Yaw
response
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Figure 5.11: The closed-loop 4WS4WD response using a proportional controller.

The proportional  controller is seen to exhibit very poor tracking performance.  Better performance could

be achieved by increasing the gain, but the same could be said regarding the MRC approach.  One problem

with increasing the gain is that potential instability could develop with large changes in the plant model.  A

high-gain controller would not be advisable given the previous discussion regarding how the model may

change with vehicle speed.

An interesting result of one of the experiments was the production of stable limit cycles which is

an indication of plant non-linearities.  The following test was conducted where bicycle model with actuator

dynamics were used in the MRC controller design.  This MRC controller was used in series with a position

regulating controller.  A constant lateral position was fed into a PID lateral position controller (in order to

regulate the car to zero), and thus this PID controller produced a steering command.  This steering

command was then is fed into the MRC controller as a driver signal.  The following stable limit cycle

begins:
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Figure 5.12: The stable limit cycle observed when the MRC controller is used in series with a lateral

position-regulating PID controller.

Limit cycles occur only in systems with non-linearities.  This suggests that the 4WS4WD vehicle possesses

a non-linearity with enough dynamic influence on the closed loop performance to perpetuate the above

oscillation.  With this in mind, careful attention was paid to the design and construction of the Uberquad
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vehicle to prevent any deadzones or rate limiting effects.  The results of this effort will clearly be seen in

the closed-loop performance of this newer vehicle.

5.3 Uberquad at High Speed (3.0 m/s) + DC Motors

The third and final experiment presented in this experiment examined the closed-loop performance

of the Uberquad vehicle when a disturbance-based MRC controller is used.  As discussed in Chapter 3, the

Uberquad has three methods of steering the vehicle: front wheel steering (like a normal vehicle), rear wheel

steering, and differential torque steering.

In this thesis, the two front wheels are used to apply the differential torque between the front two

wheels.  Again, several different combinations of wheels can be used to produce differential torque

steering.  The merits and advantages of each could easily be investigated; but are beyond the limited scope

of this master's thesis.  Future work on this area will surely follow shortly after this thesis is completed.

Open-loop vehicle responses are presented in Chapter 3 for the Uberquad, but for comparison an

open-loop, front-steering-only response is included below:
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Figure 5.13: The open-loop vehicle response for the Uberquad vehicle using only front steering input.

Before implementing any controller, we observe that the open-loop fit for the Uberquad vehicle is much

more "consistent" than that for the 4WS4WD vehicle.  Very little error is observed between the open-loop

predicted dynamics and the measured dynamics; thus, we expect the controller designed using this open-

loop model to perform quite well.

Two controllers are designed for the Uberquad.  The first is an MRC controller where the vehicle

is made to act like a desired model where the driver had control of the front wheels, and the rear wheels are

steered to provide control input.  The controller is designed using the disturbance-MRC method described

in Chapter 4, where the front steering is the disturbance, and the rear wheel steering is used to track the

reference model.

The second controller described in this thesis for the Uberquad also attempts to force the vehicle to

track a reference model while the driver is driving the front wheels, except that the controller provides
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control input via a differential torque signal sent to the two front wheels.  Chapter 3 details the

identification of the differential torque dynamics both theoretically and experimentally.  For this controller,

the driver again acts as a disturbance input, while the differential torque is used to track the reference

model.

To design the R, S, and T polynomials for each of the above controllers, the open-loop dynamics

are again introduced.  These polynomials in the Laplace variable s are obtained from the bicycle model by

substituting the following measured parameters: U = 3.0 m/s, m = 6.52 kg, Iz = 0.18 kg-m2, a = 0.155 m, b

= 0.235 m, Caf = 48 N/rad, Car = 32.5 N/rad, d = 0.05 m, r = 0.0385 m.  The resulting transfer functions

are as follows:
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The resulting observer, R, S, and T polynomials for the rear steering control input are as follows:
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And the resulting observer, R, S, and T polynomials for the differential torque steering MRC are as

follows:
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After designing the controllers, their performance was tested in the time domain with a driver-in-the-loop

(DIL) performance aggressive lane change maneuvers.  The following time responses show the controller

performance for each of the two controllers:
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Figure 5.14: The closed-loop disturbance-MRC responses for the Uberquad vehicle with a driver

controlling the steering angle of the front wheels, and the controller controlling the steering angle of the

rear wheels.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Time

Y
aw

 R
at

e 
(r

ad
/s

ec
)

    
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

Figure 5.15: The closed-loop disturbance-MRC responses for the Uberquad vehicle with a driver

controlling the steering angle of the front wheels, and the controller controlling the differential torque input

into the two front wheels.

If we compare the closed-loop performance of the Uberquad with rear-wheel control and that of the

4WS4WD vehicle with similar control, we see the performance of the Uberquad is much better than that of

the 4WS4WD vehicle.  This improvement is most likely due to more linear steering actuator dynamics, and

to decreased dead-zone in the steering linkages.  In summary, very good tracking is achieved with the rear-

wheel steering controller.

The torque controller displays a significantly larger amount of noise in during the implementation

of the torque control.  This noise is likely a result of either two sources: physical vibration of the system

which is addition additional noise to the yaw-rate measurement, or feedback of the noisy yaw-rate

measurement into the wheel torque resulting in a feedback loop.  To determine which of these two

possibilities was in actuality the cause, an experiment was conducted: The MRC torque steering command
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was passed through a low-pass filter to determine if the yaw rate measurement improved.  The following

diagrams show a before and after yaw rate response:
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Figure 5.16: Yaw rate responses using MRC before (left) and after (right) the control signal is passed

through a second-order low-pass filter with poles at 90 rad/sec.

No significant difference can be seen in the above two plots, implying that the feedback term was not

introducing the yaw rate noise.  We note that additional filtering could be achieved by decreasing the

bandwidth of the filter, but the filter dynamics contribution would begin to significantly affect the

controller design.

Experimental testing showed that the torque-steering controller was much more abusive to the

vehicle wheels than rear-wheel steering.  This is somewhat intuitive, since the wheels are no longer rolling

at the same velocity as the vehicle when a differential torque is being applied.  The wheels of the vehicle

were visibly abraded after only a few hours of testing, and "tire dust" coated the tire area and the treadmill

equipment.  Other authors have noted at least a 5 to 10 factor increase in wheel wear when using torque

steering (Li, Potter, and Jones 1998).  From this observation, it is clear that torque steering is not suited to

day-to-day steering of the vehicle, and should be reserved for only emergency maneuvers.

One final test was conducted with the Uberquad was to determine how well the controller would

perform if the road surface conditions abruptly changed.  A real-world example would be accidentally

driving over a patch of ice on the road.  If the torque steering is intended to be used in emergency

situations, then it is appropriate to test this controller under these conditions.  As any driver is aware, the

automobile accident rate is much greater during inclement weather conditions.  Generally, these accidents

are caused by changing road surface conditions that can decrease a tire force from aquaplaning or skidding,

or increase a tire force due to increased water drag (Hight et al. 1990).

As the vehicle travels over a area of changing road friction, the cornering stiffness of the vehicle

and the slip coefficient of the tire will simultaneously decrease.  In this dangerous situation, the left side of

the vehicle experiences less tractive forces than the right side, resulting in a net moment turning the vehicle

OFF the road.  The driver’s natural tendency is to compensate by turning the wheel further toward the road.

If the vehicle re-enters the roadway in this configuration, the vehicle in general receives a big destabilizing
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disturbance as the left-side tires again regain traction.  At this point, the driver usually over-reacts and

steers the vehicle off the road.

Experimentally, it has been suggested that the torque control may be more robust to split-mu types

of roadway changes because the torque steering moment is less dependent on road friction than steering

forces.  To test this idea, the following experiment was planned: one half of the treadmill surface was

covered with a very light coat of water.  The vehicle was made to track a sawtooth signal that led onto the

slick area, and the resulting yaw rate response was recorded.  The following diagram shows the

experimental setup:

Figure 5.17: The experimental setup used to test the controller sensitivity to changing road friction.

For consistency of results, a PID controller was used to regulate the car to a reference position on the track,

and the steering output from this controller was fed into the wheels directly, or into the MRC controller.

This allowed us to prevent the driver “experience” from interfering with experimental interpretation of the

data.  The driver was used to set the setpoint of the regulating PID controller.  The driver would turn the

wheel far to the left, forcing the vehicle to drive partially on the slick area, and then the driver would

release the wheel (which is spring-loaded to return to the center-line of the treadmill) to force the vehicle

back onto the center of the road.  The following plot shows the results of this experiment before the left-

half side of the road was wetted.
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Figure 5.18: Yaw rate responses with no control (left) and with rear-steer MRC (right) on a dry road

surface.
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With the MRC off, the “recovery” gives two significant positive yaw-rate peaks, showing the results of

over-correction by the artificial driver.  Note that both controllers slightly over-correct EVEN WHEN THE

ROADWAY IS DRY.   With the MRC on, clear model tracking is seen.  Because the vehicle model is

more damped, there over-correction by the artificial driver.  Again, an artificial driver was used because it

was discovered that after several trials the human driver “learned” how to handle the vehicle in this

recovery maneuver and thereby biased the results.  The above “dry” runs were used as a comparison to the

following “wet” maneuvers.  Again, two figures are presented of the same situation to show variability

between experiments.
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Figure 5.19: Yaw rate responses on a wet surface for an artificial driver with no MRC assistance.

Both figures show SEVERE model mismatch, indicating that the vehicle is no longer handling as it should.

In the figure on the left, an impact yaw-rate spike is seen as the vehicle hits a guard-rail, thus turning the

vehicle back onto the road where the computer “driver” corrects the vehicle orientation and recovers

control.  The figure on the left shows a severe and prolonged mismatch between desired and actual yaw

rate.  In this case, the left side of the vehicle “hydroplaned” and caused a destabilizing moment on the

vehicle.  The computer “driver” compensated by turning the wheels back onto the road, but for

approximately 5 seconds this steering correction was only enough to prevent further spinning.  We see from

the above plot where the vehicle regains control and the vehicle responses again start to match predicted

model responses.  Both situations would represent very dangerous accidents at approximately 40 mph in a

real vehicle.

The following figures show the driving results for the MRC controller.  Although difficult to

quantify, the rear-steering MRC did show a noticeable improvement in recovering from the destabilizing

road-friction moment.  The reason for this is that the MRC controllers employ yaw-rate feedback, and thus

can detect a significant mismatch between commanded and measured yaw rate.  Two figures are presented

of the same situation to show variability between experiments.
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 Figure 5.20: Yaw rate responses on a wet surface using rear-steering MRC driver assistance.

Again, severe model-mismatch is observed in these driving situations.  The worst-case situation observed

with rear-steer MRC is shown above on the left.  If we compare this situation with the similar situation

without MRC, we see that the MAGNITUDE of dynamic mismatch is not as large.  The average MRC

error for the duration of the side-skid is 0.4 radians/sec, where for the non-MRC case it is approximately

0.6 radians/second.  Whether this change is statistically valid would require testing beyond the scope of this

thesis.

As a final test, the rear-steer MRC was replaced with torque-steer MRC, with the following

results:
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Figure 5.21: Yaw rate responses on a wet surface using rear-steering MRC driver assistance.

Open-loop model
Yaw response

Desired Yaw
response

Vehicle spinout
 and crash



157

causing a collision with the guardrail.  The vehicle also lost forward tractive velocity, thus causing the

vehicle to drift backward off the treadmill and eventually crash off the treadmill.  It became immediately

evident that modification of the wheel torque controller would be needed to appropriately test this

controller.  Two issues remain to be addressed.  First, in all the testing presented in this thesis, the vehicle is

made to remain stationary on the treadmill as the treadmill maintains a constant velocity.  This method was

clearly unsuitable for the differential torque steering tests presented here, simply because the vehicle did

not have enough tractive force to maintain forward velocity.  As the vehicle began to drift backward, the

wheel slip increased dramatically as the vehicle attempted to maintain longitudinal positioning on the

treadmill.  The obvious solution to this is to set the Uberquad to run at a constant velocity and use the

treadmill to “track” the vehicle.  However, this requires a time-consuming redesign of the longitudinal

controller.

A larger problem with the longitudinal wheel slip is that significant wheel spinout no longer

correctly simulates real-world vehicles where ABS and TCS (traction control systems) prevent such type of

spin-out.  Clearly, some type of wheel-slip controller is necessary to use in conjunction with torque-MRC

to provide adequate testing of the algorithm.  Unfortunately, the time and experimental requirements for

this type of controller are beyond the limited scope of this master’s thesis, and must remain for future

students.
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6 Conclusions and Future Work

Because of the amount of material covered in this thesis, even the conclusions must be

subcategorized.  There were three sections of experiments conducted for this thesis work, and each

experiment set deserves a conclusive summary independent of the other experiments.  After providing these

summaries, then general conclusions are given summarizing the whole of vehicle testing and various

aspects of the IRS experiments.  Recommendations for future work are then given.

6.1 Experiment-Specific Conclusions

6.1.1 4WS4WD vehicle at 1.2 m/s

In the field of control, the scapegoat of poor controller performance is inevitably poor actuation or

poor feedback sensors.  Unfortunately, the biggest issues confronted in performing closed-loop control of

the 4WS4WD vehicle at these low speeds regarded the quality of the feedback sensors and actuators.

Regarding the feedback sensors, the previous student was unable to perform yaw rate control of the vehicle

because the encoder arm used by the this student simply did not have enough resolution.  The replacement

of the encoder arm with the analog sensing arm corrected this problem, but the analog arm simply "wore-

out" too quickly for usefulness in vehicle testing.  The final arm redesign, using high-resolution, impact

isolated encoders appears to be the most economic and reliable method of obtaining vehicle position

measurements.

The vehicle testing at 1.2 m/s showed that the MRC method appeared to work quite well, until the

dynamics of the steering actuator was investigated.  The usefulness of the results of this test became

questionable after discovering that the actuator dynamics were the dominant dynamics of the system.  This

error in design underscores the necessity of selecting the proper actuator beforehand, and testing the

dynamics of the system piecemeal to determine which dynamics will dominate the overall response of the

system.

The results of the low speed controller were compared to a high-gain proportional controller, with

the resulting tracking becoming adequate but producing a noticeable and persistent oscillation.  At the time

of the test, it was assumed that the system was simply borderline unstable, but later testing (at higher

speeds) showed a definite limit cycle in the system.  It is possible that the oscillation seen in the

proportional controller responses could be the result of a limit cycle set up by a steering linkage deadzone

known to exist in the system.

6.1.2 4WS4WD vehicle at 3.0 m/s

In the tests conducted using the 4WS4WD vehicle at higher velocity, the steering actuators were

replaced with high-speed (the fastest available) R/C servos.  An order-of-magnitude improvement was seen
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in the actuator responses, both in the time and in the frequency domain.  As a result, the dynamics observed

in the vehicle testing are conclusively those of the bicycle model.  The time responses were fit by varying

parameters in this model slightly away from the values that were measured off-line, and the resulting

controller based on the bicycle model and actuator dynamics proved to work quite satisfactorily.

An area of investigation in this set of experiments regarded the quality of closed-loop performance

if actuator dynamics are ignored.  Controller designs with and without actuator dynamics demonstrably

showed that neglecting actuator dynamics significantly deteriorates the closed-loop performance.  It was

also noted that increasing the model order arbitrarily to possibly encompass more unmodeled dynamics

was detrimental to the system performance in closed-loop.  It was then concluded that the mismatch in time

and frequency domain system measurements was not likely due to unmodeled linear dynamics (at least,

within the range of testing), but most likely due to nonlinear rate-limiting and backlash effects seen in the

steering actuator and steering linkage respectively.  During this set of experiments a stable limit cycle was

observed in the system, suggesting once again the presence of large, unaccounted-for nonlinearities in the

system.  This phenomenon remains a topic for future study.

To emphasize the dependence of vehicle dynamics on velocity, an experiment was conducted

where the velocity was varied away from the design velocity.  It was discovered that slower velocities

caused the controller to undershoot the reference velocity significantly, while faster velocities had the

opposite effect.  Thus, we conclude that (as expected) the vehicle dynamics are quite sensitive to vehicle

velocity.

6.1.3 Uberquad at 3.0 m/s

Without regard to the nature of the experiments conducted using this vehicle, it was immediately

clear that the new vehicle with DC motor steering actuation and direct-link steering was much more

consistent and predictable in its performance.  This aside, several important conclusions can be made

regarding MRC techniques on this vehicle.  It is clear that the MRC approach can affect vehicle response

regardless of whether torque or steering input is used.  However, better tracking is achieved with rear

steering input.  It was also discovered that torque steering was remarkably detrimental to the life of the tires

and to the quality of the feedback.  Differential torque driving induces noticeable vibrations in the vehicle

which may not be suitable for situations outside of emergency recovery maneuvers.  Additionally, the

torque-steering controller was much more abusive to the vehicle wheels than rear-wheel steering.  This

suggests that torque steering is not suited to day-to-day steering of the vehicle, and should be reserved for

ONLY emergency maneuvers.

Regarding emergency maneuvers, the slip sensitivity tests conducted on the Uberquad shows

promising results using yaw-rate feedback versus open-loop driving.  The preference between rear steering

or torque steering remains questionable.  In addition, the “best” controller for this type of testing is also

debatable.  Fortunately, the repeatability and convenience offered by the use of the Illinois Roadway
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Simulator will allow detailed observation of vehicle dynamics in the future to answer these and many other

questions.

6.2 General Conclusions

Throughout this thesis, the Model Reference Controller approach was used in a modified form

where the driver input was treated as a disturbance.  Three sets of experiments conducted on effectively 3

different vehicles showed that this technique worked quite well, but was sensitive to model changes.  This

was expected and predicted in the controller development.  In addition, it was discovered that the best

method to "test" the controller was to not only change the pole locations but also the DC gain of the

original model to obtain the design model.  This change facilitated comparisons between open-loop and

closed-loop performance.

The original intent of the MRC was to create an affordable and easy-to-use testbed for vehicle

dynamics studies.  To this end, the use of off-the-shelf R/C components was originally considered to be

preferential over other systems.  However, several aspects of these systems has in retrospect proved to be

quite difficult to "design around" in terms of yaw-rate control: they have a unique communication system

that introduces a random but quantized delay of 12-24 milliseconds, the R/C actuators operate nearly rate-

limited at all times, and contain an inherent dead-zone, and the steering linkages are prone to dead-zones as

well.  Eventually, this methodology of using R/C components was abandoned for yaw rate control.

However, these systems remain useful for platooning studies, or with control applications not requiring

such a high level of model fidelity and actuator performance.

The use of a fixed vehicle and moving roadway surface for experimentation has proved to be quite

useful.  Many aspects of the testing conducted in this thesis were greatly simplified by the use of a moving

roadway and stationary vehicle, including the use of a position sensing arm, the ability to perform a

frequency response, and the ability to use a constant, stable, but external power source to power the vehicle.

These advantages, unforeseen at the outset of this thesis, have proved to be quite beneficial for the

successful measurement and control of vehicle dynamics.

A central issue addressed in part in this thesis has been the validity of scale vehicle testing.  A

body of research concerning scale aircraft and scale sea-vessel studies has been extended to scale vehicle

studies via the Buckingham Pi Theorem of dynamic similitude and dimensional analysis.  Central to the use

of this theorem is the assumption that scale vehicles AND full sized vehicles are both modeled by the

bicycle model.  Previous researchers have addressed the modeling of full sized vehicles, but the

experiments conducted and described in this thesis have proved via dynamic measurements that the bicycle

model is a very good first approximation to the scale vehicle dynamics.  With the verification of the bicycle

model to describe vehicle dynamics, the dynamic scaling issue can be reduced to matching of

dimensionless parameters between two different systems.  These parameters were derived in this thesis and

the associated matching conditions were used to determine optimal testing conditions to run vehicle

simulations.  One issue remains: what vehicle parameters to use.  The variability of dimensionless
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parameters among published data is very large.  Thus, the problem of vehicle scaling is less a problem of

whether scaling can be achieved but instead deciding what vehicle to scale to.  The formation of pi-groups

allows parameter-based scheduling of controller gains; given the bicycle model parameters for a particular

vehicle, a controller can update the controller gains appropriately.

An important lesson presented in this thesis has been the ability to model different portions of the

vehicle/treadmill system separately.  It has been remarkable how well these submodels, when combined,

have predicted the performance of the system as a whole.  This approach is not always successful,

especially in systems where the subsystems are interdependent.  The fact that the subsystems are not quite

as interdependent provides a simple means of changing different aspects of the vehicle to answer questions

central to vehicle performance.  How large does an actuator have to be to achieve robust tracking?  What

type of lateral resolution is needed to maintain stable, automated vehicle?  These and other questions are

easily answered on this system, but remain for future researchers to tackle.

Using the Illinois Roadway Simulator has provided a unique opportunity to study dangerous

vehicle dynamics.  This researcher is unaware of any scale or full-sized experimental testing conducted at

high speeds in split-mu conditions.  This researcher is also unaware of any studies where repeated vehicle

crashes are encouraged and repeated under controlled conditions to determine the best steering

compensation.  It is precisely these unstable dynamics that vehicle automation controllers must address to

find utility in the general marketplace.

6.3 New Control Avenues

Many sections of this thesis have hinted as possible future research topics.  The following

discussion is simply a short summary of some of the most likely topics to be examined in the near future.

In two of the three vehicle tests, limit-cycle behavior was observed.  What particular aspects of the

vehicle construction are causing these limit cycles?  Will they exist on full-sized vehicles under tight

automation?  What improvements or controllers will prevent them from occurring?

The differential torque used to steer the Uberquad in this thesis was implemented by applying a

differential torque via the two front tires.  A different design may have been to use the two rear tires, or all

four tires, or combinations/weightings of each.  What is the optimal configuration to use?  Which method

will least saturate the tire and thus provide the most robust performance under changing road conditions?

Can tire slip/saturation be used as a method to "schedule" different wheel torque configurations?

On the Uberquad, two different steering controllers were presented: MRC using differential torque

steering and MRC using rear wheel steering.  Which method is most suited for highway driving (likely

rear-wheel steering) and which method is most suited for emergency maneuvers (differential torque?).  Is

there some method to weight or schedule the use the each controller if both types of steering are available?

With two steering motors and six torque motors available, it appears that there are 6 degrees of controller

"freedom" even though some are redundant in terms of the control space.  Would it be suitable to force



162

additional control constraints, such as requiring that each wheel have equal net wheel usage, or minimizing

sideslip angle?  

With the ability to "steer" with the rear wheels and with torque input, it would be possible to

determine on-line the cornering stiffness of the system.  Many studies have included estimation procedures

for determining road friction (Ray 1998).  Much of the focus has been to use neural networks to determine

tire parameters (Pasterkamp and Pacejka 1997a).  One concept is to use the longitudinal slip of the tire to

estimate the road friction (Yamazaki, Furukawa, and Suzuki 1997).  Utilizing this measurement, it should

be possible to develop controllers that are more robust and possibly adaptive to changing road conditions.

Assuming that the amount of torque input were known, the torque input could be used as a known

disturbance that the front-wheel-steering controller would reject.  The cornering stiffness could then be

estimated, in a similar manner to how the cornering stiffness was measured for the Uberquad vehicle.

Surpassing parameter estimation, is there some method to adaptively identify and control the plant

dynamics?  Can the MRC methodology be extended for this physical system to the realm of Model

Reference Adaptive control?  Would there be enough persistence of excitation to identify the vehicle

dynamics?  Would additional sensing, such as on-board accelerometers, improve the controller

performance?

With two vehicles now available and running, the possibility for two vehicle platooning is now

present.  Catch and avoid maneuvers could then be demonstrated on the vehicle system.  In addition, new

platooning ideas such as an advanced optical towbar (where photo-resistors can be used to measure lateral

AND longitudinal displacements between vehicles) can be tested.

Would it be possible to attach a motor to the steering wheel and provide direct driver feedback as

the nature of driving conditions?  For instance, if the vehicle tires are near saturation, the steering wheel

can be jittered very quickly to warn that such conditions exist.  An interesting concept has been presented

in the literature of using the steering wheel to “nudge” the driver to assist in the steering of the vehicle

(Yuhara et al. 1997).  General Motors has suggested on-board monitoring of drivers to determine safety and

driver performance issues (Kamal 1990).

With a driver-in-the-loop, but not in the vehicle (!), very interesting human behavior studies can

be conducted.  Some authors have spent considerable effort obtaining models of driver behavior (Cho and

Kim 1995; Cho and Kim 1996), including using neural networks to simulate a driver input (MacAdam and

Johnson 1996).  An implementation example would be in attempting to identify the state of the driver (i.e.

sleepiness or drunkenness) based on vehicle state measurements and driver inputs.  This type of analysis

would go past simply recording driver actions: corrective actions could be taken if significant and persistent

driving errors are observed (like the driver is having a heart attack… or using a cell phone).

The remaining research avenues using the Illinois Roadway Simulator are extensive.  It will likely

be some other student to answer some of the above questions and open new doorways.  It is the hope of this

author that the work presented in this thesis will serve as a good stepping stone for their endeavors.
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Inoue and Sugasaw a, 1993 X   X 1   X X X X  X  X not specified X not specified X

Li, Potter, and Jones, 1998 No N/A 1 X X X X X X X X X 14 ?

Kleine and Van Niekerk,1998 X X 1 X X X X X X X X X 3

Cho and Kim, 1995 X X X X 1 X  X  X X X X X  X 2

Smith and Benton, 1996 X X  5 X X  X   X X X X 8 X

Nagai et al, 1995 X X 5 X X X X X X X NN X X X ? X

Ahring and Mitschke, 1995 X X * 5 X X X X X X X X X 3

Palkovics, 1992 X X 1 X X X X X X X X X X X 2

Sridhar and Hatw al, 1992 X X 1 X X X X X X X X X X 2

Peng et al, 1994 X X  1 X X X X X X X  X X 11 X X X

Hayafune and Yoshida, 1990 X 1 X X X X X X X X X NS X

Smith and Starkey, 1994 X X  5 X  X  X X X X X 8 X

 Shiotsuka et al, 1993 X X  5  X X X X X X X  X X NN X X NN

Shibahata et al, 1993 X 4,5,6 X X X X X X X NS X

Alleyne, 1997 X 1 X X X X X X X X X 7

Nagai et al, 1997 X X 1,5 X X X X X X X X X X NS X

Will and Zak, 1997 X X 1 X X X X X X X X X X 4

Cho and Kim, 1996 X X X X 1 X X X X X X classical control X X X NS

Yaniv, 1997 X X 5 X X X X X X X X X X X X 2

Wakamatsu, 1997 X 5 X X X X X X X X X NS X

Lee et al, 1997 NS X 1,5 X X X X X X X X NS X

Lee, 1997 X X 1 X X X X X X X X X 3 15 Hz, 1st order

Abe, 1996 X X X 1,5 X X X X X X 13

Alleyne, 1997 X X 1 X X X X X X X X X 7

* Driver input is augmented w ith control input

NN - Neural Netw ork

NS - Not Specif ied
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Appendix 2 - Instructions on Operating the IRS

1. Open up MATLAB and ensure that you are in the directory of your model.

2. To build the model, drag-and-drop the custom Simulink blocks for the encoder boards, digital I/O,

analog output, and analog input into your Simulink diagram where appropriate.

3. Use the Wincon “build” command to compile the Simulink diagram into C-code, and download the

resulting code to the Wincon server.

4. Ensuring that the car and the treadmill are off, start the code and open up the “digital input” display to

observe the calibration pulses from each position encoder.  Zero the arm by moving each link to the

“zero” position and ensuring that the digital input goes high for each joint encoder.  The zero positions

are: straight ahead for the yaw encoder, 90 degrees for the middle link encoder, and straight ahead for

the ground link encoder.

5. Check the calibration by moving the treadmill forward and backward. Ensure that the yaw angle does

not change significantly.  Lifting up the vehicle and moving it around to ensure linear arm response is

also sometimes useful.

6. Stop the controller.

7. Turn on the vehicle power by turning on the amplifies for the Uberquad, or by switching on the power

at the vehicle for the 4WS4WD vehicle.  If the 4WS4WD vehicle is used, turn on the transmitter power

by plugging in the power supply and flipping the power switch on the front of the transmitter.

8. Turn on the treadmill by holding down the “Start/Stop” switch for half a second, and hitting the “Run”

switch.  The start-stop switch powers on a relay switch that is activated when you hit the run switch.

You should hear a very distinctive click when hitting run as the relay for 220 volts engages

magnetically.  If the switch does not engage, simply try again.

9. Make sure that you set the operating speed to be zero at the start.  Run the car by starting the Wincon

server!
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