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List of Symbols and/or Abbreviations

AWSAWD — An acronym for one of the vehicles used in the IRS that has 4 wheel steering capability and a
standard 4 wheel drive system.

ABS (Automatic Braking System) - A system using computer actuated brakes such that maximum braking
is achieved without skidding.

DIL (Driver Inthe Loop) - A control system where the driver’s steering input is directly transferred to the
front wheels. Hence, any modeling of the vehicle must incorporate the driver as participating in
the control loop.

DOF (Degrees of Freedom) - The number of independent motions utilized by amodel. For instance, a
vehicle model that only examines lateral motion and longitudinal motion is a2 DOF model.

DOL (Driver Out of the Loop) — A control system where the driver’s steering input istransferred to a
controller, which then steers the front wheels. The modeling of the control loop can hence ignore
the driver input (but use the driver input as a reference signal).

DYC (Direct Yaw Control) — The use of wheel torque to generate a yaw moment and hence steer the
vehicle,

IRS (The Illinois Roadway Simulator) — Abbreviation for the experimental testbed used to study vehicle
dynamics

LQR (Linear Quadratic Regulator) — A type of control utilizing a cost function whose minimization
guarantees an optimal control.

MRC (Model Reference Control) — A feedforward and feedback control method where the design
specifications are given as a reference model.

PWM (Pulse Width Modulation) — The use of avariable pulse length to transmit information. This type of
system is often used for motor control because of its simplicity and immunity to noise.

Uberquad — A name for one of the vehicles used in the IRS. This vehicle has 4 wheel steering capability

and uses an independent motor for each wheel to simulate torque control or braking maneuvers.
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1 Introduction

This thesis detail s the hardware/software integration, dynamic modeling, and control of a scale
vehicle system. The complete system, known as the Illinois Roadway Simulator (IRS), provides a means
by which vehicle dynamics and vehicle control strategies can be studied on scale vehicles before
implementation on full-sized vehicles. A research facility in the area of vehicle dynamics and controls that
is able to provide simulation work in combination with industrial data has been lacking: the Illinois
Roadway Simulator isthe first of its kind to address this need. The purpose of the IRS isto bridge the gap
between industrial experimentation and academic simulation research. Lateral control, stability, sensor
placement for intelligent control, and intelligent cruise control are just afew of the topics studied on this
system. However, the scope of this thesiswill be in detailing the technical issues associated with scale
vehicle testing and in describing a single area of advanced vehicle control currently under study on the IRS:
yaw rate control (spin control) of avehicle.

The organization of thisintroductory chapter isas follows. First, amativation for vehicle research
is given, with specific emphasis on safety and performance. Second, a short literature review of the area of
vehicle control is given. The specific goals of thisthesis are described, including a motivation for using
scale vehicles as well asthe history of scale vehicletesting. Finally, a summary of the remaining chapters

inthisthesisis provided.

1.1 Motivation for Vehicle Research

There is a strong motivation to make vehicles “smarter”: that is, the vehicle will partialy or
completely control its motion to improve safety and/or performance. However, the goals of “safety” do not
always align with those of “performance’, and hence adiscussion of each is presented separately below. In
addition, the implementation of vehicle controllers generally fallsinto two arenas: full automation, and
human driver assistance (Peng et al. 1994). Automation attempts to replace the driver with intelligent
control systems, while driver assistance attempts to monitor the driver behavior, provide warnings, assist,
and interfere the steering control of the driver when necessary. Technically, the issues involved with each
arethe same. However, driver assistance must account for driver behavior, which is complex and often
unpredictable. Asaconsequence, driver-assistance is often more difficult to achieve than full vehicle
automation. However, driver-assist controllers seem to be the most promising route of research activity
and a natural prelude to complete automation.

The goal of thisthesis therefore is not to develop an automated vehicle, but to instead assist the
driver using acontroller. A simple justification for this goal isthat it is difficult to create a controller that is
as adaptive and intelligent as ahuman. Until an automated controller can verifiably outperform a human

under al circumstances (and drivers are comfortable relinquishing control of their vehicles and livesto a



computer), there will likely be strong resistance to vehicle automation despite arguments for increased
safety, efficiency, or economy. Arguments against implementing complete vehicle automation as afirst
step toward automated driving can be found in the literature. Chen and Evrin (Chen and Ervin 1990) note
that there are three separate communities capable of funding and implementing complete vehicle
automation: the automotive industry, the electronics industry, and the highway community. These three
areas are unlikely to join their efforts and budgets to develop the hardware and infrastructure
simultaneously for full automation. For the automotive and electronics industries, it is difficult to justify
the need to spend their R & D dollars on vehicle-centered automated systems, especialy when these
markets are outside their 3-5 year research horizon. The highway community isnot in a position to support
this research, especially when the needs of highway maintenance and operation outstrip authorized tax
revenues (Chen and Ervin 1990). Without the equipment or infrastructure, vehicles will not “suddenly” be
autonomous. Instead, the beginnings of automation must start by developing controllers that make the
vehicle perform better under human guidance.

A question central to the study of vehicle controllersis whether an automated vehicle can
outperform ahuman driver. This question isvalid, but the answer (if there is one) depends on the driver.
To determine how well a human can drive, amodel must be obtained of how the human actually controls
the vehicle. Many authors include models of adriver to examine handling characteristics of the vehicle
system with the interaction of the human driver model (Cho and Kim 1996; Legouis et a. 1986; MacAdam
1981; Tousi, Bajaj, and Soedel 1988; Tousi 1991). In the above papers, aswell as (Weir and McRuer
1970), the driver is modeled as a feedback controller with an error estimation scheme. In general, the
driver is modeled as afunction containing gains and atime delay (Cho and Kim 1996). A preview error is
obtained by using alook-ahead point and comparing it to a desired vehicle trgjectory. The distance
between the vehicle and the look-ahead point is often called the look-ahead distance. Thus, the major
parameters in most driver models are the driver gain, the driver delay, and the look-ahead distance. Since
these parameters are largely psychological, they are quite difficult to measure.

From published work, the primary focus on using an automated controller for vehicle emergency
driving isto improve the delay related to the time the driver takes to respond to an impending collision or
instability. Itiswell known that the vehicle will become unstable in certain situations if the driver does not
react within a certain time frame. It isaso well known that the delay in emergency responsesin general is
the biggest distinction between a poor and expert driver. Thisreaction delay may include actuator
dynamics or human response time (Cho and Kim 1996). Again, we foresee situations where computer
intervention or assistance in driving may improve the vehicle response significantly.

Finally, it is currently in the realm of university-sponsored research to bridge the gap between
theory and marketable product. Considering funding limitations, vehicle automation will most likely begin
gradually in the form of human assistance and improvements in performance rather than complete one-step

automation. For this reason, the vehicle controllers developed in this thesis focus on methods to assist,



rather than replace, the driver. The following sections outline different arenas where this focus may lie,

and the motivation for study in each area.

1.1.1 Safety

The modern automobile is one of the most complex and dangerous machines mankind has yet
developed. It wasin 1769 that Nicholas Joseph Cugnot made history by constructing and driving the first
road vehicle. He also made history by having the world's first road vehicle accident (Nwagboso 1993).
Traffic accidents are one of the largest public health problemsin the United States: more pre-retirement
years of life are lost due to traffic accidents than the combined deaths due to cancer and heart disease
(Evans 1991). From 1928 through 1988, more than 2.5 million Americans were killed from vehicle
accidents. To put thisin perspective, traffic deaths from 1977 to 1988 exceeded al US battle deathsin all
the warsin American history (Evans 1991). The annual cost for vehicle crashes in 1998was estimated to be
70 billion dollars, and worldwide 500,000 people are killed annually from automobile accidents (Evans
1991). Inthe United States, there are an estimated 4.34 million injuries per year due to vehicle accidents,
with 94 injuries per fatality (Evans 1991). That is, approximately 2% of Americans are injured due to
automobile accidents EACH Y EAR, and roughly 30% of people are injured by an automobile accident
sometimein their life.

If we examine fatal accidents, more than half of all fatal accidents involve only one car (1986).
Consider that in 1988, 44.73% of fatalities were from vehicles colliding with inanimate, stationary objects
not found on the road (trees were the primary culprit) (Evans 1991). Vehicle safety does not only extend to
the driver, but also it extends to others who may share the highway. A German study conducted in 1985 of
12,000 injury causing accidents revealed that more than half the injuries and half of the deaths involving
vehicles were pedestrians, bicyclists, and motorcyclists (Danner, Langwieder, and Schmelzing 1985).

The focus on vehicle crashworthiness generally examines four aspects of a vehicle: crash energy
management, car size, occupant volume (a.k.a. “Flail Space”), and human factors (Hyde 1992). What is
often neglected, or lumped into “human factors’, is the ability of the crash to be avoided or lessened by
faster or “smarter” driver inputs. If we consider the use of a computer to continually evaluate and intercede
when dangerous situations arise, we may foresee situations where a small amount of intervention resultsin
asignificant improvement in safety. While improvements in the crashworthiness of vehiclesis at a point of
diminishing returns, the field of automated collision warning and avoidance is in itsinfancy (Chen and
Ervin 1990). An example of thistype of work would be the automatic road-departure warning system for
motor vehicle drivers (LeBlanc et al. 1996).

1.1.2 Performance

The moativation for vehicle control lies not only in improved safety, but also in improved
performance. To examine the motivation for using control to enhance vehicle performance, one simply has

to examine modern vehicle control systems. These motivations include improved engine performance



(idle, throttle, emissions), transmission control, suspension, traction control (ABS), longitudinal control
(cruise control, automated handling systems), and improved directional stability (yaw rate control, spin
control, automated driving, and automated handling systems) (Nwagboso 1993). There is some overlap
between safety-related control and performance-improving controllers. For instance, an ABS system
improves braking performancein icy conditions, which clearly improves vehicle safety. As another
example, Smith and Benton (1996) reduced the distance needed to change lanesin an emergency maneuver
by 17% by using a controller to steer the rear wheels of avehicle. The ability of a computer to control an

aggressive lane-change maneuver may be important for performance and for safety.

1.1.3 Improved Vehicle Measurements

An often neglected but increasingly utilized area of vehicle control isto simply monitor the status
of the vehicle and/or driver and "passively" feedback the situation to the driver. The controller is not
“actuating” anything other than the human (or another controller), but the structure in terms of feedback /
estimation / sensing etc. are very similar to a controller that actually has some type of physical actuation.
An example of this measurement type of controller would be one that simply calcul ates fuel usage (or
miles/gallon) as the vehicle isdriving. The intent would be that the driver satisfaction (and hopefully fuel
economy) isimproved. Ancther example using a more advanced measurement controller would be one
presented by Pasterkamp and Pacejka, where thetire is used in conjunction with a neural network to sense
the road friction as the vehicleisdriving. Thedriver isthen aerted if dangerous road conditions are
detected (Pasterkamp and Pacejka 1997b). Based on this type of measurement, a dashboard type alert
system could be devel oped that notifies the driver of possible skidding, lane change obstacles, impending
collisions, and unsafe headway conditions (Kamal 1990).

1.2 Summary of Dynamic Ranges to Motivate Controller Design

The dynamic range of avehicleisvery dependent on itsvelocity. Asan example, it iswell
understood that aerodynamic forces begin to become significant between 40-50 m/s (Doniselli, Mastinu,
and Gobbi 1996). The non-uniform stiffness of an ordinary tire causes the longitudinal dynamicsto have
much faster pole locations than the dynamics associated with steering input. By examining the dynamic
range of each effect, it becomes clear not only what obstacles each controller will face, but also the
limitations and the most likely sources of disturbances and unmodeled dynamics. If we examine the
frequency range of the vehicle, tires, and aerodynamic forces previously discussed, we obtain the following

diagram.
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Figure 1.1: Frequency range of driver inputs, lateral dynamics, longitudinal dynamics, actuator dynamics,
and aerodynamics.

The above chart shows three regions of interest in terms of vehicle control. Region 1 iswhere the vehicle
istraveling slowly, and the intent of the controller isto improve the vehicle response. Thisis often
achieved by the use of rear-wheel controllers at low speeds that effectively reduce the turning radius of the
vehicle. Region 2 represents non-emergency highway driving, where comfort and performance is more
important than safety in terms of the controller approach. Region 3 represents the regime where emergency
maneuvers may be necessary because driving conditions or emergency situations may impair the driver.
The focus of controller development for thisthesisis Region 2 and to asmall extent Regions1and 2. In
Region 3, nonlinear dynamics may become significant, while in Region 1 there are very little dynamic or
dlip contribution.



1.3 Literature Review on Vehicle Dynamics

The following section is a brief overview of the field of lateral vehicle control. A more in-depth

analysis of specific control algorithmsis provided in the “ Controller Development” section of Chapter 4.

1.3.1 Survey Articles

For the interested reader, a short list of survey articles outlining the areas of vehicle control is
presented. A good overview of general vehicle control systemsis provided in Tomizuka and Hedrick
(1995) where the focus is given on engine/transmission modeling and control, suspension systems, traction
control and ABS, cruise control and vehicle longitudinal control, and steering systems including vehicle
lateral control. There are several books that themselves serves as broad overviews of the field of
automotive research. A useful book regarding the basics of vehicle dynamicsiswritten by John Ellis
(1989). The book by Nwaghoso (1993) is agood introduction to vehicle systems and instrumentation used
in vehicles. For vehicle automation, akey issue is feedback of vehicle position. A good article reviewing
the state-of-the-art in vehicle sensing can be found in (Peng and Tomizuka 1990a). The merits, drawbacks,
and robustness of vision based, magnetic marker, magnetic rod, radar, laser, beacon, reflective, ultrasonic
and other guidance systems are discussed. Finally, a broad overview of 4WS steering strategiesis presented
in the paper by Furukawa and others (1989).

1.3.2 Published Methods for Yaw or Lateral Control of aVehicle

The published control approaches can be divided topically in many different ways. by method of
control input (2WS, 4WS, DY C), by controller design methods (optimal, neural network, parameter space
design), or by controller implementation structure (feedforward, feedback, or combinations). For this
section, the controller structure (feedforward versus feedback) is chosen as the metric of comparison.
Although the use of feedback will make a system more robust to unmodeled dynamics and disturbances,
the same feedback may increase system cost and lead to worse performance in the event of sensor/actuator
failures. Many authors, notably Inoue and Sugasawa (1993), recognize that this tradeoff is central in the
choice of vehicle controllers. To simplify the presentation of the control methods, the figure below is taken

from the above authors to outline the different control approaches presented in the literature.
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Figure 1.2: A block diagram of a general 4WS-vehicle control system.

If not stated otherwise, it can be assumed in the controllers described below that the driver retains
control over the front wheels. There are vehicle control designs, however, where this may not be the case
(Okuno, Kutami, and Fujita 1990). These systems are often referred to as drive-by-wire controllers
because the steering is controlled directly by the computer, and indirectly by the driver who sends steering
signals to the steering computer. Other types of control include safety-monitoring and driver assist. A
safety-monitoring controller is one where the driver steers the vehicle, and the controller has no control
over steering. A driver assist controller is one where the driver maintains direct control over the vehicle,
but the controller can augment the steering by some other control input such as the rear wheels or brake and
torque input. Throughout this literature review, specia note is given to controllers that remove the driver’s
direct input by including a controller for the front wheels.

Additionally, we can divide the controller methods by the acceleration region for which they were
designed (Nagai, Hirano, and Y amanaka 1997). In general, the more acceleration forces on the vehicle, the
more non-linear the vehicle behavior and consequently the more complex the controller structure required
for appropriate vehicle control. Referring to Figure 1.3 below, we can see that a system that provides good
performance in one region may not provide good performance in another. For instance, aDirect Yaw
Controller (DY C) that utilizes brake input to aggressively correct a vehicle in Region 6 would not be suited
to Region 1, where only minor steering corrections are needed. Table 1.1 gives a summary of the regions,
along with descriptions of the maneuvers encountered in each region and the types of controllersused. It
should be stated beforehand that the acceleration regions are not strictly defined and that the performance
and dlip of atireisamore appropriate metric. For instance, a controller suited for Region 10 may be more
suited to awheel that is skidding over gravel with a deceleration of 0.1 g's, even though the diagram above
may not suggest this. In extreme cases or under changing operating conditions, the best metric will nearly

always be the relationship between available forces from the tire and steering angle/torque input.



Unfortunately, it is very difficult to determine the tire model on-line, and hence accel eration may be a more

feasible, but less precise, metric.
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Figure 1.3: An acceleration plot describing general areas of research activity.

Table 1.1: A summary of regions of operation.

Region Behavior Situation Controller
1 Lat. vehicle dynamics are linear, long. dynamics are negligible Steady highway driving AHS Controllers
2 Linear long. dynamics and lat. dynamics Highway accelerations Adaptive Cruise Control
3 High long. acceleration, nonlinear long. tire models Skidding or "Peeling Out" ABS, TCS
4 Nonlinear long. deceleration, nonlinear lateral accelerations Skidding AND Spinning None
5 Negligible or linear long. dynamics, non-linear lat. dynamics Spinning DYC
6 Nonlinear long. acceleration, nonlinear lat. Accelerations "Peeling Out" AND Spinning None

A description of each region in the above diagram follows. Region 1 isthe area where control
systems based on linear vehicle models have demonstrated good performance in experimental testing (Peng
et a. 1994; Smith and Starkey 1994; Smith and Starkey 1995). This area, with |ateral accelerations less
than 0.3 g's (Lee 1997), is where the vehicle velocity is approximately constant and thereis little
acceleration in the longitudinal direction. This region would characterize non-emergency highway driving,
and is the focus of the vast majority of vehicle automation research. Region 2 isthe areawhere alinear tire
model remains valid for acceleration and deceleration and the lateral acceleration is small (very little
steering). This areawould be where adaptive cruise control systems usually perform. Most highway-type
driving remainsin Regions 1 and 2. Region 3 refers to an area where there is very aggressive acceleration
to the point where alinear tire model is no longer valid. The non-linear tire effects such as traction come
into play in this region, and hence Traction Control Systems (TCS) often operate in thisregion. It should
be noted that on roads where the tire friction is low (gravel, snow, etc.), the vehicle behavior may be best
controlled by systems suited for Region 3 even though the formal acceleration criteria are not met. Region

4 refers to the area where there is very aggressive longitudinal and lateral acceleration. Thisareaisusualy



not encountered on the roadway, and very little published data describing controllers for this region have
been encountered. Region 5 refersto situations where very aggressive steering maneuvers are performed
such that the vehicle model is no longer governed by a2 DOF model. Examples would include a severe
avoidance maneuver or unintended roadway departure. Several authors describe this region to begin
around 0.3 g's (Lee, Mariott, and Le 1997; Peng and Tomizuka 1990a; Peng and Tomizuka 1990b; Smith
and Benton 1996; Smith and Starkey 1994; Smith and Starkey 1995) and continue up to the tractive limit of
thetire (usually about 0.8 g's). Again, thisregion is not strictly determined by acceleration, and is assumed
to start where the tire model is no longer linear. The speed in this region can be assumed approximately

constant, but there is more variation than Region 1 due to harsher maneuvers.

1.3.3 Publishing Authors and their Vehicle Research Institutions

The authors and institutions presented here in no way represent all of the publishing authors
worldwide. Instead, itisalist of publishing authors encountered while conducting literature searchesin the
field of vehicle dynamics. It is divided between overseas and domestic research ingtitutions.

The leader in vehicle controls in terms of new methods that are being implemented in commercial vehicles
remains the Mercedes-Bosch group led by Robert Bosch GmbH. This group currently has a commanding
lead in the field of interactive chassis systems, and was the first group to feature commercia yaw-rate
control systems (Sherman 1995b). Authors associated with this group include E. Zabler, F. Heintz, R.
Dietz, among others. The Delft Institute in the Netherlands has conducted a volume of very practical
vehicle research by the Road-V ehicles Research Institute. Thiswork has been published under the authors
Besselink, Higuchi, Jansen, Van Oosten, Palkovics, Pacejka, Pasterkamp, J. van der Weide, R.F.
Wolffenbuttel, J.A. Foerster, and Zegelaar among others.

Other foreign vehicle research centers include the Honda Research and Devel opment group,
whose articles are generally published originally in Japanese journals and translated to English. Authors
publishing with Honda include Y oshimitsu Akuta, Nobuyoshi Asanuma, O. Furukawa, Manabu |kegaya,
Y. Shibahata, K. Shimada, T. Tomari, and Kiyoshi Wakamatsu. Toyota sometimes publishes work under
Y utaka Hirano, who works closely with Tokyo University with Masao Nagai and Sachiko Y amanaka,
among others. Additional Toyota authorsinclude Katsutoshi Horinouchi, Takashi Y onekawa, M. Mutoh,
Tamio Kanou, Seisyu Utsumi, and Y oshihisa Nagahara. Mazda has published work through its Technical
Research Center by Kenji Fujita, Atsushi Kutami, and Akihiro Okuno. Their particular focus in recent
years has been the development of automated cruise control systems that utilize vision sensing (Okuno,
Kutami, and Fujita 1990). Mitsubishi Motors Corporation has released vehicle dynamics articles associated
with riding comfort under the authors Kazuya Hayafune and Hiroaki Y oshida. Nissan (a.k.a. Nippondenso
Co. Ltd.) has devel oped recently a variable dynamic vehicle called the Simulator Vehicle that is capable of
varying yaw rate and lateral acceleration response characteristics independently via software (Sugasawa,
Irie, and Kuroki 1992). Authors publishing from Nissan include F. Sugasawa, N. Irie, and J. Kuroki. In
their |C Engineering Department, publishing authorsinclude O. Ina, Y. Y oshino, and M. lida among



others. In Europe, articles are presented by the ITT Automotive Europe by B. Lammen, F. Kemmler, U.
Judaschke, and S. Muller.

In the United States, domestic manufacturers have published a significant amount of vehicle
research. E. Ahring has published vehicle dynamics articles at Ford A.G. in Germany. Tom PFilluti of Ford
has published several articlesrelated to differential brake steering (direct yaw control). General Motors
Research Laboratories publishes vehicle control articles through Mounir M. Kamal and others. The two
most significant academic institutions currently conducting vehicle research in the United States are the
University of California, Berkeley with the PATH project, and the University of Michigan, under the
University of Michigan Transportation Research Institute (UMTRI). U.C. Berkeley’s California PATH
program (Partners for Advanced Transit and Highways) was devel oped with along-term implementation
and application of automated vehicle controllersin mind. The university currently maintains the Richmond
Field Station where vehicle controllers are tested. The aobjective of this program is to develop a system that
is not only high-performance, but also platform independent. The ultimate goal is to develop systems
suitable for large-scal e implementations with minimal lead-time in the development and implementation
phase (Peng et al. 1994). Authors associated with the PATH program are: Huel Peng, Masayoshi
Tomizuka, Weibin Zhang, Steven Shladover, S. E. Desoer, JK. Hedrick, J. Walrand, W. D. McMahon, S.
Sheikholeslam, N. McKeown and others. At the University of Michigan, vehicle research papers are often
presented under the authors Kan Chen, Robert D. Ervin, Gregory Johnson, W.B. Ribbens, and Charles
MacAdam among others. Research on vehicle dynamics has been conducted for decades at this research
institution; the extent of their studiesistoo extensiveto list in this short discussion. During the 70's and
80's, Fenton and colleagues at the Ohio State University conducted along term and large-scale project.
Work is still being published at their Center for Automotive Research under Y oung Cho, Dennis A.
Guenther, G. Rizzoni, Bong-Choo Jang, Matthew Y. Rupp, and Charles M. Woodburn among others. The
well-published authors Smith and Starkey conduct vehicle dynamic research at their respective universities.
Dr. Smith's research was formerly conducted by the Integrative Modeling Research Laboratory at
Louisiana State University before his leaving the university. Dr Starkey conducts research at Purdue,

where the authors Anthony Will, Stanislaw Zak have also published papers.

1.4 Goals of This Sudy

Theintent of this research isto demonstrate new techniques for vehicle control that improve
vehicle performance and safety. For the work discussed in thisthesis, the specific goal isto improve
vehicle handling and stability. Aswill be shown in later sections, there are many controller methods
available to achieve this goal; however, aModel Reference Controller (MRC) approach is selected for this
study dueto the “intuitive” nature of the performance specifications, and the “ standard” form of
implementation. When a driver wishes to improve vehicle performance, they usually do not specify that
the pole locations be moved, or that the rise-time or overshoot be changed. Instead, the performanceis

described in terms of other vehicles. For instance, a driver may wish that their station wagon behaved like
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a Porsche while in the city, but handle like a Lincoln Towncar on the highway. Each vehicle can be
represented dynamically by a different reference model, thus suggesting a model -reference type of
controller structure.

A primary purpose of the Illinois Roadway Simulator is simply to validate the performance of
vehicle controllers. Thus, ease of implementation, adaptability, and evaluation are important
considerations. From the beginning, the primary intent in selecting MRC methods was to maintain asimple
controller structure that is easily adaptable so that the driver may change performance specifications “on-
the-fly”. In terms of implementation, MRC methods in the transfer-function domain are relatively easy to
implement. In terms of adaptation, Model Reference Controllers are used in adaptive situations as Model
Reference Adaptive Control, so the structure developed in this thesis can easily be extended to adaptive
situations. In terms of evaluation, the performance of the resulting control is easily evaluated because of
the use of areference model. Asacomparison, the performance measures for some control techniques
such as LQ, optimal control, neural networks, or fuzzy logic are not always clear. It is easy to obtain good
vehicle performance when the evaluator chooses the metric of performance measurement. For thisthesis, it
isrelatively simple to evaluate the performance of the vehicle controller. If the vehicle tracks the reference
model, the controller is probably working well.

Onefinal goal of thisthesisisto validate the use of scale automobiles for dynamics and control
studies. Scaletesting asascienceis usually applied to capital-intensive situations such as cargo ships,
aircraft, and spacecraft. However, the advantages of using a“real-life” system instead of a simulation
become obvious in the implementation stages of the controller. To restate this goal, thisthesisisan
attempt to unify the results of what today seems to be three separate fields of vehicle dynamics study:
simulation based studies using theoretical equations of motion, full-sized vehicle testing based on semi-
empirical analysis, and the third method based on scale vehicle testing. The following section is intended
in part to motivate the use of scale vehicles to refine performance before risking capital, drivers, and time

transferring a control method from simulation to full-scale vehicles.

1.4.1 Motivation for Using Scale Vehicles

From aresearch standpoint, the primary advantage of using scale vehicles over full-sized vehicles
iscost. Theuse of afull-sized vehicle testing is prohibitively expensive to most academic institutions. The
few research sites conducting vehicle testing require very sizable grants to conduct their research, and most
of this capital goes simply to infrastructure development such as equipping the vehicles. The cost of the
entire lllinois Roadway Simulator to date is well under $30,000, which includes the cost of 5 vehicles (2 of
the 3 vehicles have been completely rebuilt twice), three computers (also upgraded twice), the treadmill,
the transmitter system, the amplifier systems, and motors including spare parts. This price tag also includes
operating costs for 4 years. For comparison, it is estimated that the cost of equipping a full-sized vehicle
for autonomous control isin excess of $100,000 (Note: this cost does not include any research). This price

tag is simply out of the range of ordinary research institutions. In comparison to scale testing, the
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intellectual return on each research dollar spent cannot be very large for full-sized vehicles when the
majority of the allocated money is spent simply on equipment and road usage. Although these costs buy
“realism”, this realism is sacrificed by the cost intensity. Full-sized autonomous vehicles at research
universities are rarely put in real-world situations that push vehicle performance to its limits.

Thereis an additional economy of time using a scale vehicle system. The time required to change
or modify a scale vehicleis very small compared to full-scale vehicle testing. From the standpoint of
commercial vehicle development, aprimary cost consideration is the start-up and turn-around time needed
to attempt a new control idea. If all the parts are at-hand, it is quite easy for a single student to build an
entire scale vehicle "from scratch” in asingle day. The variety of commercially available parts means that,
if anovel part is needed, only small modifications of an existing part are usually required. The durability
of the R/C vehicles and the ability to physically intervene during an accident mean that the downtime due
to vehicle breakage is small. The use of atreadmill system means that no scheduling of roadway usageis
needed, and on-site real-time evaluation of vehicle performance can be conducted at any time or any hour
in the day. Moreimportantly, the road conditions remain as constant as required by controller testing.
Frequency responses requiring afull day of testing can be conducted continuously on the vehicle using
swept-sine techniques. This feat would not be achievable with full sized vehicles unless very expensive
GPS systems were employed.

The final motivation for scaled vehicles is the most important: they are simply safer than full-sized
vehiclesto test. No driversare put at risk as the computer drives the car at scaled highway speeds. There
are no pedestrians or roadside traffic to worry about. The treadmill surface can be varied quickly and easily
to simulate various road surfaces that may be dangerous for adriver to be on, and the treadmill itself is
designed for consumer safety (finger guards, belt protection, and pinch guards). The use of the treadmill
surface as a driving road makes testing safe, consistent, and repeatable. Because of the increased safety,
more aggressive vehicle testing can be conducted on the IRS than will likely ever be tested with afull sized
vehicle with a passenger inside. New controller ideas and techniques can be tuned “ on-the-fly” without a
significant worry for safety (and sometimes stability). It is not uncommon to “crash” the vehicle a half
dozen times in asingle day of aggressive testing, with no adverse effects on the vehicle. In fact, the biggest
safety hazard encountered thus far is the tendency of the author to forget that the treadmill is moving after a

long night of testing, lean against the moving surface, and be quickly “scooted” to the floor.

1.4.2 History of Using Scale Vehicles

As stated earlier, there are two distinct methodol ogies to examine vehicle dynamics. Thefirstisto
establish the governing equations of motion and conduct a simulation-based study, and assume that the
vehicleis strictly governed by the theoretical differential equations and the parameters used in those
equations. The resulting controllers are in general solved in terms of these parameters. Fundamental to the
controller is the assumption that the unmodeled dynamics are insignificant enough to be compensated by
feedback. Well over 90% of the controllers encountered in literature are based on this methodology. The
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second methodology is to test a full-sized vehicle and conduct semi-empirical analysis (black-box
approach) of the full-sized vehicles using input/output modeling. The use scale vehicles generally allows
both approaches. An advantage of scale vehiclesis that they encourage both methodologies: the theoretical
analysisis used to validate scale dynamic similitude, but the use of a physical model ensures that critical
dynamics will not likely be neglected.

Before the advent of simulation-based modeling, nearly al vehicle testing was conducted using
scale or full-sized vehicles. Naturaly, the use of scale vehicles was preferred because of cost reasons, and
consequently there was extensive use of scaled vehicles through the mid-1960’s due to cold-war military
research and space-race sponsored studies. Although the traditional association of scaled vehiclesiswith
wind tunnels, the use of scale vehicles has extended to automobiles in the areas of crash reconstruction,
vehicle-soil interaction (tire forces), suspension analysis and dynamics, and roll dynamics.

Scale testing of amphibious vehicles was conducted extensively at the Army’s Land Locomotion
Laboratory in Detroit (Bekker 1969). Studies conducted using these scaled vehicles led to the devel opment
of shrouded tires on amphibious vehicles (Rymiszewski 1965) (Bekker, 1969) (p. 636).

To begin discussing land vehicles, it should be noted that the primary likelihood of disagreement
between scale vehicles and full-size vehicles at higher speedsisin the tire-road interaction. Extensive scale
model studies were conducted in the 1960’ s that specifically examined tire forces of scale models and their
scaling, and showed that scale vehicle testing was the best way to determine the vehicle turning radius
(Bekker 1969) (p. 671). These studies, although likely motivated by the first use of a vehicle on the moon,
demonstrated themselves as very good analysistools for the use of experimental determination of overall
vehicle dynamics. An example would be the use of a scaled vehicle to analyze vehicle performance over
rough terrain (Bekker 1969). Ironically, the vehicle used in this study and others (Pavlics 1966) to examine
full-sized vehicle motion on extraterrestrial surfaces seems to be the inspiration for replacing those same
vehicles. Today, small robotic vehicles dominate over "man-sized" robotic rovers. The scale, wheel
placement, and climbing motions of the scale vehicles of the 1960's are nearly identical to the full sized
Mars Sojourner robot used for exploration today. Thisis agood example where the use of scale vehicles
eventually became a separate field of study.

In the field of automobile accident reconstruction, detailed analysis was conducted examining
automobile crashes of scale vehicles before the advent of computer simulation based studies. Conditions
for dynamic similitude between scale and full sized vehicles governed by similar crash forces have been
derived and examined historically. Experiments have been conducted that demonstrate experimental
agreement between scale and full-sized automobiles in non-crush dynamics of automobile accidents (Emori
1969).

Scaled vehicles have been used to study dynamic behaviors of complex multi-body vehicle
systems. Thiswork has focused especially tractor-trailer combinations, with specific focus on trailer
snaking. Asfar back as1930's, Huber and Dietz (1937) used a“running roadway” (atreadmill) to conduct
experimental work with small-scale models of tractor-trailer combinations (Bekker, 1969) (p. 538). This
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method of using atreadmill to study vehicle dynamics was also used by Zakin (1959) to study trailer
stability (Bekker, 1969)(p. 538). A comprehensive study during the 1960’ s by the U.S. Army Land

L ocomotion Laboratory was conducted examining the turning behavior of two-unit, tracked, articulated
locomotion using scale vehicles (Clark 1960) (Bekker, 1969)(p. 539). This study included nonlinear
turning behaviors as well as steady-state turning for a variety of vehicle configurations. A validation of the
turning radius was conducted for tracked vehicles using scale vehiclesin the 1950’s by Nuttal and others
(Nuttal) (Bekker,1969) (p. 539). Nuttal’ s tests were conducted at very low speeds and low slip angles.

For very complex multi-mode vehicle behavior, it has been suggested that the use of scale vehicles
may be limited (Bekker 1969). An example provided by Bekker would be the use of scale vehiclesto tune
the suspension systems of vehicles over very rough terrain (obstacles larger than the vehicle itself).
Marquard conducted preliminary work using scale vehiclesin this manner. Hisresearch suggests that scale
vehicles might, in fact, scale correctly even in this usage, although dynamic similitude is difficult to prove
(Marquard 1937) (Bekker, 1969) (p. 558).

Today, there currently very little use of scale vehicles when compared to previous research
institutions. However, there has been a recent revival in the use of full-sized vehicles where each vehicleis
“tuned” beforehand to express variable dynamics. The concept of using asingle vehicle with varying
parameters was first considered by General Maotors Corporation in the 1970's (McKenna 1974). The Nissan
Motor Company has followed this example in 1992, devel oping a vehicle capable of independent yaw and
lateral acceleration response characteristics (Sugasawa, Irie, and Kuroki 1992). Recently, researchers at the
Cdlifornia Institute of Technology in conjunction with the National Highway Safety Administration and
NASA devel oped a vehicle with variable dynamics and have used it for model-following controllers as well
as dynamic evaluations (Lee 1997; Lee, Mariott, and Le 1997).

1.5 Overview of Remaining Chapters

The remaining chapters are organized as follows. In Chapter 2, a system description is given of
the lllinois Roadway Simulator (IRS), including the vehicles, computer systems, and control loops.
Chapter 3 discusses modeling and system identification covering treadmill dynamics, longitudinal vehicle
control, theoretical vehicle dynamics, and measured vehicle dynamics. In Chapter 4, a control strategy
using Model Reference Control (MRC) isintroduced, and alternative methods of control are discussed.
Chapter 5 details the results of using this control strategy. Conclusions and future work are discussed in
Chapter 6.

14



2 IRS System Description

2.1 A General Description of the System

The focus of this research has been to devel op a scale version of avehicle and aroadway for safe
and economic testing of vehicle controllers. To that end, the Illinois Roadway Simulator (IRS) has been
developed. The IRSisan experimental testbed consisting of scaled vehicles running on a simulated road
surface, and can be thought of as a vehicle counterpart of awind tunnel. Instead of moving wind around a
stationary scale aircraft, aroadway (treadmill surface) is moved under a scale vehicle.

Asdiscussed earlier, there are several advantages of the IRS over full scale vehicletesting. First,
the availability of scale vehicle components makes construction simple and very cheap. The durability of
these vehicles and the ability to intervene during an accident makes testing safe and repeatable. The
scheduling and use of public or private roadwaysis not anissue. No drivers or pedestrians are put at risk
during testing of aggressive vehicle controllers. The roadway surface can be varied quickly and easily to
simulate changing road conditions. The simulator is dynamically realistic in that it includes actuator,
sensor, tire, and communication dynamics and nonlinearities that are seen in actual vehicles, but often
neglected in computer simulations. Finally, testing and theoretical analysis has shown that scale vehicle
dynamics follow the same trends as full-scale vehicles under certain operating conditions.

The Illinois Roadway Simulator (IRS) testbed begins with the scaled roadway surface, which
consists of a4 x 8-ft. steel-framed treadmill capable of top speeds of 15 mph. The belt iskept in place by a
plywood running board underneath the surface with 1/4” channels down the length of the board. These
channels provide a path for two small rubber-toothed belts that run the inside length of the belt to keep the
belt straight. The belt itself has a very smooth surface and was constructed to not have a seam or notch to
affect the testing of avehicle. Two rollers support the treadmill surface, where one roller isgearedto aDC
motor drive by atiming belt. Some modifications were made to the original simulator as precautionary
measures. A barrier was originally built around the belt of the simulator to prevent a vehicle from running
off the side of the treadmill. However, in the case of an accident where the car impacted the barrier, the car
would bounce back onto the moving treadmill often at the wrong orientation, thus resulting in an even
larger collision. For this reason, the barriers were later removed. Also, the “hood” of the treadmill was
altered to provide easy access to the drive and sensors.

Scale vehicles are run via a standard transmitter on this treadmill. The remainder of the IRS
consists of adriver console, a 400 MHz Pentium Il computer (formerly a 75 MHz Pentium), a
transmitter/receiver system, and a vehicle position sensor system. Each of these subsystems is described in
great detail later in this chapter.

The controller/hardware loop begins with areference signal. The signal can come from either the
driver console or from a function imbedded in the controller code. The entire system is sampled at 1 kHz.

The computer then applies the desired vehicle controller, and outputs control commands to the vehicle viaa
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transmitter (for the AWSAWD vehicle) or amplifier system (for the Uberquad vehicle). If atransmitter is
used, areceiver system on the vehicle transforms the transmitter’ s FM signals into a pul se-width modulated
signal, which are then sent to the vehicle actuators. Each actuator has a built-in controller that converts the
pul se-width-modulated signals into reference commands.

To maintain the vehicle on the treadmill, alongitudinal controller uses the vehicle'sinertial
position as feedback and sends an output voltage signal to the treadmill. The treadmill uses an industrial

motor controller that converts the input voltage level to areference speed, and adjusts the DC drive motor
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Figure 2.1: Diagram of the control loop used on the IRS (left), and a picture of the IRS system in its early stages (right).

The feedback |oop begins with a position sensor mounted on the vehicle. The sensor consists of a
3-bar linkage with potentiometers or encoders at each joint. The angles from each joint are then used to
determine the position of the vehicle on the treadmill. The treadmill speed is monitored through an encoder
wheel mounted on the drive shaft of the motor. Depending on the vehicle, wheel velocities can also be
measured via encoders.

There are currently three vehicles in use on the IRS, each with different operating capabilities.
The simplest car is a 2WD vehicle with front wheel steer, and is used to test following strategies and
sensors. The second is a 4WD vehicle with independent front and rear steering. This vehicle is used to
conduct basic vehicle dynamics and controller analysis. The most advanced vehicle is a custom built,
independent wheel torque vehicle. It has a separate motor on each wheel, is front and rear steerable, and
has encoders on each wheel monitoring wheel velocity. This vehicle is used to test ABS and integrated
chassis controller strategies.

2.2 Types of Vehicles

There are currently three scale vehiclesin use on the IRS: the follow car, the AWSAWD vehicle,
and the Uberquad. The follow car is a 1/10-scale rear-wheel-drive vehicle with front wheel steering. Itis
used to test following strategies and vehicle roadway sensing. It is equipped with four optical sensors that
are used to sense alight sourcein front of the vehicle. By measuring the resistance change across the

photoresistors, the location of the light source can be determined and used for tracking another vehicle.
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Professor Alleyne of UIUC presented work on this follow vehicle at the 1998 |EEE Transactions on
Mechatronic Systems.

Figure 2.2: The follow vehicle.

A second vehicle, referred to in this thesis as the 4WS4WD vehicle, has been the focus of most of
the vehicle testing to date. Thisvehicle has front and rear steering capability and is driven by asingle
motor via a standard 4 Wheel Drive (4WD) type system. The vehicleis 27 cm long (front to rear axle) with
atrack of 19.5 cm. Early versions of this vehicle utilized a bar mounted on top of the vehicle that allowed
the position sensor to be moved laterally along the vehicle. Thiswas used for studies of vehicle dynamics
and its dependence on sensor placement. As shown theoretically in later sections of this thesis, the sensor
placement was shown to be atype of feedback. After reaching this conclusion, the author remounted the
position sensor for the vehicle to the top of the center-of-gravity (CG) of the vehicle. In addition, encoders
were mounted coaxial to the actuators to monitor actuator angles. This allows studies of the actuator
dynamicsin the closed-loop system. Thefirst actuators used were Futaba S9304 series, and were found to
have dynamics that were slower in bandwidth than the vehicle dynamics. Modifications were made to the
vehicle to make its dynamics slower (primarily by increasing the mass and moments of inertia), and faster
Futaba S9402 servos were substituted to improve performance. The dynamics of the vehicle and actuators

under both configurationsis discussed in great detail in later sections.

Figure 2.3: The 1997 4WDA4WS vehicle (left), the 1998 version (center), and 1999 version (right).

The most advanced vehicle is known as the Uberquad and is completely custom-built. It hasa
separate motor to drive each wheel, and has front and rear steering capability. Each wheel and steering

actuator utilize coaxial encoders to monitor wheel rotation and steering angle. To overcome limitations
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encountered with an R/C transmitter system, the Uberquad was modified to utilize direct-drive DC motors
for the wheel torque and steering actuation rather than servos and RC-drive motor controllers. Also, unlike
the previous two vehicles the Uberquad was designed from the beginning to dimensionally scale very close
to areal vehicle with atrack of 1.5 meters and length of 2.7 meters. The track and length of the Uberquad
is 0.21 meters and 0.39 meters, maintaining a ratio from scale to full-size vehicles of approximately 1 to
7.1. The Uberquad is used to study torque control of the vehicle's yaw rate and lateral position, as well as

more advanced control techniques. These controllers are presented in Chapter 5 of thisthesis.

Figure 2.4: The 1998 versions (left) and 1999 versions (right) of the Uberquad vehicle.

2.3 The Computing System

2.3.1 The Performance Limits of aNon-Dedicated CPU System

Because of cost and implementation reasons, it was decided that a non-dedicated CPU system
would be used for data-acquisition. The term "non-dedicated” refers to the use of a PC based I1/0O system,
rather than a microcontroller or aDSP to control the vehicle. Because the PCs CPU must in part run the
software associated with background tasks, disk access, etc., it is not capable of the same sampling and
performance capabilities as a dedicated DSP. Hence, the performance capabilities of this system are more
limited. However, the PC-based system is much more affordable, easier to upgrade, and provides a better
platform for rapid-prototyping of control systems. In addition, the current system provides rea-time
graphing capabilities that are ordinarily not affordable on a DSP system.

The original design of the IRS used two 75-MHz Pentium computers to control the vehicle. The
concept was to use one computer to control the vehicle and another to control the treadmill. A network
system was developed where the computers communicated control and feedback information between each
other utilizing digital I/0 and flags to coordinate timing. This network system proved difficult and
unwieldy to use in practice and the full computational capabilities of each computer were being used more
for communication than control. Eventualy, the entire I/O system was consolidated onto one computer,
with the resulting system being much easier to debug and much easier to code.

Asthe speed of commercial PCs increased, the system was eventually upgraded to the current
computing platform. Currently, a400 MHz system is being used with 128 Megabytes of RAM. One
problem with the upgrade to the new system was the need to maintain | SA dots for the I/O cards. The PC

industry is phasing out the use of ISA slots; however, the controller boards previously used were
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completely based on the ISA bus. As a consequence, one of the previous 4 | SA boards was replaced with

its PCI bus counterpart in order to be implemented on the new system.

2.3.2 DataAcquisition Boards

For the PC based system used in these experiments, the central limitation to the data acquisition
speed of the control loop isthe I/O boards. Thetime it takes the computer to read an external voltage, send
avoltage out, read an encoder, or read digital inputs and outputs depends primarily on the hardware used
by the computer. The following time-loading values were obtained by doing 1,000,000 consecutive

samples on the 75 MHz Pentium and timing the length of time needed to complete each of the following:

1 Channel Analog Read on the 815 board 75.46 micro sec
1 Channel Analog Write on the 802 board 8.62 micro sec
1 Encoder Channel Read 19.39 micro sec
Reset the timer on the 800 boards (with error checking) 60.36 micro sec
Reset the timer on the 800 boards (w/o error checking) 58.49 micro sec
Read the timer on the 800 boards 34.44 micro sec

These times represent the minimum time needed to perform each reading of external voltages, and are
limited primarily by the 1/0 boards. These sampling times place hard limitations on the speed of the
controller used. Unless otherwise stated, all inputs and outputs are conducted at a 1 kHz sampling
frequency.

There are currently 4 boards used in the PC system: two Western Digital 1SA 4-channel encoder
boards, one Computer Boards RT1-802 ISA analog output board, and one Computer Boards RT1-815 PCI
board. With the use of an encoder-sensing arm, a minimum of 4 encoder measurements is needed: 3 from
each arm joint and one to monitor the treadmill velocity. With the addition of actuator or wheel position
encoder measurements, another encoder board is needed. The RTI 802 board has the capability of
outputting 8 analog channels. The RTI 815 board can input 16 analog channels, output 2 analog channels,
and can input or output 24 digital channels.

2.3.3 Software

In the original system, DOS-based C-code was used for the implementation of the control 1oop.
When the author took over the vehicle implementation from the previous student, it was relatively easy to
code simple controllers; however, complex high-order controllers required a conversion to state-space
formulations and consequent coding and debugging. The timing of the system was conducted by polling
the RTI timer located on the 815 board. This process turned out to be very computationally intensive and
wasteful. Consequently, there was no effective method to analyze in real-time the performance of the

system graphically or numerically.
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Later versions of the software retained the use of the C-code, but the author moved the system to a
Windows platform. The use of timer polling was replaced by the use of the interrupt vector chip on the
CPU to call an interrupt service routine to implement the controller code. This system allowed real-time
display of controller performance in the form of screen-printing; however, Windows software and hardware
interrupts were disabled and thus disk 1/O and real-time graphics were not available.

In the final version of the system, the author adopted and modified the commercial software
produced by Wincon® for MATLAB®. This software usesthe MATLAB's Real-Time Workshop®
compiler to compile a Simulink diagram into c-code. The c-code is then compiled into an executable and
downloaded to the CPU. The Wincon software provides the time polling capahility, graphics, and disk 1/0.
However, the Wincon system assumes that the user is utilizing the Wincon 1/0 board. With the help of
Dan Block, the control systems lab technician at UIUC, the Wincon and MATLAB compiler routines were
modified by this author to create new /O software driver routines to support the RTI-802 ISA, RTI-815
ISA, RTI-815 PCl, and U.S. Digital Encoder board input and outputs. These drivers are currently available
to UIUC students.

2.4 The Transmitter and Communication System

For the experimental testing discussed in this thesis, two communication loops were used to
control the two different vehicles. For the AWSAWD vehicle, amodified R/C transmitter/receiver system
was used to control the vehicle. For the Uberquad, a standard DC-motor/amplifier system was used for the
control.

The AWSAWD vehicle used a modified off-the-shelf R/C transmitter system for communication.
The figure below shows the transmitter system used from ajoystick command on a hand-held transmitter to
servo or motor mation.  The signal begins with the handheld transmitter, where the user normally moves a
joystick or switch to change the voltage produced by a potentiometer. The potentiometer signal for each
channel is converted into a pseudo-PWM signal, which is then modulated by R/C electronics into a FM
signal. An R/C receiver demodulates this signal, and sends the appropriate pul se commands to each servo
and to the motor controller. The motor controller provides power to the receiver and to each servo, and

converts the PWM signal into a voltage command to each motor.
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Figure 2.5: A schematic of the communication system used for the 4AWS4AWD vehicle.

The original motivation for the IRS was to utilize off-the-shelf components for as much of the
system as possible; thereby minimizing cost and setup time. Although this did alow fast implementation
of control techniques, the transmitter system and servos wereiill suited for control applications from a
dynamics and electronics standpoint. The primary issue was that the transmitter system by design had a
large variable-delay in the transmission. Electronically, the voltage range needed to produce the full range
of actuation was very small (0.2 volts), and hence noise, voltage drift on the 1/O boards, and digitization all
introduced noticeable and sometimes significant effects in the control loop. From a dynamics standpoint, it
was discovered that the R/C servo pole locations were close to those of the vehicle dynamics. Furthermore,
the actuator had arate limiting term due to the torque limits on the motor. Later sections address actuator

dynamics and the methods used to measure them.

2.4.1 The Pseudo — PWM Servo Control Signal

Shown in the figure below is an R/C servo. The servo connectsto the receiver and is the actuator
that steersthe vehicles. For the work conducted in this thesis, two different kinds of servos were used: the
Futaba S9304 servos and the Futaba S9402 servos. The performance of each type of servo is discussed in
more detail in later sections of thisthesis.
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Figure 2.6: The servo used for the AWSAWD vehicle.

Each servo is connected to the receiver by three wires. Two of the wires are high voltage (red)
and ground (black). The supply voltage is generally between 5 and 7.5 volts DC, but depends on the
battery system. Thethird wire (white or yellow) is used to transmit a control signal. The control signal
received by the servosis best described as pseudo Pulse-Width-Modulation (PWM). Classic PWM signals
consist of a square wave whose duty cycle is varied from 0 to 100 percent to control the speed, position, or
toque of amotor. The servo signal, using the same concept, is also a square wave that is repeated every 20
to 30 milliseconds, with a pulse height approximately the same voltage as the “high” voltage line (whose
numerical value depends on the battery supply voltage, typically between 5 and 7.5 volts). The position of
the motor is transmitted via the pulse length. The pulse length is varied from a minimum of 1 millisecond
to amaximum of 2 milliseconds, where 1 millisecond pulse length would represent full counterclockwise
motion, and 2 milliseconds represents full clockwise motion. Thus, the center pulse-length would be
approximately 1.5 milliseconds (Note: some servos can actually utilize pulse lengths outside of this range,
but the above values represent the “ standard” for the R/C industry). The figure below shows a sample
pulse-train to an R/C servo and how the pulse-length may be varied to change the rotation of the servo-
horn. For further information on servo systems, refer to Scott Edward’ s book where computer control of

servo systemsis discussed in detail in Chapter 9 (Edwards 1998).
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Figure 2.7: The relationship between the pulse command and the servo output.

An important drawback to the servo controller is that there is a small dead-zone built into the
controller. If the servo-horn iswithin approximately a degree of the desired reference angle, but not
exactly on the reference value, the servo will not respond. Theintent of this feature is to prevent the servo
from responding to noise and thus allow the servo to remain "off". If the servo did not have a dead-zone, it
would continually "jitter" about a nominal position in response to noise when not actively being used. In
commercial R/C systems, this would rapidly wear down the batteries, which already have avery short life
span (Note: there is no battery system for this project since an external power supply is used). The impact
of this dead-zone on the dynamics of the system will be discussed in more detail in later sections.

In order for the servo to receive the signal from the receiver, the receiver must first obtain a signal
from the transmitter. To determine the nature of this signal, the trainer port of the transmitter was used.
Regarding the trainer port, scale aircraft transmitters often are equipped with a port that is used to connect
an instructor’ s handheld transmitter to a student’ s transmitter. The planeis set up to only accept signals
from the instructor’ s transmitter. Once the instructor flies a plane into in the air with sufficient atitude, the
instructor can flip a switch on his/her transmitter to allow the student to fly the plane via a cable connection
to the student’ s transmitter. The student's control inputs then fly the aircraft as long as the instructor has
the switch depressed. [If the student looses control of the plane, the instructor can release the trainer switch
to regain control of the aircraft. Note that the trainer cable also provides power from the instructors
transmitter to the student's transmitter, because the student’ s transmitter does not even need to be on to fly
the aircraft.

There are two advantages to using the trainer port: it allows the servo signals to be examined

directly and it allows us the computer to be directly connected into the transmitter without any rewiring of
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the transmitter system. Examination of the wires inside the trainer cable reveals that there are four main
wires. These wires consist of ahigh and alow power line that connect the power systems of the two
transmitters, the line that transmits the instructor’ s servo controls to the student, and a line that transmits
student’ s servo controls to the instructor. If we examine the signal lines from a4-channel transmitter with

an oscilloscope, we might find a signal that looks like the following:

1-2 ms (varies by joystick inputs)
H FH HH

Repests every

~20ms

H A H ~1 ms constant

Figure 2.8: A sample servo signal on the trainer cord.

If we move the flight joystick relating to servo 3, the signal would change like the following:

~1ms

Joystick for
servo 3full
right

| ~2ms

Joystick for
servo 3 full
left

Figure 2.9: How the transmitter signal changes with joystick input.

Examination of this signal reveals that the transmitter and the receiver “communicate” via a pulse-
type modulation similar to that used to control the individual servos. The signal for servo 2 issimply
appended to the signal for servo 1; the signal for servo 3 is appended to signal 2, etc. This createsasingle
chain of pulses, where the number of “troughs’ is equal to the number of channels the transmitter transmits.
The chain repeats itself every 20 milliseconds. The transmitter very likely takes this low-frequency signal
and modulates a fixed frequency (by acrystal) FM signal and transmitsit to the receiver. The receiver then
demodulates the signal and de-multiplexes the signal to send a single pulse to each servo during each 20-
millisecond cycle. Once point to note about this method is that the signal is very immune to noise by the

its' digital nature. The figure below shows how the demodulation might be done:
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Figure 2.10: The demodulation of the transmitter signal at the receiver.

On anormal R/C transmitter, the human sends driving/flight commands to the vehicle by moving
joysticks or knobs connected to a potentiometer. The transmitter reads the voltage produced by the
potentiometer, and produces a pulse train (described above) that is proportional to each potentiometer
voltage. The potentiometer voltages usually vary between 1.9 to 2.1 volts over the entire range of input.
That is, if the driver pushes a joystick full right, the potentiometer might read 1.9 volts, while full left may
read 2.1 volts. Experimentally, we have found that the “ center” voltage may vary between joysticks from
1.9to 2.5 volts. The small voltage range, about 0.2 to 0.3 volts between full servo on and full servo off,
means that any small voltage drift or noise significantly affects the servo performance.

At this point, there are three clear methods to drive a scale vehicle by a computer using an R/C
transmitter. To describe these methods, assume that there are 6 different servo systems (or channels) that
areto be controlled on the vehicle. The first method of control isto use the computer to generate the servo
pulses directly to each servo. The computer would then need to change the pulse length of each of the six
pulses separately, and output the pulses on 6 separate digital or analog lines that are connected directly to
the vehicle. No transmitter or receiver would be needed, the car would not be autonomous, and a timer
board or conversion circuit would be needed by the computer to generate the pulses. The second method is
to use the computer to generate a single pulse train using digital or analog output that would be input into
the trainer port: i.e. the computer would act as the “student” on the trainer cord. This method would require
only one line and alow "autonomous" cord-free vehicles, but again atimer board or conversion circuit
would be needed. This method was actually used experimentally for a short period of time by using a
conversion circuit build on cascaded 555 timers to convert voltages to pulse-length. The third and final
method is to bypass the potentiometer used to measure the joystick position inside of each handheld
transmitter, and use the computer to input its own potentiometer voltage into the transmitter via analog

output. Thisisthe method utilized in current system for the AWSAWD vehicle. This system isvery
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simple, but suffers from the noise and voltage drift drawbacks previously mentioned. These drawbacks are
discussed in greater detail in the next section.

2.4.2 Delays, Variation in Communication Intervals, and Noise

Using the joystick-voltage approach has caused significant difficulties in controlling the vehicle
remotely. For instance, attempting to control the vehicle at a nominal speed of 2 m/s may be quite difficult
because the voltage difference between 2 m/s and 3 m/s may be only 0.05 volts. In some cases, this voltage
change used by a controller may be within the range of background noise and hence the servos may act
erratically. A larger problem is that the base voltage from the computer board and the voltage supplied to
the vehicle may drift very slightly, causing small changesin the servo output. These small changes may
require re-calibration of the servos and speed every several hours during testing in the presence of an
electrically noisy environment. Extensive work was done to ensure adequate shielding and drift
prevention, including shielding of source wires, prevention of grounding loops, and ground isolation
between signal and power supply lines. This significantly improved performance, but did not completely
eliminate the problem.

Another inherent problem in using the above transmitter system is the communication delay.
Because the transmitter signal is essentially only updated every 10 ms at maximum, faster vehicle
responses are quite difficult to obtain. To make matters worse, the delay itself is not constant. For
instance, if a step response on actuator 3 takes place immediately before the pulse train starts, then the
delay associated with this step response is simply the amount of time needed for the pulses of actuator 1
and 2 to pass. |f the step response on actuator 3 happens after the pulse train reaches actuator 3, then the
delay isthe entire 10-20 milliseconds of the pulse cycle in addition to the delay from actuators 1 and 2.
The effect isa*“quantized-like” delay, where step responses may appear to start only on set intervals of 10
ms, rather than atrue “random” delay. This non-random delay is seen quite clearly in a series of step

responses conducted on the front steering actuator of the vehicle, as seen below:
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Unfortunately, there is no method to determine beforehand the specific delay of the system
because the delay determined by the transmitter itself instead of the computer. This creates nightmarish
problems in modeling fast vehicle dynamics or servo dynamics because the starting time of the control
input can vary over arange of 20 milliseconds (as seen above). Asacompromisein modeling, this delay
can be approximated as a constant delay of 0.012 —0.015 seconds. Thisdelay problem isinherent in the
use of the pseudo PWM signal used by the servo actuator controller itself. Hence, the same delay problems
will occur if the vehicle control signal is sent into each servo directly, into the trainer cord, or into the
joystick voltage. Dan Block here at the University of Illinois has developed a method where the controller
internal to the servomoator is bypassed, thus producing a system that can be sampled and controlled without
time-delay limitations. Basically this required "gutting" the analog controller used by the servo system. As
a consequence, a feedback loop must be created for each servo system. With this amount of complexity,
the only advantage of the servo system isthat it is a small, packaged motor and sensor. If we compare the
cost of aquality (high-bandwidth) servo system to a DC motor and integrated encoder with the same
bandwidth, the costs are comparable. The DC system, however, will not likely be rate limited to the extent
exhibited by the servo system.

2.4.3 Alternative Implementation Methods — Direct Motor Control

The “standard” method to control the position of a motor without using a transmitter systemisto
utilize an amplifier on a DC motor with position or velocity feedback. The computer outputs a voltage to
the amplifier, which then convertsit usually into a standard PWM signal whose current (or voltage) is

proportional to the source voltage. The motor’s position is then monitored to complete the feedback 1oop.
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Figure 2.12: A block-diagram of the DC-amplifier circuit.
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There are several advantages and disadvantages to using a tethered DC-amplifier system. The
biggest disadvantage is the cost: each amplifier costs approximately $200 and requires a dedicated power
supply (about $150). The motors, athough high performance, cost as much as a high-quality servo. In
addition, the vehicle is no longer capable of being “untethered” by cables or power supplies. Because the
amplifiers are bulky and require a 120-volt power source, it is simply not feasible for the 1/8 scale car to
carry amplifiers onboard the vehicle. The advantage of using the “standard” system is primarily that they
are well-known well-identified systems and remarkably linear. The DC motor control is a standard plant
examined in beginning controls laboratories. The motors can provide high-bandwidth actuation with very
little non-linearities. If non-linearities or lower bandwidth are desired in the actuators at a later point, they

can be added by software without any hardware changes.

2.5 The Driving Console

To include a human driver in the control implementation, the Illinois Roadway Simulator is
equipped with adriving console. The console is a modified video-game driving unit, and consists of a
steering wheel, a shift bar, two buttons, a gas pedal, and a brake pedal. The shifter and two buttons are
simply digital switches that connect to ground. Hence, there are atotal of 4 outputs available (2 on the
shifter and one for each button). The steering wheel, brake, and gas pedals use potentiometers to measure
incremental changes. Thus, three analog outputs are available. A picture of the driving console is shown
below:

Figure 2.13: A picture of the driving console.

The steering wheel is used in several ways. When the vehicle is autonomously driving, the
steering wheel is used to input areference lateral position. The steering voltage is scaled by some factor to
correspond to some lateral position. When a Driver Assist Controller is being tested, the steering wheel is
used to input a steer input into the front tires. For each steering wheel measurement, the centered steering

wheel voltage is subtracted off the measured voltage to obtain the steering input.
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2.6 The Method of Sensing Vehicle Position

The Illinois Roadway Simulator is somewhat unique in that the vehicle position can be measured
absolutely from afixed ground position. Asdiscussed in the literature review section of thisthesis, full-
size vehicles can sense their position on the road by a number of techniques including radar, vision
systems, magnetic markers, laser telemetry, and GPS. During the design of the IRS, many different sensing
systems were considered including optical, magnetic, and vision systems. However, the cost of the fixed-
arm sensing and the simplicity of implementation were significant factors in the selection of the arm

system. This section details how the arm is used to measure the vehicle states.

2.6.1 Arm Configuration

The position of the vehicle is determined via an arm attached to the vehicle. The arm has two
segments, with three potentiometers or encoders attached at the ends of the segments. From the
potentiometers or encoders, the angle of each segment can be determined. Given the length of the arms, the
position of the vehicle can then be found. The diagram below shows the angle conventions used to

determine vehicle position from the arm angles:

Figure 2.14: The angle conventions used to determine vehicle position using link angles on old arm (left)

and new arm (right).

The arm has two segments, with three sensors attached at the ends of the segments. From the sensors, the
angle of each segment can be determined. Given the length of the arms, the 3 planar degrees of freedom of
the vehicle can then be found. The figure above shows the angle conventions used to determine vehicle

position from the arm angles. From these angles, trigonometric relations give the vehicle' s position:
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The vehicle velocities in the plane are determined via numerical differentiation instead of using analytical
derivatives of Equation (2.1). Theresolution is approximately the same. The measurement of the linkage
angles has been tested using two different methods: potentiometers and encoders. The following isa

discussion of the advantages and disadvantages of each measurement technique.

2.6.2 Digital versus Analog Position Sensing

Over the course of this thesis work, there has been some contention whether encoders or
potentiometers should be used for vehicle position feedback. The original vehicle feedback system utilized
low-resolution incremental encoders that were unsuitable for yaw-rate feedback and very prone to
breakage. For these reasons, the encoders were replaced with potentiometers. Initially, the performance
improvement was substantial. However, the performance of the potentiometers deteriorated rapidly, and
the system was then upgraded to high-resolution impact-resistant encoders. The intent of this section isto
outline the methodology used to design the feedback system, with specific focus on the mistakes made
during each design iteration.

In selecting between encoders and potentiometers to measure angular rotation, one must realize
that both systems have limited resolution. The resolution of the encoder is simply the digital number of
counts per revolution multiplied by the encoder multiplication factor (usualy 4), which is determined via
software. The multiplication factor increases the counts of the encoder by using a second pul se detector to
measure the location of each edge. Thisis often called “edge detection”. Using software, the information
from each pulse counter is combined to increase the encoder resolution. The resolution of the
potentiometer is limited theoretically by the resolution of the A/D conversion of the Analog-to-Digital
Converter (ADC) chip. Considering that most boards have a 12 bit resolution with inputs ranging from 10
to —10 volts, the number of increments per revolution of the potentiometer is roughly 7000
“counts’ /revolution. In actual practice however, the analog inputs are very prone to noise, and hence the
working resolution is much less. It isclear that an “average” encoder with 2000 counts per revolution
(8000 counts with the 4 times multiplication available from the encoder board) will have equal or better
performance to a potentiometer using a 12-bit ADC to input the voltage signal. It isimportant however to
ensure that the software multiplication is used. Inthe original system, encoders were used without edge-
detection, and hence the maximum resolution of the encoders was limited to 1000 counts/revolution.

If an encoder is selected with poor resolution (asin the original system), the position signal
becomes so quantized as to introduce a large amount of noise, especially when the derivative of the
position signal is obtained numerically. An example of this can be found in Mark DePoorter's thesis, where
yaw-rate control was attempted and abandoned due to poor yaw-rate feedback. The original encoder

system, because of poor resolution, had a significant amount of noise in the yaw rate measurement. To
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compound the problem, the frequency of the “noise” generated by taking the derivative was in the same
frequency band as the dynamics being measured. Initialy, filtering was attempted by Mark DePoorter to
correct this problem, but the phase lag introduced by the filtering was too significant. Further discussion
regarding this problem, as well as plots showing the poor signal conditioning, can be found in Mark
DePoorter’ s thesis (DePoorter 1997a).

When the encoder system was replaced with potentiometers, it was found that calibration of the
system became significantly more difficult. First, the potentiometer was calibrated to find the
voltage/angleratio. Afterwards, an offset angle dependent on the mounting of the potentiometer to the arm
was subtracted. It was discovered that care must be taken with potentiometers not to pass into the non-
linear resistive sensing area. Also, if the source voltage to the potentiometers changes slightly, the
potentiometer response will also change. In summary, calibration of the potentiometers must be conducted
on the assembled arm, and is quite difficult. Experience showed that the easiest way to calibrate the arms
was to mark roughly a dozen known locations on the treadmill surface, and then use the arms to measure
the potentiometer voltages with the arm centered at each of these locations. A search routine was then
conducted in code that found the correct slope and intercept on EACH potentiometer that matched the
predicted arm position with the known arm positions. Even with this method, manual refinement was often
required afterward to obtain quality position feedback.

One of the first problems discovered in using the potentiometers was the possibility of having a
non-linear response from a potentiometer. Often a new potentiometer will exhibit a non-linear response. A
calibration setup was constructed that connected a potentiometer to an encoder; the potentiometer shaft was
connected to an encoder, and then the potentiometer was swept back and forth through the appropriate
operating angles. The voltage was recorded from the potentiometer at each angle, and the resulting data

was plotted. The figure below shows a comparison between linear and non-linear potentiometers.

6

15 4

10 2
0

—~ )
£ s S

& o 2

% ° oo™ E -4

S s ; s -6

-8

-10 10

.15 -12

0 100 200 300 400 0 50 100 150 200 250
Angle (degrees) Angle (degrees)

Figure 2.15: The calibration curves non-linear (left) and linear (right) potentiometers.

After being calibrated on the above stand, potentiometers were then selected for use on the arm based on
their observed linearity.
The resolution of an encoder in practice never changes with time; however, repeated use of a

potentiometer causes wear and hence change in resolution. It was found that after repeated use, the
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calibration would change and the potentiometer response would become non-linear. An example of how
this drift can affect the response can be seen in the plots below, which compare the encoder and
potentiometer arms. Both responses were made by using the end of the arm to follow a circle traced out on

the track.
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Figure 2.16: responses of each arm tracking a circular path (encoder left, pot right).

When the calibration drift was first encountered, it was thought that the original potentiometer calibration
was incorrect. When feedback of the yaw rate signal was examined, the yaw rate response was found to
have large spikes that made the signal unsuitable. Suspecting that arm-bounce may be causing this error,
the arms were shortened by afactor of 2. The two different yaw rate responses from each arm (using

potentiometers at each joint) are compared below.
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Figure 2.17: The open-loop response of the long arm (left) and short arm (right) at a speed of 1.2 m/s.

Although this change made the arm physically much stiffer which decreased the vibration amplitude and
increased the frequency of vibration, no significant change in the amplitude or frequency of the feedback
spikes was observed. Concluding that the spikes are unrelated to the bounce motion, it was hypothesized

that the potentiometers may be the cause of the error.
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During calibration of the potentiometers for the shorter arm, it was noticed that the calibration
coefficients (such as the slope and intercept of the regression fit) changed significantly with each
calibration. Examining the potentiometers with an oscilloscope during a constant motion of the
potentiometer shaft, the voltage response was clearly non-linear and showed a stair-step tendency. It
appeared there were small regions, approximately evenly spaced, where the voltage did not change with
angle. It was then suspected that the potentiometer element wore away at these points due to repeated use
such that the voltage response was no longer linear. To test this theory, the potentiometers in the arm were

replaced by encoders one-at-a-time, as shown below. The encoder resolution was 1000 counts/rev.
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Figure 2.18: The open loop responses of the short arm at a speed of 1.2 m/s using one encoder at the vehicle

(Ieft), two encoders at the vehicle and middle joint (center), and all encoders (right).

After realizing the potentiometers were the cause of this error, one of the "used" potentiometers was

recalibrated to observe if it was causing the error.
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Figure 2.19: Non-linear potentiometer response due to excessive wear. Note that the figure on theright isa

zoomed-in portion of the left plot.

Overdl, the resulting calibration was deceptively linear; however, closer examination revealed step-like
nonlinearities in the response. These nonlinearities are likely due to uneven wear in the potentiometer path
dueto fretting. Fretting occurs when there is constant rubbing between two surfaces that are moving only

dlightly with respect to each other. It is possible to purchase potentiometers that have a higher immunity to
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this kind of wear (by using precious metals as conductors), but the price of these potentiometersis
equivalent to their encoder counterparts.

After replacing the potentiometers with newer, higher-quality encoders, a primary concern was
that the shaft load on these more-expensive encoders would not bend the shaft as with previous encoders.
The previous low-cost potentiometers were very impact resistant (in fact, the arms themselves would most
likely break before a potentiometer would fail). Encoders, on the other hand, will readily break upon
impact. Fortunately, one of the specifications provided by encoder manufacturers is the amount of torque
and normal load the encoders will sustain without breaking. Examining these specifications revealed that
the first type of encoders purchased had a normal force limit of 5 oz., which is much less than the weight of
the vehicle. Consequently after one severe crash, one of the encoder shafts bent during a test rendering the
encoder unusable. New encoders were chosen with arating of 5-1bs. impact force, which is approximately
the weight of the vehicle. In addition, the mounting of the encoders was redesigned to incorporate a flexi-
coupling to the encoder shaft to isolate impact damage away from the encoder. Additionally, a bearing
system was added to the encoder arm to prevent force or moment transmission to the encoder arm.

. e
Figure 2.20: The new encoder mountings showing how the encoder shaft was isolated.

The resulting system proved to be very reliable and impact resistant, and was used for the vehicle tests
discussed in this thesis.
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3 Modeling And System | dentification

This chapter isintended to provide a complete dynamic description of the systems, and includes
the methods used to obtain this description. The chapter begins with a description of the treadmill
dynamics, useful for understanding the limits of the treadmill system to track an accelerating or
decelerating vehicle. The next section deals directly with the longitudinal control of the vehicle, and
provides results for this control. Lateral control isthen begun in the next section, with the introduction of
the theoretical bicycle model. Afterwards, scaling issues are discussed using the bicycle model as the
dynamics of comparison. The methodology used to obtain the vehicle transfer functions is then presented,
followed by the specific results of the dynamic fit for the three vehicle conditions examined in this thesis.
Finally, a summary of the vehicle dynamics encountered experimentally and measured in thisthesisis

given.

3.1 Treadmill Dynamics

To monitor the treadmill velocity, an encoder was mounted on awheel that “rode” on top of the

: ,/
Treadmill sensor
moved from here
(I€ft) to here (right) (

Figure 3.1: The original location of the treadmill speed sensor (left), and the modified location of the sensor

(right).
Originally the encoder was mounted by Mark DePoorter to bein the middle of the treadmill. However,

treadmill surface.

after a catastrophic bearing failure, it was decided that the encoder should be mounted somewhere less
obtrusive. The above pictures show the “before” and “after” location of the treadmill speed sensor.

To obtain the relationship between treadmill velocity and encoder measurement, the treadmill was
then moved through 10 compl ete rotations, and the number of encoder counts was recorded. There were
4000 encoder counts per encoder revolution, and 47.048 (average) encoder revolutions per complete track
revolution. The length of each treadmill revolution (i.e. the “ circumference” of the treadmill surface) was
also measured to obtain a distance per unit encoder count. The measurement revealed a length of exactly
205.5 inches. Thus, by knowing the number of encoder counts that have passed per unit time, the treadmill

velocity can be determined. One problem with this technique is that the encoder-determined velocity is
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inherently quantized. Originally, running averages of 10 samples were used to measure the encoder
velocity (before the author learned about causality and phase lag in sampled systems). Later, atrue low-
pass filter was used (4" order) to obtain the treadmill velocity. It was found that the error between the
averaged responses and the filtered responses was in actuality quite small. Figure 3.3 shows the “ smooth”
response of the averaged responses, while Figure 3.6 shows the more “jagged” filtered response obtained
by true low-pass filtering of the signal. Thislast signal isthe one currently used on the treadmill velocity
control.

In order to understand the treadmill response, the treadmill dynamics were determined. Before
introducing the dynamics, an important aspect of the treadmill must be presented: the motor used on the
treadmill does not allow negative control torque. Acceleration of the treadmill is accomplished by aDC
motor that applies torque to the treadmill belt, while deceleration is accomplished by shutting off the motor
and allowing friction to slow the treadmill down. Hence, two separate models can simulate the treadmill
dynamics: atorque-friction model for acceleration, and a friction-only model for deceleration. We begin
by examining the friction-only modeling.

The governing equation used to find the treadmill dynamicsis given by:

dw
Jx—=-Bxw- F+T,
dt controller (3. 1)

where Jisthe treadmills rotational moment of inertia, B is the treadmills viscous damping, and F is the
diding friction term. We can rewrite this as
dw __ B - E+ Teontroller

dt J J J (3.2
To solve for the various coefficients of this equation, we examine in the time-domain the separate
responses to step decrements, steady-state changes, and step increments in the reference velocity that the
treadmill is attempting to track.

To obtain the treadmill velocity, the treadmill position was differentiated at each time increment
by simply dividing the change in encoder counts in the past time sample by the time sample. The treadmill
position in meters was determined by measuring the length of the treadmill surface for one revolution, and
measuring the number of encoder counts to compl ete the revolution. The number of counts was found to
be 47048 counts per revolution, and the track length was found to be 205.5 inches. Because the treadmill
velocity is measured using an encoder, the velocity signal is quantized and hence has a significant high-
frequency component. Initially, arunning average filter was used to filter the signal. The signal was very
smooth, but the delay produced by this technique made it difficult to model the treadmill dynamics very
accurately. The design of the treadmill filter, as with any causal filter, was a tradeoff between phase lag

and signal smoothness.
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3.1.1 Step Decrement Treadmill Responses

To solve for B/Jand F/J, the treadmill was allowed to reach a steady-state operating speed, and then the
reference speed was suddenly set to zero. Because the treadmill cannot apply any reversing torque, the
dynamic response to this input provides information regarding the amount of friction present in the system.

The response of the system can then be fitted to the linear ordinary differential equation

w_ B F
dt J J (3.3)
Which can be rewritten as by taking the Laplace transform,
B F
SAMS) - wg +—RAMs) =-
AMs) - Wo J>W() e
(3.4
or
_ Wy F
WS =—45 B5 (35)
St—  JxXsxcS+ —=
J Jo
Which becomes in the time domain
-B e -B_o
RN 2N R
w(t) = wp e -—xl-e + (3.6)
B =
g 5
or
-B
. —X
® Fo J F
w(t) = cwg +—ox - =
M =gho+g, B (37
In order to obtain the values F/B and B/J, we guess
F
C=—
B (3.8

and do least-squares regression on the linearized form of Equation (3.7) to obtain best fits to Figure 3.3
below:

In(w(t) + C) =Infw, + C) - % X (39

Using thefit of this above equation, we can determine the difference between the actual data and the fit
data, which then defines an error. We then can iterate on estimates of F/B to minimize thiserror. This
minimum-error value of F/B is assumed to be the best fit. A graph of the curve fits to this equation using
this process is shown below for variousinitial speeds. Note that treadmill velocity is used instead of
rotational speed in the equation fit. The treadmill speed is determined from an encoder mounted on the
treadmill. As mentioned, the treadmill length is 205.5 inches, and the encoder records an average of 47048
counts per treadmill length. Hence, it is simply alinear gain to change angular velocity coordinates to

treadmill linear velocity coordinates.
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Figure 3.2: The velocity decay of the treadmill showing experimental data and theoretical fit.

There were 5 curves generated for each step-down speed shown above, for atotal of 20 different estimates

for F/Jand B/J. The valuesfound for these curves are given in the table below and plotted.
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Figure 3.3: The dynamic equation coefficients determined for the treadmill theoretical fit.

The coefficients obtained for the treadmill have minor velocity dependence. For simulation purposes, the
experimenters assume constant parameter values at all velocities. However, as will be shown in simulation
results (presented later), this assumption does create some error during the velocity decay portion of the
treadmill response. This error is acceptable in terms of vehicle experimentation and modeling. Based on
the treadmill performance at different velocities, we suspect that the parameter velocity dependenceis

primarily due to the changing nature of the treadmill belt friction. Asthe belt speed increases, the torque
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contribution due to viscous drag decreases, since the sliding surface tends to float on asmall air surface at
higher velocities. This explanation remains simple conjecture, since further friction analysisis at this point
unnecessarily exact. Shown below are values obtained for the parameters of the governing differential

equation at several initial velocities:

Table 3.1: The values obtained for F/B, B/J, and F/J for various steps.

Data Stat |Stop |F/B B/J FJ Average  Average

File Speed |Speed |Estimate Estimate Estimate |Estimate Estimate
(m/s) |(m/s) | (radls) (rad/sec)  (unitless) |B/J(rad/s) F/J(unitless)

stpdwnal.dat [0.5 0.00 |1.80 0.1508 0.2715

stpdwna2.dat  [0.5 0.00 |2.01 0.1334  0.2682

stpdwna3.dat  [0.5 0.00 |1.33 0.1900  0.2528

stpdwnad.dat  [0.5 0.00 |1.30 0.1888 0.2455

stpdwnab.dat  [0.5 000 211 0.1250  0.2637 0.157632  0.260343

stpdwnbl.dat [1.0 000 211 0.1226 0.2586

stpdwnb2.dat  [1.0 0.00 247 0.1113 0.2749

stpdwnb3.dat  [1.0 0.00 |2.15 0.1211 0.2605

stpdwnb4.dat  [1.0 0.00 |2.46 0.1090  0.2682

stpdwnb5.dat  [1.0 0.00 |1.69 0.1475 0.2494 0.122324  0.262326

stpdwncl.dat 2.0 0.00 |3.28 0.0871 0.2859

stpdwnc2.dat  [2.0 0.00 455 0.0704  0.3205

stpdwnc3.dat  [2.0 0.00 |3.98 0.0767 0.3053

stpdwnc4.dat  [2.0 0.00 |3.48 0.0851 0.2962

stpdwnc5.dat  [2.0 0.00 |3.43 0.0851 0.2919 0.080899  0.299933

stpdwndl.dat [3.0 0.00 |4.93 0.0640  0.3157

stpdwnd2.dat  [3.0 0.00 |4.95 0.0641 0.3172

stpdwnd3.dat  [3.0 0.00 |4.77 0.0755 0.3601

stpdwnd4.dat  [3.0 0.00 |5.74 0.0638 0.3663

stpdwnd5.dat  [3.0 0.00 |5.30 0.0673 0.3568 0.066947  0.343211

Clearly the parameters show some variation. For simulation fitting, the parameters were varied to best fit
the model: F/J ~ .24 (unitless) and B/J ~ 0.30 (rad/sec).

3.1.2 Steady-State Treadmill Response

With the values for F/J and B/J known, the steady state response of the system can be modeled as (from
Equation 1).
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0=-Bxw- F+K*V
(3.10)

or

-_F
wem gtk (3.10)

Setting the treadmill at a particular velocity and recording the voltage, velocity becomes the dependent
variable and alineis obtained where F/B is the intercept of the line and K isthe slope. This determination
was done for five different ramps of velocity from 0 to 3 m/s at .01 m/s increments, and the values obtained

are shown below.

Table 3.2: The determination of F/B and K from steady-state response

data slope intercept
file (F/B)

ss tredl.dat |0.416820 |-0.060806
ss tred2.dat  |0.416510 |-0.063346
ss tred3.dat  |0.410120 |-0.072563
ss tredd.dat  |0.418712 |-0.063298
ss tredS.dat  |0.418396 |-0.063955

A graph of asample run is provided below
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Figure 3.4: The steady state velocity with respect to applied motor voltage showing experimental data and

linear fit.

3.1.3 Step Increment Treadmill Responses

The treadmill has a built-in motor controller pack that makes system identification difficult. As
discussed in the earlier section, we can model the treadmill quite well at steady state and with the motor off,
but the addition of a motor controller to the system adds an additional torque term which is unknown. If we

assume that the controller controls the current, then the voltage command in essence initiates a current (and
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hence torque) response from the controller. The motor used on the treadmill is a DC motor, so we would
expect afirst order system from input reference voltage to treadmill velocity.

Experimentally, several responses were obtained on the treadmill after a step-up and step-down
reference voltage command was sent. These responses were then fit to a simple first order system when the
reference velocity is larger than the treadmill velocity, and fit to the previously determined 'decay’ system
when the reference velocity was less than the treadmill velocity. We noted that the treadmill controller
pack contained atime-delay likely to be caused by the velocity sensor. The experimental and fit data are
shown below for the treadmill system. Sampling took place at 100 Hz. Thefilter used here was a 3rd order
Butterworth at a cutoff frequency of 10 Hz. The following SIMULINK diagram shows the treadmill model

currently used.
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Figure 3.5: Step-up treadmill responses (left), and the resulting model (right).

3.2 Longitudinal Vehicle Control

There are two methods to run a vehicle at a particular velocity on the treadmill. The first method
isto set the vehicle motor at some speed which is approximately the correct velocity, and the treadmill can
be forced to track the vehicle. The second method is to set the treadmill at some speed and the car can be
forced to track the treadmill. The choice between the two methods depends on the experiment being run,
but the basic difference is between which piece of hardware is the "leader”, and which piece of hardware is

the "follower".

3.2.1 AWSHAWD Vehicle (R/C system) Longitudinal Control

The longitudinal control of the 4WSAWD vehicle was made difficult by the DC motor controller
intheloop. Thiscontroller is apparently designed to have a non-linear response to have the most
sensitivity at low speeds and little throttle sensitivity at high speeds. If not otherwise stated, the
longitudinal speed of the vehicle is measured from the base of the measurement arm, where it attaches to

“ground”.
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3.21.1 Repeatability and Adjustment of R/C DC Mators

To drive the car at a set velocity, a constant voltage can be sent to the vehicle motor. Initial testing
sought to find the voltage/vel ocity relationship, and its repeatability. The vehicle was driven on a straight
line on the treadmill, and the treadmill speed was monitored over along period of time. Thistest was
repeated over many voltages to obtain a calibration curve relating voltage to car speed. To test the
repeatability of this curve, the curve was generated several times. The results of this test are shown below.
Given aset velocity, it is of interest to note how much the car variesin speed over asingle test. Thefigure

below shows the average, highest, and lowest vel ocities recorded while obtaining one calibration curve.
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Figure 3.6: The repeatability of the motor voltage/velocity relationship (right), and the variation in speed of
the vehicle at a constant voltage (right).

There are three switches available on the motor controller pack labeled "Reverse Time Delay”,
"Neutral", and "Throttle".

that the motor controller pack will wait before activating reverse. Thiswas set to be infinite time, thus

The effects of these switches are as follows: the reverse time delay sets the time

preventing the vehicle from ever going into reverse on the treadmill. The effect of the other two buttonsis

not as clear, but can be seen easily in the following figures.
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Figure 3.7: The change in the calibration curve with changes in the "Neutral" position setting (Ieft) and the

change in the calibration curve with changesin the "Throttle" position setting.
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3.21.2 Steady-State Motor Voltage/Velocity Relationship

We can see from the above plots that the relationship between voltage and velocity is certainly not linear,
and appears to be a power relationship. Using a non-linear solver routine to minimize the sum-of-squares
error, the data was fit to the following relationship:

(V- Vi) =Ads ) o1

Where the terms and best fits were found to be

Y = Applied Motor Voltage

Vo = “Zero Speed” Motor Voltage 0.089867
S = Motor Speed

S = “Zero Voltage” Motor Speed -0.059285
A = Power Coefficient 0.12858

n = Order 1.5698

3.21.3  Treadmill Tracking the Vehicle

The performance of the longitudinal controller is strongly dependent on the gains chosen for the
controller. The following plots show the performance of a controller with very tight gains of P-gain: 1.5

m/s per m, I—gain: 0.0001 m/s per m-s, D—gain: 2.0 m/s per m/s.
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Figure 3.8: Time responses showing the performance of the longitudinal controller.
The following plots show the performance of a controller with medium gains of:
P—gain: 1.50 m/s per m, I-gain: 0.0001 m/s per m-s, and D—gain: 0.150 m/s per m/s.
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Figure 3.9: Time responses showing the performance of the longitudinal controller.
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In general, the treadmill is not used to track the vehicle, simply because the treadmill surface or belt is

much more difficult to replace than the vehicle motors or tires. In general, the treadmill is run at a constant
velocity and the vehicleis used to track the treadmill, as detailed in the next section. When situations arise
where the treadmill must track the vehicle, in general the medium gains shown above rather than the “ tight”

gains are used to save on wear-and-tear on the treadmill.

3.21.4 Vehicle Tracking the Treadmill

The longitudinal controller can be designed so that the vehicle tracks the treadmill. This requires
an accurate open-loop model of the relationship between motor voltage and velocity. Thisrelationship is
described in detail in the previous section “Motor Dynamics’, and it is assumed at this point on that the
relationship iswell known. The design of the controller is straightforward PID controller design. The
results of the controller using gains P—gain: 1.5 m/s per m, I-gain: 0.0001 m/s per m-s, D—gain: 0.15 m/s
per m/sisasfollows:
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Figure 3.10: The control effort used to have the vehicle motor track the treadmill.

3.2.2 Uberquad (DC Motor system)

The Uberquad has the capability of direct torque input into each wheel. As a consequence, the
longitudinal control of the Uberquad is quite simple. A PID control with unagressive gainsis used to make
the Uberquad track the treadmill. The controller outputs the same torque command to the drive motors (2
or 4, depending on choice of the user) and this torque command is added to the differential torque steering

command (if any) that is sent to the wheels.

3.3 Theoretical Vehicle Lateral Dynamics

Theintent of this section is to describe the vehicle dynamics from atheoretical approach. First,
the history of the modeling of vehicle dynamicsis discussed. The vehicle notation used throughout this
thesisis then presented. The equations of motion are obtained by resolving the accel eration components
for the vehicle in terms of a coordinate system centered on the moving vehicle. Tire forces are then
discussed. Linearization of the tire and body dynamicsis then performed to obtain the bicycle model. A
specific case of this model, the steady-state solution, is then discussed. Transfer functions relating vehicle

input to output are then given, and general vehicle dynamic trends are then deduced from these functions.



Finally, a comparison is made between the bicycle model and other methods of modeling, including higher

order simulations and experimental results.

3.3.1 History of the Bicycle Model

Vehicle lateral dynamics has been studied since the 1950's. To describe a vehicle'sroll, yaw, and
lateral motions at a constant velocity, Segel developed a 3 DOF vehicle model (Segal 1956). If the roll
motions are ignored, a simpler model is obtained that is known as the bicycle model (Whitcomb and
Milliken 1956). At the Royal Military College of Science in 1960, Professor W. Steeds published
Mechanics of Road Vehicles presenting Newton’s equations applied directly to the bicycle model. A

conflicting model was later published by one of Steeds associates at the college, Dr. John R. Ellis. This
model used a path deviation model that approximated Newton’s equations for avehiclein motion. This
approximated model has become the standard method of modeling vehicle dynamics (even seemingly
applied to situations directly in conflict with the assumptions made in devel oping the model) (Smith and
Starkey 1995). The bicycle model has been widely used for control purposes (Fenton 1976; Shladover
1978). For small angles and accel erations, the approximated Newtonian and full Newtonian methods give

identical transfer functions.

3.3.2 Vehicle Diagram and Notation

We will first consider athree degree-of-freedom (3 DOF) model, for purposes of establishing
notation as well as a physical system of equations. The notation used is the standard notation used by the
Society of Automotive Engineers (SAE). We consider the car to be arigid mass, with a coordinate system
centered on the center of mass of the car. The figure below shows the convention to be used throughout

regarding vehicle dimensions.

Direction
X of positive
Earth angles
fixed
coordinate

system

Figure 3.11: A diagram showing the definition of the dimensions used to obtain the bicycle model.
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The notation associated with the above diagram is consistent throughout this thesis. The meaning of each

termis asfollows:

a Distance from C.G. to front axle

Distance from C.G. to rear axle

d Distance from car centerline to each wheel (1/2 the Track)
X, Y Earth-fixed coordinates

U Vehicles longitudinal velocity

\% Vehicle' s latera velocity

3.3.3 Methods of Dynamic Tire Modeling

The num
linear Dugoff tire

because of its use

ber of tire models that are presented in literature is quite large. In thisthesis, we use the
model without exception. However, the Magic Tire Model by Pacejkais introduced

in controller design. In addition, neural networks are increasingly being used to estimate

both friction potential and friction usage for each tire. An example would be the neural network devel oped

by Pasterkamp and Pacejka to create an input/output model of tire dynamics (Pasterkamp and Pacejka

1997b).

3.3.3.1 TheDugoff Tire Model

The Dugoff tire model is one of the simplest tire models used in simulation. It states that the force

exerted by atireis proportional to the slip angle of thetire. The dip angle isthe angle that thetireis

making relative to the direction the tireis moving. A diagram defining the slip angle is given below.

Steering wheel plane vector, W,

force )
o " steer angle, d; (negative angle shown)
direction ) ) _
tire velocity vector, V,

To solve

/ Vehicle longitudinal axis

Wheel torque direction
Figure 3.12: A definition of thetire dip angle.

for the wheel forces, it is assumed that the torque inputs to each wheel act directly in the

wheel plane, and that the steering forces act perpendicular to the wheel plane. Note that the torque input

could either be a brake or acceleration input. The steering forces are assumed to be proportional to the

wheel dlip angle.

The wheel forces then become:
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i (3.13)

where a, isthe slip angle of the i wheel (Will and Zak 1997), (Cho and Kim 1996), (Alleyne 1997b). The

dip angle of awheel is defined to be the angle between the tire' s vel ocity vector and the wheel plane. If we
assume that the unit vectors i and ] are directed along the vehicle' slongitudinal axis and lateral axis

respectively, then the velocity of thei™ tireis given by:
Vi=Vee. tW
SUX+VXj+y K ’ (3.14)

wherer; is the radius vector from the C.G. to the tire. The radius vectors for each tire are as follows:

&:aﬁ+dﬁ

= ax - dX]
(3.15)

r3:-b>4'A+d><]

ry=- bx - dX]
Knowing the i"™ wheel’ s velocity in the vehicleslateral direction, V;, and longitudinal direction, U;, the slip

angle of the wheel issimply:

-1ga/i 9
a; =d - tan gl (3.16)
€ lig
where V; and U; are the velocity vectors of thei™ tire in the vehicle coordinate system. Thus, the slip
angles for each tire are asfollows:
d1 tan a3 +ay 0
EU dw 5
a,=d,- tan'laa/7+a>yg
U+dy g (3.17)
ag=dy- tan 8- by 0
3 gU d% g
a,=d,- tav 8- by 0
4 gU +d>y g

(Alleyne 1997a; Alleyne 1997b) (Will and Zak 1997) (Smith and Starkey 1995) (Note that Alleyne’ssign
convention on the slip angle is non-standard, but thisis corrected later by his use of negative cornering

stiffness coefficients). For small angles, each dlip angle can be simplified like the following:
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V +axy
al»dl_ U
V +axy

a,» d2 -
3”d3'v_$w
V- bxy

U (3.18)
Again, these results agree with (Will and Zak 1997), (Cho and Kim 1996). The use of this model is
explained in detail in (Will and Zak 1997) and (Dugoff, Fancher, and Segel 1970).

a

ay»dy-

3.3.3.2 Transient and Non-Linear Tire Dynamics. The Magic Tire Formula

It isimportant to note that the above discussion of tire dynamics neglects any non-linear dynamics
between the tire and the road. 1t iswell known that the tire itself is best modeled as a transfer function
under light loading conditions, but that the model rapidly becomes nonlinear when significant tire forces
are generated. The frequency range where this transition occurs is important because it represents the
limits of frequency analysis of the vehicle and the transition from alinear tire model to a non-linear system.
The linear tire dynamics are critical, simply because they are invariant with respect to the vehicle
controller. The controller cannot change the pole locations of the tire without changing the physical
properties of the tire as the vehicleis driving. First, the linear dynamics of thetire, i.e. the pole locations,
are examined in the literature. Secondly, the non-linear dynamics are examined. Combining this
information reveal s the dynamic range over which alinear vehicle model should be valid.

Thelinear dynamics of atire can be inferred by frequency domain tests conducted on full-sized
tires. These tests have been conducted experimentally by several researchers with different motivations
(tire testing for manufacturing, vehicle dynamics, emergency maneuvering, etc.) and their results can be
summarized as follows. For lateral tire motions (steering inputs) the phase change between 1 and 15 Hz for
a205/60 R15 tireis given as 90 degrees, with a magnitude drop of 15 dB. This suggests atire “pole”
location between 3 and 5 Hz (Mastinu et al. 1997). Several authors represent this pole as a distance-
dependent tire “lag” due to the distance needed for the tire to deform to develop lateral forces and
moments. This distance isreferred to as the relaxation length of thetire. This concept is supported by
experimental results indicate that the tire pole becomes faster as alinear function of tire velocity (Higuchi
and Pacejka 1997). Thislateral force transient has also been observed in truck tires (Fancher et al. 1997).

The non-linear dynamics of tires have been fit with semi-empirical modeling. The magic tire
model is an empirical model developed by Pacejka and colleagues at Delft University that has been verified
experimentally to be quite accurate (d'Entremont 1997). In the formula (Pacejka and Besselink 1997),
some constants can be inferred by examine physical tire characteristics. However, as noted by some
authors (Leister 1997), this model is updated almost annually, resulting in many versions of the formula.

The focus of this model is for use on simulation studies of vehicle dynamics. Because of its complexity
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and non-linearities, it is rarely used to design controllers, and is almost solely used for validation of
controller codes in simulation.

At a constant velocity, therefore, the tire’ s lateral forces can be considered in the linear case as an
approximate 2™ order system from steering input. The pole locations associated with longitudinal forces
(braking, torque) have been experimentally shown to be much faster than the lateral modes, and
demonstrate a fourth order, double mode of vibration with modes at 33 and 77 Hz (Zegelaar and Pacgjka
1997). For basic approximation of tire slip alone in the longitudinal direction, several authors suggest a 1%
order model for both the lateral and longitudinal directions (Salaani, Chrstos, and Guenther 1997). Itis
important to emphasi ze that each tire model depends on a tradeoff between complexity and model
accuracy. The complexity of tire lag and its influence on vehicle stability and control is addressed by
(Heydinger, Garrot, and Christos 1991; Heydinger, Garrot, and Christos 1994).

3.3.4 Equationsof Mation

Before discussing the equations of motion, the notation used for vehicle control is introduced:

Figure 3.13: A diagram showing the notation for vehicle motions (scanned from (Nwagboso 1993)).

The vehicle dynamic equations can be obtained from Newton’s law,
4 F=ma (319)
by substituting the appropriate expression for acceleration (Will and Zak 1997). Given the forces,

FXiA +F, j , that can be generated at the i™ tire, the moment of the i ™ tire is given by

M, =F"F (3.20)

Substituting,

M, =(x,F, - y,F

it xi

)k (3.21)
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The sum of moments for the vehicle must be equal to
dy
? dt? (3.22)

There is some contention over the best coordinate system to use to model vehicle dynamics, and

am, =l

the answer to this question depends too strongly on the application to allow an answer. For the “in-plane”
dynamics under study, moving coordinate systems are most often utilized that are fixed to the vehicles
center-of-gravity. This allows the equations of motion to be re-written so that the dynamics are studied in
relation to the car (which in fact is the location that they are most measured from). It isimportant to note
that if the coordinate system is not fixed to the body, then the angular velocity of the vehicle is not the
angular velocity of the coordinate system (Steeds 1960).

To fix this problem, the preferred method is to orient the coordinate system along the vehicle's
longitudinal axis so that the moments of inertia of the body are constant. If afixed (stationary) coordinate
system were used, the moments of inertiawould vary as the body changes orientation to the fixed axes
(Steeds 1960).

Thefirst difficulty isin defining the acceleration of the moving coordinate system. It is often
necessary to transform a vector from one coordinate system to another. The transformations between a

S

vector in the moving frame, A xi and avector in the stationary frame, cx + D xj, are as

moving +B X] moving ’

follows:

AN oing + B X moving = [A xcog(f ) + Bosin(f )] 8] +[- Asin(f) + B xcoqf )] x]

(3.23)

Cx +Dxj =[Coxcosff )- D>sin(f )X, ping +[C 8N )+ D 3008 )] X ning (3.2

wheref isthe angle between the moving and the stationary frame, measured with respect to the x-axis of

the stationary frame (Alleyne 1997b). These transformations can be written in matrix form as:

% _zcodf)  sin(f)o &
moving — g_ S n(f ) COS(f )ﬂ (325)
and
X:geo f) - sin(f)i_jx)_<

&sin(f) coff) g " (3.26)

To obtain the accel eration components in the fixed-body coordinate system, a perturbation along

the path is examined as the vehicle undergoes a change in orientation (see the figure below).
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Y fixed

Vehicle' s path

Resolved ;
Velocity, Vyes
Y1

Figure 3.14: Coordinate axes rotation and translation used to derive accel eration components in body-fixed

> Xtixed
coordinates.

Let U and V represent the velocity components at time't of the vehicle along the longitudinal and lateral
directions of the vehicle when the axis of measurement is fixed to the vehicle's body. Note that these
velocity components are sometimes referred to as the components of the vehicle velocity relative to the
moving axes. Thisis misleading, since there is no motion of the vehicle with respect to the vehicle' s axes.
The motion is of the axisitself relative to a fixed coordinate frame (Steeds 1960). To derive the
acceleration, the change in velocity is determined in the moving coordinate system in the directions X3-Y;
when U, V, and the orientation are incremented by a differential amount. Note that the change in resolved
velocity depends not only on the changein velocities U and V, but also on the change in orientation. The
change in velocity parallel to X is:

Vs x1 = (U +du)xosdY - U+(V+dV)xsindY

= UcosdY +dUcosdY - U+VsndY +dVsindY (3.27)

(Steeds 1960). The acceleration is obtained by dividing by dt. Inthelimiting case as dt goes to zero, the
acceleration in this direction becomes:
du dy
=—+V —
X dt dt
=U+V >wz

The component dU/dt is due to the changing velocity, while the remaining term is due to the rotation of the

(3.28)

axes. Similarly, the acceleration component parallel to Y is:

ay =V- Uy (3.29)

These planar accel erations agree with published data from (Will and Zak 1997), (Cho and Kim 1996).
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These accelerations represent the planar accelerations of the vehicle, and neglect any bounce,
pitch, or roll motion. If this perturbation analysisis continued into all three dimensions, then the

acceleration component in vehicle body coordinates becomes:

a, = U+w,, AW - w_ x/

X Y Z
ay :V+WZ><U- WXXVV (3.30)
aZ:W+WX><V- wy, U

(Horinouchi et al. 1997) (Steeds 1960). Note that if the angular acceleration components are much larger
than the positional accel eration components, the moment equation will also require a transformation
(Steeds 1960). For thisthesis, we will be assuming that the spin of the vehicle will be small enough that the
modified moment equation is not needed. We next assume that the vehicle travels at a constant velocity, U,
as measured in the vehicle' s frame. For these simple studies, only a2 DOF model is used (lateral position
and yaw angle). Higher-order modeling such asroll, pitch, deceleration, or suspension dynamics will
require additional acceleration components. Assuming a2 DOF model, we can now write the equations of

motion as:
X=A_X+B_F
X= AN TEX (3.31)
where
x=[v yJ'

F=l, X X Xo Yo Yo Vs Vil

>
1
C
N

(3.32)

N

o
o
c

0 0
d _dd
4 lz 1z |

c

1
m >
-b
lz 1z0

w
P
1
o3|~
3|+

(o

X
D:P> D> D> D~ (Bl» %
o
o

1
m
a
V4

Nl
[y el

N

(Alleyne 1997b). Itisrareto see acontroller where all four wheels are steered independently. At this point
it is assumed that the two front wheels are steered by the same angle, d;, and the two rear wheels are steered
by the same angle, d,. It isthen assumed that the Dugoff tire model applies, then the lateral forces are

determined solely by the steering input, and both front wheels produce the same lateral force. By summing

the forces produced in the front two tires as y; and the rear tires asy, , the dimension of the force states can
be reduced to:

o 0 o 1 ig

B. =a m m >

x"gd d d d a -by (3.33)
élz Iz 1z Iz Iz Iz Q

The forces, x; and y;, can be resolved from the wheel forces, F,; and Fy;, by the following expression:
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X, = in mos(di)- Fyi xsin

d ﬁ
y; = in xs§in di + Fyi XCOS di (339)
(Alleyne 1997a; Alleyne 1997b), (Smith and Starkey 1995). Thisissimply arotation from wheel
coordinates to body coordinates, where the rotation angle is the steering angle of the wheel.

For the dynamics under study, the x-direction forces are used solely to produce a moment on the
system. Asasimplification, we can assume that the x-forces produced by lateral steering forces,

represented by the term |:yi gn(di ) produce moments that cancel each other. Thistermis neglected

hereafter. In addition, for small steering inputs the cosine and sine terms may be approximated. Thus,

Xi » FXi
.» Fx.oxd. + Fy.
Yi PG (3.35)
Substituting the tire forces from the Dugoff Tire Model, we obtain:
T.
X. »7|
| ri
T (3.36)
y. »—Lxd. +Ca. =a.
i i
i
Using the linear representation of the dip angles:
& T,0 2>Ca 2>xaxCa, |
y, »G Ly 2%g . f - f v +2xCa, xd
€1 Do v P
j (3.37)
8&'3 T49 2xCa 2x>Ca_ .
y »5 S+ 27 L+ LxY +2>Ca_xd
r¢r, r, =~ u rr
e3 4g

where Cyt = (Cay + Ca2)/2, Cqr = (Caz + Ca4)/2.

It is clear from the above formulation that the control inputs between torque and front steering are
coupled. To decouple these control inputs, some simplifying assumptions are made. First, we assume that
the torque input consists of two terms, a steady-state term and a transient term that represents the torque
control effort sent to each wheel.

Ti = Tom,i * P (3.39)

Note that the torque input into the x-direction on each axle is now only affected by the transient term
because the steady-state terms generate equal and opposite moments.

o,

52 (3.39)
i

Finally, it is assumed that the differential torque multiplied by the steering control input is much smaller
than the steady-state torque multiplied by the steering control input. I1n essence, thisis assuming that the

control torque input into the wheels does not produce significant later al forces even if the wheel isbeing
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steered while atorqueis being applied. It isalso assumed the tires have (approximately) the same radius.

The lateral forces are:

2%T 2xCa 2xaxCa, .
e » ”:’m’f oy - A - e+ 2Ca
3.40
2xTnomr 2>Ca 2%bxCa_ . (3.40)
y » - L3/ + LxY +2xCa_xd
r r r U §] rr

With this last assumption, the control inputs are completely decoupled and the tire forces are now linear in
the inputs and states. We can now conclude the model development by representing the system in state-

space format as:

F=A_xX+B_x

F F (3.41)
where:
F:[Xl Xo X3 Xg ¥ yr]T (3.42)
- T
x =V
v y] (3.43)
u:[df d DT, DT, DT, DT4J G
& 0 0 u
é a
& O 0
e o o d
e u
F §_ 2>Ca]c ) 2>a51>CafL:j
e u u U
€ 2xCa 2%pxCa_ U
e r ru
g U u @
é 1 v
é 0 0 0 0 oOu
é r a
é 1 a
é 0 0 0 - 0 0d
é r a
é 1 G
é 0 0 0 0 =~ 0 (3.46)
B_=6 roqg
F e 10
é 0 0 000 “u
é a
é2xTnomf u
A - +2xCa, 0 0 0 0 0y
a 0 __ MM isca 0 0 0 Og
e r u
e r u

The linear vehicle dynamics can now be derived by substituting the above expression into (3.31):
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where:

and:

X=A X X +B_x1U
X 2 TEXSPETS TPET S T
fxz XL oxeéex2 X1 exe X1,
= AX +BXAF)xx+BXBF><u
—AX+Bxu
é C C axC . -bxC_ 1
& -2 af ar TH af ar
_é m>U m>U U
A=e axc_.-bc a2>xC_, +b2xC. U
) af ar af ar
é I_xU I_xU U
& z z 3]
e, d o] 0
g2gnomf o = 2gmomr, = 0 0 0
em¢ r af~ m¢ r ar=
p=g o T8 J
§2>ﬁ)f;érnom,f+c 9 2>‘b>§érnom,r+C . d d
Al ¢ r at~ | ¢ ar s x|
gz é o z é o z

m = the vehicle mass

V = the vehicles velocity (assumed to be primarily in longitudinal direction)

d; = the steer input into the i"" vehicle

a, b = thelongitudinal distance from the C.G. to the front and rear axle

y = theyaw angle of the vehicle, measured w.r.t. the ground

I, = the moment of inertia about the z-axis

C4, C4 = front and rear wheel cornering stiffness (see definition in text above)
Tromer = the nominal torque produced by the front and rear tires

DT; = the controlled torque input into the i" tire

[ x Y en¥ e ey en ex e

(3.47)

(3.48)

If the torque input is ignored, the resulting linear state-space model agrees with published dynamics from
(Smith and Starkey 1994), (Cho and Kim 1995), (Alleyne 1997b), and (Will and Zak 1997) among others.

Thislinear model isreferred to as the bicycle model, because the dynamics represented by this model are

equivalent to those of a bicycle whose motions are restricted to a single plane. The importance of the

bicycle model requires further discussion.

In some instances, such as tracking problems where the coordinate system is fixed to the reference

path, it is more convenient to use a fixed coordinate system to resolve the state positions rather than the

state velocities. The dynamics of the fixed system are the same, except that the slip angles are defined as

follows:
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V +axy
a1»d1+y - T
V +axy

a2 »d2+y -
V- by

a3 » d3+y -

V- bxy
a4»d4+y- U

The remaining modifications become:

T fw+2xa, d
U ff

2XT 2>xCa 2>xa>Ca
Y, » ”fm’f oy - A +2Cay -

2XT 2xCa 2x0>Ca
y »—OMT 4 L/ +2xCa y +
r r r U r

—Txy +2xCa_xd
U rr

(3.49)

(3.50)

With this last assumption, the tire forces are now linear in the inputs and states, and can be written in state-

space format as:

F:AF><x+BF>u

F:[Xl Xo X3 X4 Vs yr]T

x=ly vy yI

Thus, the A and B matrices become:

u:[df d DT, DT, DT, DT4J
é 0 0 0 u
é a
& 0 0 0 0
0 0 0 o d
é a
A= 0 0 0§
F X 2>xCa 2xaxCa G
0 - L +2xca, - f
€ U f u VY
€ 2>xCa 2%0>Ca_ U
9 - L' +2xCa ru
e r U o
1 0 0
) anf *Car 2Caf *Car ) 2a>caf ) b>'Car
m>U m m>J
0 0 1
axC_, - bxC axC_, - b>xC a2>C_, +b%sC
_ af ar af ar _o af ar
I_xU | I_xU
z z z
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(3.51)

(352)

(3.53)

(3.54)

(3.55)

(3.56)



é 0 0 0 0 0 0 u
gg@gnom,f +C 9 Efnom,rJrC ., 0 0 0 0 ﬂ
em¢ r af+ me¢ r ar+ a
B=é& © g e 2 a (357)
é - 0 i - 0 0 0 0 0 u
€2>a ¢~ nom, f ‘C 9 _ 2% g7 nom,r 9 d d d d 3
al_ ¢ af+ ¢ r ar+ s Ix  LLx |_xy
gz e z e 7] z z z z ' H

This agrees with (Peng and Tomizuka 1993).

3.3.5 Linearized Vehicle Dynamics— The Bicycle Model

Today, the bicycle model is one of the most widely used for purposes of vehicle lateral controllers.
A derivation of this model is based on the assumption that the two front tires and two rear tires can be
lumped together effectively as onetire in front and in back of the vehicle, like abicycle. To obtain the 2
DOF vehicle model (yaw and lateral vehicle motion), several aspects of the vehicle dynamics are ignored;
specifically, any dynamics associated with vehicle roll, bounce, or pitch are neglected. Included in the
neglected dynamics are those associated with suspension, weight shift due to braking or acceleration, and
other out-of-plane motions. Depending on the tire model chosen, alinear or non-linear 2 DOF model is
obtained. The major inputs into this system are the front and rear steering angles, while the throttle angle
and brake forces act as secondary inputs (Tomizuka and Hedrick 1995). Studies conducted on full sized
vehicles and high-order models (LeBlanc et a. 1996; Smith and Starkey 1994; Smith and Starkey 1995)
show that the bicycle model matches relatively well to afull sized vehicle and to high-order simulations for
low-g (0.3) cases.

Higher-order models are sometimes used both for design and for validation of vehicle controllers.
A sample development of these models can be found in (Lugner 1977; Lugner 1982; Peng and Tomizuka
1990b). The higher complexity of these models usually arises from examining increasing number of
vehicle states and more complex tire forces. Since the forces for vehicle motion must arise from the
contact of the tires to the ground, the tire model is a critical element of any vehicle dynamics model
(Bakker, Nyborg, and Pacejka 1987; Bakker, Pacejka, and Lidner 1989). As discussed earlier, non-linear
tire dynamics arise under high loading and high frequency conditions. However, it isimportant to note that
the bicycle model ignores tire nonlinearities, and hence should not be expected to fit the measured vehicle

responses under aggressive conditions.

3.3.6 Vehicle Transfer Functions

The transfer functions for the vehicle dynamics can be obtained by the standard state-space
conversion: C*(s*1-A)*B, where A is the state matrix, B is the control input matrix, and C is the output
matrix. From this approach, it is clear that the pole locations will not change with the state under control or
with method of control input or placement of the sensor. Using MATLAB's symbalic solver, the
characteristic equation for the 2 state model was obtained (Note: L = atb).
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o 2 al+C_ p290 2
pol&c:52+§ez§:af +Car’3'+ ¢ af ar_ g+ “CatCar- E(aC - bC ) (3:59)
muU I_U = ml U2 | af ar
g z 5 z z
The transfer functions become:
o 0 o 0 . N
V((S)) _me T g Mg T ) (3.59)
d (s poles
f
g ) I 0, N
2EMOMr o e, 2 CROMT o Sy c ¢ +bmu2y
V(s) mg r arfa mUIZg r ar+e a
d(s) oles
(s P (3.60)
2ag¢” nom, f +C 9>S+4Ca I-(;aérnom,f +C 9
. af + af =
Y(S) - Izg ' %) mUIz g ' o] (3.61)
d. (s) poles
f
_27b8érnom,r+C 0 i 4Ca]=|-$gnom,r+c 0
. ar+ ar -+
y (s) - Izg ' 2 mUIz g ' o
d (s) poles (362)

An interesting point to note is that both the poles and zeros related to the steering inputs are invariant with
respect to the average (nominal) torque input. However, the DC gain of the transfer function increases with
increasing torque (assuming the nominal torque is approximately a constant). Thus, the “responsiveness’
some drivers associate with front-wheel-drive vehiclesis likely attributable to an increased DC gain on

these transfer functions. The transfer functions associated with the differential torque input are:

ude 2

= et + axC__ - bC )2
V) V) V) v, 6 oz et e
DT,(s) DT,(s) DT,s) DT, (s) poles

L Vs )
y() _ 906 _y6) _ 06 o T, MUl af (3.6)
DT,(s) DT,(s) DT,s) DT, (s) poles

Significant discussion has been given in the literature regarding “optimal” placement of vehicle
positions sensors. Using the four-state model just developed, we can obtain the vehicle transfer function to
position as long as we have an output equation. If the lateral position is measured from a sensor located a

distance ds (a preview sensor distance) in front of the center of gravity, then the output equation becomes:
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where the states are as shown. If the lateral position is measured at the center of gravity, then thed term in
the output matrix becomes zero.

It is clear that the dynamics of the system with a preview sensor distance are the same dynamics as
a state feedback feedback controller based on yaw angle and lateral position feedback. The feedback gain
on the yaw stateis proportional to sensor distance, as shown in the above equation. Conceptualy, thisis
the same framework as a lateral position controller with additional yaw angle feedback, where the feedback
gain is proportional to sensor distance, d;. Because sensor preview gives the same effect as feedback, itis

not used in thisthesis. The characteristic equation for the 2 state model is then obtained (Note: L =a+ b):

(3.66)

5 2 200 2

892 +CQZ§% a“+C_b“*X 4c .c L
poles = 52 +¢ g:af arg, "¢ af ar_o._af 7ar- . E(ac - bC )

g mu I_U + m u2 1L af ar

o

Interestingly, the pole locations are the same whether a fixed or a moving coordinate system is used.
However, the order of the transfer function for lateral position and velocities are different. The transfer
functions become:

2 5 4bLC e
ST ar g+ ar
y(s) _1&8nom,f c., gm mut, mi, (3.67)
de (5) sg T . poles
2, 4G, 4C,
y(s) _ 1aeTnom,r Om mul, mil,
d (s)_gg . Car= poles (3.68)
r é 2
2a +4LCar
y(s) zéérnom,f +C ol mul
d; (5) ¢ v af; poles (3.69)
b 4Cy
y(s) :_ggnom,r + glz mUIZ
d(s) ¢ r ar~  poles (3.70)
r é 2

Note that the yaw-rate transfer functions are again invariant with respect to the coordinate system used.

The torque-input transfer functions are as follows:

59



lc,; - b, ) X{ )
V) _ VO LVl v L 2d g 2 ar
DT,(s) DT,(s) DTs) DT () rmx, poles (3.71)
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At this point, 5 separate models were devel oped to compare the methodol ogi es presented here.

The first model was a 2 DOF model where the small angle approximations for each wheel were not made,
and the dlip angle calculations were determined using inverse tangents rather than alinearization. The
remaining four models consisted of two state-space models and two transfer function-based models (which
are equivalent theoretically, but treated separately to confirm numerical equivalencein Wincon
implementation), where one of each model type represented the dynamics derived using a moving
coordinate system, and one set of dynamics represented the fixed coordinate systems. These five models
were tested using a step steer input into the front and rear wheels, and a step steer input into each of the
tires. Naturally, we expect the moving coordinate systems to provide the same results, and the stationary
coordinate systems to provide the same results. However, there should be discrepancy between the two
systems for large angles of yaw or steering. The figure below shows the data obtained from a 0.05 radian
front steer step input at timet=0. The parameters used in this set of simulations were the measured bicycle
parameters for the 4AWD4WS vehicle.
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Figure 3.15: Lateral acceleration (left) yaw rate (center) and position (right) responses from 2 different

vehicle coordinate frames.

In the model responses, the simulation was allowed to run long enough for the vehicle to begin to
turn around. No differences were notable in comparing the nonlinear 2DOF model (utilizing nonlinear
rotation and inverse tangent slip angle calculations) and the linear models that utilized body-centered

coordinate systems.

60



In the above simulations, an increasing error is seen between the fixed coordinate system models
and the moving coordinate system models. For fixed coordinate systems, it was expected that modeling
errors will increase at large yaw angles because the slip angle calculation for these cases assumes that the
vehicleisonly at asmall angle from the fixed axes. As seen in the figure above, the two systems utilizing a
fixed coordinate reference frame failed to model the vehicle well asthe yaw angleisincreased. However,
itisclear that at small yaw angles both methods gave identical results. At larger angles, the error due to the
dlip angle approximation rapidly increases until the velocity responses diverge as expected. In all cases, the
yaw angle and yaw rate responses were nearly identical. Again, this result is expected because identical
yaw-rate transfer functions were obtained for the above models. The results of the above simulations

appear to provide good preliminary evaluation of the modeling approaches.

3.3.7 Steady State Solutions to Bicycle Dynamics

If avehicleistraveling at a constant velocity around aturn of a constant radius, it is relatively easy
to solve for the steady-state vehicle response to the turn because a fixed polar coordinate system can be
used. At steady state, the acceleration vector tangent to the vehicle path is zero. A derivation of the
relationship between steer angle and turning radius was originally done by R.T. Bundorf in “A Primer on
Vehicle Directional Control” in 1968 (Bundorf 1968). The derivation provided in that paper is presented

here in more detail. A diagram used in the derivation is shown below.

Front
Whedl Path Wheel Plane,
Vehicle's Front Tire
Longitudinal \
Axis L 90-a-f
Front Steer . /J N
Input, d; - \K — Ackerman Angle, f
Front Wheel Slip /
Angle, as o Turning radius, r
Front Wheel Velocity Vector
—— 90 + as - df
Rear whesdl path 90-a,

Rear whedl Velocity Vector

N
Rear Wheel Slip Angle, a,

Figure 3.16: A diagram used in the derivation of the relationship between steer angle and turning radius.
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When the vehicleis traveling as shown, the vehicle makes a triangle with the wheel axis as one leg, the
front radius vector another leg, and the rear wheel radius vector asthe final leg. Theinternal anglesto this
triangle can summed so that

d =f+a,-a
f f r (3.73)

The forces produced by tire 1 and tire 2 can be approximated to be

e (3.74)

F=2C_a_ % (3.75)
r ar r

F=2C__.x
a

f f

The sum of moments about the center of gravity is zero, so we can solve for F; in terms of F,.

=.a
IR (3.76)
The sum of forces can be written as:
2
o _ _mx
afy =R +F=— 3.77)
Which can be combined with Equations (1) and (4) to solvefor r
[ = m? y(bxcar' a>Caf)+(a+b)
dx>C_, xC (b+a) d (3.78)
af Tar
This agrees with results presented in (Cho and Kim 1996) The steady-state slip angles are as follows:
_mxv 2 b
a, = ———*x——
f.s dc . (b+a)
(3.79)

W om¥2a
rs dc_ (b+a)
(Cho and Kim 1996). From Equation (3.79), we can see that if a vehicle has a center of gravity moved
toward the front of the car, then the vehicle will pitch inside a constant-vel ocity turn. If the vehicle hasa
center of gravity toward the rear of the car, then the vehicle will pitch out of the turn. More importantly,
Equation (3.78) gives the radius that we should expect a vehicle to turn at steady state if the vehicle
dynamics are correct.
We can test the transfer functions we obtained earlier by comparison with this steady-state
analysis. For avehicle traveling around a circular track at steady state with constant steering input, we can
assume that the yaw rate is the same as the change in angle of the vehicle about the center of the track. The

time for the vehicle to travel around the track is given by:

2p

=5 (3.80)

where phi dot isthe yaw rate at steady state of the vehicle. The distance traveled by the vehicle in thistime
issmply

2p .
—xJ =circumference=2p X%
v P (3.81)

62



wherer isthe radius of the turn. Thus

(3.82)

This equation gives the following insight: any controller attempting to maintain the vehicle on a constant
radius turn at a constant velocity is simply attempting to control the inverse of the yaw rate. To compare
Bundorf’ s result with the planer dynamics just derived, note that the steady-state yaw rate given by the DC
gain of the yaw-rate transfer functions obtained previously for a front steering input:

4ULC_.C_ «d
V()= 5——ar (3.83)
ss .
4C,.C, L +2mU x(b>car-a>caf)
The steady state radius given by these transfer functionsis thus:
ac_c_12+amuPApc_ - axc_ )
r=__af “ar ar af
4.C_.C_ xd (3.84)
af "ar
=Ly mu? y(bxcar'axcaf)
d 2dC_.C L (3.85)

af "ar
Which isidentical to the value obtained by Bundorf and others using their polar type of analysis and
making no small angle assumptions. The fact that each approach (polar coordinates versus fixed body
coordinates versus globally fixed coordinates) gives the exact same turning radius at high speeds validates

the model development for each method.

3.3.8 Bicycle Model Trends

In the conventional, front-wheel steering systems found on nearly all vehicles, only the front
wheels are actively involved in controlling the lateral motion of the vehicle. In the basic vehicle response
to a steering input, there are usually two characteristic degrees of freedom: yaw rate and sideslip angle (or
lateral velocity). The sidedlip angleisrelated to lateral acceleration by:

y=vAy +) (3.86)

where V isthe vehicle velocity, phi isthe yaw angle, and betaiis the body sideslip angle (Furukawa and
Abe 1997). With two wheel steering, the phase lag of the lateral acceleration increases with respect to the
yaw rate response. Thisis caused by the decrease in the steady-state gain of the body sideslip angle with
increasing speed. At some velocity, the steady-state gain becomes negative, and the possibility for unstable
vehicle motion increases. Several control approaches discussed in the literature review specifically focus
on minimizing this effect.

In the studies conducted in this thesis, we were more concerned with the yaw dynamics of the
vehicle rather than the sideslip. Because the dynamics for both yaw rate and sideslip share the same pole

locations, adiscussion of one will serve for both. Hereafter, only yaw dynamics are considered, and
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specific focusis given to speed related dynamic changes as well as model sensitivity to changesin
cornering stiffness.

One of the most common causes for driver (and controller) errorsis that the vehicle may be
driving on a surface with changing road friction coefficients, such asice or water. Later testing addresses
controller robustness to such variations; however, atheoretical analysis of the effect of parameter changes
on the bicycle model is needed. The parameter that most significantly affects the bandwidth vehicle
response is the cornering stiffness. As noted in (Jansen and VanQOosten 1995), as the cornering stiffness
increases, the bandwidth of the system increases, the damping of the system increases (decreasing

overshoot). Jansen and VanOosten also outline the model sensitivity to the roll damping and tire relation
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Figure 3.17: A root-locus of the bicycle model (for average full-sized vehicle) with respect to velocity (l&ft)

and cornering stiffness (right).

The above root-locus plots, generated using the nominal vehicle parameters presented in (Alleyne
1997a; Alleyne 1997b), illustrate the linear dynamics’ pole dependence on velocity and cornering stiffness.
Both the speed and cornering stiffness greatly affect the bandwidth, but changes in velocity aso affect the
damping ratio of the system in addition to bandwidth. Both of these variations have significant
implications in controller dynamics of the closed-loop system, and are very difficult to account for. One
method is to use robust control theory to create a controller that isrobust to al classes of plant changes.
Clearly from the above Bode plots, this approach is quite difficult because of the amount of variationin
plant dynamics. Another method has been to use gain scheduling; however, this assumes that plant
parameters are known exactly and that the model is very closely described by the bicycle model. Onefinal
method is to use adaptive algorithmsto identify either the plant or the parameters, and then design a

controller structure suitable to these dynamics using standard control techniques.

3.3.9 Comparison of Bicycle Model to Full Dynamics

Currently thereis alack of well-documented vehicle response measurements that include al of the
required data for accurate simulation (Smith and Starkey 1995). In the paper by Smith and Starkey (Smith
and Starkey 1994; Smith and Starkey 1995), a comparison is made between 2D, 5D, and 8D models and
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experimental vehicle data obtained by other authors. For low-g maneuvers, a good agreement was obtained
between all of these models. However, above 0.6 g's, the tire response becomes non-linear and an
automated steering control system based on the 2D or 5D models may produce unexpected results (Smith
and Benton 1996). The authors demonstrate via controller implementation that ignoring these dynamics
can significantly affect the performance (including destabilizing the vehicle) during aggressive maneuvers
(Smith and Starkey 1994). Thetirelag dynamic was cited in this paper as being the primary cause of
modeling error; however, for the validation data used to make this conclusion, the effect of tire lag cannot
be separated from actuator dynamics. The authors do note that inclusion of tire dynamicsin the linear
model resultsin alinear model that is seemingly valid upto 0.6 g's.

Historically, the question of how well the bicycle model matches measured vehicle responses has
been questioned. It is easy to confirm that the model accurately predicts the steady-state behavior of the
vehicle, but controller implementation is most concerned with transient performance (drivers usually don’t
have several minutes to avoid an accident when driving acar!). In recent history, several authors have
directly addressed this issue, notably the papers(LeBlanc et al. 1996; Smith and Starkey 1994; Smith and
Starkey 1995). The general conclusions of these experimental studies can be inferred by the previous
paragraphs: the linear bicycle model (2-DOF) isvalid for controller design as long as accelerations do not
exceed 0.3 g'sand obvious tire saturation (such as black-ice) does not occur. Accepting the conclusions of
other researchers, we may now assume that the bicycle model can model full-sized vehicles. However, the
guestion remains of how well do scale vehicles model full-sized vehicle. To develop an answer to this

guestion, we use the bicycle model as the method of comparison.

3.4 Comparing Scale and Full-Szed Vehicle Dynamics

A natural question asked when one system must dynamically match another is what is the quality
of the representation? It is not enough to say that a scale vehicle has the same trends, similar dynamics, or
about the same performance. What is needed is a method to quantify the exact agreement between scale
system and full sized vehicle. The dynamics of the vehicle must be central to this quantification, because
the purpose of the control presented here is to determine methods to affect the vehicle dynamics. The
method of quantification presented here is the Buckingham Pi Theorem of Dimensional Similitude, dating
from 1914. First, an overview of the theorem is presented. After this, the methods of the theorem are

applied to vehicle dynamics to determine the testing conditions required for dynamic similitude.

3.4.1 Introduction to the Buckingham Pi Theorem

The Buckingham Pi theorem is based on dimensional analysis whose central ideaisto substitute a
set of dimensionless numbers for the dimensional physical variables that describe the dynamics of a
system. Because the dimensionless numbers are products or ratios of the physical variables, this process
always reduces the number of variables needed to physically describe a problem. From a dynamical

standpoint, the effect of this reduction isto non-dimensionalize the differential equations describing the
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dynamics of the system. The Buckingham Pi theorem states that two systems are dynamically similar if
both systems, by selection of the same dimensionless numbers, yield the same non-dimensional differential
equation (McMahon and Bonner 1983).

To determine the number of dimensionless parameters (known as Pi groups), the fundamental
guantities must be determined. The fundamental quantities of a system consist of the minimum number of
unit dimensions needed to describe each parameter. For instance, the units of measure for density are mass
units/ (Iength units)*3. The fundamental quantities generally discussed in literature are Mass/Length/Time
(MLT) or Force/Length/Time (FLT). Other fundamental quantities include Temperature, Power, Charge,
etc. The Buckingham Pi theorem states that for m physical values defined in terms of n independent
fundamental quantities, there are (n —m) independent dimensionless groups, known as Pi groups
(Buckingham 1914). Before discussing the analysis of Pi groups, a simple example is presented from
(McMahon and Bonner 1983) that motivates the discussion.

Consider using the Buckingham-Pi Theorem to predict the period of a pendulum (McMahon and
Bonner 1983). Assuming that air resistance does not affect the pendulum dynamics, we may note
beforehand (by experiment perhaps) that the period of the pendulum is invariant with the mass, but changes
with changing length of pendulum arm. Because the fundamental quantities of the length and period of the
armare L and T, there is no way of combining these two parameters to cancel their units. If we guess that
the formulafor the period will depend somehow on gravity, we may add the gravitational acceleration as
another parameter for our guessed formula. We then would obtain as a possible Pi group the term T%*g/l.

If we conduct experimental studies for various pendulums at small amplitudes, we would find that the
above term in fact does remain constant! A derivation of the period from first principles would also confirm
this and reveal the numerical value of this constant.

To approach the much more difficult problem of predicting the period of a pendulum at larger
amplitudes, it would be natural to use numerical studies or repeated experiments to obtain a prediction for
period based on measured parameters. However, by simply guessing that the longer period may
additionally depend also on the length of the arc, another Pi group may be formed of a/l, whereaisthe arc
length. Conducting a simple experiment, we would find for a constant &/ for any pendulum that the other
pi group remains constant! The use of the Buckingham Pi theorem is demonstrated further in later sections

where it is applied to the dynamics of scale automobiles.

3.4.2 Situations Where Dynamic Analysis May Fall

Dimensional analysis sometimes reveals that multiple pi groups affect the dynamics of a model
such that matching one pi group causes mismatch with another. An example would be the testing of a
1/50-scale submarine in atank of water. The drag on a submarine depends on the Reynolds number
(viscous friction) and the Froude number (energy lost to wave propagation). The Reynolds number
predicts that the submarine would have to travel at 50 times the full-size speed, while the Froude number

predicts 0.14 times the full-size speed. In this case, both conditions cannot be met. To overcome this
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problem, the surface of the scale model is often roughened to increase the Froude number artificially by
gluing a strip of sandpaper to the model near the bow. The same dimensional matching problem is
encountered with scale aircraft, where both the Mach numbers and Reynolds numbers must be matched.

To change the Reynolds number, atrip wire is often introduced near the leading edges of the wings and
body to cause turbulence. This "compensation™ is not always exact, yet scale model testing remains a
primary method to test aircraft and ship designs. In the next section, it is shown that the dynamic scaling of
vehiclesisrelatively easy to obtain (when compared to aircraft or submarine testing), and yields insightful

results into the governing differential equation known as the bicycle model.

3.4.3 Similitude of the Bicycle Model

Originaly, the dynamic similitude of the vehicles used in the IRS was validated with the notion
that pole/zero equivalence between full sized and scale vehicles justifies dynamic similitude.
Experimentally, it was found that the input/output pole/zero locations were similar to those of full-sized
vehicles. However, it was later shown by work conducted in this thesis that the dynamic matching was
obtained via the actuator dynamics, rather than true vehicle body dynamics. In this section, it is shown that
dynamic similitude doesin fact guarantee identical pole locations, but that the reverse is not true.

To apply the Buckingham-Pi Theorem to the control of a scale vehicle, the governing dynamic
equations are first examined. From analysis of the bicycle model, we assume that the lateral position and

yaw rate will be afunction dependent on the scaled parameters:

v=fldmI,V.abca, Ca T (3.87)
If we assume that Y exists, then we can always define a function, g(s), where:
o:g(Y,d,m,lz,V,ab,Caf,Car:Tlf) (3.88)

Asareminder, it was assumed in the development of the bicycle model that the net velocity of the vehicle,
V, is approximately equal to the longitudinal velocity, V.

The Buckingham Pi theorem states that any function that can be written in the above form can be
rewritten in a dimensionless form without changing the solution to the differential equation. As discussed
earlier, similitude is achieved by grouping the parametersinto (n—m) independent dimensionless
parameters, where n is the number of parameters and m is the dimension of the unit space occupied by the

parameters. The parameters with units used above, along with their primary unit dimensions, are:
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Note that the angles such as the steer angle and slip angle are unitless and thus form their own Pi groups
(al angles are unitless because they represent the ratio of an arc length to the radius of the arc). Itis clear
that the basic unit dimensions are time, length, and mass. Thus, there are 3 primary dimensions in the unit
space, and 6 parametersin question (assuming consistent length scaling throughout the vehicle). If we
choose m, V, and L as repeating parameters, we can express the remaining 3 parameters as dimensionless

groups, to create 3 pi groups. First, adimensional equation isformed in powers of the repeating parameters.

Ca, xm? »/° xL° = e'v”'“>{|v|]a eLu ><[L] =[MLT]

(3.90)
Equating the powers, three equations are obtained:
mass 1+a=0
time -2-b=0 (3.92)

length 1+b+c=0

Solving the equations givesa= -1, b= -2, and ¢ = 1. Hence, the first pi group is C.;L/mV?2. Solving for

the second Pi group:

|, m® /0 L° = [I\/|L2]>{|\/|]a oLu >{L] =[MLT]

(3.92)
Equating the powers, three equations are obtained:
mass 1+a=0
time -b=0 (3.93)

length 2+b+c=0
Solving the equations givesa=-1, b= 0, and ¢ = -2. The second pi group is |zZZmL?. Solving for the third

Pi group:
« _éML%U a eL u
Txm® xv/° X eﬁux{M] >{L] =[MLT]° (3.94)
Equating the powers, three equations are obtained:
mass 1+a=0
time -2-b=0 (395)

length 2+b+c=0
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Solving the equations givesa= -1, b = -2, and ¢ =0. Thethird pi group is T/mV2. A summary of al pi
groups:

CPa = Ps = [ Pum P i Po= P (3.96)
The Buckingham Pi theorem states that if two dynamic systems are described by the same differential
equations, then the solution to these differential equations will be the same if the pi groups are the same.
This becomes clear during non-dimensionalization of the governing non-linear differential equations. To
perform the non-dimensionalization, note that the differential equations are performing derivatives of

velocity, time, and yaw angle. By using the repeating parameters chosen above, we can select:

—txl
v (3.97)
Vy* = Vy
Note that the yaw angle measured in radians is non-dimensional and needs no parameter transformations.
Examining small perturbations of each parameter, we obtain the differential relationships between the
above parameters.
Lot =t
v (3.98)
V xdVy* =dVy
Note that substitution of the above values into the differential equations representing the bicycle model
yield anon-dimensional bicycle model.
To determine the validity of the use of scaled vehicles on the IRS, originally the pole locations of
the scale vehicle were compared to the full sized vehicles. These pole locations are determined by the
eigenvalues of the ‘A’ matrix for the bicycle model. These eigenvalues are the solution to the polynomial

equation in the Laplace variable, s

¢ o, L1 &2 20 &2 12 1 ( )
+<;mvg:af +C I‘g+| Ve C +b“C rg—s+cafcar| 5] acaf +bcar =0 (3.99)
é (2] ,mV z

Note that the s term has units of (sec™), so we may make a scale transformation to non-dimensional

coordinates:

B L c L0 28 PC Ll i C, 0 CLC o Lml® mL2@&Cyul pC, L0

g2 466 af ~ ;+—gg§9 af +g—+ L sx+-28 - = = =0
ngvz mVZE, l, § Lg mv2 Lg mv2 o7 mvZ mv2 |, l, gt mv2 L mvzb
(3.100)
2, )+ 1 & 2 %0 P Pe - L (PP, +PP)-
s +gp4+P5 +P768 1P4+P2 P5;§ + - 1P 4+P2Ps5)=

Ps Pg (3.101)

Clearly, if the pi groups exactly match between two systems governed by the bicycle model, then both
characteristic equations will be the same and the normalized pole locations will be the same. If we
compare the relationship between pi groups and pole locations in the above equation, five pi groups are

used to match two coefficients. Although the five pi groups uniquely characterize the two coefficients of
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the characteristic equation, clearly many different combinations of pi-groups can achieve the same
characteristic equation. Thus, the characteristic equation does not uniquely characterize the pi groups.

To test for dynamic similitude of the IRS, full sized and scale vehicle parameters, pole locations,
and pi groups were compiled (see Appendix 1) (compare.xls). Discussion of the agreement between scale
and full-sized vehiclesis discussed in detail in later sections of the thesis. To summarize these resullts,
analysis shows experimentally and theoretically that exact agreement can be achieved between scale and

full sized vehicle dynamicsif testing conditions are chosen correctly.

3.4.4 Measured Vehicle Parameters

The transfer function previously derived for the lateral dynamics behavior of avehicle was
previously derived via bicycle model parameters. We can note that these parameters consist of many values
that are experimentally measurable, such as vehicle speed, mass, and moment of inertia. If these values are
measured and substituted into the transfer function given above, then a reasonabl e approximation of the
vehicle' s transfer function should be obtained. Although the measurement of the vehicle massistrivial,
measuring the other valuesis not obvious. This section describes the measurement of these parameters and
the resulting parameter trends determined by these measurements. A summary of these parametersis then

provided.

34.4.1 Vehicle Weight and Center of Gravity Location

Determination of the vehicle weights and location of the center of gravity was almost trivial. The
vehicles were weighed using a postal scale. The center of gravity, by definition, is the point where the net
force vector on an object would pass through if the object were acted upon by a gravitational (or inertial)
force. To determine the vehicle's center of gravity, the vehicle was suspended at various angles and it was
noted where the suspension line passed through the vehicle. The center of gravity isthe point at which

these lines cross. The picture shown below shows this being done for the vehicle.

Figure 3.18: A picture of the hang method used to find the center of gravity (left) and the oscillation test
stand with car (right).

70



Once the center of gravity was determined, the wheel displacements from the center of gravity (x;) were
measured, and the vehicle length was determined from these measurements. Note that X, is the distance
from the C.G. to the front axle and X, is the distance from the C.G. to the rear axle. In addition, the normal
forces produced from the front and rear axles was measured separately, and a force/moment balance was

used as a second method to verify the C.G. location.

3.4.4.2 Measurement of the Z-Axis Moment of Inertia

To determine the z-axis moment of inertia, each vehicle was suspended by a spring (shown
above), and the period of oscillation about the z-axis was measured. For amass that is suspended by a

spring whose force is proportional to angle, the governing equation is given by the equation:

aM_=l_gq=-bg- k

aMz=97-Pa K (3.102)
where b is adamping term [N*m* sec/rad], I, is the z-axis moment of inertia [kgm?] and k is a spring
constant [N*m/rad]. If we take the Laplace transform of the equation and set it equal to zero (our input),
we obtain:

2 On (<) —
57 +bs+kih(s)=0 (3.103)

If we solve for s, we obtain

(3.104)

If the system is underdamped, the terms inside the square root will be imaginary, and the system will be a
sinusoid with exponentially decaying amplitude. The time constant of the decay, -b/(24,) =1, can be

measured as well as the spring constant k and the frequency of the response. From these measurements,

note that
2_ .2,k
we=-17 4 (3.105)
Z
| =K
27,2, ,2 (3.106)

Thus, a measurement for |, is obtained. To measure the torque spring constant, a scale was applied on the
suspended vehicle at a known distance from the pivot point. The force required to maintain a displaced

spring angle was then measured. The graph below shows a sample data run.
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Figure 3.19: The experimental determination of the spring torque constant (left), and oscillatory response of
the system suspended from the spring(right).

After the spring constant is determined, a time response of the system is obtained (shown above). This
response is then examined to determine an exponential fit to determine lambda. 1n the above figure,
lambdais approximately 0.051 rad/sec and the period of 6.51 seconds. The frequency of the system is
hence 0.965 rad/sec. From the moment equation previously developed, the moment of inertiais calculated
in this case to be 0.0730 [kg-m?]. Note that the inclusion of the damping term only affectsthe I,
determination by 0.2 percent. Hence, the system can be approximated as a simple harmonic oscillator with
no damping.
The measured |, value can be verified by approximating the vehicle as a solid block and then

calculating the z-axis moment of inertia. The equation for the moment of inertiafor ablock is:

lz=1/12 M * (aP+b?) (3.107)
where aand b are the length and width of the block, and M isthe mass. If the density of the block is
known, then the equation can be rewritten as:

Iz = /121 abh(a®+b?) (3.108)
(Serway 1990). If the vehicleis approximated as aslab of aluminum (density 2.7x10°kg/m®) with
dimensions of 1.5-cm height, 40-cm length, and 20-cm width, then I, is 0.054 kgm?. Note that the weight
of thistheoretical slab is 3.24 kg, which isin rough agreement with the measured vehicle weights, and the

|, moments also approximately agree.

34.4.3 Cornering Stiffness

Before beginning an explanation of the experimental testing, it is assumed that the reader is
familiar with the Dugoff tire model and the corresponding importance of the cornering stiffness, C, . A

discussion of this model is provided in the previous "tire forces" sections of this thesis work.
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Thetire forces produced by the wheels of the scale vehicles were determined in two methods:
holding the slip angle constant and measuring the wheel force, and by applying a known force to the system
under feedback control, and measuring the steady-state wheel angle. The setup used to experimentally

measure the cornering stiffness via known dlip angles is shown in the test stand shown below.
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Figure 3.20: The cornering stiffness measurement stand (left) and sample cornering stiffness runs using this
stand (right).

Initial testing of the vehicle focused on the effect of changing loads on the tire cornering stiffness.
As seen in the above graph, the normal force on the tire primarily affect the roll-off of thetire forces. The
cornering stiffness was obtained by conducting a linear regression on the above curves at small dlip angles
(where the plots were approximately linear). Some dlight variation in the cornering stiffness were
observed: at 500 g, C, of asingletire measured to be 1.5 N/deg., 1000 g measured 1.60 N/deg., and at 2000
g measured to be 2.09 N/deg. At high slip angles (above 4 degrees dlip), the tire forces increased dightly,
but the tire tended to “roll” under the axle of rotation. At extreme angles, above 8 to 10 degrees of dlip, the
rubber rolling under the tire would begin to show stick-dlip effects, and would rapidly deform under the
hub of the wheel and bounce back onto the hub, causing the wheel and stand to literally bounce. At higher
angles, this bouncing actually caused loss of contact with the road surface and a consequent decrease in
measure forces.

Depending on the tire model used, the cornering stiffnessis usually assumed to be independent of
wheel loading. To investigate this assumption, the slip angle was held constant at an aggressive turning
angle of 3 degrees, and the load on the tire was varied. The forces were measured, producing the
relationship shown in the figure below on the left. Thetire forces seem to scale linearly with normal force
on thetire. To determine any velocity dependence, the load was held constant on the tire, and the vel ocity
was varied at constant dlip angles. Two dlip angles were tested, 1 degree and 3 degrees. The resulting
relationships are shown below in the figure on the right. Clearly, at constant normal load and cornering

stiffness, the tire forces seem to be independent of vehicle velocity.
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Figure 3.21: The variation of tire force with normal force (left) and velocity (right).

The angle at which the tire forces saturate was assumed to be the point where the tire roll-under
becomes significant. This was assumed to be the point where notable wheel oscillation was observable due
to the rubber stick-slip cycle. The changein critical dlip angle with respect to velocity and normal force
was examined, and the relationship is shown below in the figure on the left.

To determine how sensitive the cornering stiffness was to tire make and type, an experiment was
conducted where two tires are compared: one with dick tread and one with knobby tread. The dlick tire
was the tire used for low-speed (1.2 m/s) testing where dynamic matching was not yet considered. The
knobby tire was the tire used for high speed (3.0 m/s) testing, where emphasis was placed on dynamic
matching. The choice of aknobby tire was not arandom one. Previous researchers have reported that the
cornering stiffness of scale vehicles tends to be too high for comparison with full-sized vehicles, and as a
compensation knobby tires were used. Naturally, the ability to change cornering stiffnessis important with
respect to dynamic matching of full-sized vehicles. The cornering stiffness relationships are shown below

in the figure on the right.
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Figure 3.22: The variation of the critical dip angle with velocity for the 4AWS,4WD tires (left), and a

comparison of each tire type (right).
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With the Uberquad vehicle, the cornering stiffness was measured in the closed-loop as previously
described. Thus, the normal forces and operating conditions on the vehicle are identical to those of the
experimental testing. The following figure summarizes the cornering stiffness experiment results. To
measure the slip angle, the steering motor angle was recorded. Thisangleis simply a constant
(approximately 1.3 for the front wheels, 1.1 for the rear wheels) larger than the wheel angle. Note that the
closed-loop identification provided a much better "quality” of data. The linearity at small cornering angles
AND roll-off of thetire forces at large anglesis quite evident. At very large angles, the force/slip-angle

relationship levels off to a nearly horizontal line.
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Figure 3.23: The cornering stiffness for the Uberquad vehicle at 3.0 m/s.

For the Uberquad, the rear cornering stiffness was approximately 2/3 less than the front cornering
gtiffness. Most published values for cornering stiffness make the assumption that both the front and rear
cornering stiffness values are the same. However, those publications that report two separate
measurements (implying that each was measured separately) show that the rear cornering stiffness on full-
sized vehicles are approximately 2/3 the cornering stiffness of the front tires. In the comparison below
between the "average" full-sized pi groups and the vehicle's cornering stiffness, it should be noted that the
full-sized cornering stiffness “average” is biased by those data that assume the same cornering stiffness for
both tires. Noticeable exceptions are the data presented by Lee and Pillutti. For instance, (Lee 1997) report
the following values for (front, rear): Ford Escort, (72,500,49600); Buick Skylark (80790,58300); and Ford
Taurus (120400,90980).

Note that the above tire analysis does not include any transient dynamic effects in the tire model as
discussed in earlier sections. In thetesting of full-sized vehicles, several authors have noted that the
transient effects on tires can have a significant effect at higher frequencies on the model fit (Jansen and
VanOosten 1995). Smith and Starkey go further and demonstrate that linear models that do not include tire
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dynamics will severely underestimate the distance needed to perform emergency lane changes (Smith and

Starkey 1994). These authors cite tire lag as the primary cause for discrepancies between linear models and

experimental data during high-g maneuvers. One note must be said of this result: based on the data the

authors use to validate their conclusions, the effects of tire lag cannot be separated from actuator dynamics.

3444 Summary of Measured Values

Table 3.3: Summary of the Measured Physical Values

Parameter | Follow | 4WS4WD | 4WS4WD | Uberquad
Vehicle|at 1.2 m/s|at 3.0 m/s | at 3.0 m/s
testing testing testing
Mass (kg) | 1.47 2.61 4.02 6.52
Iz (kg-m2) | 0.0236 0.66 0.13 0.183
a (m) 0.13 0.15 0.1387 0.155
b (m) 0.18 0.185 0.1893 0.235
Caf (N/rad)| 87.7 85.9 20.00 96.00
Car (N/rad)|] 87.7 85.9 45.00 65.00

The parameters on the AWSAWD are intentionally changed during the second test (at 3.0 m/s) to obtain

better dynamic matching. This vehicle was originally designed and tested at 1.2 m/s without knowledge of

dynamic scale matching (which is evident in the poor pi matching shown below). The following table
shows the pi-group matching conducted on the 4WSAWD vehicle between the 1.2 m/s and 3.0 m/s

experiments. Clear improvement is seen in the pi-group matching between.

Table 3.4: Summary of the Pi-matching for the 4AWSAWD vehicle

4WS4WD Vehicle Summary Smooth Tires Knobby Tires | Knobby Tires Ave. Full
No Added Mass | No Added Mass | Added Mass
(Original (Final
Configuration) Configuration)
Speed (m/s / mph) 1.2/2.61 3/6.52 3/6.52 23.8/51.8
Poles -55.7,-73.5 -9.0+/- 1.7] -4.8+-35) | -4.6+/- 3.3
a/L 0.4878 0.4878 0.4229 0.4203
b/L -0.5122 -0.5122 -0.5771 -0.5797
CarL/(mV?)* 7.5293 0.4176 0.2698 0.2698
Car-L/(mVZ)* 7.5293 0.4176 0.2698 0.2622
/(mL) 0.1859 0.1859 0.2755 0.2593

* These two values can be matched by varying car speed
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From the above chart, it is clear that there is a significant change in the bandwidth of the system due to the

changing cornering stiffness. Results have been published supporting a similar bandwidth dependence on

the cornering stiffness of the vehicle (Jansen and VanOosten 1995). The following table shows a similar

summary for the Uberquad vehicle.

Table 3.5: Summary of the Pi-matching and poles for the Uberquad vehicle

Uber Pi Groups | Uber | "Average” |2 sigma
Pil alL 0.40 0.40 0.086
Pi 2 b/L 0.60 -0.60 0.086
Pi 3 |CafL/((mu”2)| 0.64 0.64 0.295
Pi4 |CarL/((mu”2)| 0.43 0.60 0.272
Pi5 | Iz/(m*L"2) | 0.18 0.23 0.080

Uber Poles | Uber Average Min Max

Real -9.49 -7.40 -13.68 |-4.53
Im 0.76 3.55 1.14 |5.77

A more complete comparison is given in the Appendix showing a comparison of scale and Full-sized

vehicles.

3.4.5 Methods of Obtaining Dynamic Similitude

The following procedures outline the method used to obtain dynamic similitude in the second and

third experimental vehicle tests described in thisthesis:

1)
2)

3)

4)

5)
6)

Build avehicle to a predetermined scale.

Pick an operating velocity (full-scal€) to match. This numerically fixes the pi-groups for the

full-sized vehicles and provides a*“goal” for matching the scale-vehicle parameters.

Add additional mass to the vehicle until dimensional matching is obtained for the length

related pi groups a/L and b/L.

Measure the I, moment and determine the related pi group. If the |, moment istoo small, add

mass symmetrically about the C.G. until it is near the required value.

Measure the cornering stiffness of the scale vehicletires.

Determine the operating velocity of the scale vehicle by finding the vel ocity matches the

cornering stiffness pi-groups with those of the full-sized vehicle.

77



7) Ensurethat at this velocity the remaining pi-groups agree. If not, select different tires or add
additional mass to the system, and repeat steps above.

3.5 Experimental Methods to Verify the Dynamic Model

For control purposes, it is hot enough to develop atheoretical model of a system without some
type of verification that the theory indeed matches the physical system. Traditionally, two methods are
used in engineering practice to confirm system dynamics: time-domain and frequency-domain
measurements. This section details the use of each of these methods, among others, to determine the

vehicle dynamics.

3.5.1 Frequency Domain Measurements

This subsection outlines the background of frequency-domain methods used to measure the
vehicle dynamics. The vehicle system from alateral control standpoint is assumed to be linear with
justification presented in earlier sections. In addition, the vehicle dynamics are unstable. Asaresult, the
determination of the OPEN-LOOP dynamicsis not trivial, and considerable effort was expended

developing and confirming the following methodology to measure these dynamics.

35.1.1  Freguency Range of Fits

If avehicle model, linear or nonlinear, isto be obtained from frequency response data, then
consideration must be given to the range at which the frequency fitting should occur. As areference, the
range used by several authorsis presented. (Jansen and VanOosten 1995)obtain afit of afull-sized vehicle
model shown on plots of the frequency domain (linear in frequency, rather than logarithmic) up to 3 Hz.
(Nagai, Ueda, and Moran 1995) perform model validation and fitting again using alinear scalefrom 0to 3
Hz. Vehiclefitsincluding atire model were obtained up to 2 Hz by Roos et a (Roos, Rollet, and Kriens
1997). Invalidating the National Advanced Driving Simulator models (NADSdyna) with an experimental
vehicle (Ford Taurus), bode plot fits were attempted up to 20 rad/sec for yaw rate, and magnitude matching
up to 10 rad/sec (1.5 HZ) was achieved. The predicted phase at this frequency (3.5 Hz) was too high by
approximately 30 degrees (experimentally, the phase was about —100 degrees at this frequency) (Salaani,
Heydinger, and Guenther 1997).

78



'

200 "
1o* w' 10
Frequency (radfssc)

Figure 3.24: A sample frequency response reported in Steeds, 1995 for afull-sized vehicle.

A note must be made in comparing frequency domain to time-domain modeling. Jansen and Van
Oosten note that validation using time responses can give ambiguous results, and that frequency response
functions are much more usable in validation (Jansen and VanOosten 1995). Although this conclusionis
debatable (and depends on testing conditions), in general the author has found that frequency-response
testing yields consistently better model matching than time domain. In thisthesis, an effort has been made

to combine the two methodol ogies as appropriate (for instance, the rate-limited servo actuator modeling).

35.1.2 Initial Tests

3.5.1.2.1 Repeatability Tests

Before obtaining any system Bode plots, it was first determined if a Bode plot, once measured, is
repeatable. The following responses were conducted on the 4AWSAWD vehicle with slow servos and at low
speed (i.e. before consideration was given to pi matching). The frequency responses are of the CLOSED-
LOOP system. The DSA was used to generate a reference sinusoid trajectory, and the lateral P-controller

was made to follow thistrajectory, and the measured lateral position was fed back to the DSA.
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Figure 3.25: The reproducibility testing done on the vehicle being pulled by the treadmill at 1.2 m/susing
P-control tracking areference lateral position input from DSA of a 15-cm amplitude sinusoid.

As expected, some discrepancy is observed between each trial, especially at high frequencies. For

controller design purposes, it is clear that the system identification performed on each plot is consistent.

3.5.1.2.2 Longitudinal Controller Sensitivity
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Figure 3.26: Bode plots for the same testing conditions (1.2 m/s, 15 cm amplitude) using different
longitudinal controllers. The dotted line is the treadmill tracking the vehicle. The remaining two are for

the car tracking the treadmill and for the car being pulled on the treadmill.
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3.5.1.2.3 Sengitivity to Amplitude of Frequency Sweep
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Figure 3.27: The amplitude reproducibility testing done on the vehicle being pulled by the treadmill at 1.2

m/s using P-control to track reference lateral position on sinusoid amplitude 15-cm.

We can see that the system responses are relatively insensitive to the amplitude of input. Thisis
fortunate, because it indicates that the lateral dynamics (and as aresult the yaw dynamics) arein quite
linear with respect to amplitude of the lane change maneuver. This also reveals that the rate-limit of the
servo is not very active at these lower velocities, even when attempting to track a large-amplitude sinusoid

signal.

3.5.1.24 Velocity Trends
The bicycle model is highly dependent on the vehicle’'s velocity. Thisis easily seenin the Bode

plots of the system at various velocities:
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Figure 3.28: The velocity effect on the system Bode plots.
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3.5.1.3 Methods Of Obtaining Open-Loop Frequency Responses from Closed Loop Data

As stated earlier, there isa significant difficulty in determining the open-loop frequency response
from closed-loop testing. This section details various methods that have been attempted to determine open-

loop dynamics from closed-loop data.

3.5.1.3.1 Using Complex Number Theory

To convert the closed loop bode plots of the system response into those of an open-loop response,

we begin by examining a block diagram of the system. The following can represent the system:

DSA |«
(volts) Measured
u (volts :
> - »| Unknown, Vehicle states,
' controller unstable, lateral position or
yaw rate

’—P - plant

Figure 3.29: The block diagram used to measure the vehicle lateral dynamics via complex number theory.

To obtain the transfer function of the unknown plant, we note that the output of the plant can be represented

as:
Y () = P(9) ¥V4(9) (3.100)
Solving for the Plant
_ Y@
iShiv) 9 (3.110)
The closed loop system response is given by
You (9 _ K xP(s)
Yu(s) 1+KxP(s) (3.111)
Solving for P
You(9)
Yref
P(s) = ae\Ejt(s)o (3.112)
K>l - +
Yref (S)ﬂ

The magnitude and phase of Y o/Y  iS recorded by the DSA. We can then find P(s) by noting that the

magnitude and phase create an imaginary number, which can be represented as:

You(9) — R
V(S (3.113)

= R¥{cos(q) +i xsin(g)) (3.114)



Substituting into above:

R xe™

P(s)= (

K - K><R>cos(q))+K><R>sin(q)xi
The magnitude of Pisgiven by
p=— R
K x/1+R?
And the phaseis
. 1 ® ROSN() ©
BP=g- tan §1- R>«:os(q)+g

(3.115)

(3.116)

(3.117)

A code was written to perform the above conversion from closed to open systems. To test this theory, the

open-loop vehicle dynamics were inferred from the closed-1oop system responses using several different

gains. The following plots revea the different “open-loop” dynamics determined for four different

controller gains:
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Figure 3.30: The effect of gain on the closed loop responses, at 1.2 m/s and 9 cm peak to peak change in

reference lateral position.
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Figure 3.31: The effect of gain on the open loop responses, at 1.2 m/s and 9 cm peak to peak changein

reference lateral position.
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From the above plots, it is clear that the open-loop system ID depends strongly on the gain used in the

closed-loop system. Thisimplies that the open-loop identification is sensitive to closed-loop parameters,
i.e. the open-loop identification is not entirely decoupled from the closed-loop dynamics. Becausethisis
the intent of this method, clearly this method is inadequate to transform closed-1oop responses into open-

loop responses. Consequently, other methods are considered.

3.5.1.3.2 Using Input Feedback

The 35670A HP Dynamic Signal Analyzer used by this lab has the capability of inputting both the
input signal AND the output signal into a system. The DSA has the capability of analyzing the correlation
between the input and output and thus form a frequency response of the system. To use this feature to
identify the open-loop dynamics of the system under closed-loop control, the front steer command was
used as the input feedback to the DSA on the input line. The yaw angle was then fed back to the DSA asa
response. The sine wave from the DSA was used to create a sine wave reference position that the lateral

controller was made to track.

Yret (t)

DSA y(t) or yaw(t)
Sine out Channel 1/«

Channdl 2 u(t)

Measured
- > Unknown, Vehicle states,
. controller unstable, lateral position or
yaw rate

’—V - plant

Figure 3.32: The block diagram of the frequency response measurement technique used to determine open-

loop dynamics via correlation between plant inputs and outputs.

Initially, the input/output correlation technique was tested on the vehicle directly, with results shown
below:
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Figure 3.33: The Bode plots for the yaw angle dynamics using input/output correlation.

From the above plots, it is clear that the approach seems to work significantly better than the
previous method, but suffers to some extent. The expected yaw angle dynamics were that the system had a
freeintegrator. The yaw angle dynamics, because of the 1/s free integrator term, should start out at a phase
angle of -90 degrees. The above plots indicate that the phase is off by 180 degrees, indicating that asignis
missing somewhere in the system identification. If thiserror isincluded, it is seen that the frequency
response does begin at approximately —90 degrees as expected. However, there is a significant amount of
error at low frequencies. This suggests that the results at very low frequencies, and possibly high
frequencies, are probably erroneous. As aresult, this method was abandoned for use in system
identification for the 4WSAWD vehicle.

By the time frequency testing was needed for the Uberquad, computing capabilities had improved
to where input/output correlation could be adequately tested. By using the SIMULINK-based code
generation, we were able to simulate an artificial plant in code to determine the viability of the 1/O
approach. The dynamics were chosen to represent the bicycle model yaw-rate dynamics and lateral
dynamics. The closed-loop controller normally used for the vehicle was then implemented on this artificial
system, and the inputs and outputs to the system were sent to the DSA as described above for correlation.
The following figure shows both the model and the resulting identification:
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Figure 3.34: The Bode plots for the artificial yaw angle dynamics and resulting open-loop model
determined from closed-loop input/output correlation.

Continued thought into why the original attempt would correlate so poorly on the original
AWSAWD system revea ed a possible cause to the poor low-frequency correlation: at low frequencies, the
vehicleis basically tracking a constant signal. Thus, the controller is not exciting the system in a sinusoidal
manner but instead is regulating itself about some slowly varying setpoint. The primary system excitation
isnot aresult of the input reference signal as intended but rather system disturbances. Thus, the correlation
between control input and plant output would be very poor at these frequencies, ssmply because the signal-
to-noiseratio is very small in thisregion. Knowing this, the controller used on the Uberquad system was
made to be as "tight" as possible: that is, the controller was made to track the reference input very closely
and reject disturbances VERY quickly. The resulting frequency identification on the actual system proved

to work quite well, aswill be shown in later sections.

3.5.1.3.3 Frequency Domain Identification Using Multiple Bode Plots

The third and final system ID approach attempts to correct the miscorrelation of the sinusoid input by
examining the transfer function from change in reference lateral position, y, (t) to the command voltage

u(t), and the transfer function from y, (t) to the output yaw angle, y (t).
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Up to measure y (S)/y(9)
Down to measure u(s)/y,«(9)

y(®)
yref (t) DSA
Sineout Feedback
u(t)

Measured
Vehicle states
Unknown, N

+ Ll controller unstable, lateral position or
yaw rate

’—P - plant

Figure 3.35: The block diagram of the frequency response measurement technique used to determine open-

loop dynamics using multiple bode plots.

The transfer functions'y (S)/y,«(S) and u(s)/y,(S) can be measured directly using the DSA. However, the
transfer function of interest is the open loop dynamics, y (s)/u(s). If the system islinear, this would simply
be:

i((z)) = Ty rffs(s) (3.118)
Yre 9

Since frequency domain isin general presented in logarithmic form, division in the above expression can in
actuality be obtained by subtraction of the logarithmic measurements of the frequency plot (Note: another
researcher has also used this method for a closed-loop system by saving the frequency response in complex
notation. Division was conducted in the complex space and the magnitude and phase were simply the mag
and phase of the resulting complex number). After subtracting the Bode plot for u(s)/y,(s) from the Bode
plot for y (s)/y,«(S), Bode plots were obtained that represent the open-loop response.

To test this concept, the following open-loop bode plots were obtained using this method for the
yaw dynamics using the front wheel asinput. These plots show responses that agree very well with the
expected yaw state dynamics. Based on the magnitude plot, it would appear that the plant (open-loop)
behaves almost exactly like afree integrator (as theory predicts). The phase begins at a constant —90
degrees, which also agrees with the theoretical expectation. One aspect of the yaw dynamics system
identification was that the previous graduate student, Mark DePoorter, identified a system pole at alocation
of s=10rad/sec. Sincethislocation isat the limits of the above plot, a refinement was added to increase
the resolution of the plot at high frequencies in an attempt to determine the location of the faster pole. To
do this, the amplitude of the input reference tracking signal was increased to +/- .1 meters (from +/- .075
meters) and the integration and settling times were increased to 30 cycles each. Originally, the frequency
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was swept from 0.05 Hz to 3 Hz, but to refine the higher frequencies, the frequencies were swept from 1 Hz

to 10 Hz. The two plots were then combined and plotted. The results of this refinement are included in the

above plots.
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Figure 3.36: The yaw angle bode plots obtained from the transfer function subtraction approach, with an

additional refinement at high frequencies to determine these pole locations.

3.5.2 Time Domain Modeling

Often, vehicle dynamics are obtained using time domain methods alone. As an example of the
common usage of time domain tests for vehicle testing, there is an international standard on methods of
conducting step steering input tests on vehicles (ISO 7401). A natural question arises asto what trajectory
to use for validation. Naturally, some obvious choices are sinusoid and ramp maneuvers (referred to as J-
turn maneuvers because of the vehicles trgjectory follows a J when conducting a ramp steering input).
However, each maneuver emphasizes different aspects of the vehicle dynamics, and nonlinear effects can
dominate parameter tests, such as step-inputs. A particular question often addressed in literatureis the
question and theoretical determination of the "best" maneuver to use to change alane (Sledge and Marshek
1997).

3.5.3 Random Steering Tests

One final method to obtain a frequency domain fit is called the Random steering test (1SO 7401
and ISO/TR 8726). This method attempts to correlate the input and output of a plant that is under open-
loop or closed-loop control by introducing a random input into the system. This method was not used in
thisthesis, but is detailed here for completeness. The use of this technique for full-scale vehicletesting is
described in (Jansen and VanOosten 1995). As noted in this paper, the advantages of this test are listed as
follows:

- itisan open-loop test

- itiseasy to perform

- preparation and execution time are short
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- theresults are statistically most accurate since the measurement timeislong
- for model validation purposes the resulting transfer functions are very suitable to use. The
transfer function of the system is obtained by obtaining a correlation between the inputs and
the outputs via spectral analysis. Based on results published by other authors, this method
may be avalid aternative to the lengthy and difficult swept-sine approach used in this thesis.
This paper does not note the disadvantages of using random steering inputs.
- they are more susceptible to errors and depend strongly on data “ quality”
- itisdifficult to determineif the random input has provided enough excitation such that the
frequency response is representative of the true system.
For these reasons, the random input testing is NOT used in thisthesis, but may be considered later as a

comparison to (not a replacement for) swept-sine testing.

3.6 Vehicle Modd Fits

This section can be divided into two major sub-sections: a discussion of actuator dynamics and a
discussion of vehicle dynamics. With regard to vehicle dynamics, three major system identifications were
performed. The first was on the 4AWSAWD vehicle at avelocity of 1.2 m/s using low-bandwidth Futaba
S9304 servos. The second was on the 4AWSAWD vehicle at a faster velocity of 3.0 m/s using high-
bandwidth Futaba S9402 servos. The third was on the Uberquad using DC motors as the steering actuator.
Each vehicle test displayed noticeably different dynamics (by design); hence, a separate discussion of each

test is necessary.

3.6.1 Actuator Dynamics

Typical controllers developed for full-sized vehicles using bicycle model dynamics often do not
include the dynamics related to the steering actuator. Because the steering command must be directed
through a motor, gears, and other actuators whose response may not be immediate or exact, resulting in a
response far different than predicted by the bicycle model

Previous work using R/C scale vehicles on the lllinois Roadway Simulator (IRS) (DePoorter,
Brennan, and Alleyne 1998) has shown that neglecting these dynamics can lead to invalid design models,
and henceinvalid controller design. In the paper by Smith and Starkey, a large amount of mismatch was
observed in the phase and magnitude of the frequency responses of actual vehicles above frequencies of 6
radians/second (Smith and Starkey 1995). This suggests that either tire dynamics or actuator dynamics
may be present. Studies conducted by other researchers discussed in this thesis note that tire dynamics are
significant above 20 Hz, so it is quite likely the phase drop and magnitude drop seen beginning at 6 rad/sec
are due to steering actuator dynamics. Research conducted by other research institutions supports this
concept. The bandwidth of the actuation for the Pontiac 6000 vehicle used by the California PATH
program was found to be about 2 Hz with load for a +/- 2 degree amplitude steering angle (Peng et al.
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1994). Clearly, for actual vehicle systems with actuator poles around 1-2 Hz, the actuation bandwidth
presents a serious constraint on the possible system performance.

Previous work performed on the IRS identified the actuator as first order based on the difference
between the expected vehicle response and the experimentally obtained vehicle response from input to
output analysis (driver steer command to yaw rate). Thiswork did not isolate the actuator itself, and
instead inferred the actuator response by assuming it was the fastest pole location identified. Closer
examination discussed in this section revealed that this assumption was not valid, and that the actuator
dynamics for the servo used by previous researchers (the Futaba S9304) was much slower than previously
thought.

3.6.1.1  Actuator Dynamics of Full-Scale Vehicles

It isdifficult to find published data regarding full-sized vehicle actuators for several reasons: first,
measurement of the actuator dynamics requires non-standard sensing capabilities (such as measurement of
wheel angles) generally not found outside of research institutions. Secondly, most vehicle researchers
ignore actuator dynamics as a first approximation of the dynamics of the entire vehicle. Finally, car
manufacturers likely do not want to publish vehicle limitations such as actuator limits that may benefit their
competition or agitate their customers.

Therate limiting effect previoudly identified on the steering actuator of the 4WSAWD vehicle may
also been seen in full-sized vehicle actuators. Although published data on this subject has been lacking
from industry (for obvious reasons), the possible presence of arate limiter on steering systems can be
inferred. The actuators commonly used on full-sized vehicles for automated or driver assisted vehicle
control are electric motors mounted on the steering column or modified power-steering hydraulic systems.
Regardless of the system, very fast actuation can saturate the hydraulic or the DC motor system because of
rational design limits on actuator size. For hydraulic systems, if the required rate of volume change of the
actuator piston is larger than the available flow rate through the valve opening, the system will become
rate-limited. For DC motors, a motor large enough to move the wheels directly would be impracticably
large; thus, gearing systems are used. With gearing systems coupled with DC motors, rate limiting effects
commonly are seen (such asin the servo motor on the R/C systems!). Without verification from industry or
direct measurement of full-sized vehicle systems, the presence of this type of non-linearity in full-scale
vehicle systems remains a question. Without a doubt, such nonlinearities could become alarge obstacle in
the implementation of vehicle automation on full-sized vehicles.

From the previous arguments, it is clear that there is alarge discrepancy between the actuators that
actually exist on today’ s vehicles and the actuators control engineers would liketo use. In apaper by TU
Delft and Volvo, an actuator with damping ratio of 0.6 and natural frequency of 65 rad/sec is specified by
the control engineers for rear steering applications (Roelofsen 1995). This corresponds to approximately a
10 Hz actuator (in practice, vehicle actuators are in the 1-2 Hz range). In research conducted by (Lee,
Mariott, and Le 1997), it was found that steering actuators with a bandwidth of 4 Hz gave a much larger

risetimein a Jturn maneuver. These researchers also specify an actuator bandwidth of at least 10 Hz.
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The drawbacks of eectric motor torque limits or hydraulic saturation and bandwidth can be
overcome with large actuators. In fact, thisis partially the approach with the Uberquad redesign: using
high-torque motors to achieve the desired bandwidth. A problem with this approach (other than cost) is
that large actuators decrease vehicle efficiency and add weight to avehicle. From an efficiency standpoint,
it may not be good economics to use a big motor or pump that gives slightly better vehicle performance at
the tradeoff of fuel economy. As pushestoward more fuel-efficient or electric vehicles continue, actuator

dynamics will play an increasing role in vehicle dynamic studies.

3.6.1.2 Slow Servos— Futaba S9304

The first method to identify the steering actuator dynamics was to remove a servo actuator from
the vehicle and identify the servo dynamics separately. Initialy, a swept-sine frequency response was
conducted on the servo at different amplitudes, and it was reveal ed that the response was very dependent on
the amplitude of the swept sine. Close examination of servo step responses revealed that the system israte
limited. A swept-sine frequency response was then conducted using very small steering inputs that do not
saturate the actuator at the frequencies corresponding to the pole locations. Using this frequency response,
alinear model was obtained for the servo for small-amplitude inputs. Finaly, a second-order, rate-limited
Simulink model of the steering actuator was developed, and the model results were compared to
experimental results using step responses.

To determine the actuator dynamics, some method of angular feedback was necessary. The servo
actuator was connected with an encoder mounted coaxial along its output shaft so that the shaft angle could
be measured. Because the particular encoder had alow resolution, it was not suited for system
identification at low frequencies. Noting that the servo contained a potentiometer inside, the potentiometer
voltage was measured with respect to the encoder, and the angle of the servo was monitored with respect to
the voltage input into the transmitter. The figures below show the functional relationship between

measured voltage and servo angle, and transmitter voltage and servo angle.
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Figure 3.37: The relationship between transmitter voltage and servo angle.
Clearly the above rel ationships suggest a linear relationship between transmitter voltage and servo angle.
Accordingly, five trials were conducted and a linear regression was performed on each trial to fit the slope

for these two relationships. The results of these trials are presented in the table below. Using these
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relationships, either encoder or potentiometer feedback could be used to obtain the frequency response of
the servo.

Table 3.1: The regression fit between servo angle, applied transmitter voltage, and measured servo
potentiometer voltage.

Trial Slope Slope
Servo Angle (deg.)/ Pot Voltage (volts)/
Transmitter Volts (volts) Transmitter VVoltage (volts)
1 90.3 deg./volt 0.816 volt/volt
2 90.2 deg./volt 0.822 valt/volt
3 87.2 deg./volt 0.785 volt/volt
4 89.7 deg./volt 0.820 volt/volt

Using commercial DSA equipment (HP 45670A Dynamic Signal Analyzer), the frequency response of the
system was measured as the following:
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Figure 3.38: Theinitial frequency responses obtained for the servo actuator.

The above responses clearly reveal amplitude dependence in the frequency response. Because the
servo utilizes a DC motor for shaft motion, a second-order fit of the system was expected. However, we
note that the DC motor does not have infinite torque, and instead is geared significantly to magnify the
available torque from the motor. A consequence is that the resistance of the gearing limits the servo to a
maximum speed corresponding to the point where the gear torque is equal to the maximum torque available
from the motor. Thisresultsin arate-limited response. To obtain the numerical value of the rate-limited,
time-domain step-responses were conducted. The following plot summarizes the results:
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Figure 3.39: The step responses obtained for the Futaba S9304 servo actuator.
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From the above plots, arate limit on the responseis clearly present. Because of this rate-limited
dynamic, frequency domain analysis was conducted at very small amplitudes to identify the linear non-rate-
limited actuator dynamics. Because of the uncertainty of how “small” an amplitude is necessary to
correctly identify the system, frequency responses were conducted at decreasing amplitudes until
convergence was seen in the bode plots. Convergence was seen at amplitudes lessthan 5 degrees. A

discussion on the measurement of the rate-limit follows in alater section. The resulting linear model was
obtained as:

V) _ 10000  erady
V pmemitie (S) 2 +170 5 +10000 Evolt i (3.119)

After obtaining a dynamic model of the servo system experimentally, this model was tested by creating a
Simulink model of the system and comparing it with experimental step-responses. It should be noted that
the experimental data could not be fit with reasonable error without including atime delay on the
transmitter. Based on the nature of the communication system discussed earlier, a small delay was
expected between 10 and 20 milliseconds. The time delay was found experimentally to be approximately
0.015 to 0.02 seconds.

Combining the time delay, rate limit, conversion and transfer functions, the following Simulink
model was obtained representing the servo dynamics:

potentiometer
waltage
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%{ senro_den(=)

Step Input
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Delay (-0 0158 n:-mroefrsmn Ectuator Motor with n:-mroefrsmn
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to Servo to Servo
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~0.2200 wo ltstvolt

Figure 3.40: The Simulink model of the servo actuator.
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This model was used to compare simulated actuator responses to measured responses in the time domain
using step inputs. Note that this model was formed after the controller design and implementation to
validate that the servo pole locations were much faster than the vehicle dynamics. However, this was not
the case, and new servos were selected that would give a higher bandwidth. Consequently, the exact “fit”
of the above servo is unimportant because it was never used to design or evaluate any vehicle controllers

presented in this thesis.

3.6.1.3 Fast Servos — Futaba S9402

The dynamic modeling of the faster Futaba S9402 series servos follows that of the previous servo,
except that the servo angles were measured via an encoder rather than the internal potentiometer. Hence,
the results are presented bel ow, with a side-by-side comparison with the slower Futaba S9304 servo where
appropriate.

Initial testing was conducted to confirm that there was approximately a linear relationship between
the command voltage and the servo horn angle at steady state. This relationship was obtained by slowly
varying the servo voltage and measuring the horn angle after along settling time. After establishing the
steady-state relationship for the servo, the dynamic transient relationship between the voltage sent through
the transmitter and the output of each servo was sought.

Knowing that the system was likely to be rate-limited (as was the previous servo), frequency-
domain testing was again conducted on the front servo where the amplitude of the swept-sine was
decreased until convergence was observed. The figure below shows a clear non-linearity in the system (the
rate-limited effect). A linear model-fit for the servo dynamics was again obtained by fitting the curves for
very small amplitudes of input (where the system will not likely be rate-limited). The below frequency
responses also clearly show an increased bandwidth of the actuator (by approximately an order of
magnitude).
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Figure 3.41: A comparison of the frequency responses of the Futaba S9304 (right) and S9402 (l&ft)

actuators showing an order-of-magnitude improvement in actuator bandwidth.

The servo dynamic model identified from the above frequency responsesis given by the following second-
order transfer function:

Gront - servolS) _ 2700 érad i
Viransmitter (§)  s2 +60.5>s+1764 Evoltt (3.120)

Again, a second-order transfer function is expected because the servo utilizes a DC motor for actuation, and
a DC motor istheoretically represented by second order transfer function from voltage to position. The
poles of thistransfer function are;

Poles=- 30+ 295 [rad/sec] (3.121)

It isinteresting to note that the bandwidth of the actuator presented in (3.120) isin fact slower than that of
the actuator represented by (3.122), even though the frequency responses of the new actuator clearly show
an increased bandwidth. It isimportant to note that the model fit for the slow actuator was obtained using
time-domain analysis of the step responses; the transfer function was chosen to give the best fit of the
system WHEN THE SYSTEM ISNOT RATE-LIMITED. When comparing the rate limit of the two

actuators, the newer actuator is clearly faster. If we fit the slower actuator dynamics of the slow actuator in
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the same manner as the fast actuator by INCLUDING the rate limiter by fitting the frequency domain data
alone, we would obtain the pole locations identified by the previous student Mark DePoorter for the slow
actuator: -8 rad/sec and —20 rad/sec. Hence, from alinear input/output standpoint, the pole locations
confirm a higher actuator bandwidth. It does agree with intuition that the “sower” actuator may have
faster LINEAR dynamics than the faster, higher-torque actuator. The higher torque actuator uses alarger
motor with metal gearing, causing the motor to have a higher effective rotational inertia. For very small
angles, the smaller motor may in fact have a faster response than the larger motor.

The above tests were conducted with the vehicle stationary and the front wheels lifted off the
track. Becausethereisrelatively little load on the servos, a question arises of how the linear fit might
degrade when the wheels actually have an operating load acting upon them (as with driving). Two
validation tests were conducted: a stationary test where the actuator dynamics are obtained with the wheels
down, and a moving test where the actuator dynamics are identified in the closed-loop with the vehicle
operating. The stationary test with the wheels down very likely represents the largest load the wheels will
encounter, and hence present a"worst-case” fit. The intent of the closed-loop fit is to verify that the
system, in closed-loop, actually acts more like the linear "best-case” rather than worst case (high load)
scenario. The closed-loop tests will naturally show some large errors at low frequencies due to the low
signal-to-noise ratio mentioned in earlier sections of thisthesis. At high frequencies, the actuator dynamics
will be dominated by the rate-limiter.
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Figure 3.42: A linearity test where the frequency response is compared to heavy wheel loading (left) and
closed-loop (right) operating conditions.
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Similar tests were conducted to obtain the open-loop, up/down, and closed-1oop frequency responses for
the rear actuator, shown below. Note that the model fit for the rear servo was obtained using the open-loop,

"wheels up" plot shown below.
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Figure 3.43: A linearity test where the frequency response is compared to heavy wheel loading (left) and
closed-loop (right) operating conditions.

The linear rear servo dynamics were found to be:

Orer- servols) . 981 érady
Viransmitter (S)  s2 + 3658+ 625 Evoltd (3.123)

whose poles are:

Poles=- 18+17% [rad/sec] (3.124

Note that the rear servo is slightly slower in bandwidth than the front servo. The physical design of the
AWSAWD vehicleis such that the rear servo must actuate over alonger and more complicated steering
mechanism to move the rear wheels. As a consequence, the load torque on the servo motor may be higher
thus resulting in alower bandwidth.

After determining the linear dynamics of the system, the non-linear rate-limiter slope was

determined experimentally via step responses, and the resulting fit was incorporated into the model. The
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newer, higher-torque actuators were expected to have a much higher rate-limiting slope, and thisis clearly

seen in the figures bel ow:
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Figure 3.44: A comparison of the step responses of the slower Futaba S9304 (right) and high-
speed S9402 (left) actuators.

The rate-limited slope was modeled for the front and rear actuatorsto be:

Mpmax, front =300 [dey/ sec] (3.125)

Max, rear =300 [deg/ sec] (3.126)

The above step responses of the high-speed S9402 servo includes the model fit (dots) and have had the time
delays subtracted off the response. The quasi-random time-delay discussed in the previous section made
modeling of the system in the time domain quite difficult. Consequently, time-domain confirmation of the
servo dynamic response should be conducted with the expectation of some error regarding this delay and a

conseguent error in the phase of the closed-loop system.

3.6.1.4 Limitations of Control Systems Using R/C Servos for Actuation

There are four primary limitations in the use of servos to steer scale vehicles. In order of
influence, these are the rate-limited nonlinear dynamics, the dead-zone and flexibility in the steering
linkages, the time-delay associated with the transmitter, and the nonlinear kinematic relationship between
servo output and wheel angle. A separate discussion is given to each topic below.

Therate limited actuator dynamics previoudly discussed are likely the most detrimental in
obtaining alinear approximation of the system. Therate-limit is dueto atorque limit on the motor. Itis
unknown what torque the steering actuator will need to steer the vehicle at high speeds, so the modeling
was conducted on the steering actuator with the actuator separated from the vehicle or on a stationary

vehicle. Consequently, the rate limiter slope used in this model is probably not very accurate. Theerror is
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probably a non-linear relationship with respect to steering angle and speed, because it is strongly dependent
ontireforces. Therate-limit effect can clearly be seen in the actuator time and frequency responses. For
the frequency responses, the rate-limiter is probably responsible for the shift at high frequencies to lower
bandwidths.

In order to measure the rate limit on the actual vehicle, alarge frequency and amplitude sinusoid
was fed into the vehicle steering actuator such that the actuator was rate limited over nearly the entire wave.
The angles the actuator swept through were then recorded, and the time to take one cycle was measured.
From thisinformation, the slew rate could be determined. As an example, we measured the Futaba S9304
servo sweeping 200 degrees (100 degrees in each direction) 41 timesin 60 seconds. Thisimplies that the
dew rate is approximately 135 degrees/second. When the same servo was tested while disconnected from
the vehicle, the slew rate was measured to be 2.2 VVpot /sec. To convert this to degrees per second, we note
that the conversion from pot voltage to servo angle was obtained from the previous calibration as o/V p: =
(0/Vyrang)/(V pot/Virans) = 90/0.82 = 110 deg/volts pot. The model slew rateisthen 2.2 Vpot/sec* 110
deg/Vpot = 240 deg/sec. Obviously, the addition of the steering linkage significantly affects the rate-
limiter and possibly the actuator dynamics, and hence the rate-limit should be measured under conditions as
close to running conditions as possible. In summary, the rate limit (tested on the vehicle) found for the
S9304 servo was approximately 130 degrees/second, and the rate limit for the S9402 high-speed servo was
found to be between 300 and 330 degrees/second.

A second servo non-linearity consists of a deadzone. As mentioned earlier, the controller on the
servo motor has a deadzone designed into the system to prevent the servo from constant actuation that
would drain the battery on an R/C vehicle. This deadzone on the servo-horn is approximately a degreein
size. In addition, the steering linkage itself contains ‘ slack’, thus introducing additional deadzone. The
sum contributions of the deadzones are difficult to quantify in the frequency responses.

The third servo non-linearity is the random time delay caused by the transmitter system. The
delay itself, if constant, can be included in the system model and maintain alinear system. However, the
delay of the vehicle system caused by the transmitter is clearly variable and quantized-random (as seenin
previous plots). The effect of this non-linearity is not easily seen in the frequency domain responses, but is
quite evident in the time-domain step responses shown earlier.

The fourth servo non-linearity arises from the steering linkage. The figure below shows the

linkage used to transform the servo angle into the steering angle.
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Figure 3.45: The steering linkage of the 4WS, 4WD vehicle used on the IRS.

The lengths of the links in the above steering linkage were originally asfollows: L; = 8-mm, L, =
24-mm, L3 =52-mm, L, = 3-mm, Ls =Lg=30-mm. Note, because of the following analysis, these
lengths were modified between the 1.2 m/s tests and 3.0 m/s tests later to provide a linear relationship
between servo angle and wheel angle for both the front and rear linkages. The following equation
development therefore only applies to the testing conducted at 1.2 m/s (and a very small subset of data
presented at 3.0 m/s).

Examination of the geometric arrangement of the linkages reveals that the steering angle gsteer is
equal to theangle DCDC'. To solve for DCDC’, we can examine the system as afour-bar linkage. In

standard vector notation,

ne M+1rye 92 41 B 41,d% =

(3.127)
We can see that
rl = Ll
rp = \/'—32 +(Lo- Ly~ Lgf
(3.128)
I’3 = L2

g =1 L42+L32
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If we solve numerically for r, and r4, we find r, = 55.02 mm and r, = 52.09 mm. We can also note that g4 is
the angle of the ground link, and does not change. Solving for qa:

g, = tan'ladié
TS (3.129)
we find q,= 176.7 degrees numerically. If we continue the vector equation by expanding the imaginary

vectors, we can then collect the real and imaginary portions of the vectors to obtain:

rzsin(qz) =- rlsin(ql)_ r3sin(q3)- rASin(qA)
r, cos(d,) = - r, cos{a, ) + r, cos(q ) - r, cos(a,) (3.130)

If we square both equations and add them, we obtain:

r.22 = r.12 + r32 + r42 - 2rlr3[S n(ql)gn(q3) + Codql)codq3)] +
2r,r,[sin(q,)sin(a, ) + cos{a, ) cos{a, )] - 2r,r,[sin(a,)sin(q, ) + cos{a;)cos(a, )] (3.131)

Collecting terms relating gs:

- 7=’ - - 201, coslg, - q,) =-[2nrsin(g,) + 2rr, sin(q, )]sin(a,)
- [2I‘ll‘3 cos(ql) +2n1, COS(Q4 )] COS(QP,) (3.132)

It iseasier to solve thisif the following substitution is made

A=r2-r?-r2-r2- 2rr,c08q, - q,)
B = - [2rr,sin(g,) + 2r,r,sin(q, )] (3.133)
C =-[2r,r,coslg,) + 2r,r, cos(g, )]

The equation then becomes

A =Bsin(g,)+ Ccos(d,)

(3.134)
This can be solved using the trigonometric relationships:
inq) = 2tn(@)
sin(a) 1+tan?(q) 213
)=l o
1+tan?(q)
Substituting, the equation becomes
1+ tan? = (2t B+(l- tan®
1+ tan*(q,))A = (2tan(a,))B + - tan*(q,))c (3.136)
Which is quadratic in tan(qg),
(A +C)tan*(q;)- 2Btan(q;)+(A- C)=0 (3.137)
Solving
_2B+,/4B2- 4A+C)A- C)
ten(q) = A +0) (3.138)
a@B+B2- AZ+C2 0
§ (A+C) p '

101



A plot of thisrelationship reveals the nonlinear relationship between servo angle and wheel angle for the
AWSAWD vehicle. Shown below are the slope and derivative of this relationship:
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Figure 3.46: Relationship between servo angle and wheel angle (Ieft) and slope of thisrelationship (right).

The graph of the slope of the system provides insight into the control of the system: alinear controller
assumes that the slopeis constant. Thisis similar to fitting the above left plot to aline. Clearly the left plot
shows that the slope varies with operating point. Ideally, the system is nominally operated at O degrees but
in practice there are errorsin calibration. The resulting effect on the controller is to change not only the
magnitude of the response, but al so the phase of the response. The phase is seen if weimagine apoint on
the curve having to travel over the "hump" on the slope plot to contribute a steering input: the resulting
non-linear change would affect the phase of the system aswell. In practice, it was found that the frequency
domain and time domain fits were VERY sensitive to theinitia conditions on the steering actuator angle,
and precise alignment of the actuator was needed. In other words, the system dynamics changes
significantly with asmall error in operating point of the system. Because the vehicle was both front and
rear steering, asmall error in one steering input would be canceled by control effort in the other input
during closed loop operation, so these types of errors were very difficult to remediate and had to be
conducted on atrial-and-error basis.

To simulate this linkage in a Simulink model, the following model was created.
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Figure 3.47: The SIMULINK model to determine wheel angle.
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In the above figure the A, B, and C terms perform the corresponding cal culations devel oped in the previous
equations. The effect of this linkage non-linearity is demonstrated in later sections where the same MRC
controller isimplemented first on a system with strong steering linkage non-linearities, and secondly on
one with minor nonlinearities.

The linkage nonlinearity can be approximated as a DC gain between actuator angle and wheel
angle. This DC gain varies strongly with respect to the point where the above non-linear relationship is
linearized. This "operating point" depends on theinitial transmitter calibration. For the vehicle testing
discussed in thisthesis, DC values for the front wheels were found to be approximately 1.3 degrees (front
wheel) per degrees (front actuator) and 0.76 degrees (rear wheel) to degrees (rear actuator). The resulting

transfer functions are as follows:

di(s)  _ 3510 érad i

Viransmitter () % +60.55s+1764 &volt] (3.140)
d(s) _ 751 erady

Viransmitter (s) 2+365+625 Evolth (3.141)

These transfer functions were used in the later sections to represent the actuator dynamics of the system.

3.6.1.5 Direct Actuation — DC Motor System

Compared to the difficulties encountering in modeling the non-linear actuator dynamics for the
servo systems, the modeling of the DC motor steering system wastrivial. A PID controller was created to
control the position of the system, and a frequency response was conducted to measure the tracking
performance of this controller. The following figure shows the resulting frequency responses at three
different amplitudes of steering input: 5 degrees, 10 degrees, and 20 degrees where the angle is measured in

servo-motor degrees (as opposed to true wheel angle).
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Figure 3.48: The frequency responses of the front steering actuator.
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The bandwidth of the above steering actuator is clearly about 300 rad/sec, or between 40-50 Hz. Thisis
nearly another order of magnitude faster than the R/C servo actuators! A small amount of amplitude
dependence is seen, however it is unlikely that these differences will be seen simply because the
mechanical system, with pole locations around 1-2 Hz, will act as alow pass filter for these actuator
dynamics.

If the steering dynamics were used directly for steering of the vehicle, higher performance would
be obviously achieved, but at the sacrifice of realism. Inreality, the actuators on real full-scale vehicles are
inthe 5 Hz range (at best). The controller of the DC motor steering actuator was modified to emulate a5
Hz actuator by placing afilter on the reference input of the controller with two poles at 5 Hz, critically
damped. To test how well this tracking method would work, the frequency response of the actuator
emulating a 10 Hz actuator (more difficult to track than a5 Hz actuator) was obtained. The figure below

shows the resulting response:
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Figure 3.49: The frequency responses of the front steering actuator.

The system displays adequate tracking up to nearly 100 rad/sec, well past the dynamic range we would
expect to observe from the vehicle. The 5 Hz, second order, critically damped actuator model was used for
both the front and rear steering actuators hereafter.

The Uberquad vehicle can also steer via differential torque input. To approximate the available
dynamics from the "torque" motors, again a PID tracking controller was constructed, and the system was
made to track a sinusoid input from the DSA. The DSA was then used to obtain the frequency response
from reference input to measured steering age to obtain a closed-loop frequency response. The figure
below shows the resulting responses for 3 different inputs (again 5, 10, and 20 degrees as measured at the

motor):
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Figure 3.50: The frequency responses of the torque steering actuator.

Clearly, the system responses demonstrates a very high bandwidth of at least 40 Hz. Because each
motor used for torque actuation has the same gear train and mounting geometry, it is assumed that the
dynamics of each torque motor areidentical. Thus the frequency response for the above steering motor and
torgue motor is assumed to apply to the remaining one steer motor and remaining three torque motors.

In afull-sized vehicle, the bandwidth of differential torque steering is much higher than that of
turning the wheels to steer. To simulate this on the Uberquad system, no dynamic prefilter was used on the
torque steering system, in essence leaving the motor to act as roughly a 40-Hz torque actuator. On real
vehicles, the actuation bandwidth would depend largely on the speed of the ABS or torque control system
and associated actuators, in addition to tire dynamics. As mentioned earlier, experimental longitudinal tire
dynamics full-sized vehicles have a bandwidth of approximately 40-Hz, which justifiesin some limited

sense the choice of dynamics for torque control.

3.6.2 AWSHAWD Yaw Dynamics at Low Speed (1.2 m/s) + Slow Servos

This section introduces the measured vehicle dynamics measured for the 4AWSAWD vehicle at low
speed (1.2 m/s). Thiswork was conducted as a continuation of the studies conducted by the previous
graduate student. When this experimentation was conducted, there was no consideration of pi-matching.
Hence, the actuator dynamics were very slow because poor actuators were being used (without knowledge
of their limitations), the wheels on the vehicle had cornering stiffness a factor of 2-4 timestoo high, and the
weight distribution of the vehicle (notably the |, moment) was arbitrary. To make matters worse, the data
collection was initially conducted with the analog arm, which resulted in incredibly poor yaw-rate
feedback. With so many caveats on the experimental results, one may question the intent of presenting this
data. Ignoring the justification of continuing previous research techniques, many lessons can be learned
from this experiment outside the realm of vehicle testing. The feedback, scaling, modeling, and controller

development issues solved during this experiment allowed the success of the future vehicle tests.
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System identification was first performed on the yaw response using the front wheel asthe

control input using the multiple bode-plot method previously discussed, resulting in the following fits:
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Figure 3.51: Thefit of the yaw angle dynamics using the front wheels as the control inpuit.

The above plots were fit for denominators ranging from 2™ to 5" order, and the best fit was found for
denominators of 3" order. The numerator order was then varied from 0™ order to 3" order, and the best fit
was found to be at 0" order. The fit was performed using the INVFREQS command in MATLAB, with
weighting at the corner frequencies to refine the fit. The solid line in the above plot corresponds to the
transfer function:

y(9 _ 13480

Vi (9~ sx{s* +103>s+180) (3.142)

Note that the yaw angle is measured in degrees for this transfer function, which affects the D.C. gain on the

transfer function. Also note that the yaw angle was scaled by 1/10 when the yaw position was returned to
the DSA, so that the transfer function identified in the above Bode plot was multiplied by 10 to obtain the
transfer function from voltage to yaw angle. The poles of this function are:

Poles=-513+124] (3.143)

This represents a system that is dightly oscillatory in the open-loop time-domain response, which is
expected.

Consideration of the above model fit shows some discrepancy in the model fit: the actuator
dynamics (a DC motor) have 0 zeros and 2 poles, while the vehicle dynamics have one free integrator, two
polesin the left-half of the complex plane (LHP), and one minimum-phase zero. Thus we expect the
system to have 1 zero, 4 LHP poles, and one free integrator. Instead, the above fit has 0 zeros, 2 LHP
poles, and one free integrator. The explanation for this discrepancy is clear when the bicycle model
parameters for the system are measured. The bicycle model predicts (from these parameters) that the LHP
vehicle poles are at approximately 20-30 rad/sec and 110 rad/sec, and the zero is located at around 30
rad/sec. The actuator dynamics are unknown (because of the rate-limiter), but examination of the actuator
bode plots reveas are likely less than 20 radians per second when the combined rate-limiter and linear
dynamic effects are combined. Thus, an explanation of the vehicle dynamicsis as follows: the 110 rad/sec

poleisbeing “washed out”, there is an approximate pole/zero cancellation between the remaining bicycle
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model pole and zero, leaving only the actuator dynamics and a free integrator to explain the observed
model order.
To obtain the rear-steering dynamics, system identification was again performed as just described

using the rear wheel as the control input, resulting in the following fits:
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Figure 3.52: Thefit of the yaw angle dynamics using the rear wheels as the control input.

Again, the order of the denominator was searched between 2™ and 5" order, and the order of the numerator
was searched between 0" and 3" order, with the best fit as shown below. Also, the results were weighed
again at the corner frequencies to produce a more precise fit. The transfer function obtained from the
voltage sent to the rear wheels to the yaw angle was found to be:

y(9 _ 26500

Vi(s ~ sxs* +8505s+310) (3.144)
The poles of this transfer function were found to be:

Poles=-425+171j

(3.145)
Again, the resulting poles indicate atime domain response that is slightly oscillatory. Before continuing to
the next vehicle, note that the time-domain verification of open-loop dynamics are presented in the
controller implementation section later in thisthesis (to serve as a comparison between open-loop and

closed-loop responses).

3.6.3 4AWSAWD at High Speed (3.0 m/s) + Fast Servos

When Buckingham-Pi analysis was conducted on the vehicle, it was discovered that the operating
velocities needed to represent a full-sized vehicle were much higher than the testing speeds of 1.2 m/s. It
was also discovered that the low-frequency dynamics previously thought to be vehicle dynamicswerein
fact actuator dynamics. This section details the frequency-domain and time-domain identification of the
system at a higher velocity of 3.0 m/s. Thisvelocity corresponds roughly to afull-sized vehicle traveling at
65 mph, or approximately 30 m/s. The low-bandwidth actuators were replaced with the highest-bandwidth
(and most expensivel) R/C actuators available.

Asdetailed in earlier sections, frequency-domain identification was conducted using swept-sine

input, allowing 20 cycles for integration and 5 seconds to settle each frequency. The figures below were
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obtained using 400 separate sweeping frequencies. To obtain a dynamic model of the system, two separate
methods were used: atheoretical approach and an input/output approach. To obtain afit using the
theoretical approach, the system was assumed to fit the bicycle model. To obtain afit using the
input/output approach, the system was assumed to be represented by alinear, causal transfer functions from
driver input to vehicle state outputs. To fit the frequency response to the theoretical bicycle model, the
unknown parameters in the bicycle, namely the cornering stiffness and the z-axis moment of inertia, were
varied until aminimum error was found between the model and measured frequency responses. When the
minimum error was sought, the actuator dynamics were included in the model, as well as the servo delay of
0.012 seconds. To obtain an afit using the input/output approach, the frequency response was fit using
causal transfer functions from 1% to 10 order until aminimum error was found. The arbitrary input-output
transfer function fit was forced to have the same actuator dynamics between the front and rear transfer
functions for yaw rate and lateral velocity. The plots below show threefits: the fit using the bicycle model
alone (no actuator dynamics), the fit using the bicycle model with the actuator dynamics, and the fit using

the input/output approach of using an arbitrary transfer function:
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Figure 3.53: Frequency-domain fits of yaw-rate dynamics using the front (Ieft plots) and rear (right plots)

wheels as the source for steering inputs.
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Figure 3.54: Frequency-domain fits of yaw dynamics using the front (left plots) and rear (right plots)
wheels as the source for steering inputs.
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Figure 3.55: Frequency-domain fits of lateral dynamics using the front (Ieft plots) and rear (right plots)
wheels as the source for steering inputs.

Theidentified models for the bicycle model were obtained using the following parameters substituted into

the bicycle model transfer functions derived earlier:

Y (velocity) = 3.0m/s
m (mass) = 4.025kg
I, (z-axis mom.) = 0.13 kg-m"2
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a (dist. C.G. to front) = 0.1387m
b (dist. C.G. torear) = 0.1893 m
Cas (cornering stiffness front tire) = 20 N/rad
Car (cornering stiffnessrear tire) = 45 N/rad
Tnomf (average front wheel torque) = 0 N-m
Tnomr (average front wheel torque) = 0 N-m

Thisresultsin the following transfer function for the bicycle model where the actuator is approximated as a

simple gain:
y(s) _ 427x+752 (3.146)
dq (s) s*+21x+170.6
y(s) . -13bs- 752 (3.147)
d(s) s+20s+1706
d; (s
() ~1.99 (3.148)
di C(s)
%) o (3.149)
TRe

For the bicycle model with actuator dynamics, the above expressions for yaw rate remain the same, but the

actuator dynamics become:

di (5) 1.99 (3.150)
de (s) 0.000567 xs* +0.0342 5 +1

c

d (s 1.20 (3.151)

d (5 000165’ +005765>5+1

Now that frequency-domain identification is complete, a verification of the dynamicsis conducted by
considering the system responses in the time domain. When practical, time domain verification was
conducted with the driver-in-the-loop, that is with someone physically driving the vehicle. Thefollowing

figures show the time-domain fits both with and without actuator dynamics.
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Figure 3.56: Time-domain fits of yaw rate showing the desired model, the predicted model, and measured

yaw rate when actuator dynamics are ignored using front steering.
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Figure 3.57: Time-domain fits of yaw rate showing the desired model, the predicted model, and measured
yaw rate when actuator dynamics are included using front (left) and rear (right) steering.

It can be seen quite clearly from the above time-domain plots that there remains some amplitude and phase
error, and that the modeling with actuator dynamics produces a much better fit of the system response. It
should be noted that the fit in the frequency domain was obtained by forcing both the front and rear steering
dynamicsto follow abicycle model. Hence, the parameters (instead of the poles) are the degrees of
freedom. The frequency domain and time domain “fits’ are coupled across states and control inputs: the
front-steering yaw rate, rear-steering yaw rate, front-steering lateral position, and rear-steering lateral
position bode plots all had to be fit simultaneously solely by varying bicycle model parameters. Because
only two parameters, cornering stiffness and z-axis moment of inertia, had errors large enough to justify
“tweaking” the system away from the measured values to obtain a better fit, therefore the degrees of
freedom are only 3 (Iz, Caf, Car) to obtain afit of 4 bode plots.
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A better “fit” would be obtained if the system were not constrained so tightly by the bicycle model
dynamics; however, arguments regarding dynamic similitude using the bicycle model would then be
unjustified. This“better fit” using arbitrary input/output transfer functions is shown in the above frequency
domain plots. For comparison, acontroller design based off of these fits was compared to one based off of
the bicycle model, and no difference could be seen in their performance. In light of thisin for sake of
simplicity, the results of this experiment are not presented in thisthesis.

Given that the above fits represent a“ parameter-based” identification, it is remarkable that the
system dynamics did in actually fit quite closely to measured values. Thisfact in itself justifies and
supports the bicycle model as a dynamic model for the system, which in turn justifies to some extent the

dynamic similitude arguments presented earlier.

3.6.4 Uberquad at High Speed (3.0 m/s) + DC Motor

Thefina vehicle identification conducted in this thesis was on the Uberquad vehicle. Again, the
state-variable of interest was yaw-rate, and the fits were conducted by varying the bicycle model
parameters. The Uberquad was unique in that the transfer function from wheel angle to yaw-rate could be
measured during testing in order to generate the bicycle model transfer functions with no actuator
dynamics. This greatly simplified the model verification for the Uberquad.

The following figures show the frequency-domain system identification for the Uberquad for the
three types of steering input: front steering, rear steering, and torque steering. The torque steering was
conducted using the front two motors on the vehicle to both drive the vehicle and provide torque steering.
Understandably, this can be quite simply modified into any number of configurations. This particular

configuration was chosen out of convenience.
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Figure 3.58: Frequency-domain fits for the Uberquad using front (left), rear (center), and differential-
torque steering (right).
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In order to evaluate the frequency-domain fit, the controller was made to track a sinusoid input to verify the
amplitude and phase relationships of the frequency-domain fit. Three different frequencies were examined
(only oneis shown below): low (1-2 rad/sec), medium(4-5 rad/sec), and high (10 rad/sec). In addition, a
square-wave tracking response was recorded for each type of input. A sguare wave was chosen because
square wave tracking tends to emphasi ze high-frequency model mismatch, and intentionally shows model
error during the square-wave steering command. The square wave tracking in essence requires an
instantaneous change in yaw rate, which is impossible given that the steering angles for the wheels cannot
instantaneously change. Thus, we do NOT expect the square wave responses to match between open-loop
model and measured yaw-rate. The sine wave tracking was so well that a square wave tracking signal was

alogical method to compare each type of input.
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Figure 3.59: Time-domain fits for the Uberquad using front steering under different tracking trajectories:
high frequency sinusoid (left) and step input (right).
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Figure 3.60: Time-domain fits for the Uberquad using rear steering under different tracking trajectories:
high frequency sinusoid (left) and step input (right).
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Figure 3.61: Time-domain fits for the Uberquad using differential torque steering under different tracking
trajectories: high frequency sinusoid (left) and step input (right).

Several important points must be made about the previous model fits. The bicycle model
parameters that gave the best dynamic fitsin the frequency domain were nearly identical to the off-line
measurements. This was not the case with the 4AWSAWD vehicle, where some of the parameters varied
from the measured values by as much as 50%. The above responses in both the frequency and time domain
fit much closer to the bicycle model than those of the 4AWSAWD vehicle. These overall trends suggests that
the Uberquad is perhaps a much “tighter” system dynamically, and does not (as much) show the non-linear
effects that plagued the 4WSAWD model testing such as rate-limited actuation and dead-zones in the
steering linkages.
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4 Control Approach

In previous sections, the motivational and theoretical basis for vehicle control was devel oped.
Before continuing to the next natural step of implementation, the concepts and intent of control are first
introduced. This chapter iswritten to provide an overview of the control methodology used in thisthesis,
and is written toward prospective control students who may be interested in the concept but unfamiliar with

the practice of Model Reference Control.

4.1 Alternative Methods

Before delving into one particular control agorithm for pages and pages, aternative methods
currently in use are described. The focus of this section is on practicality. It is quite easy to develop a
“new” control theory or idea. It iswholly a different matter to ensure that the concept is clear and easily

understood, as well as beneficia toward the end of controlling vehicular behavior.

4.1.1 Commercia Methods

Each car manufacturer is working to develop specific controllers for vehicle chassis handling, and
with each controller is anew acronym. The first manufacturer to feature commercial yaw-rate or stability
control was Mercedes-Benz in the form of the 1996 V-12 S class series. These vehicles were the first to
feature the Electronic Stability Program (ESP). With the ESP, a yaw-rate sensor senses excessive side-slip,
and compensates the vehicle by applying appropriate braking maneuvers. Based on an article by
(VanZanten, Erhardt, and Pfaff 1995), it appears that the control is based on minimizing the sideslip
velocity, and is likely a model-following approach based in the transfer function domain, with the feedback
control designed using optimal control theory. It appears that the sampling rate is every 40 milliseconds
(Arnholt 1995). As one writer notes, a Mercedes so equipped is the closest thing yet to the crash-proof
automobile (Sherman 1995a).

Two years after Mercedes introduced their system, ITT Automotive introduced an Automoative
Stability Management System (ASMS) that is currently used on the BMW 3-series sedan starting in 1998
(Sherman 1995h). This system also uses yaw rate and lateral acceleration feedback in conjunction with

wheel-dlip sensors and steering sensors.

4.1.2 2WS

Because of the actuation requirements for 4WS vehicles, some researches are instead focusing on
the automation of vehicles using simply 2WS. Peng et a use a Pontiac 6000 vehicle to validate a feedback-
type controller, where the error signal is actually previewed slightly. The resulting controller in effect
becomes a feedback/feedforward controller (Peng et al. 1994).
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4.1.3 Feedforward 4WS

The use of feedforward control was the first method attempted on vehicles with regard to rear-
wheel steering. Feedforward control has the advantage a feed-forward control can achieve fast vehicle
responses to steering wheel commands, without the lag or error necessary to achieve control input from a
feedback system. This advantage is retained even if reduced-order approximations for the plant are used.
Additionally, feedforward terms can contain non-linear dynamics simply because they do not affect the
closed loop stahility (Lee 1997).

4.1.3.1 Proportiona Feedforward

Originally researchers were more interested in 4WS because the front and rear steering inputs,
when used in conjunction, can in some way decouple the yaw and sideslip degrees of freedom. The
simplest method to do thisisto use arear-wheel controller that is afeedforward proportional controller
with variable gain. That is, the controller makes the rear wheel angle some ratio of the front wheel angle.
One class of simple proportional controllers would be the controllers developed by Sano et al. from 1979
on (Nakayaand al. 1982; Sano 1986; Sano and al. 1979; Sano and al. 1980). In these controllers, the rear
steering ratio was a predetermined function of speed where the ratio was determined by minimizing the
steady-state side slip angle of the vehicle in the high speed range. The resulting ratio can be expressed as:

S+ B2
C,L

g: b R
a+ V,
C,L

af

(4.1)

where the above parameters are the standard notation used in the bicycle model (reference 2 and 3in VSD,
p680 1995 ) and (Cho and Kim 1995; Sano 1986). This method is often referred to as the Vehicle Sped
Function (VSF). Itisalso often expressed as:

_-b+Ev/’

a+Ev’ 4.2
where E; and E, are the steering compliance of the front and rear wheels. In the low speed range, the rear
wheels were steered in a direction opposite the front wheels to make the turning radius of the vehicle
smaller. To simplify the system, a mechanical link was used to connect the front and rear wheels, which
relies on the concept that the driver corrects the steering angles with smaller magnitudes as the vehicle
speed increases. With the rear wheel steering in the same direction as the front wheel, the phase lag of the
lateral acceleration can be reduced while keeping the vehicle yaw rate response unchanged (Furukawa and
Abe 1997).

An aternative approach to maximize vehicle stability is presented by (Cho and Kim 1995) called
the Maximum Stability method. At each velocity, root locus diagrams of the closed loop system are made
using the front-to-rear steering ratio as the locus parameter. The value that gives the closed-loop pole
locations farthest in the left-half plane is then used.
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Theinherent problems with the proportional feedforward approach are that the controller minimizes only
the steady-state sideslip angle. A significant amount of transients may be introduced by use of the rear
wheels. Additionally, the lack of feedback can introduce undesirable performance degradation with

varying models, road conditions, etc.

4.1.3.2 Proportiona + Delay Feedforward

The steady-state methods described previously improve vehicle stability, but the response will still
contain undesirable transient dynamics. By applying suitable transient control, the vehicle response can be
improved without sacrificing stability (Inoue and Sugasawa 1993). Several authors have observed that the
rear-steer command is approximately proportional to the front steering input, but delayed. Cho and Kim
(Cho and Kim 1995) use atime delayed rear-steering type of controller where the control law for the rear
input is:

d (t)=g>d(t-t) (43)

where gamma s a vel ocity-scheduled gain, and ts is a vel ocity-scheduled time delay. This technique was
introduced earlier by (Shibahata and al. 1985). With this method, the phase lag at lower frequencies for
yaw rate and lateral acceleration will be reduced, but this effect diminishesin the range of 0.7 — 1.0 Hz.
Thistrend is characteristic of feed-forward types of rear-wheel control (Furukawa and Abe 1997). We see
that the use of the time-delay with the proportional term improves the transient effects of the rear steering

input, but suffers from the similar drawbacks of purely proportional control.

4.1.3.3 Transfer-Function Feedforward Methods

The use of atime-delayed input to the rear wheels improves performance, but can also introduce
undesirable transient performance. There are two basic types of dynamic (non-proportional) rear wheel
control: in phase and phase reversal. The method of using a delay always steers the rear wheelsin the same
phase as the front wheels. However, if we allow the rear wheels to be steered momentarily in the direction
opposite of the front wheels, the vehicle will be more responsive (Inoue and Sugasawa 1993). Naturally,
this approach requires higher levels of actuation, but the performance improvement is significant.
Takiguchi et al. obtained afront and rear steering ratios such that the phase difference between lateral
acceleration and yaw rate is zero (Takiguchi and al. 1986). Examination of the relationship between side-
dlip angle, yaw-rate, and lateral acceleration reveal that thisresult isidentical to the previous work by Sano.
However, the concept was expanded by Takeuchi (Takeuchi and al. 1985) when they derived the transient
theoretical relationship needed to maintain the body side-slip angle to zero. These results are in complete
agreement with work conducted by Fukunaga who reported that by actively steering the front and rear
wheelsin relation to the steering input, the phase lag between lateral acceleration and yaw rate could be set
to zero (Fukunaga and al. 1987).

A paper by (Ahring and Mitschke 1995) notes that if we attempt to make the yaw rate and sideslip

angle invariant to vehicle loading and cornering stiffness, then rear-wheel control alone will not work
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because the system is coupled between these two state variables. Hence, two inputs are needed. Invariance
of yaw-rate and side-slip angle with respect to loading and cornering stiffness will only be obtained if the
controller has access to the steering input for both the front and rear wheels independent of the driver.
Although thisis not likely to be adopted in practice (simply because the driver will have no control over the
vehicleif the controller electronics fail), their paper does point out limitations on performance achievable

by using the rear wheels alone to assist the driver.

4.1.4 Feedback 4WS

The use of feedback for vehicle control has several advantages over purely feedforward control.
Perhaps the most important advantage, the use of feedback maintains stable vehicle characteristics during
changes in driving conditions (Inoue and Sugasawa 1993). As pointed out by the same author, the use of
feedback must achieve the same level of steering input response as feedforward control to be considered.
In addition, it can be shown that stability against external disturbances cannot be set independently of
driving performance for a purely feedback system (Inoue and Sugasawa 1993). From a standpoint of
model following, the zeros of a system are invariant; feedback control cannot affect the zeros of avehicle
model.

4.1.4.1 Proportional Feedback

It is possible to force the vehicle, via feedback, to have neutral steer characteristics. Assuming the

bicycle model parameters are known, the bicycle model predicts neutral steer characteristics with feedback

gain:
d (t) =CxV J
I'() Iongw (44)
with
@ 0
_mga b=
2x. GC C..™ (4.5)
e ar af @

where Vg is the longitudinal velocity of thecar,Y istheyaw rate of the vehicle, m is the mass of the
vehicle, L isthe length of the vehicle, C, are the cornering stiffness of the front and rear tires, and aand b
are the length from the CG to the front and rear axles, respectively. This model was presented by (Senger
and Schwartz 1987), and tested in simulation and compared to other methods by (Sridhar and Hatwal 1992)

and found to be the easiest to drive among several parameter-based methods.

4142  State Feedback

The performance of the closed-loop system is often examined by incorporating a model of the
driver in the control loop. Cho and Kim design an optimal four-wheel steering system viaa L QR approach,
where the driver is assumed to be modeled as a purely feedback PD-controller with atime delay of 0.2
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seconds. Three optimal approaches are considered: minimizing four state variables (lateral error, yaw rate,
and derivative of both), minimizing the side-slip velocity (lateral velocity), and minimizing the side-slip
velocity and the yaw rate equally. The resulting controller in all cases resembles a state-feedback type of
control. Cho and Kim note for their controller that the results of an optimal control structure reveal nearly

identical performance as the proportional + delayed feedforward controller, with slightly less oscillation.

4.1.43 Nonlinear Control

One option to obtain perhaps the maximum vehicle performance is to account for system
nonlinearities (like sliding or strange deformations in the wheel). As an example, Smith and Benton design
an emergency controller to maneuver the vehicle as rapidly as possible from one lane into another using a
non-linear optimization scheme (Smith and Benton 1996). The purpose of the non-linear schemeisto
account for vehicle tire non-linearities during a very aggressive maneuver. The controller attemptsto
minimize the distance traveled before the vehicle leaves alane; hence, the tire forces are saturated for much
of the maneuver.

Obvioudly, accounting for tire non-linearities will improve vehicular performance. However,
there seem to be two primary issues with using a non-linear model or control. Thefirst is obtaining the
model: most controllers based on complex tire dynamics assume that the vehicle has knowledge of the road
surface before arriving at the road surface, or can at least achieve robust estimation of road parameters.
This has historically been very difficult to achieve. The second issue is design of the controller. It isquite
difficult to “tune” anon-linear controller, ssimply because the system response can be non-intuitive. Asa
general rule, highly nonlinear controllers tend to be best suited for two extremes: to marginally improve a
system that is already under control using linear methods by accounting for known model nonlinearities, or
to stabilize a system that is not stabilizable or difficult to approach using linear controllers. For this reason,

nonlinear controllers are for the present time avoided in this vehicle research.

4144  Driver Out of the Loop —PID
In the paper by (Ahring and Mitschke 1995), a PID regulator is used to control both the front and

rear wheels, with atransfer function coupling the two via feedforward terms. The resulting coupling
network is sensitive to vibration if the gains are incorrectly chosen; however, the authors are able to obtain
ayaw-rate and side-slip response that is invariant to cornering stiffness and vehicle loading given only yaw
rate and lateral acceleration feedback. A drawback to this method is that the use of feedback very often
introduces the vibration the authors comment on. Thisvibration isinherent in the coupling between the
two free modes because of the poor damping inherent in the bicycle model. Thisvibrationisseenin later

experimental testing of the vehicle using a purely feedback type of control.

4.1.45 Driver Out of the Loop — Neural Networks

In recent years, non-standard “modern” neural networks have been introduced to control the

vehicle. In the paper by (Nagai, Ueda, and Moran 1995), a neural network istrained and used to control a
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4AWS vehicle. However, the network was trained and tested only in ssimulation. Because neural networks
are inherently sensitive to the method by which they are trained, it is unlikely that this method will be

adapted for control of an actual vehicle in the near future without a significant amount of further validation.

4.1.5 Feedforward + Feedback 4WS

In designing feedforward and feedback systems in conjunction, several important aspects must be
considered. The division of control tasks between feedforward and feedback control must be clearly
defined, including considerations of problems that might arise when all tasks are entrusted to feedback
control. The combined use of feedback and feedforward control should not complicate the control system.
Finally, controller robustness to external disturbances and model changes should not change significantly
with the use of feedforward control as compared to feedback control alone (Inoue and Sugasawa 1993).

The tradeoff decision between feedforward and feedback control is critical with regard to
controller implementation. It is possible to examine the merits of each type of controller if we isolate the
effect of each term (Inoue and Sugasawa 1993). For this discussion, we choose yaw rate as the state
variable of interest; however, any vehicle state can be chosen without loss of generality. The yaw rate of
the vehicleis given by:

Yy =doy +d oy +Y gy (4.6)

d ,and

where y ,y  arethe relationships (transfer function or time domain) between steering inputs, d, ,d,
yaw rate output, Y . The subscript “dist” notes a disturbance input at the output of the system. From the

previous diagram, the rear steering input is:
d, =d, ¥F+exB

(4.7
where FF is the feedforward transfer function, FB is the feedback transfer function, and eisthe error.
e=d, xTF-y
' Y (4.8)
where TF isthe Target Function for the yaw rate (i.e. the reference model). We can combine these
equations to obtain:
_ +FPy )+ TFFBY Y g
= r r df + I
1+FBxy | 1+FBxy | (4.9)

L et us assume that we can obtained the exact desired yaw rate response by feedforward control. We can
then specify that the target function, TF, be:

TF=y, +FFxy
Yoty (4.10)
The resulting transfer function using this target function is:
Y=, +FRy )ty (4.12)
f , r f 1+ FB xy r dist .
desired . )
reference disturbance
model rejection
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We thus have completely decoupled the desired reference model from the disturbance rejection
characteristics. We can see that if FB can be chosentoinvert Y |, then the disturbance rejection term will

not contribute any additional dynamic termsinto the yaw response.

A feedforward/feedback system was used by Lee (Lee 1997) consisting of afiltered front steer
input and proportional yaw rate feedback (using filtered yaw rate):

d =K +t1>‘So| Ky
rd ey Y
2 (4.12)

From dynamic inversion arguments, it is clear that the above method will work well only if the vehicle
response can be adequately described by afirst order transfer function.

Basic feedforward and feedback rear-wheel steering controllers are discussed in (Lee, Mariott, and
Le 1997). It wasfound that the vehicles became more responsive (smaller Jturn rise time) if the wheels are
steered in phase with negative yaw rate feedback. The vehicle becomes less response if the wheels are
steering in phase with positive yaw rate feedback.

Several authors, namely Cho and Kim, include driver feedback models in order to examine closed
loop stability (Cho and Kim 1995; Cho and Kim 1996). The driver model is feedback based with a delay,
with a preview amount of the tracking error proportional to the square of vehicle velocity. The resulting
controller can be thought of as a feedforward-feedback system.

Simple mixed feedforward/feedback structures have been tested that are based on the theoretical
bicycle model. Sridar and Hatwal suggest the following structure (Sridhar and Hatwal 1992):

d, (1) =-d; () +CV 5 Y (4.13)

with

m &b ao
+ s

2L §C, C. 5 (4.14)

The motivation for this form was taken from the paper by (Sato et al. 1983). If we examine the controller,
we find it is very similar to the control used in the feedback section to produce neutral steering
characteristics.

Shiotsuka et al demonstrated the use of a Neural Network to predict thetire friction for changing
mu values and changing velocity. Using this estimator, they iteratively design an optimal controller for
both a feedforward and feedback controller. They demonstrate their performance with time-domain
simulations (based seemingly on their neural network), and show good performance for high acceleration
maneuvers (Shiotsuka, Nagamatsu, and Y oshida 1993).

An excellent paper is presented by the Honda research group where the road friction parameter is
estimated based on the yaw rate measurements. Using the estimated friction value, an adaptive
feedforward and feedback controller is designed to track areference model. The feedforward controller is

designed to minimize the steady-state and transient vehicle dlip angle in spite of changesin friction, while
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the feedback controller is designed using an Internal Model Control structure to compensate for
nonlinearities and achieve robust performance. The feedback gains are then determined used amu
synthesis approach. This paper is distinguished in that the experimental results are validated both in the
time and frequency domain on an actual vehicle (Wakamatsu et al. 1997).

Often the questionable assumption is made that the bicycle model parameters are known
beforehand for a particular vehicle/roadway combination. With thisin mind, the dynamics of the vehicle
can be inverted and a controller designed to produce invariant and/or optimal performance. Y aniv usesthis
approach to achieve speed-invariant performance for a bus with a controller that commands both front and
rear wheels (Yaniv 1997).

4.1.6 Mixed Steering and Braking

One method to control the vehicle orientation is to use the torque produced by each wheel during
braking or acceleration to generate ayaw moment. Thisis often referred to as Direct Yaw Control (DY C).
If the traction and braking forces are distributed appropriately, the yaw moment and thus the lateral motion
can be accurately controlled (Fukunaga and al. 1987). An advantage of the DY C method is that the
longitudinal forces of atire do not saturate as quickly asin the lateral direction (Abe, Ohkubo, and Kano
1996). Aswas shown in earlier section sections, the tire has a more linear response with higher bandwidth
in the longitudinal direction than in the lateral direction. Hence, more precise yaw moments can be
generated to control the vehicle lateral motion using DY C rather than RWS. Finally, the systemis
somewhat fail-safe since DY C is more robust to changing vehicle conditions as the longitudinal forces do
not saturate as fast as the lateral forces, and the driver maintains control over the front steering input
(Fukunaga and al. 1987) (Nagai, Hirano, and Y amanaka 1997).

We must realize that the use of longitudinal tire forces can influence actuation of longitudinal
controllers such as ABS or Traction Control Systems (TCS), thus increasing the complexity of the vehicle
dynamics (Fukunaga and al. 1987). Hence, these brake/torque controllers are most often used in accident
prevention/ skid control rather than vehicle directional control. The Mitsubishi group has developed a
controller method that emphasis comfort (based on minimizing the jerk of the vehicle) that recognizesin
some part that driver discomfort must be considered. In their study, the determined that jerk was a key
indicator of whether a maneuver was conducted for comfort or for collision avoidance (Hayafune and
Y oshida 1990).

It isimportant at this point to make a distinction between DY C and ABS or TCS systems.
TCS/ABS systems should be considered fundamentally different types of vehicle control technology.
TCS/ABS control the longitudinal force on each wheel independently to prevent lockup or spin during
braking or traction efforts. Even though these systems may stabilize the vehicle lateral motion, they do not
actively control the vehicle's overall motion (Fukunaga and al. 1987). This becomes intuitively clear if the

acceleration diagram shown in Chapter 2 is examined.
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A model reference tracking controller was developed by Will and Zak of Purdue that utilizes
brakes, front steering, and rear steering for control input (Will and Zak 1997). The design of the controller
is based on the Lyapunov direct method. The controller is designed using the bicycle model, and validated
using step inputs using a higher order (roll and pitch DOF) model. Both feedforward and feedback terms
are used; however, the feedforward is simply a direct feedforward command (unity), so the system zeros
may deteriorate performance. The resulting control ends up behaving like a diding-mode control where the
reference model trgjectory isthe invariant manifold. One problem with this control is that the control
naturally chatters to maintain tracking with the reference model (Will and Zak 1997).

A Direct Yaw Moment control system based on model following technique using state feedback is
described in detail in apaper by Nagai et al (Nagai, Hirano, and Y amanaka 1997). A controller utilizing
both feedforward and feedback is designed to achieve model following. The feedforward and feedback
terms are decoupled, this providing freedom to design the feedback controller using robust control
methods, pole placement, or optimal control. In this paper the authors choose an optimal control technique.
As anote, this paper is perhaps one of the closest published work yet discovered in terms of similarity to
the thesis work presented here. Another paper using transfer function based Model Reference Control to
control the yaw rate and sideslip responses with 4WS and DY C is given by (Abe, Ohkubo, and Kano
1996). Specifically, they show that DY C is more responsive than 4WS because the yaw rate response by
DY C is proportional to steering wheel input while the response to 4WS s afirst-order lag. A feedforward
and feedback controller is used, with the feedforward term intended to produce zero side dlip. Simulation
studies demonstrated a consistent lag in the yaw rate tracking using 4W'S, while the DY C showed good
tracking. In addition to yaw rate control, the authors introduce a cooperative control where zero sideslip as
well as model-following with the yaw rate. The authors also note that when the tires begin to saturate, the
yaw-rate feedback tends to destabilize the system by requiring excessive feedback actuation.

There are very few papers comparing 4WS vehicleswith DY C. Notable exceptions are the two
papers by Dr. Alleyne where different control input strategies are compared in the steady-state (Alleyne
1997a) and during transient maneuvers (Alleyne 1997b). The strategies compared were Four Wheel
Steering, Front Wheel Steering, Four Wheel Brake Steering, Front Wheel Brake Steering, and Rear Wheel
Brake Steering. Each of these techniques were evaluated when using an optimal controller design approach
(LQ) based on the bicycle model where the metric of comparison was the ratio of the amount of tire usage
to the maximum availabletire force. It was found that the 4AWS is as efficient in it tire usage as front wheel
steering, and that rear wheel braking should be avoided. Differential braking was not as efficient as these
other two steering methods; however, it isin general preferred for liability reasons (Alleyne 1997b).

One of the few papers dealing with aggressive cornering and accel eration/braking was presented
by Shibahata et al from Honda. In this paper, a parameter-based controller based on a stabilizing yaw
moment is introduced. Good performance is achieved; however, the controller assumes that the tire model
(friction, lag, etc.) isknown exactly. The resulting feedforward controller is not discussed, and

experimental verification is not presented in this paper. In this paper, a performance curvein the
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acceleration domain is presented that nearly encompasses nearly all of the acceleration domain (Shibahata,
Shimada, and Tomari 1993). Based on the structure of the controller, the concept is sound but many

assumptions are made with regard to road friction, tire model, etc. for this controller to be of practical use.

4.2 Introduction to Model Reference Control

Model reference control (MRC) is a control technique where the performance of asystemis
specified by the performance of another system. The area of Model reference control iswell studied, and
includes non-linear and time-varying systems. In general, MRC is presented in the context of adaptive
control, where an adaptive routine iteratively identifies new plant parameters, and the controller is modified

“on-the-fly” to achieve model tracking.

4.2.1 Dead-Beat Control

If the general purpose of MRC isto achieve model tracking, then we must consider the simplest
method to do so for a stable, non-minimum phase system. Simply “flip” the transfer function, multiply it
through the reference model, and use the resulting transfer function as the new controller. This method is
often referred to as model inversion, but it is highly sensitive to modeling errors, and is not suited for non-
minimum phase systems. One aspect of control is that a sampled system is always non-minimum phase if
the sampling rate is high enough. Clearly, the issues associated with Dead-Beat control tend to outweigh
itssimplicity. However, in the following derivation of MRC with disturbance rejection, we borrow on the

idea of model inversion.

4.2.2 Theory and Implementation of MRC

This section outlines the procedure used to transform the dynamics of the vehicle so that the
vehicle performance behaves like a different, reference vehicle. In essence, the Model Reference
Controller approach can be looked at as a simultaneous pole AND zero placement approach, with a
feedforward term that anticipates the vehicle response. The following derivation is a modification of the
derivation provided by Astrom and Wittenmark in their publication, Adaptive Control (Astrom and
Wittenmark 1995).

To begin, we consider the general case of a plant that receives a control input u and hasasingle
output y. We assume at this point that the plant is linear; that is, the plant can be represented by a transfer

function that is a polynomial of s for both the numerator and the denominator.
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Figure 4.1: The feedback/feedforward structure of the MRC method.

We can represent the output of the plant with the following equation,

B
Y(g =l (4.15)

Where A and B are the denominator and numerator, respectively, of the transfer function. We would like
the plant to behave like:

Y(9=2m s (9

A (4.16)

where A, and B, are the desired denominator and numerator, respectively, of the plant, and U, is the input
into the controller. To obtain the desired behavior, we may implement a controller that has both a feedback
and a feedforward portion, such as:

T S

=—xy. - —
U=R™U"RY

(4.17)
Here T/R is afeedforward transfer function intended to cancel the dynamics of the plant, and SR isa
feedback transfer function to compensate for any error in the feedforward design. If equation for control
effort is substituted into the plant equation and solved for y, the following result is obtained:
B xT

Y= aRr+Bxg e (4.18)
We can see that to obtain the desired closed loop poles, then A, must be a common factor of (AR+BS). We
can also seethat if we wish to cancel any zeros of B, we must also include these terms as additional factors
of (AR+BS). To understand this more clearly, we can factor B into two portions:

B=B" B
(4.19)

Where B* contains the terms to be cancelled and B™ contains the remaining terms. Since thereis an infinite
number of ways to factor out B*, we must assume that B* is monic (i.e. the coefficient of the highest power
is1). Inaddition, we must assume that B+ is stable and well damped.

Onefinal factor of (AR+BS) isthe observer poles of the system. Theterm (AR+BS) represents
the characteristic polynomial of the system, and that the terms B*’A,, may not have the same order as the
characteristic polynomial. To increase the order, we include an additional factor of A,, which represents
the observer poles of the system. In general, we want these poles to be much faster than the model poles,
A. We can combine al of these requirements to obtain the Diophantine equation:

AXR+BXS=B* XA A
(4.20)
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If we factor B in the above equation into B* and B~ we can see that B* must also be afactor of AR in order
for asolution to exist. We know that A will not factor B*, because if it did factor, then the original

formulation of B/A would not be a minimal realization of the plant. Hence, B* must be a factor of R.

R=B" xR,
(4.21)
If we divide the Diophantine equation by B*, we obtain:
AXR +B X8=A A
(4.22)

In this modified form of the Diophantine equation, we can provide the conditions that guarantee that there
exist solutions that give a proper (in continuous-time) or causal (in discrete time) control law. To do this,

we note that the controller must be causal. Thus, we require

degSE degR

degT £ degR (4.23)
Note that if R, and S, are solutions to the Diophantine equation, then so are

R=R,+QB

S=S,- QA (4.24)

where Q is an arbitrary polynomial. Since Q is arbitrary, there are an infinite number of solutionsto the
Diophantine equation. We select the solution that gives the lowest degree controller, which is called the
minimum-degree solution. We note that these conditions are:

degA, 3 2>degA - degA, - degB" - 1

degA , - degB,, 3 degA - degB (4.25)
The second inequality is aregquirement on the relative degree of the reference model, also known asthe
pole excess. In order to solve for the T polynomial, we must require that the term B divides B,,,; otherwise,

no solution exists. We can then write:

B, =B B'm
(4.26)

T=A, 8,
(4.27)

which allows usto solve for the T polynomial, completing the MRC controller design. There are additional
causality conditionsin the use of MRC methods that are outside the scope of this thesis work, but these

conditions can be found in the adaptive control books referenced in the appendix.

To summarize the terms for future reference:

u: The control input into the plant
U The control input into the controller
B: The numerator of the plant

B+: The factors of B that are to be cancelled to
B The desired numerator of the plant
A: The denominator of the plant
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A The desired denominator of the plant

R: The denominator of the feedforward and feedback transfer functions used in the control
R The portion of R that does not factor B*

S The numerator of the feedback transfer function used in the control

T: The numerator of the feedforward transfer function used in the control

4.2.3 Examples of Using MRC on SISO Systems

Model reference controller design is best explained by using examples, and naturally we begin
with a SISO system first. Asafirst approach, we consider the “drive-by-wire” controller where only the
front wheels are used for control input. Because of the obvious safety problems associated with this, this

method is not implemented, but serves as an example of implementation of MRC methods.

4231 MRCfor aFirst Order SISO System

As an example, we will transform the system, Y_10 jjoY_ 2

U s+5 U s+1
The second transfer function was chosen to match the DC gain of the open-loop plant dynamics. We can
immediately note that B = 10, A = s+5, B, =2, and A, = s+1. If we choose the degree of B" to be zero, all
of the degree ineguality requirements are met. |f we assume that no observer is desired, then we can
choose Ay to be 1, and B to be 1. Substituting the known values into the Diophantine equation, we obtain:

(s+5) R +10>8=(s+1) 428)

If we assume that R and S are simple constants, then there are a sufficient number of equations to solve for
Rand S. Again, these equations are obtained by equating the coefficients of the each polynomial power of
s. Solving these, we obtain S=-0.4and R =1. To solvefor T, we note that we can solve for B” from the
equation B = B'B*. Wethen find B” to be 10. We then solve for B,,,; to be 0.2. Solving for T gives T =
0.2, which completes the MRC design.

To verify the design, we can simply solve for the transfer function of the resulting block diagram,

noting that u = T/R*uc — S/R*y. The result confirms the design.

4232 MRCfor aParticular Second Order SISO System

As an example, we will transform the system, Y. M into Y %0

U s®+s+2 U s?2+3xs+2
Again, we can choose the second transfer function to match the DC gain of the open-loop plant dynamics.
We note that B = 10s+50, A = S+ s+ 2, B, = 50, and A,, = & +3s + 2. We can see that we must choose B*

to be (st+5) to cancel the zeros.
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At this point, a check of the required degree of the observer polynomial reveals A, to be of order
0. For convenience, we choose A, to be 1. Once A, and B* are known, we can solve for T. From the
equation B = BB, B isfound to be 10. Solving for B, givesB,’ =5,andso T =5since A, = 1.

At this point, the Diophantine Equation can be formulated as:

(& +s+ 2)>{r1 s+ r2) +(10>s+50) >(sl s+ Sz) =(s+5){s* +35+2) (4.29)

By assuming that R and S are first order, then there are a sufficient number of equationsto solve for R and
S. At this point, many solution steps are skipped in obtaining R and S, but it isfound that R = s+5, S=

0.2s,and T =5. To verify the design, we can plot the response of the system to ensure that tracking is

achieved:
35
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Figure 4.2: The response of the second order MRC design.

4233 MRC for the General Second Order SISO Yaw Rate System

The yaw rate dynamics can be represented in a general form as

B _ bo

A 82+al>s+a0 (4.30)
If the desired dynamics are represented as:

Bm__ Pmo

Am P+ a1’$*ano (431)

Then the order of the observer that must be used is of minimum 1% order. If the observer is represented as

Ao=S*Vo (4.32)

and R, S, and T are represented as.
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R:s+r0

S=s8ts, (4.33)

T:t1><~:,+t0

Then each coefficient of R, S, and T can be solved for to be:
= V2781 * Vo Bmz - 178

0 a, (4.34)

< =0%mo” 0™

0 4.35
b, (4.35)
. = V1 8m0 * Vo 2m) 1178 3%
1 bO (4.36)
. =Pmo™o
0 b (4.37)
0
t = me !
1 bO (4.38)

A MATLAB script was developed that solves this specific case of MRC design and all general cases of
MRC design by forming the Sylvester matrix and performing the appropriate matrix manipulations to solve
fortheR, S, and T polynomials.

4.2.4 Senditivity Functions of MRC Controllers

The purpose of examining sensitivity functionsis to determine how the system will perform given
aparticular error input. To do this, consider the following diagram, which isthe MRC system with two

error inputs: a disturbance on the input and a disturbance on the output:

| 10 | N 5({;
Ue R(S) u A9 X |

)
rRe (€

Figure 4.3: The block diagram of the closed-loop system including disturbance terms.
The plant dynamics, output, and control law are given by:
AXx(s)=B(u(s) + n(s))

(4.39)
y=x+e (4.40)
Ru(t) = Tu,(t)- Sy(t) (4.41)

We can write:
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Ay =B(u+n)+Ae

(4.42)
Substituting in the control and solving for y gives:
by= BT ,, BR . AR
AR+BS ° AR+BS AR+BS (4.43)
which, when substituted in equation above, gives a solution for x:
(- BT ., BR _ BS
AR+BS ° AR+BS AR+BS (4.44)
We can finally solve for the control input, u:
by AT, BS _ AS
AR+BS ° AR+BS AR+BS (4.45)

Note that these equations are presented in (Astrom and Wittenmark 1997). If we examine the above
sensitivity functionsin detail, we see that portions of the above sensitivity functions are used in the two-

input MRC method previously developed.

4.3 Alternative Representation of MRC Loops

The choice of the Sand R polynomialsis not unique. In fact, the Y oula-Kucera Parameterization
Theorem states that if S°(s)/R°(s) is a stabilizing controller to the system B(s)/A(s), then all rational
stabilizing controllers are given by:

S(z) _ °(2)+Qz)A(2)

RE) R°()- Qz)B(2) (4.46)
where Q(s) is stable. Note that the above proof is presented in the z-domain. The details of this proof are
presented in Astrom and Wittenmark's, Computer Controlled Systems (Astrom and Wittenmark 1997).

An alternative representation of aModel Reference Controller is also derived where the complete
separation between response to command signals and disturbances is obtained. The model structure
remains a 2 DOF controller, but robustness properties can be examined in a much more intuitive manner.

The structure is as follows:

A9 Urf
» BE
By® | ¥ + ¥ " uf B
Uc LS m o S(S) S, Y
1 Ane RO [T Y [T

Figure 4.4: The block diagram of the closed-loop system including disturbance terms.
Note that the feedforward term T(s)/R(S) is nho longer explicitly in the design, but that the above
design is as a consequence not causal. Thismodel structure is commonly seen in the literature with afilter

on the feedforward term to guarantee causality.
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4.4 Sability of MRC Methods

We can see from the above closed-loop diagram that system stability is primarily dependent on the
S/Rterms. A formal statement of system stability has been obtained by researchers regarding closed-loop
stability of the above form. Given a controller in the form:

T S

WERYTRY (4.47)
It has been proven that the system, if linear, is stable if the difference between the true plant, BO(S) ,and
Ag(S)
the modeled plant, B(S) is bounded by the inequality (Lee 1997):
A(s)
B(5) Bold)l [
Al A [RE) (4.48)

where |a] denotes the modulus of the complex number a. This represents a design tradeoff between closed-
loop bandwidth, which islarge if SR islarge, and modeling error. If the closed-loop bandwidth istoo
high, the system may become unstable if the modeling error istoo large. If the bandwidth requirement is
reduced (by reducing the gain of the system), then the requirement on model accuracy can be relaxed at the
sacrifice of tracking performance. This tradeoff historically has been best approached using a robust
controller design method (Sun, Olbrot, and Polis 1994; Tamaki et al. 1986) to design the observer
polynomial.

4.5 MRC on Systems with Known Disturbances

For avehicle control system, there is always a chance that a controller will fail; therefore, the
controller design itself should consider this possibility. If asingleinput, such as the front wheels, is used
for both the controller and for the driver input, any failure in the controller may prevent the driver from
being able to steer the vehicle. For thisreason, it is more desirable that the driver and controller use
separate inputs. To do this, it is possible that a controller steer the rear wheels, while the driver steersthe
front wheels. Thus, the driver would aways have limp-home capability if the controller or sensors fail.

With the driver controlling the front wheels of the vehicle, the vehicle response can be modeled as
MRC with aknown disturbance. We attempt in this section to obtain a theoretical method to "cancel" the
driver input using the rear wheels to obtain the desired reference model. The following diagram pictorially

represents the goal of this section:
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Figure 4.5: The block diagram of the closed-loop system including the driver as a disturbance.

Assume that the output disturbance, e, can be separated into two parts: known dynamics and unknown

disturbances. Assuming arational, causal transfer function representation for the disturbance gives:

_Bq(9) .
(9= 20 g% O+ €0 (4.49)
M disturbance

Theterm, d ¢ is defined as the disturbance generator for the known disturbance and in this case is the

driver's front steering input. The unknown disturbance term, €', contains both unmodeled dynamics of the

system as well as external disturbances (e.g. wind) that are not known. Substituting this disturbanceinto e

above gives:
B
by= BT 0+ BR ., AR . °d AR (4.50)
AR +BS AR+BS AR+BS AdAR+BSf
B
bus AT . - BS ~~AS _ °d As (4.51)
AR +BS AR+BS AR+BS A  AR+BS f

For the moment, ignore the output error, €, in the equation for y above. We wish to cancel the effect of the

disturbance (driver input) by use of a control at the input of the plant. To do this, an input disturbanceis

used to reject the output disturbance. Clearly the choice of v to cancel the disturbanceis:

_BaA
Ay B

V=

o (4.52)

The controller becomes (note that u, is the driver front steering input, d ¢ ):
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__ AT, ,BB4A2 BS , As By As
AR+BS ' €A, B;AR+BSf AR+BS A, AR+BS '

d (4.53)
AT AS
= d; - e
AR +BS AR +BS

We see that we recover the traditional form of the MRC. We now want to formally include the disturbance

term into the controller be defining a new control effort, u':

U'=U+V g
B
__AT 4. _AS _ Pd_As (4.54)
AR+BS f AR+BS AdAR+BSf
_AAT-BAS, ~ AS
A,(AR+BS) f AR+BS
- -

feedforward feedback
This control approach was presented by Brennan and Alleyne this spring (Brennan and Alleyne 1999).
This control is somewhat intuitive if we rewrite the output equation ignoring the disturbances and assuming

there is no compensation for the front steer input:

BT B
BT B o

__ AR d A

y=—"ggd+ - ——pggl (4.55)

1+ —= Ag B 1+ — =
AR AR
it isclear that the MRC closed loop structure is kept, but that afeed-forward term has been added. Itis

therefore natural to use feedforward cancellation to correct the equation and regain the original model

structure.

4.6 Smulation Study of Disturbance-Based MRC

To confirm that the above methodol ogy would work on the vehicle, a simulation study was
conducted. The plant model used the bicycle model using the measured parameters obtained for the
Uberquad, with velocity U = 3.0 m/s, m = 6.52 kg, 1z = 0.18 kg-m?, a= 0.155 m, b = 0.235 m, Caf = 48,
and Car = 32.5. The actuator dynamics were assumed to be second order at 5 Hz with a damping ratio of
0.7 and again of 1/1.3 (the gain is due to steering linkage kinematics). To simulate the noise inherent in
the yaw-rate measurement, a white-noise signal is added to the yaw-rate output of the state-space model.

To generate a driving command, a PID controller was used to track a square wave reference lateral
position. A square wave of amplitude 0.15 meters was fed into a PID lateral position controller whose
gainswere asfollows: P=0.1rad/m, | = 0.015 rad/m-sec, and D = 0.07 rad-sec/m. The integral term was
limited to +/- 1.5 radians maximum output, and the derivative was obtained by passing the derivative
through afirst-order filter with a pole at s= 1000 rad/sec. This controller was thus generating a steering
command to track a square wave in lateral position.

The steering command was then passed into the a disturbance-based MRC controller, which

generated the rear steering command. The following diagram shows the simulation setup:
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Figure 4.6: The simulation setup to test the disturbance based MRC.
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Figure 4.7: The MRC setup to test the disturbance based MRC.

A reference model was chosen to have a higher DC gain than the previous system, faster pole locations,

and a cancelled zero. Using the above bicycle model values, the following polynomials were obtained.

Note that an observer must be used, and was chosen to be much faster than the bicycle model dynamics:

134



Byls) _ y(s) _ 0760 552p . 813s+679.9 (4.56)
Ayls) di (s) T S +2:0745¢p)s+(52p)° 8 +18.97>8+90.54
’ assumed bicycle
actuator mod el
dynamics dynamics
Bls) - ¥(8) _(e0x 5%2p _ - 83.47>s- 679.9 (457)
Als) d () §2+2>0.74{5¢p)>s+(52pf & +18.97>6+90.54
’ assumed bicycle
actuator mod el
dynamics dynamics
Bn(S) _ Y gesired(®) _ 5x2p 56776 15° (4.58)
Am(s) df,c(s) 2 +250.7452p)>s + (52p)’ 2 +2:4555+15?
front mod ified
actuator bicycle
dynamics dynamics
Observer(s) = s + 260>+ 50560
(4.59)
R(s) = s* +119.2>6% + 44335 + 28737
(4.60)
Ss) = - 0.323>5> - 18,075 - 488.2>s- 3785
(4.61)
T(s) = - 30.36>6 - 3036s- 75906
(4.62)

The resulting vehicle responses with the above controller is as follows. Clear tracking of the desired yaw

rateis seen.

0.8

Open-loop model
response

- —|7 Desired model

response

0 1 2 3 4 5 6 7 8 9 10

Figure 4.8: The simulation results of the disturbance based MRC with actuator dynamicsincluded in the

design.
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4.7 History of MRC Methods on Vehicle Control

Previous researchers at this university (Mark DePoorter) have used the MRC method to control
the lateral position and yaw angle of avehicle. However yaw-rate control was first achieved at the Illinois
Roadway Simulator during this thesiswork. Other researchers have had more successin their
implementation of MRC methods for yaw rate control. Specifically, Lee et al at Cal Tech indirectly derives
the MRC method (Lee 1997) and usesit for vehicle control. To obtain a model reference controller, they
attempt inversion of the plant dynamics using afeedforward term using the feedforward inversion and
filter technique described earlier. The authors note that thisis only realizable if the relative order of the
reference model islarger than that of the plant. They continue their devel opment to show that for non-
minimum phase systems, some zero cancellation isrequired. Thisis similar to the more formal
requirement stated earlier regarding the factorization of the zeros polynomial "B". To examine the
controller performance, a cost function is developed and used to evaluate the system.

At Michelin Americas, a Model Reference Adaptive Controller was developed and tested in
simulation (Post et a. 1997). The adaptation was used to identify the plant model online. The simulation
plant consisted of an ADAMs model with over 200 DOF (however, the authors do not specify if any of
these DOF were tire/actuator dynamics).
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5 Implementation of ControllersUsing the IRS

This section outlines the three sets experiments where Model Reference Control was used to
control the yaw rate of avehicle. Thefirst set of experiments was conducted using the 4AWSAWD vehicle
at 1.2 m/s. In previous vehicle studies using the IRS, the MRC technique was applied to a vehicle traveling
at alow speed of 1.2 m/s using the 4AWSAWD vehicle with good results (DePoorter 1997b). Asastarting
point, these conditions were chosen as appropriate testing conditions simply to replicate previous results
with the same vehicle. For the reasons discussed in earlier chapters, it was determined that dynamic
similitude was not being achieved, and new operating conditions were more appropriate.

The second set of experiments was also conducted on the AWSAWD vehicle (after many structural
modifications) at the speed of 3.0 m/s. The testing velocity was chosen to represent an “average” full-sized
vehicle traveling at about 50 mph. This set of experimentsis distinctive from the previous experiments
because significant efforts were taken to achieve dynamic matching in the bicycle parametersand in
actuator dynamics. In addition, the improved arm feedback system discussed earlier was implemented in
this set of experiments.

The third and final set of experiments utilized the Uberquad vehicle operating at 3.0 m/s. Because
the Uberquad’ s parameters are different than the 4WSAWD vehicle, the test represents an average full-sized
vehicle operating at approximately 35 mph. The novelty in thisfinal set of experiments was that the
vehicle has additional steering capability through torque input. In addition, significant effort was taken to
not only achieve bandwidth of actuation but also prevent non-linear dynamics from interfering with the
bicycle model.

A summary of each set of experiments follows below. Each summary begins with a description of
the open-loop dynamics. Because the open-loop dynamics are used to design the closed-loop controller,
the level and type of model mismatch during the system identification can be used to interpret the controller
performance in the closed-loop system. In addition, the open-loop responses can be used as a gage against
which the closed-loop responses can be compared. Each section then details the MRC methods used to
control the plant and the resulting closed-loop performance. Finally, alternative control strategies and
sensitivity tests conclude each experiment.

Note that nearly every state plot in this chapter isa yaw rate plot. Because the yaw rateis
obtained via numerical differentiation of the yaw signal, which is obtained from encoders, the yaw rate on
each plot isthe "noisy" data. On each yaw rate plot, an additional plot is given that is a smooth response
that (hopefully) is dynamically similar to the measured yaw rate. This response is the output of the model
used to predict yaw rate given the sameinput asthe plant. It isimportant to understand that this
"prediction” model is an artificial simplification of the actual plant dynamics. If both the measured and
artificial model agree almost exactly in their dynamic response, then it islikely that the predicted model is
close enough to the "true" dynamics of the system that controllers can be designed using the simplified

artificial model rather than by trial-and-error. In addition to the measured and predicted responses, a third
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response is often included in the yaw plotsthat is larger in amplitude (by design) than the predicted
response. This"larger" responseis the response of the design model, also known as the reference model.
The closed-loop responses should track this response perfectly if the controller worked perfectly, and thus
can be thought of as a desired closed-loop yaw rate. In summary, three responses are shown on each yaw

rate plot: measured yaw rate, a predicted open-loop yaw rate, and a desired closed-loop yaw rate.

51 AWSAWD at Low Speed (1.2 mVs) + Sow Servos

These first low-velocity tests were conducted using two methods of vehicle position feedback
discussed earlier; the potentiometer arm and the encoder arm. The resulting performance using each
feedback technique is quite different due to the differing quality of feedback. First, the testing with the
analog arm is discussed and results are given showing the poor quality of the feedback and how this quality
hinders controller performance. Next, a discussion of controller implementation resultsis given foraMRC

design using the encoder arms. The dynamics of the system at low speeds were previously found to be:

y(s _ 13480
Vi(s) ~ s +103xs+180) (5.2)
y(9 _ 26500
V,(9 ~ s{s? +850>s+310) (5.2

These dynamics will be used hereafter as the plant.

5.1.1 Yaw Rate Feedback with Analog Arm Sensing

Thefirst MRC tests at 1.2 m/s utilized an analog arm. Initially, the DC gain of the desired plant
dynamics was chosen to be approximately the same as the open-loop plant, so that the driver input
command does not change significantly at steady state. From the above equations, the DC gain for the
front is 74.9 and for the rear 85.5 deg/volt. Asamedian value, 80 deg/volt was chosen asaDC gain for the
reference model. The pole locations of the desired plant dynamics were chosen to be the same locations
previously used by the previous researcher, Mark DePoorter for his system identification, at s= -5 +/- 3j.
These poles correspond to slightly less than critical damping, so that there is a slight amount of overshoot.
It was found through driving tests that these poles gave agood “feel” to the system. Combining the DC

gain and pole locations, the desired yaw transfer function becomes:

Y gesrea () _ 2720
V(9  (s+5+3j)(s+5- 3)) (5.3)
y(9 2720
V(9 & +10xs+34 (5.4)
The MRC design technique produces R, S, and T matrices:
R(s) = s+515
(5.5)
9s) =-0.0081>s- 05383
(5.6)
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T(9) = 01026 x5+ 51321

(5.7)
A comparison between the open-loop and closed-loop responses is shown below:
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Figure 5.1: The open loop (left) and closed-loop (right) responses of the system.

As seen in the above responses, the amount of noise in the model makes it difficult to distinguish between
the predicted model fit yaw rate and the desired model yaw rate. It is even difficult to even determine
without prior knowledge which plot represents the closed-loop responses! To obtain a better measured yaw
rate, filtering was attempted; however, thisintroduced a significant phase lag such that the reference model
response is indistinguishable from the open-loop model response. It appears that the reference model istoo
close to the actual model to determine if the controller is working adequately.

The first attempt to implement a model reference controller attempted to control the yaw rate
using a MRC design approach and a reference model that was, in retrospect, quite close to the original
model. In asecond attempt to implement a MRC controller, the reference model was chosen to be

significantly different from the origina model by increasing the DC gain and moving the pole locations

significantly:
y(9 _ 97730
V(9 ~ s*+30x+261 (5.8
The MRC design technique produces R, S, and T matrices:
R(s) =s+715
(5.9
9(s) = 0.0318s- 0.3440
(5.10)
T(s) = 3688xs+184.4
(5.11)

The open-loop and closed-loop responses are shown below:
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Figure 5.2: The open-loop (left) and closed-loop (right) responses of the system.
As seen in the above responses, again there is a significant amount of noise in the yaw response, but there
isadistinct difference between the reference model and the open-loop model responses. Again, a5 Hz
oscillation dominates the yaw rate signal. Comparing the closed and open loop responses, it is clear that
the controller is acting to move the yaw rate response closer to the reference model. However, the response
is not tracking the desired model (although, the driver noted that the difference between the first design and
the second design feels significantly different). Initially, it was expected that the feedback term (S/R)
would compensate for thiserror. If we compare the DC gain of the S/R term for the Slow design (= 1.04 E-
2) to the fast design (DC gain = 4.81 E-3), it is clear that there is less feedback with the faster poles. To
have alarger amount of feedback, it appears that either a slower MRC reference model must be selected, or
an integrator term must be added to make the response track the reference model. The error seenin the
model tracking is likely due to the limitations of the steering actuator. Because the servos used on the
vehicle arerate-limited, it is unlikely that they will correctly compensate for a very fast MRC design
(where fast refers to pole locations). Regardless of the actuator bandwidth, it is clear that a better feedback
signal is needed.

5.1.2 Yaw Rate Feedback with the Encoder Arm

To improve the vehicle yaw-rate feedback, the analog arm was replaced with an arm consisting
entirely of encoders. The reference model was again chosen to be:

Y gesirea (S) _ - 27120
V()  (s+5+3j)s+5- 3)) (5.12)

TheR, S, and T polynomials again become:
R(s) = s+51.50000

(5.13)
9s) = - 0.008066038>s- 0.5383019

(5.14)
T(s) = - 0.1026415>s- 5.1320755

(5.15)
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The following figures show the open-loop response of the system using front and rear steering
inputs. Overlaid on these plotsis the output of the models for front and rear yaw rate response. The yaw
rate was filtered using a low-pass differentiator with a cut-off frequency of 70 rad/sec. The yaw angle was
filtered using a second order Butterworth filter with a cutoff frequency of 100 Hz. Clearly, the predicted

and measured yaw-rate agree.
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Figure 5. 3: Model fit and yaw rate response in time domain of 4WSAWD vehicle at 1.2 m/s using front
(left) and rear (right) steering input.

To compare the performance of the MRC design with existing control strategies for yaw rate
control, a P controller was chosen as a metric of comparison. A derivative term is avoided simply because
the yaw-rate signal isitself obtained from a derivative. If an additional derivative were taken of thissignal,
then the noise terms would be quite large. Anintegral controller is avoided simply because the integration
of asmall error, such as a calibration error, would cause the car’s orientation to be perpetually skewed.
The error term that was used for the P controller is the difference between the reference model and
measured yaw-rate output. Thus, the P controller is attempting to force model tracking using feedback.

The figures below show the vehicle response without a controller, and the vehicle response with a P

controller.
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Figure 5.4: The vehicle response with and without the proportional controller, showing a reference model
and the open-loop transfer function for front steer.
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The P controller obviously improves the model tracking performance, but tracking is only achieved with a

high gain. As seen in the above plot, this high gain causes a high frequency yaw oscillation in the vehicle

(P gain was 0.03 volts/(deg/sec)).

5.2 AWSHAWD at High Speed (3.0 m/s) + Fast Servos

Following the methodology presented at the beginning of the chapter, the open-loop dynamics of
the system are examined and compared to the predicted dynamics. The system dynamics for the 4AWSAWD

system were modeled using two methods: bicycle model with actuator dynamics and bicycle model with no

actuator dynamics (only again). The following time responses show the time response of the system where

no actuator dynamics are included in the system model. The open-loop model without actuator dynamics

was previously presented as the following:

y(s) _ 427x+752
dq (s) s*+21x+170.6
y(s) _ -13DLs- 752
d(s) s+2Ds+1706
d, 9
) =1.99
f,c S
d (s)
=120

Resulting in design models of the following:

By(s) _ y(8) _

d

e

= = 199 5
Ad(s) O o(8) amed S2+215+170.6
actuator bicycle
dynamics modd
dynamics
BS) . V(s) o ;,0 x - 13Ds-752
AlS) dr clS)  asimed S2+2155+170.6
actuator bicycle
dynamics model
dynamics

The responses below show the comparison between the measured yaw rate response and the yaw rate

response predicted by the bicycle model when no actuator dynamics are include. The dynamic match

42.7 >+ 752

(5.16)

(5.17)

(5.18)

(5.19)

(5.20)

(5.21)

shows some modeling errors, with a noticeable and phase and amplitude error in the tracking responses.
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Figure 5.5: The open-loop vehicle response from front steering input without actuator dynamicsincluded in

the predicted model.

For a system including actuator dynamics, the above expressions for bicycle model yaw rate

remain the same, but the actuator dynamics are no longer represented by a simple gain:

Thus, the open-loop dynamics for the model WITH ACTUATOR DY NAMICS become;

di (s) _ 1.99
de (s) 0.000567 5" +0.0342 5 +1

d(s) 1.20

d. (9 000165’ +005765>5+1

Bgls) _ v (s) 1.99 4274752
Ag(s) dr c(s) 00005676 +0.03425+1 §° +21>6+170.6
front bicycle
actuator model
dynamics dynamics
B(s) _ y(s) _ 1.20 _ - 13Ls- 752
Als) dr c(s) 000165%+.0576556+1 s°+21s+170.6
assumed bicycle
actuator modée
dynamics dynamics

(5.22)

(5.23)

(5.24)

(5.25)

Although the "fit" of each of the two different dynamic representations of the vehicle were presented in

Chapter 3, they are presented again here as a means to compare the open-loop and closed-loop performance

and to cite possible causes for poor closed-loop model matching. If actuator dynamics are included in the

vehicle model, the predicted yaw rate more accurately tracks the measured yaw rate. The improvement in

modeling is seen clearly in the responses shown below.

143



Open-loop model Desired Y aw response
Y aw response /K
15 0.8

Measured Y aw
response

Figure 5.6: The open-loop 4WSAWD response from front steering input with actuator dynamics included.

There remains a small amount of phase lag in the above responses for both the front and rear
steering input, regardless of the form of the actuator dynamics. Thislag is most likely due to steering

linkage nonlinearities present in the 4AWSAWD vehicle.
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Figure 5.7: The open-loop 4WSAWD response from rear steering input with actuator dynamics included.

A significant deadzone exists by design in the steering actuators (as discussed in the vehicle
modeling section of the thesis). This deadzone is most evident in the rear steering linkage, where the
measured response has an offset that seemsto "drift" up and down (as seen in the above figure). These
modeling errors propagate to some extent to the performance of the closed-loop system. Naturally,
feedback will (hopefully) tend to account for these modeling errors and unknown disturbances. However
this disturbance-MRC control approach, using both a feedforward term and an inversion term, may be more
sensitive to modeling error than a purely feedback-based system.

It isimportant to point out that the improved prediction of the yaw rate by the vehicle model with
actuator dynamics was NOT obtained by simply adding more poles to the system to obtain a better fit.
Clearly, one can arbitrarily add dynamics to the system to obtain a higher-order representation of the

system, but this does not address the physical source for the dynamics. In previous sections, the dynamics
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of the actuator were identified independent of the vehicle, and were found to be the actuator dynamics
presented above. Thus, these dynamics are not added in an arbitrary fashion.

The closed-loop system responses are shown in the figures below, and show a definite tracking of
the desired model response. The reference model was chosen to increase the DC gain of the system by a
factor of 1.5, move the zero farther into the LHP, and place the poles such that the damping is critical with
the same natural frequency of the original system. Two sets of controller responses are given, and they
differ in thetype of controller. The controller depends on the open-loop model used to design the R,S, and

T polynomials. For the open-loop model with no actuator dynamics, the controller polynomials are:

B (s) y.,. s 5.26
AmE;: %ar?d)(): L9 0.5x752x e 20
mS £\ front S% +26.12>6+170.6
actua‘[or mod|f|ed
dynamics bicycle
mod el
dynamics
R(s)=s+5.74
(5.27)
9s)=-0.032558
(5.28)

T(s) =- 0.528>s- 10.56
(5.29)

For the open-loop model where actuator dynamics are included, the controller requires an observer. The

control polynomials are:

Bn(8) Y gesired(®) _ 1.99 s L208+1 (5:30)
Al d (8) 000056767 +0.0342>5+1 s +26.12>6+170.6
front mod ified
actuator bicycle
dynamics mod €l
dynamics
1 o 2X0.707
Observers) = — "+ ———x+1
er( ) 402 40 (5.31)
R(s) = 0.39156% + 35.9>6 + 158055 + 7958
(5.32)
Ss)=-0.152>5> - 7.30>6? - 118>s- 409
(5.33)
T(s) =- 0.7862>6° - 60.19>6 - 2147>8- 25159
(5.34)

The closed-loop performance of each of the above controllers can be seen in the time-domain yaw-rate
plots given below. Note that two graphs are given for EACH controller to show controller consistency (and

inconsistencies) under different steering commands.
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Figure 5.8: The closed-loop 4WSAWD response using disturbance-MRC controller based on a bicycle

model with no actuator dynamics.
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Figure 5.9: The closed-loop 4WSAWD response using disturbance-MRC controller based on a bicycle

model with actuator dynamics included.

Clearly, the controller based on the plant with actuator dynamics performs much better than that of the
controller without actuator dynamics. If the actuator dynamics are ignored, the controller assumes that the
steer command isinstantly sent to the wheels, which in fact is not happening. The actuator requires a
certain rise time to reach a setpoint. As aresult, the controller ignoring this required rise time will
overpredict the responsiveness of the vehicle. The measured yaw-rate will thus lag behind the predicted
yaw rate, which is precisely what is seen in the controller response for the controller without actuator
dynamics above. Clearly, ignoring actuator dynamics can have a severe impact on the closed-loop vehicle
performance, so hereafter the discussion will focus on the controller design where actuator dynamics are
included.

The above closed-loop responses for the controller that includes actuator dynamics still shows
some tracking error, especially where the derivative of the yaw rate is zero (i.e. near the peaks and troughs
of the response). Because these areas correspond to where the steering wheels are changing direction, it is
likely that this error is due either to the rate-limit non-linearity or the dead-zone non-linearity. If we

examine the open-loop responses previously presented, it is clear that a similar model-mismatch is seen in
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the open-loop responses. |If these non-linearities are the source of the tracking error, than it is unlikely that
the performance will be improved significantly further with linear controllers.

Asdemostrated earlier in the thesis, the bicycle model is very sensitive to velocity. Asa
conseguence, the vehicle controller should aso be sensitive to velocity. To determine how sensitive the

controller was to velocity, controller responses were obtained at 2.0 m/s and 3.5 m/s. The results of these

tests are shown below. Open-loop model
Y aw response

Yaw Rate (rad/sec)
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Figure 5.10: The closed-loop 4WS4AWD response using disturbance-MRC controller based on a bicycle
model with actuator dynamics (identified at 3.0 m/s) tested at 2.0 m/s (left) and 3.5 m/s (right).

At lower speeds, the bicycle model predicts that the poles of the vehicle dynamics are faster and more
damped, and at higher speed the poles are slower and less damped. Thus, a controller based on the pole
locations at 3.0 m/s will under-predict the vehicle responsiveness at 3.0 m/s. Thus, the vehicle will be
"easier" to turn at lower speeds, and more difficult to turn at higher speeds. Thisis observed in the above
plots: at low speeds, the car's yaw rate changes at much lower steering inputs resulting in "undershooting”
of the desired response. At high speeds, the car's yaw rate changes much more slowly than expected by the
controller, resulting in large "overshooting” of the desired response.

To compare the MRC method to other controllers currently in use commercially, the above
controller with actuator dynamics is compared to a proportional controller. The MRC and proportional
controllers can be chosen to have arbitrary feedback gains, therefore for comparison purposes the feedback
gains of both systems were chosen to be the same. Thus, the proportional controller gain was selected to be
the DC gain of the S/R term (the feedback term) in the MRC design: -0.05138 voltsm. The resulting P-

controller responses are given below:
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Figure 5.11: The closed-loop 4WSAWD response using a proportional controller.

The proportional controller is seen to exhibit very poor tracking performance. Better performance could
be achieved by increasing the gain, but the same could be said regarding the MRC approach. One problem
with increasing the gain is that potential instability could develop with large changesin the plant model. A
high-gain controller would not be advisable given the previous discussion regarding how the model may
change with vehicle speed.

An interesting result of one of the experiments was the production of stable limit cycleswhichis
an indication of plant non-linearities. The following test was conducted where bicycle model with actuator
dynamics were used in the MRC controller design. This MRC controller was used in series with a position
regulating controller. A constant lateral position was fed into a PID lateral position controller (in order to
regulate the car to zero), and thus this PID controller produced a steering command. This steering

command was then is fed into the MRC controller as adriver signal. The following stable limit cycle
begins:
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Figure 5.12: The stable limit cycle observed when the MRC controller is used in series with a lateral

position-regulating PID controller.

Limit cycles occur only in systems with non-linearities. This suggests that the 4WSAWD vehicle possesses
anon-linearity with enough dynamic influence on the closed loop performance to perpetuate the above

oscillation. With thisin mind, careful attention was paid to the design and construction of the Uberquad
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vehicle to prevent any deadzones or rate limiting effects. The results of this effort will clearly be seenin

the closed-loop performance of this newer vehicle.

5.3 Uberguad at High Speed (3.0 mVs) + DC Motors

The third and final experiment presented in this experiment examined the closed-loop performance
of the Uberquad vehicle when a disturbance-based MRC controller isused. Asdiscussed in Chapter 3, the
Uberquad has three methods of steering the vehicle: front wheel steering (like anormal vehicle), rear wheel
steering, and differential torque steering.

In thisthesis, the two front wheels are used to apply the differentia torque between the front two
wheels. Again, severa different combinations of wheels can be used to produce differential torque
steering. The merits and advantages of each could easily be investigated; but are beyond the limited scope
of this master'sthesis. Future work on this areawill surely follow shortly after this thesis is completed.

Open-loop vehicle responses are presented in Chapter 3 for the Uberquad, but for comparison an

open-loop, front-steering-only response is included bel ow:
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Figure 5.13: The open-loop vehicle response for the Uberquad vehicle using only front steering input.

Before implementing any controller, we observe that the open-loop fit for the Uberquad vehicleis much
more "consistent” than that for the AWSAWD vehicle. Very little error is observed between the open-loop
predicted dynamics and the measured dynamics; thus, we expect the controller designed using this open-
loop model to perform quite well.

Two controllers are designed for the Uberquad. Thefirst isan MRC controller where the vehicle
is made to act like adesired model where the driver had control of the front wheels, and the rear wheels are
steered to provide control input. The controller is designed using the disturbance-M RC method described
in Chapter 4, where the front steering is the disturbance, and the rear wheel steering is used to track the
reference model.

The second controller described in this thesis for the Uberquad also attempts to force the vehicle to

track a reference model while the driver is driving the front wheels, except that the controller provides
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control input via a differential torque signal sent to the two front wheels. Chapter 3 details the
identification of the differential torque dynamics both theoretically and experimentally. For this controller,
the driver again acts as a disturbance input, while the differential torque is used to track the reference
model.

TodesigntheR, S, and T polynomials for each of the above controllers, the open-loop dynamics
are again introduced. These polynomialsin the Laplace variable s are obtained from the bicycle model by
substituting the following measured parameters: U = 3.0 m/s, m = 6.52 kg, 1z = 0.18 kg-m?, a=0.155m, b
=0.235m, Caf = 48 N/rad, Car = 32.5 N/rad, d = 0.05 m, r = 0.0385 m. The resulting transfer functions
are asfollows:

y(s) 81.3>s+679.9

de(s) *+18.97>5+90.54 (5.35)
y(s) . -8347-679.9
d(s) s +18.97>s+90.54 (5.36)
y(s) _  7.105+584
DT(s) s?+18.97>s+90.54 (5.37)
d(s) _ 0760 552p
d; C(s) C TS +2X0.74{5%2p) s+ (5°2p)> (5.38)
%) _ 7e0n 5x2p
d. C(s) TS+ 2x0.74{5%2p) s+ (5°2p)> (5.39)
DT(s) _ 667 1052p
DT,(s) 2 +250.7{10x2p)>s+ (102p)> (5.40)

Theresulting observer, R, S, and T polynomials for the rear steering control input are as follows:

Byl _ y(8) _ oo 5x2p . 81.3x+679.9 (5.41)
Ad(s) dq C(s) © T S +2x0.7{5%2p)s+(5x2p) $°+18.97>6+90.54
' assumed bicycle
actuator mod el
dynamics dynamics
B(s) - ¥(8) _(e0x 552p _ - 83.47>s- 679.9 (5.42)
Als) d (8 §2+2X0.74{5¢p)>s+(5xp)f S +18.97>5+90.54
’ assumed bicycle
actuator mod el
dynamics dynamics
B1(8) Y desired(® _ 552p P 15° (5.43)
An) d () 242:07x5ep)s+ (5520) 2 +2:45x5+15°
front mod ified
actuator bicycle
dynamics dynamics

Observex(s) = s + 26055 +50560
(5.44)
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R(s)=s* +119.2>6" + 44335+ 28737

Ss) = - 0.323>6> - 18.07>5° - 488.2>s- 3785
T(s) =- 30.36>¢? - 3036>s- 75906

And the resulting observer, R, S, and T polynomials for the differential torque steering MRC are as

follows:
BalS) _ V() _ 60 5x2p . 81.3x+679.9
Ad(s) di C(s) © T S +2x0.7{5%2p)s+(5x2p) $°+18.97>6+90.54
' assumed bicycle
actuator mod el
dynamics dynamics
BS) - V() _ges7x 10p . 710>s+584
Als) DT (s) — §+2:0.7{10p)s+(10¢p) ' +18.97>5+90.54
assumed bicycle
actuator mod €l
dynamics dynamics
- T2 2 2 2
Am(S) df,C(S) 5% +250.74{5x2p) s + (5:2p) s° +2x555+15
front mod ified
actuator bicycle
dynamics dynamics

Observer(s) = s? + 290> +90>90
R(s) =s* +155.3> + 372655+ 20714
Ss) = - 5.18>8° + 4.98>6 +529.4>5 + 48141

T(s) =103.1>6% +18542>5+ 834384

(5.45)

(5.46)

(5.47)

(5.48)

(5.49)

(5.50)

(5.51)
(5.52)
(5.53)

(5.54)

After designing the controllers, their performance was tested in the time domain with a driver-in-the-loop

(DIL) performance aggressive lane change maneuvers. The following time responses show the controller

performance for each of the two controllers:
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Figure 5.14: The closed-loop disturbance-MRC responses for the Uberquad vehicle with a driver
controlling the steering angle of the front wheels, and the controller controlling the steering angle of the

rear wheels.

Yaw Rate (rad/sec)

Figure 5.15: The closed-loop disturbance-MRC responses for the Uberquad vehicle with a driver
controlling the steering angle of the front wheels, and the controller controlling the differential torque input

into the two front wheels.

If we compare the closed-1oop performance of the Uberquad with rear-wheel control and that of the
AWSAWD vehicle with similar control, we see the performance of the Uberquad is much better than that of
the AWSAWD vehicle. Thisimprovement is most likely due to more linear steering actuator dynamics, and
to decreased dead-zone in the steering linkages. In summary, very good tracking is achieved with the rear-
wheel steering controller.

The torque controller displays a significantly larger amount of noise in during the implementation
of the torque control. Thisnoiseis likely aresult of either two sources: physical vibration of the system
which is addition additional noise to the yaw-rate measurement, or feedback of the noisy yaw-rate
measurement into the wheel torque resulting in afeedback loop. To determine which of these two

possibilities was in actuality the cause, an experiment was conducted: The MRC torque steering command
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was passed through alow-pass filter to determine if the yaw rate measurement improved. The following

diagrams show a before and after yaw rate response:
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Figure 5.16: Y aw rate responses using MRC before (left) and after (right) the control signal is passed

through a second-order low-pass filter with poles at 90 rad/sec.

No significant difference can be seen in the above two plots, implying that the feedback term was not
introducing the yaw rate noise. We note that additional filtering could be achieved by decreasing the
bandwidth of the filter, but the filter dynamics contribution would begin to significantly affect the
controller design.

Experimental testing showed that the torque-steering controller was much more abusive to the
vehicle wheels than rear-wheel steering. Thisis somewhat intuitive, since the wheels are no longer rolling
at the same velocity as the vehicle when a differential torque is being applied. The wheels of the vehicle
were visibly abraded after only afew hours of testing, and "tire dust" coated the tire area and the treadmill
equipment. Other authors have noted at least a5 to 10 factor increase in wheel wear when using torque
steering (Li, Potter, and Jones 1998). From this observation, it is clear that torque steering is not suited to
day-to-day steering of the vehicle, and should be reserved for only emergency maneuvers.

Onefinal test was conducted with the Uberquad was to determine how well the controller would
perform if the road surface conditions abruptly changed. A rea-world example would be accidentally
driving over a patch of ice on theroad. If the torque steering isintended to be used in emergency
situations, then it is appropriate to test this controller under these conditions. As any driver is aware, the
automobile accident rate is much greater during inclement weather conditions. Generally, these accidents
are caused by changing road surface conditions that can decrease atire force from aguaplaning or skidding,
or increase atire force due to increased water drag (Hight et al. 1990).

Asthe vehicle travels over aarea of changing road friction, the cornering stiffness of the vehicle
and the dlip coefficient of the tire will simultaneously decrease. In this dangerous situation, the left side of
the vehicle experiences less tractive forces than the right side, resulting in a net moment turning the vehicle
OFF theroad. Thedriver's natural tendency isto compensate by turning the wheel further toward the road.

If the vehicle re-enters the roadway in this configuration, the vehicle in general receives a big destabilizing
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disturbance as the |eft-side tires again regain traction. At this point, the driver usually over-reacts and
steers the vehicle off the road.

Experimentally, it has been suggested that the torque control may be more robust to split-mu types
of roadway changes because the torque steering moment is less dependent on road friction than steering
forces. To test thisidea, the following experiment was planned: one half of the treadmill surface was
covered with avery light coat of water. The vehicle was made to track a sawtooth signal that led onto the
dlick area, and the resulting yaw rate response was recorded. The following diagram shows the

experimental setup:

Wetted Road Intended Vehicle Path

1 -.--.-..
Surface N

Figure 5.17: The experimental setup used to test the controller sensitivity to changing road friction.
For consistency of results, a PID controller was used to regulate the car to a reference position on the track,
and the steering output from this controller was fed into the wheels directly, or into the MRC controller.
This allowed us to prevent the driver “experience” from interfering with experimental interpretation of the
data. The driver was used to set the setpoint of the regulating PID controller. The driver would turn the
wheel far to the left, forcing the vehicle to drive partially on the slick area, and then the driver would
release the wheel (which is spring-loaded to return to the center-line of the treadmill) to force the vehicle
back onto the center of the road. The following plot shows the results of this experiment before the | eft-

half side of the road was wetted. Open-loop model
Y aw response

] Desired Yaw
response

Yaw Rate (rad/sec)

0 0.5 1 15 2 2.5 3 3.5 4 4.5 5 0 0.5 1 15 2 2.5 3 3.5 4 4.5 5
Time Time (sec)

Figure 5.18: Y aw rate responses with no control (left) and with rear-steer MRC (right) on a dry road
surface.
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With the MRC off, the “recovery” gives two significant positive yaw-rate peaks, showing the results of
over-correction by the artificial driver. Note that both controllers slightly over-correct EVEN WHEN THE
ROADWAY ISDRY. Withthe MRC on, clear model tracking is seen. Because the vehicle model is
more damped, there over-correction by the artificial driver. Again, an artificial driver was used because it
was discovered that after several trials the human driver “learned” how to handle the vehiclein this
recovery maneuver and thereby biased the results. The above “dry” runs were used as a comparison to the
following “wet” maneuvers. Again, two figures are presented of the same situation to show variability

between experiments.

3 . . . 1.5

5 collisonwitha
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15 onto the road
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Figure 5.19: Y aw rate responses on awet surface for an artificial driver with no MRC assistance.

Both figures show SEVERE model mismatch, indicating that the vehicle is no longer handling as it should.
In the figure on the left, an impact yaw-rate spike is seen as the vehicle hits a guard-rail, thus turning the
vehicle back onto the road where the computer “driver” corrects the vehicle orientation and recovers
control. The figure on the |eft shows a severe and prolonged mismatch between desired and actual yaw
rate. In this case, the left side of the vehicle “hydroplaned” and caused a destabilizing moment on the
vehicle. The computer “driver” compensated by turning the wheels back onto the road, but for
approximately 5 seconds this steering correction was only enough to prevent further spinning. We see from
the above plot where the vehicle regains control and the vehicle responses again start to match predicted
model responses. Both situations would represent very dangerous accidents at approximately 40 mphin a
real vehicle.

The following figures show the driving results for the MRC controller. Although difficult to
quantify, the rear-steering MRC did show a noticeable improvement in recovering from the destabilizing
road-friction moment. The reason for thisis that the MRC controllers employ yaw-rate feedback, and thus
can detect a significant mismatch between commanded and measured yaw rate. Two figures are presented

of the same situation to show variability between experiments.
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Figure 5.20: Y aw rate responses on awet surface using rear-steering MRC driver assistance.

Again, severe model-mismatch is observed in these driving situations. The worst-case situation observed
with rear-steer MRC is shown above on the left. If we compare this situation with the similar situation
without MRC, we see that the MAGNITUDE of dynamic mismatch is not aslarge. The average MRC
error for the duration of the side-skid is 0.4 radiang/sec, where for the non-MRC case it is approximately
0.6 radians/second. Whether this change is statistically valid would require testing beyond the scope of this
thesis.

Asafina test, the rear-steer MRC was replaced with torque-steer MRC, with the following

results;

1 Vehicle spinout
25} ] and crash

Yaw Rate (rad/sec)

-15F

15 16 17 18 19 20 21 22 23 24 25
Time

Figure 5.21: Y aw rate responses on awet surface using rear-steering MRC driver assistance.
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causing a collision with the guardrail. The vehicle also lost forward tractive velocity, thus causing the
vehicle to drift backward off the treadmill and eventually crash off the treadmill. It became immediately
evident that modification of the wheel torque controller would be needed to appropriately test this
controller. Two issues remain to be addressed. First, in all the testing presented in this thesis, the vehicleis
made to remain stationary on the treadmill as the treadmill maintains a constant velocity. This method was
clearly unsuitable for the differential torque steering tests presented here, simply because the vehicle did
not have enough tractive force to maintain forward velocity. Asthe vehicle began to drift backward, the
wheel dlip increased dramatically as the vehicle attempted to maintain longitudinal positioning on the
treadmill. The obvious solution to thisisto set the Uberquad to run at a constant velocity and use the
treadmill to “track” the vehicle. However, this requires a time-consuming redesign of the longitudinal
controller.

A larger problem with the longitudinal wheel dlip is that significant wheel spinout no longer
correctly simulates real-world vehicles where ABS and TCS (traction control systems) prevent such type of
spin-out. Clearly, some type of wheel-slip controller is necessary to use in conjunction with torque-MRC
to provide adequate testing of the algorithm. Unfortunately, the time and experimental requirements for
this type of controller are beyond the limited scope of this master’s thesis, and must remain for future

students.
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6 Conclusonsand Future Work

Because of the amount of material covered in this thesis, even the conclusions must be
subcategorized. There were three sections of experiments conducted for this thesis work, and each
experiment set deserves a conclusive summary independent of the other experiments. After providing these
summaries, then general conclusions are given summarizing the whole of vehicle testing and various

aspects of the IRS experiments. Recommendations for future work are then given.

6.1 Experiment-Specific Conclusions

6.1.1 AWSHAWD vehicleat 1.2 m/s

In the field of control, the scapegoat of poor controller performance is inevitably poor actuation or
poor feedback sensors. Unfortunately, the biggest issues confronted in performing closed-loop control of
the AWSAWD vehicle at these low speeds regarded the quality of the feedback sensors and actuators.
Regarding the feedback sensors, the previous student was unable to perform yaw rate control of the vehicle
because the encoder arm used by the this student simply did not have enough resolution. The replacement
of the encoder arm with the analog sensing arm corrected this problem, but the analog arm simply "wore-
out" too quickly for usefulnessin vehicletesting. The final arm redesign, using high-resolution, impact
isolated encoders appears to be the most economic and reliable method of obtaining vehicle position
measurements.

The vehicle testing at 1.2 m/s showed that the MRC method appeared to work quite well, until the
dynamics of the steering actuator was investigated. The usefulness of the results of this test became
guestionable after discovering that the actuator dynamics were the dominant dynamics of the system. This
error in design underscores the necessity of selecting the proper actuator beforehand, and testing the
dynamics of the system piecemeal to determine which dynamics will dominate the overall response of the
system.

The results of the low speed controller were compared to a high-gain proportional controller, with
the resulting tracking becoming adequate but producing a noticeable and persistent oscillation. At thetime
of the test, it was assumed that the system was simply borderline unstable, but later testing (at higher
speeds) showed a definite limit cycle in the system. It is possible that the oscillation seen in the
proportional controller responses could be the result of alimit cycle set up by a steering linkage deadzone

known to exist in the system.

6.1.2 AWSHAWD vehicleat 3.0 m/s

In the tests conducted using the 4AWSAWD vehicle at higher velocity, the steering actuators were
replaced with high-speed (the fastest available) R/C servos. An order-of-magnitude improvement was seen
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in the actuator responses, both in the time and in the frequency domain. Asaresult, the dynamics observed
in the vehicle testing are conclusively those of the bicycle model. The time responses were fit by varying
parameters in this model dlightly away from the values that were measured off-line, and the resulting
controller based on the bicycle model and actuator dynamics proved to work quite satisfactorily.

An area of investigation in this set of experiments regarded the quality of closed-loop performance
if actuator dynamics are ignored. Controller designs with and without actuator dynamics demonstrably
showed that neglecting actuator dynamics significantly deteriorates the closed-loop performance. It was
also noted that increasing the model order arbitrarily to possibly encompass more unmodeled dynamics
was detrimental to the system performance in closed-loop. It was then concluded that the mismatch in time
and frequency domain system measurements was not likely due to unmodeled linear dynamics (at least,
within the range of testing), but most likely due to nonlinear rate-limiting and backlash effects seen in the
steering actuator and steering linkage respectively. During this set of experiments a stable limit cycle was
observed in the system, suggesting once again the presence of large, unaccounted-for nonlinearitiesin the
system. This phenomenon remains atopic for future study.

To emphasize the dependence of vehicle dynamics on velocity, an experiment was conducted
where the velocity was varied away from the design velocity. It was discovered that slower velocities
caused the controller to undershoot the reference velocity significantly, while faster velocities had the
opposite effect. Thus, we conclude that (as expected) the vehicle dynamics are quite sensitive to vehicle

velocity.

6.1.3 Uberquad at 3.0 m/s

Without regard to the nature of the experiments conducted using this vehicle, it wasimmediately
clear that the new vehicle with DC motor steering actuation and direct-link steering was much more
consistent and predictable in its performance. This aside, several important conclusions can be made
regarding MRC techniques on this vehicle. Itis clear that the MRC approach can affect vehicle response
regardless of whether torque or steering input is used. However, better tracking is achieved with rear
steering input. It was also discovered that torque steering was remarkably detrimental to the life of the tires
and to the quality of the feedback. Differential torque driving induces noticeable vibrations in the vehicle
which may not be suitable for situations outside of emergency recovery maneuvers. Additionally, the
torgque-steering controller was much more abusive to the vehicle wheels than rear-wheel steering. This
suggests that torque steering is not suited to day-to-day steering of the vehicle, and should be reserved for
ONLY emergency maneuvers.

Regarding emergency maneuvers, the slip sensitivity tests conducted on the Uberquad shows
promising results using yaw-rate feedback versus open-loop driving. The preference between rear steering
or torque steering remains questionable. In addition, the “best” controller for this type of testing isaso

debatable. Fortunately, the repeatability and convenience offered by the use of the Illinois Roadway
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Simulator will allow detailed observation of vehicle dynamics in the future to answer these and many other

guestions.

6.2 General Conclusions

Throughout this thesis, the Model Reference Controller approach was used in a modified form
where the driver input was treated as a disturbance. Three sets of experiments conducted on effectively 3
different vehicles showed that this technique worked quite well, but was sensitive to model changes. This
was expected and predicted in the controller development. In addition, it was discovered that the best
method to "test" the controller was to not only change the pole locations but also the DC gain of the
original model to obtain the design model. This change facilitated comparisons between open-loop and
closed-loop performance.

The original intent of the MRC was to create an affordable and easy-to-use testbed for vehicle
dynamics studies. To this end, the use of off-the-shelf R/C components was originally considered to be
preferential over other systems. However, several aspects of these systems has in retrospect proved to be
quite difficult to "design around" in terms of yaw-rate control: they have a unique communication system
that introduces a random but quantized delay of 12-24 milliseconds, the R/C actuators operate nearly rate-
limited at all times, and contain an inherent dead-zone, and the steering linkages are prone to dead-zones as
well. Eventually, this methodology of using R/C components was abandoned for yaw rate control.
However, these systems remain useful for platooning studies, or with control applications not requiring
such ahigh level of model fidelity and actuator performance.

The use of afixed vehicle and moving roadway surface for experimentation has proved to be quite
useful. Many aspects of the testing conducted in this thesis were greatly simplified by the use of a moving
roadway and stationary vehicle, including the use of a position sensing arm, the ability to perform a
frequency response, and the ability to use a constant, stable, but external power source to power the vehicle.
These advantages, unforeseen at the outset of thisthesis, have proved to be quite beneficial for the
successful measurement and control of vehicle dynamics.

A central issue addressed in part in this thesis has been the validity of scale vehicle testing. A
body of research concerning scale aircraft and scale sea-vessel studies has been extended to scale vehicle
studies via the Buckingham Pi Theorem of dynamic similitude and dimensional analysis. Central to the use
of this theorem is the assumption that scale vehicles AND full sized vehicles are both modeled by the
bicycle model. Previous researchers have addressed the modeling of full sized vehicles, but the
experiments conducted and described in this thesis have proved via dynamic measurements that the bicycle
model isavery good first approximation to the scale vehicle dynamics. With the verification of the bicycle
model to describe vehicle dynamics, the dynamic scaling issue can be reduced to matching of
dimensionless parameters between two different systems. These parameters were derived in this thesis and
the associated matching conditions were used to determine optimal testing conditions to run vehicle

simulations. One issue remains: what vehicle parametersto use. The variability of dimensionless

160



parameters among published datais very large. Thus, the problem of vehicle scaling is less a problem of
whether scaling can be achieved but instead deciding what vehicle to scaleto. The formation of pi-groups
allows parameter-based scheduling of controller gains; given the bicycle model parameters for a particular
vehicle, a controller can update the controller gains appropriately.

An important lesson presented in this thesis has been the ability to model different portions of the
vehicle/treadmill system separately. It has been remarkable how well these submodels, when combined,
have predicted the performance of the system asawhole. This approach is not always successful,
especialy in systems where the subsystems are interdependent. The fact that the subsystems are not quite
as interdependent provides a simple means of changing different aspects of the vehicle to answer questions
central to vehicle performance. How large does an actuator have to be to achieve robust tracking? What
type of lateral resolution is needed to maintain stable, automated vehicle? These and other questions are
easily answered on this system, but remain for future researchers to tackle.

Using the Illinois Roadway Simulator has provided a unique opportunity to study dangerous
vehicle dynamics. This researcher is unaware of any scale or full-sized experimental testing conducted at
high speedsin split-mu conditions. This researcher is also unaware of any studies where repeated vehicle
crashes are encouraged and repeated under controlled conditions to determine the best steering
compensation. It is precisely these unstable dynamics that vehicle automation controllers must address to

find utility in the general marketplace.

6.3 New Control Avenues

Many sections of thisthesis have hinted as possible future research topics. The following
discussion is simply a short summary of some of the most likely topics to be examined in the near future.

In two of the three vehicle tests, limit-cycle behavior was observed. What particular aspects of the
vehicle construction are causing these limit cycles? Will they exist on full-sized vehicles under tight
automation? What improvements or controllers will prevent them from occurring?

The differential torque used to steer the Uberquad in this thesis was implemented by applying a
differential torque viathe two front tires. A different design may have been to use the two rear tires, or all
four tires, or combinations/weightings of each. What is the optimal configuration to use? Which method
will least saturate the tire and thus provide the most robust performance under changing road conditions?
Can tire dip/saturation be used as a method to "schedule" different wheel torque configurations?

On the Uberquad, two different steering controllers were presented: MRC using differential torque
steering and MRC using rear wheel steering. Which method is most suited for highway driving (likely
rear-wheel steering) and which method is most suited for emergency maneuvers (differential torque?). Is
there some method to weight or schedule the use the each controller if both types of steering are available?
With two steering motors and six torque motors available, it appears that there are 6 degrees of controller

"freedom" even though some are redundant in terms of the control space. Would it be suitable to force
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additional control constraints, such as requiring that each wheel have equal net wheel usage, or minimizing
sidedlip angle?

With the ability to "steer" with the rear wheels and with torque input, it would be possible to
determine on-line the cornering stiffness of the system. Many studies have included estimation procedures
for determining road friction (Ray 1998). Much of the focus has been to use neural networksto determine
tire parameters (Pasterkamp and Pacejka 1997a). One concept is to use the longitudinal slip of the tire to
estimate the road friction (Y amazaki, Furukawa, and Suzuki 1997). Utilizing this measurement, it should
be possible to develop controllers that are more robust and possibly adaptive to changing road conditions.
Assuming that the amount of torque input were known, the torque input could be used as a known
disturbance that the front-wheel-steering controller would reject. The cornering stiffness could then be
estimated, in a similar manner to how the cornering stiffness was measured for the Uberquad vehicle.

Surpassing parameter estimation, is there some method to adaptively identify and control the plant
dynamics? Can the MRC methodology be extended for this physical system to the realm of Model
Reference Adaptive control? Would there be enough persistence of excitation to identify the vehicle
dynamics? Would additional sensing, such as on-board accel erometers, improve the controller
performance?

With two vehicles now available and running, the possibility for two vehicle platooning is now
present. Catch and avoid maneuvers could then be demonstrated on the vehicle system. In addition, new
platooning ideas such as an advanced optical towbar (where photo-resistors can be used to measure lateral
AND longitudinal displacements between vehicles) can be tested.

Would it be possible to attach a motor to the steering wheel and provide direct driver feedback as
the nature of driving conditions? For instance, if the vehicle tires are near saturation, the steering wheel
can bejittered very quickly to warn that such conditions exist. An interesting concept has been presented
in the literature of using the steering wheel to “nudge” the driver to assist in the steering of the vehicle
(Yuharaet a. 1997). General Motors has suggested on-board monitoring of drivers to determine safety and
driver performance issues (Kamal 1990).

With adriver-in-the-loop, but not in the vehicle (1), very interesting human behavior studies can
be conducted. Some authors have spent considerable effort obtaining models of driver behavior (Cho and
Kim 1995; Cho and Kim 1996), including using neural networks to simulate a driver input (MacAdam and
Johnson 1996). An implementation example would be in attempting to identify the state of the driver (i.e.
sleepiness or drunkenness) based on vehicle state measurements and driver inputs. Thistype of analysis
would go past simply recording driver actions: corrective actions could be taken if significant and persistent
driving errors are observed (like the driver is having a heart attack... or using a cell phone).

The remaining research avenues using the Illinois Roadway Simulator are extensive. It will likely
be some other student to answer some of the above questions and open new doorways. It isthe hope of this

author that the work presented in this thesis will serve as a good stepping stone for their endeavors.
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Appendix 1 - A Summary of Published Vehicle Control Articles
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Appendix 2 - Instructions on Operating the IRS

Open up MATLAB and ensure that you are in the directory of your model.

To build the model, drag-and-drop the custom Simulink blocks for the encoder boards, digital 1/0,
analog output, and analog input into your Simulink diagram where appropriate.

Use the Wincon “build” command to compile the Simulink diagram into C-code, and download the
resulting code to the Wincon server.

Ensuring that the car and the treadmill are off, start the code and open up the “digital input” display to
observe the calibration pulses from each position encoder. Zero the arm by moving each link to the
“zero” position and ensuring that the digital input goes high for each joint encoder. The zero positions
are: straight ahead for the yaw encoder, 90 degrees for the middle link encoder, and straight ahead for
the ground link encoder.

Check the calibration by moving the treadmill forward and backward. Ensure that the yaw angle does
not change significantly. Lifting up the vehicle and moving it around to ensure linear arm response is
also sometimes useful.

Stop the controller.

Turn on the vehicle power by turning on the amplifies for the Uberquad, or by switching on the power
at the vehicle for the 4AWSAWD vehicle. If the AWSAWD vehicleis used, turn on the transmitter power
by plugging in the power supply and flipping the power switch on the front of the transmitter.

Turn on the treadmill by holding down the “ Start/Stop” switch for half a second, and hitting the “Run”
switch. The start-stop switch powers on arelay switch that is activated when you hit the run switch.

Y ou should hear avery distinctive click when hitting run as the relay for 220 volts engages
magnetically. If the switch does not engage, simply try again.

Make sure that you set the operating speed to be zero at the start. Run the car by starting the Wincon

server!
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