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ABSTRACT 

This work presents results of an initial investigation into models and control 

strategies suitable to predict and prevent vehicle rollover due to untripped driving 

maneuvers.  Outside of industry, the study of vehicle rollover inclusive of experimental 

validation, model-based predictive algorithms, and practical controller design is limited.  

The researcher interested in initiating study on rollover dynamics and control is left with 

the challenging task of identifying suitable vehicle models from the literature, comparing 

these models in their ability to match experimental results, and determining suitable 

parameters for the models and controller gains.  This work presents results that address 

these issues via comparisons between simulation and experimental results.  Experimental 

results are then presented and compared to the output predicted by the various models in 

the frequency domain and the time domain in order to provide a foundation for the 

remainder of the work. 

Following experimental model validation, a model-based predictive algorithm is 

developed that can determine a vehicle’s propensity to experience wheel-lift (and 

possibly rollover) as a function of vehicle speed and transient input.  This method is 

rather conservative as a result of the assumptions made in its derivation.  Despite this, the 

method is unique in that its focus is on the entire range of possible driver inputs, rather 

than static measurements or fixed time domain maneuvers. 

For vehicles that are deemed to be susceptible to wheel-lift, various open-loop 

and closed-loop control strategies are implemented in simulation.  The primary 

assumption in their implementation is that the vehicle in question is equipped with a 
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steer-by-wire system.  The general control strategy behind the rollover mitigation 

methods examined is to directly modify the drivers steering command in order to mitigate 

vehicle wheel-lift incidents and enforce a slide before roll condition. 
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Chapter 1 

 

Introduction 

This thesis details the theoretical development of several 2 degree-of-freedom 

(DOF) and 3DOF dynamic vehicle models found in literature, experimental validation of 

those models, and simulation-based work on utilizing these models to predict and prevent 

vehicle rollover.  A number of goals are specified for this work and are listed below. 

The first is to examine certain commonly used simplifying modeling assumptions 

in the creation of dynamic models of vehicle rollover behavior.  Such an investigation 

aims to determine how these assumptions affect the order of a model and the complexity 

of the dynamic representation, and how the assumptions change the relationships between 

the various parameters.  This will aid in the future derivation and use of vehicle models. 

The second goal is to determine, by comparison to experimental data, the 

accuracy of dynamic models for planar and roll dynamics commonly found in literature.  

This will allow for a detailed and critical examination of the underlying physics of 

vehicle rollover as well as how the various modeling assumptions made in the 

formulation affect the resulting response.   

The final and most important goal of this work is to use these models to develop 

effective methods to predict and prevent untripped vehicle rollover incidents.  Predictive 

work includes determining the velocity and inputs necessary to achieve rollover.  

Prevention methods include the design of controllers that can mitigate or prevent 

rollover.       
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1.1 Motivation 

There are many motivations for this work ranging from the societal impact of 

improving vehicle safety, to the purely academic goal of establishing dynamics and 

theory governing vehicle rollover propensity.  These motivations are each outlined 

below. 

1.1.1 Safety Concerns 

According to the Center for Disease Control (CDC), from 1999-2002 vehicle 

accidents were the single largest cause of fatalities for males 44 years and under and for 

females 34 years and under [1].  The societal impact of vehicle safety is clearer when 

considering the number of life-years lost.  For the same time period, the CDC estimates 

that for all people who die under the age of 65, accidental death due to motor vehicle 

accidents claims over 1.2 million potential life years [2].  For people under 65, there are 

more potential life years lost to automotive accidents than any other cause [2].  These 

deaths are sudden, and most often strike when a person is at the peak of both their 

professional and personal/family life. 

There are over 11 million motor vehicle crashes per year [3].  Fifty-five thousand 

of these accidents result in fatalities [3].  The frightening statistic, however, is that while 

vehicle rollover is involved in only 2.5% of all accidents, it accounts for approximately 

20% of all fatalities [3].  That means approximately 250,000 potential life years are lost 

per year due to vehicle rollover.   
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Following an announcement in June of 2000, NHTSA formally adopted the 

concept of the static stability factor (SSF) in January of 2001.  The SSF is a relatively 

simple metric that is intended to give consumers a qualitative assessment of a vehicle’s 

resistance to rollover.  The SSF is defined as a ratio of track width divided by two times 

the height of the vehicle CG.  This number is then compared to the value of average road 

friction.  A higher number indicates better “rollover stability” [4].  For current production 

vehicles, the highest value of the SSF is approximately 1.45 [5].   

The practical use of the SSF is limited because it is a purely static measurement.  

It is a measure a vehicle’s resistance to rollover based on physical dimensions and only 

steady-state conditions.  While steady-state rollover prevention is important, the SSF 

factor has little relevance when one considers that NHTSA has never tested a vehicle that 

will rollover under steady-state turning situations [6].  Most maneuvers leading to 

rollover are not steady-state, however.  Because of increasing public concern about 

untripped vehicle rollover and as a result of recommendations made by the National 

Academy of Science, Congress mandated the TREAD Act in October of 2000 to require 

the National Highway Traffic Safety Administration to find a series of dynamic tests to 

replace the SSF. 

As a result of ongoing experimental research, NHTSA has since developed a 

number of maneuvers that, given a high enough speed, induce vehicle rollover [7, 8].  

These maneuvers were found by repeated experimentation using a wide variety of 

vehicles to find steering inputs and driving conditions that appear to excite untripped 

rollover events.  However, there is little theoretical foundation to justify the use of one 

particular steering input or maneuver over another (e.g. whether all the tests are 
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necessary), or whether the lack of wheel lift and/or rollover on a test maneuver certifies 

that the vehicle will not exhibit unsafe rollover behavior for any maneuver (e.g. whether 

all the tests are sufficient) .  This problem of necessity and sufficiency is further 

exacerbated since, as will be discussed shortly in this thesis, most publications analyzing 

the theoretical derivation of dynamic rollover models do not correlate results or 

assumptions with any type of experimentation.  Outside of industry, the study of vehicle 

rollover inclusive of both theoretically sound dynamic models of rollover dynamics and 

experimental validation is very limited.   

1.1.2 Understanding the Physics behind Rollover 

The automobile is a highly non-linear dynamic system containing many 

parameters that are either difficult or (as yet) impossible to directly measure.  While 

many physical parameters such as mass, location of mass center, and inertial properties 

have been made available by the National Highway Traffic Safety Administration, many 

common parameters used in vehicle roll models such as suspension stiffness and damping 

characteristics are not readily available to the experimenter.  This makes it difficult or 

impossible to perform a broad vehicle rollover study that encompasses multiple vehicles 

without actually having access to the vehicles themselves. 

A parameter of significant importance to the study of vehicle rollover that is often 

overlooked is the driver and his/her reactions to the world.  While a number of 

mathematical representations of the human driver have been developed [9-13], none of 

them can remove the uncertainty of life and predict exactly how a driver will respond in 
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an emergency situation.  Therefore, any study of rollover must allow for all possible 

steering responses.  

There are two options to the automobile designer wishing to design a vehicle 

incapable of rollover – design a vehicle chassis or chassis control system very 

conservatively to mitigate driver inputs that push the vehicle to the limits of safe handling 

and instability, or modify the driver’s input to the vehicle such that instability is avoided.  

In the past, auto manufacturers have sought chassis modifications as a means to influence 

stability.  This is evidenced by the appearance of various types of active suspensions, 

electronic stability controls, and traction control systems in modern production vehicles 

[14]. 

But recent research is changing focus toward developing new types of assistive 

devices.  For example, research is currently underway to predict, for measured steering 

inputs, the amount of time that will elapse before wheel-lift will occur.  Such predictive 

methods are developed in order to either provide a warning to drivers or utilize on-board 

systems to prevent rollover onset.  Examples of the development of Time-To-Rollover 

(TTR) metrics may be found by Chen, working under Huei Peng at the University of 

Michigan Transportation Research Institute (UMTRI) [15, 16] and Hyun, working under 

Reza Langari at Texas A&M [17, 18]. 

The most apparent drawback to such methods is the limited amount of warning 

given.  It was found by Chen that, even under ideal circumstances, the largest forward 

prediction in time, and hence the largest amount of warning a driver can feasibly use, is 

0.3 seconds when considering an SUV [15].  Such warnings are barely at the limit of 

human reaction times for unexpected events.  Thus, there is a clear need for and utility in 
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an automated system capable of preventing vehicle roll by modifying a vehicle’s steering 

input.  

Additionally, current TTR methods primarily rely on setting a threshold for roll 

angle and/or lateral acceleration.  Despite extensive model development by academic 

researchers, no one has yet been able to consistently match in simulation the rollover 

threshold predictions found by the NHTSA experimental trials.  Whether a model is used 

to predict the amount of time before this limit is reached, or sensors are used to determine 

when this limit has been crossed and a TTR is then generated, the lack of simulation-

based tools reflects the current lack of understanding of the physics behind vehicle 

rollover. 

The option of allowing a vehicle to actively modify the driver’s input is an idea 

only in its infancy, but there are research precedents.  One example is presented by 

Hosaka and Morakami from Keio University, Japan in [19].  Here, a combination of PD 

control, state-feedback control, and a disturbance observer were used to either provide 

additional steering input to or directly modify a driver’s steering command to deal with 

disturbances such as wind gusts for increased yaw stability. 

Another example is by Oh et. al., from Hyundai and associated with Hanyang 

University [20].  Here the authors propose a feedforward control method that imposes an 

artificial gear ratio on the steering input so that the dynamic behavior of the vehicle may 

be changed according to the situation.  It also discusses the possibility to prevent rollover 

by not allowing a driver to steer the vehicle into a region where the lateral acceleration is 

above a certain threshold.  Additionally, the system would add more resistive torque to 

the wheel as the driver approaches this limit, making it more difficult to steer. 
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Other examples may be found related to increasing the stability of four-wheel 

steered vehicles as investigated by Ackermann while at the Institute for Robotics and 

System Dynamics [21] and Plochl at the Institute of Mechanics at the University of 

Technology in Wien, Austria [22].   Additionally, work done under J. Christian Gerdes at 

the Dynamic Design Laboratory at Stanford University includes methods that allow 

improved disturbance rejection to vehicle steering angle [23] and roll limiting techniques 

[24] which use a combination of a steer-by-wire system and measurements from a Global 

Positioning System (GPS) and an Inertial Measurement Unit (IMU) to ensure tracking of 

the desired path.   

Despite these finding, the literature remains rather limited in regards to this area.  

This work seeks to contribute significantly to the rollover mitigation methods that 

directly modify the driver’s steering command in a way such that the driver does not 

realize the effect of the controller.  However, in order to properly accomplish this goal, 

the physics behind vehicle rollover must first be understood. 

1.1.3 Benefit to the Academic Community 

Industry publications, while generally far more advanced in the state-of-the-art in 

rollover control and modeling versus academia, are by necessity limited in the specificity 

of the algorithm details, implementation results, or model/control tuning parameters 

presented.  The researcher interested in initiating study on rollover dynamics and control 

is left with the challenging task of identifying suitable vehicle models from the literature, 

comparing these models in their respective behavior and in their ability to match 
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experimental results, and determining suitable parameters for the models and controller 

gains.  This work seeks to address these issues via comparisons between simulation and 

experimental results so that this divide may be bridged. 

1.2 Outline of the Remaining Chapters 

The remainder of this thesis is organized as follows:  Chapter 2 will contain the 

derivation of a simple linear 2DOF vehicle model that is commonly used to describe the 

planar dynamics of a non-articulated vehicle.  The behavior of this model will be 

compared to the 3DOF models derived in Chapter 3.  These models will include a 

description for the planar dynamics described by the 2DOF model, and will also include a 

description of the roll dynamics. 

Chapter 4 will describe how the test vehicle was used to take the dynamic 

measurements necessary for model validation.  The types of experiments performed with 

this system, as well as their results, will be presented in Chapter 5.  From these results, a 

vehicle model will be selected for use in the development of predictive and preventative 

measures for vehicle rollover. 

Chapter 6 will develop a methodology by which a vehicle’s propensity to rollover 

may be determined.  Using the information derived from this methodology, design 

criteria for control synthesis will be drawn.  These specifications will be used to develop 

both open- and closed-loop control methods for rollover mitigation.  Final conclusions 

and a discussion of future work will be outlined in Chapter 7. 
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Chapter 2 

 

Two-Degree-of-Freedom-Model 

The planar dynamics of the 3DOF chassis dynamics models will be compared to a 

2DOF chassis dynamics model commonly found in literature.  This chapter will outline 

the basic assumptions made in the derivation of the 2DOF chassis dynamics model, 

develop the force equations in terms of the vehicle states by means of Newtonian 

mechanics, and finally develop the equations of motion from the force equations.  The 

development of these equations is of particular interest as the dynamics in the 3DOF 

chassis dynamics models are closely related to the 2DOF formulation. 

Typically referred to as the “bicycle model”, the 2DOF model only exhibits 

lateral and yaw dynamics.  Specific application examples of this model are usually found 

in papers dealing with tire slip estimation [1], vehicle body slip estimation [2], automated 

steering controllers [3-5], and vehicle stability [6, 7]. 

While it does not have any roll dynamics, the bicycle model is considered here as 

a reference because it is known to provide a reasonable match to experimental data for 

both lateral acceleration and yaw rate dynamics.  This matching is known to be valid only 

for maneuvers that are not very aggressive [8], roughly those with lateral accelerations 

less than 0.4 times the acceleration of gravity (g’s).  Further, the parameters defined for 

the bicycle model are reused in all of the 3DOF models of this study, and hence the 

relatively simple 2DOF model can be used to determine a number of the parameters 

found in the other 3DOF models.  Finally, the 2DOF model allows for a comparison of 
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non-rolling dynamics, e.g. lateral and yaw-rate dynamics, when roll dynamics do not 

appear in the model. 

2.1 The Bicycle Model - Slip Coordinate Formulation 

The 2DOF model of chassis dynamics known as the bicycle model will be derived 

in a body-fixed coordinate system as specified by the Society of Automotive Engineers 

(SAE) [9].  This coordinate system is shown in Figure 2.1.  Additionally, all 

nomenclature used in the derivation of the 2DOF model is indicated by Table 2.1.  

Because the model is formulated with respect to a vehicle frame, a coordinate 

transformation is required in order to obtain the vehicle’s position in the world, e.g. earth-

fixed coordinates. 

 

 

Figure 2.1: Standard SAE Vehicle Coordinate System 
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Typically the states used in the state-space representation of the body-coordinates 

bicycle model are the lateral velocity and yaw rate of the vehicle.  The lateral velocity 

state is occasionally replaced by the angle of the vehicle body relative to its path of 

travel, called the body slip angle.  However, such a substitution will not be done in this 

study. 

  

Table 2.1: Nomenclature used in 2DOF chassis dynamics model derivation 

Parameter Definition

 U Longitudinal velocity (body-fixed frame)

 r Yaw rate (angular rate about vertical axis)

 m Vehicle mass

 Izz Inertia about the vertical axis

 lf front-axle-to-CG distance

 lr rear-axle-to-CG distance

 L Track of vehicle (lf + lr)

 t Width of vehicle

 β Slip angle of the vehicle body

 Cf Front cornering stiffness

 Cr Rear cornering stiffness

 δf Front steering angle
 

 

 

 

Figure 2.2: Slip Coordinate Model 
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 A complete list of the assumption made in the proceeding formulation is: 

• Small angles are assumed allowing the following simplification: 
( )
( ) θθ
θ
≈

≈

sin

1cos
 

• Constant longitudinal (along the x-axis) velocity, e.g. 0=U�  

• The lateral force acting on a tire is directly proportional to its slip angle (defined 

below). 

 

• The tires roll without slipping in the longitudinal direction, e.g. no longitudinal 

forces (braking or throttle) are being produced that significantly affect lateral 

forces. 

 

• The forces acting on the right-hand side of the vehicle are symmetric to the forces 

acting on the left-hand side of the vehicle, hence the four-tire model can be 

simplified to a 2-tire, single-track model. 

 

From the free-body diagram shown in Figure 2.2, it is seen the last assumption is also the 

cause for the namesake “bicycle model” whereby the vehicle assumes a single-track 

model.   

2.1.1 Development of Newtonian Force Equations for 2DOF Chassis Dynamics 

Model 

From these assumptions, the force equations will now be developed.  Shown in 

Figure 2.3 is a tire exhibiting lateral-, or side-slip.  The side-slip angle α of a tire is 

defined as the difference between the steering angle of the tire and the tire’s local 

velocity vector Vtire.  The lateral force and side slip angle are related by the 

proportionality constant known as cornering stiffness.  These constants are usually 

different for the front and rear, and are defined as Cf for the front tire and Cr for the rear.  
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Units for this constant are radN , with the relationship defined below in Eq. 2.1.  By 

SAE convention this constant is defined as the negative of the force-slip slope. 

 

The slip angles of each tire may be readily expressed in terms of the local 

velocities local to each tire.  We see that the tire’s true velocity vector, Vtire, is offset from 

the vehicle’s longitudinal axis by the slip angle α.  From geometry, the relationship 

between local velocity components and tire slip angle becomes: 

Examining Figure 2.2, one can solve the lateral velocity vectors for the front and 

rear tire.  These become: 

Substituting this definition into Eq. 2.2 gives the slip angles for the front and rear tires to 

be: 

 

 

Figure 2.3: Tire Velocity Vectors 
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Recognizing from geometry that: 

 

we arrive at the equivalent formulation of the slip angle using lateral velocity states. At 

the front tire this is: 

and for the slip angle at the rear tire: 

Substitution of these slip angles into the linear tire model leads to the force equations: 
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2.1.2 Development of Motion Equations for the 2DOF Chassis Dynamics Model 

The equations of motion for longitudinal and lateral accelerations will now be 

developed.  By definingω
�
as the angular velocity of the moving, body-fixed axes ( )zyx ,, , 

and A
�
as a vector whose components are time-varying with respect to the same axes, it 

has been shown in [10] (pages 84 - 85) that the time derivative of the vector is:  

Using this definition, accelerations defined relative to body-fixed axes may be expressed 

in vector form by taking the derivative of the velocity vector v
�
of the body in plane by 

the equation: 

where a
�
is the total acceleration of the body in the plane, v�

�
is the time rate of change of 

v
�
, and ω

�
is the body’s rate of angular rotation about the body-fixed origin – in this case, 

the vehicle’s yaw rate. 

A
dt

Ad
A

��
�

�� ×+= ω  2.11 

vva �����
+×=ω  2.12 

 

 

Figure 2.4: Motion of a Body-Fixed Frame 
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 Referring to Figure 2.4, U and V are the time-varying velocities of the body along 

the x- and y- axes of the body-fixed frame, respectively.  By specifying ( )kji ˆ,ˆ,ˆ  to be the 

unit vectors of the body-fixed ( )zyx ,, coordinate system, and defining:  

 

 

Eq. 2.12 becomes: 

 

by Eq. 2.11.  Taking the vector cross product: 

 

gives the components of acceleration to be:  

 

The components defined by Eq. 2.16 and Eq. 2.17 allow for the development of 

the equations of motion in the body-fixed frame.  From the assumptions that longitudinal 

speed is constant and the tires are rolling without slipping, Eq. 2.16 is equal to zero. 

Therefore there are no net forces acting along the x-axis.  By summing forces in the 

lateral direction and moments about the vertical axis, the resulting equations of motion 

are: 

r=ω  2.13 

( ) ( ) jViUjVkriUkra ˆˆˆˆˆˆ ���
++×+×=  2.14 

jVjUriUiVra ˆˆˆˆ ���
+⋅++⋅−=  2.15 

VrUax −= �  2.16 

UrVay += �  2.17 

( )∑ −−=+= rfy FFUrVmF 22�  

∑ +−== rrffzzz lFlFrIM 22�  
2.18 
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where Izz is the moment of inertia of the vehicle about the yaw axis and r� is the time rate 

of change of the yaw rate r.  Substituting Eq. 2.9 for Ff and Eq. 2.10 for Fr, the system 

may be placed into the standard state-space representation as: 

In order to facilitate a simple comparison between this model and the others that 

will be derived in Chapter 3, an alternate form will be utilized.  By rewriting Eq. 2.18 

into the form: 

where:  

This gives the equation: 
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2.2 Derivation of Understeer Gradient 

By definition, understeer gradient is simply a constant indicating the additional 

amount of steering versus the low-speed steering angle (measured per g of lateral 

acceleration) necessary to maintain a steady-state turn negotiated at increasingly larger 

velocities.  It is measured in a steady state turning situation, and this acceleration 

typically comes from the centripetal acceleration acting upon a vehicle.  An important 

result of the definition of understeer gradient is that it relates two parameters that are 

difficult to measure (Cf and Cr) to two parameters that are relatively easy to measure 

(Wfront and Wrear).  By solving for the understeer gradient, it will provide certain 

guidelines in the selection of values for cornering stiffness – a fact that will be of great 

importance in Chapter 5.   

Additionally, understeer gradient provides a basic understanding of the vehicle’s 

behavior.  Generally speaking, if Kus is greater than 0, the vehicle is characterized as 

understeer and tends to resist a driver’s efforts to make a turn as velocity increases.  

Likewise, if Kus is less than zero, the vehicle is characterized as oversteer and requires 

less steering to make a given turn as speed increases.  Nearly all production vehicles are 

designed to be understeer due to safety concerns.  For additional information, refer to 

Gillespie’s book on Vehicle Dynamics [11], as further discussion is beyond the scope of 

this work. 

In the development of the understeer gradient equation, a vehicle undergoing low 

speed turning will first be examined.  As a vehicle’s velocity approaches zero, the lateral 
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acceleration also approaches zero.  Using the “single track” concept developed 

previously, the vehicle may be viewed as shown in Figure 2.5. 

From geometry, we see that: 

and: 

 

Expressing Eq. 2.24 as: 

 

 

and substituting Eq. 2.26 into Eq. 2.25 it may be seen that: 

 

But since: 

 

then by the above assumptions the steering angle of the vehicle may be expressed as: 

 

 

 

Figure 2.5: Single Track Vehicle Under Low-Speed, Steady State Turning 
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This is the expression for low speed steering angle required to negotiate a turn of fixed 

radius. 

When vehicle speed increases, the model presented in Figure 2.5 needs to be 

modified to include the side-slip of the tires.  Shown below in Figure 2.6, the single-track 

vehicle under high-speed steady state turning closely resembles the free-body diagram of 

the 2DOF model developed above.  A summation of angles of the interior triangle formed 

by the turning center and the front and rear wheels gives: 
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Figure 2.6:  Single Track Vehicle Under High-Speed, Steady State Turning 
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Solving for the steering angle results in:  

 

Following the assumption of a linear relationship between tire force generation and side-

slip angle, αf and αr may be substituted with:  

and: 

which gives: 

Recalling that understeer gradient is the relationship between increasing steering 

angle required to go around a turn per g of lateral acceleration, a linear relationship needs 

to be established that expresses ( )11 22 −− ⋅⋅−⋅⋅ rrff CFCF  in terms of lateral acceleration 

and vehicle parameters.  In order to accomplish this, a proportional relationship will first 

be developed between the front and rear tire forces.  Summation of moments about the 

vertical axis at the CG gives, for steady-state turning: 

which provides the relationship: 
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Summing forces in the lateral direction results in: 

Substituting Eq. 2.36 into Eq. 2.37 and solving for Fr gives: 

 

 

Similarly Eq. 2.35 may be solved for Fr and substituted into Eq. 2.37:  

 

 

Now that the forces have been expressed in terms of the vehicle parameters and 

lateral acceleration, they may be substituted into Eq. 2.34: 
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 From proportionality, the distance from the front axle to the CG, lf, may be 

defined by: 

Using this relationship, the weight on the front axle of the vehicle may be expressed as:  

The weight on the rear axle may be similarly expressed as:  

 

Substitution of Eq. 2.45 and Eq. 2.46 into Eq. 2.43 results in:  

 

From this it is seen that L/R is the steering angle required to make the turn at low 

speed, ( ) 12 −⋅⋅ RgU  is the lateral acceleration, ay,global, of the vehicle measured in g’s, and 

the proportionality constant: 

is the understeer gradient of the vehicle and has units of rad/g.  Applying these 

simplifications gives the final equation for the steering angle of a vehicle under high-

speed steady-state turning conditions to be: 
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2.3 Conclusion 

This chapter presented a simple two-degree-of-freedom model which will be used 

to provide a baseline comparison to the planar dynamics of the more complex models that 

include roll descriptions.  Many of the models that will be discussed in this work follow 

the same simplifying assumptions as the bicycle model and should therefore mimic its 

behavior to a large extent in regards to both lateral velocity and yaw motion. 

The form of the equations that will be used to represent all models discussed in 

this work was also presented.  This form will allow for the most apparent comparison 

between the effects that different modeling assumptions have on the resulting equations 

of motion. 
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Chapter 3 

 

Roll Model Derivations 

This chapter contains detailed derivations of several roll models chosen for 

evaluation in this study.  While many more models are available, the purpose of this 

study is to compare a representative selection from literature spanning both models 

evaluated purely in simulation and those that were implemented experimentally.  

Experimentally validated models are especially important in order to gain a better 

understanding for what assumptions are appropriate and what degree of model 

complexity is required to obtain an accurate representation of a vehicle’s dynamics as 

they undergo longitudinal, lateral and roll motions. 

3.1 General Comments on Roll Models 

An extensive, but not exhaustive, search of recent literature found twenty-three 

unique vehicle models that included a full mathematical description of roll dynamics.  Of 

these, only three will be utilized in this study [1-3].  The reasoning used to narrow down 

the number of models under consideration is discussed below. 

It is noted that many publications include models that dealt with trailer dynamics 

[4, 5], only examined suspension dynamics and ignored longitudinal and lateral motion 

[6], sought to only investigate the effect of lateral acceleration on vehicle rollover [7], 
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simply estimated roll with a correcting term [8, 9], or dealt with tripped rollovers [10, 

11].  For these reasons, these models are not used in this thesis. 

Another significant portion of the models found were discounted because there was 

simply not enough information given in the paper to recreate the simulations or 

derivations.  For instance, [12-15] did not provide the equations of motion used for 

reported simulations and experimental comparisons.  Others simply did not define all of 

the symbols used in their model [16] or provide sufficient detail to recreate equation 

derivations [17]. 

Additional factors narrowing model selection included the use of an overly complex 

model unsuitable for control synthesis.  These include models derived from kinematic 

software packages that generate equations of motion that are so complex and high order 

that they are unsuitable for feedback control design [18, 19].  Other models included 

parameters that were either difficult to measure, or required input/output time-response 

data to obtain parameters whose physical meaning is unclear [20, 21].  Because the goal 

of this study is to develop models based on first-principles without the need for dynamic 

fitting, these models were abandoned.  

Finally there was the category of models that, although the equations of motion were 

presented, a number of errors existed such that they were not reproducible in simulation 

[22-24].  In the case of [22, 23], the same model was presented in state-space form [23] 

and in transfer function form [22].  However, parameters were different between the two 

papers, with neither set seeming to match published results. The state-space 

representation proved to be open-loop unstable. 
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For these reasons, our study will focus on models based upon those derived in [1-

3]. These three models still require information obtained only through experimental 

measurement [2], but the physical meaning of these parameters is clear and therefore 

allows offline estimation of these parameters. 

3.2 General Comments on Roll Model Derivations 

To emphasize the similarity between all of the models used in this study, each is 

presented and derived in similar fashion using similar state definitions and coordinate 

systems.  All numerical representations follow the standard SAE right-handed sign 

convention shown in Figure 3.1. In some cases, this sign convention differs from the 

original publications. 

Also, in order to avoid confusion, each model will be derived to conform to the 

common notation described by Figure 3.2 and Table 3.1.  Any changes from the original 

published work will be indicated.  All models are linear and are therefore subject to the 

same assumptions as the bicycle model unless otherwise specified, with the most obvious 

exception being that roll dynamics are considered. 
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Figure 3.1: Standard SAE Vehicle Coordinate System 

 

 

Figure 3.2: Roll Angle Definition for 3DOF Vehicle Models (Front View) 
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The values in Table 3.1 correspond to an instrumented 1992 5-door Mercury 

Tracer that was used for vehicle testing.  Note that, in Table 3.1, where “model fit” is 

indicated as the method of determination it is referring to previous model validation 

experiments performed on the vehicle.  These model fits are described in detail in 

Chapter 5 and the resulting best-fit parameters are presented in Table 3.1.  All uncertainty 

bounds indicated are estimates. 

3.3 Model Assuming Existence of Sprung Mass and No X-Z Planar Symmetry 

The following model derivation is consistent with the work presented by Mammar 

et. al. [3].  The model presented here will differ in that the vehicle equations are derived 

in a body-fixed frame instead of being referenced to a global frame.  It will also conform 

to the standard SAE coordinate system defined above in Figure 3.1 and Figure 3.2 as 

Table 3.1: General Simulation Parameters and Notation Definitions 

Variable Value Units Uncertainty How it was determined

m 1030 kg 5% Measured

W f 6339 N 5% Measured

Wr 3781 N 5% Measured

ms 825 kg 5% Model Fit
2

Izz 1850 kg-m
2

5% Model Fit
1

Iyy 1705 kg-m
2

5% NHTSA database

Ixx 375 kg-m
2

5% NHTSA database

Ixz 72 kg-m
2

5% NHTSA database

lf 0.93 m 5% Measured
1

lr 1.56 m 5% Measured
1

l 1.4 m 5% Measured1

h 0.52 m 5% NHTSA database

Kφ 53000 N*m/rad 10% Model Fit
2

Dφ 6000 N*m*s/rad^2 10% Model Fit
2

Cf -45500 N/rad 10% Model Fit
2

Cr -76650 N/rad 10% Model Fit
2

Kus 0.045 rad/g 5% Experimentally Determined
1
 - Indicates that the value is within 5% of the NHTSA database value.

2
 - Indicates that the value is not published in a readily available public database.  
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opposed to that which was used in the original publication.  This model will be 

designated as Model 2 (the bicycle model is denoted as Model 1). 

Nonlinear moment equations may be derived from basic kinematics by 

considering the contribution of inertial forces combined with the motion of the CG about 

the origin Ov.  Since the origin of the coordinate system is not fixed to the CG, the 

equations of motion must be expressed as [25]:   

where 
VO

a is the acceleration at the origin and 
VOH is the angular momentum of the body 

about the origin.  Eq. 3.1 clearly shows the coupled effects of linear and angular motion 

on the resulting moment acting on a body.   

 The first step necessary to solve Eq. 3.1 is to derive the relationship between the 

physical properties of the vehicle and the change in angular momentum.  This begins by 

defining the angular momentum to be: 

where [I] is the inertia matrix: 

and ω  is the angular velocity vector:  
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with xω , yω , and zω being the components of the vehicle’s angular velocity about the 

body-fixed coordinate axes.  Since the axes are body-fixed, then the inertial properties of 

the vehicle are constant.  Therefore the time derivative of Eq. 3.2 is: 

where α  is the angular acceleration of the vehicle about the body-fixed coordinate axes. 

 Since xyI  and yzI  are assumed to be zero, Eq. 3.3 may be expressed as: 

Additionally, examination of the free body diagram shown in Figure 3.2 gives [ ]ω  to be: 

Taking the time derivative of Eq. 3.7 defines [ ]α  to be: 

which allows the vehicle’s time rate of change of angular momentum to be solved for.  

More explicit details on the development of Eq. 3.5 may be found in Ginsberg’s book on 

pages 166 – 191 [25]. 

 It is now necessary to define the linear acceleration of the body so that Eq. 3.1 
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of acceleration normal to the path and a component tangential to it.  Thus 
VOa may be 

defined as [26]: 

where the normal component is defined as:  

and the tangential component is defined as: 

By substituting Eq. 3.9 and Eq. 3.5 into Eq. 3.1 and evaluating, the total moment acting 

about the three body-fixed coordinate axes may the found. 

 Lateral forces are summed as they were in Chapter 2, with the addition of the 

lateral acceleration components induced by the roll motion of the vehicle.  By 

recognizing that the moment about the y-axis is zero by the assumption that the vehicle 

does not undergo pitch motion, the non-linear equations of motion are: 

where: 
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 Utilizing the force equations derived in Section 2.1 defined by: 

and body-slip to be defined as in Eq. 2.6:  

gives the expression for lateral tire force.  Note that due to the assumption that the vehicle 

is moving at constant speed and that there is no slip in the longitudinal direction, the 

longitudinal forces acting upon the tires are assumed to be zero.  From these, it is seen 

that the external forces acting on the vehicle are: 

where Kφ and Dφ are the roll stiffness and roll damping constants, respectively. 
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By equating the internal and external force-moment equations, combined with a 

small angle assumption and neglecting all higher order terms, the equations of motion 

may be placed in the compact notation presented in Eq. 2.20, which is the linear equation 

This expands to:   

where: 

From here, Eq. 3.22 may be rewritten into the standard state-space representation 

following some manipulation of terms.  The corresponding equations are presented in 

Appendix A.1. 

 While the derivation presented by Mammar [27] is very thorough and logical, the 

parameters given in the same reference appear unrealistic.  Most notably in error are the 

values for front and rear cornering stiffness which are not only an order of magnitude 

lower than those obtained experimentally in this work, but are reported to be identical for 

the front and rear tires.  This assumption is quite poor as there are virtually no reported 

cornering stiffness values from experimental tests that possess this characteristic. 
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3.4 Model Assuming Existence of Sprung Mass, X-Z Planar Symmetry, and Roll 

Steer Influence 

Following the coordinate system specified by Figure 3.1, Kim and Park present a 

3DOF model that describes the vehicle’s lateral velocity, yaw rate, and roll angle [2].  

The derivation presented here differs from the original work in that each tire is taken 

individually in this work so that the cornering stiffness defined above may be used.  The 

sign of the cornering stiffness values also differ, and some of the notation was changed to 

coincide with that used in this work.  This model will be designated as Model 3. 

This derivation is similar to that which was presented in Section 3.3 with the 

exception that Ixz is set to zero.  This follows from the assumption that the vehicle’s mass 

is symmetric about the x-z plane.  This simplification defines the inertia matrix used in 

Eq. 3.5 to be: 

Following this modification, the nonlinear equations of motion become: 

with the summation of the external forces acting upon the vehicle being defined by: 
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 By again applying a small angle assumption and neglecting higher order terms, 

the equations of motion may be represented in the form described by Eq. 3.21 as: 

with the external forces being redefined as: 

Note the appearance of a partial derivative term in Eq. 3.28.  The star is placed in these 

terms to indicate that they refer to the influence of the vehicle’s roll angle on the slip 

angle of the vehicle.  This effect is commonly known as “roll steer” and is merely a 

constant value.  The value suggested by the authors in [2] for this coefficient for the front 

tires was 0.2 and -0.2 for the rear tires. 

 A subtle change was made in the roll moment term in the stiffness matrix K 

between the derivation presented here and the version published by Kim and Park [2].  

The original authors presented the term in the lower-right hand corner to simply be Kφ, 

with the gravitational effect on the sprung mass seemingly ignored.  However, it is 

included here as it is believed by the author that the additional moment term, sm gh− , is 

simply included in the definition of roll stiffness in the original work.  This is reasoned 

by considering its appearance in a moment balance, as well as its magnitude being 

approximately 12% of the roll stiffness (see values in Table 3.1).  Therefore, it is unlikely 

that Kim and Park excluded this term from their derivation but rather included it in their 

definition of roll stiffness. 
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 As with the previous model, the equations of motion may be represented in state-

space form with the equations appearing in Appendix A.2. 

3.5 Model Assuming Sprung Mass Suspended on a Massless Frame, X-Z Planar 

Symmetry, and No Yaw Influence on Roll 

The next model presented is based on the model derived by Carlson et. al. [1].  It 

will be changed to coincide with the SAE coordinate system defined above in Figure 3.1 

and Figure 3.2.  Additionally, the notation will be changed from the original publication 

to coincide with the one used in this work and longitudinal tire forces will not be 

considered by the assumptions listed in Section 3.3.  This model will be designated as 

Model 4. 

  In order to solve for the moment summations in this model, Eq. 3.1 will be 

redefined as: 

This definition is provided by the assumption that the sprung mass of the vehicle is 

supported by a massless frame, thus making ms = m.  These are combined to give the 

nonlinear equations of motion:  

with the external forces acting on the vehicle defined by:   
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By again assuming small angles and neglecting higher order terms, we arrive at the linear 

equations:  

with the external forces being defined as they were in Eq. 3.23.  State-space equations for 

this model may be found in Appendix A.3. 

3.6 Model Comparison – Qualitative Analysis 

Examination of the equations of motion of all of the models in this study reveals 

the similarities between Model 1 and Models 2, 3, and 4.  It is therefore reasonable to 

expect that the lateral acceleration and yaw rate dynamics of the four models will be 

similar as well. 

Model 2 is the most complex roll model presented in this study.  This complexity 

comes from the fact that the vehicle is assumed to be asymmetric about the x-z plane.  

When compared with Model 2, Models 3 and 4 have less cross-coupling of the 

acceleration terms as a result of the assumption of symmetry about the x-z plane. 

The most apparent difference between Model 4 and Models 2 and 3 is that the 

total mass of the vehicle is assumed to be supported by the suspension, with the frame 

being assumed massless.  This assumption causes Model 4 to be the simplest 

parametrically (i.e. requires the least number of parameters) when compared to Models 2 

and 3. 
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Another distinguishing feature that simplifies the notation of Model 4 in the form 

described by Eq. 3.21 is that lateral acceleration of the vehicle that induces a roll moment 

on the vehicle, is replaced by the external forces acting on the tires.  If this assumption 

had not been made, the term mh would appear in the lower left hand corner of the mass 

matrix and the term mhU would appear in the lower middle of the damping matrix.  The 

force resulting from the lateral acceleration of the mass center may be equated to the 

external tire forces from a simple force balance when viewing the vehicle as an inverted 

pendulum.  However, this is only valid under the assumption that the frame of the vehicle 

is massless.  This is shown graphically in Figure 3.3. 

While equating the forces in this manner is valid by Newtonian mechanics, it 

actually changes the plant dynamics and causes one of the system natural frequencies to 

be shifted by approximately 2.5 rad/s.  To illustrate the effects that this assumption has on 

the plant dynamics of the model, Model 3 (Eq. 3.33) will be directly compared to Model 

4 (Eq. 3.34), as they are largely similar.   

 

 

 

Figure 3.3: Comparison of Lateral Forces Between Roll Models 
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In both Models 3 and 4, summing forces in the lateral direction results in:  

Since the frame in Model 4 is assumed to be massless, this equates the total forces acting 

at the CG to the total forces acting on the tires.  From this equivalence, the roll moment 

induced by the acceleration terms in the roll dynamics of Model 4 may be replaced by a 

roll moment induced by the tire forces.  The consequence of such a substitution is that the 

plant description changes, since this portion of the roll moment is now being expressed in 

the force inputs.  Therefore, the eigenvalues of the plant are changed.  
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Figure 3.4:  Comparison Between Model 4 and Model 3 Under Varying Assumptions 
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This is shown explicitly in Figure 3.4, which shows the yaw rate response of the Tracer 

with modified suspension characteristics.  The values for roll stiffness and damping were 

changed to 38,000 N-m/rad and 1050 N-m-s/rad, respectively, to highlight the effect of 

assumption on the dynamic response.  It is shown that by simply making the assumption 

that the frame is massless causes very little change in Model 3.  However, by equating the 

lateral tire forces with the total acceleration of the vehicle resulted in the natural 

frequency decreasing by 2.5 rad/s from the original model.  This change also results in 

the overall damping of the model decreasing, with the resonant peak of Model 4 being 

approximately 2 dB greater than the original version of Model 3.  It is clear that Model 4 

and the final version of Model 3 match almost exactly in the yaw response. 

3.7 Concluding Remarks 

As stated previously, although a great number of vehicle models involving roll 

have been found in the literature, only a handful were found to be both easily 

reproducible and applicable to our study.  Of those that were selected for further study, 

we can see that each of them produces unique results due to the various assumptions 

made during their derivations.  Chapter 4 will discuss in detail the experimental 

validation of the equations presented here. 
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Chapter 4 

 

Vehicle Instrumentation and Measurements 

This chapter will present a detailed description of the vehicle’s data acquisition 

system, sensors, and initial parametric measurements.  The first section will provide an 

overview of the instrumentation and setup.  An overview of the general architecture and 

system design will first be given, followed by a description of each sensor interfaced with 

the system.  This will include the principle of operation for each sensor, sensor mounting, 

and calibration methods used.  Performance issues for each sensor are also discussed. 

The second section will discuss an alternate set up of the vehicle’s 

instrumentation that was attempted in order to solve the shortcomings encountered with 

the current system.  A comparison between the two configurations will be provided and 

conclusions drawn. 

4.1 Vehicle Instrumentation and Setup 

All of the equipment described below was used on the 1992 5-door Mercury 

Tracer test vehicle at the Pennsylvania Transportation Institute’s (PTI) test track in State 

College, PA.  It should be noted that the instrumentation is not vehicle specific and may 

be readily used for experimentation in any vehicle. 
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4.1.1 Data Acquisition System 

Shown in red in Figure 4.1, the data acquisition system (DAQ) used in this study 

is based upon the Texas Instruments TMS320C6713 Digital Signal Processor (DSP) 

Developers Kit.  The kit includes a circuit board with a C6713 class DSP that includes 

address and data-bus headers that allow easy interfacing with the processor.  Custom 

daughter cards developed by Dan Block at the Control Systems Instructional Laboratory 

at the University of Illinois at Urbana-Champaign are interfaced with the DSK to provide 

the following capabilities: 

• 8 Digital I/O’s  

• 4 Analog I/O's, -10/+10 volt range 

• 2 RS-232 (Serial) Ports 

• I2C Data Bus (6 ports) 

 

 

 

Figure 4.1: Data Acquisition and Sensing Architecture 
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The device drivers included with the kit allow the board to be programmed in 

standard C-code through the programming environment known as Code Composer Studio 

(CCS) developed by Texas Instruments.  Using this software, the DSP was set up to 

continuously poll for requested data while simultaneously reading the sensors.  Tests 

have shown that data from all of the sensors may be sampled at rates exceeding 1000 

samples per second, though for this study a sample rate of 200Hz was used, since the 

highest input frequency sampled was approximately 5Hz.  Such a sampling rate avoids 

aliasing, provides high fidelity data, and reduces disk file size significantly. 

The digital I/O lines were set up in such a manner as to allow simple yet efficient 

communication between the acquisition hardware and the host computer via the parallel 

port.  The client PC, colored blue in Figure 4.1, has a 400 Mhz Pentium® III processor 

and runs the Wincon® software package developed by Quanser Consulting.  This 

software provides a real-time kernel to run “underneath” the resident Windows operating 

system to ensure that data is both requested and collected from the associated hardware at 

the required intervals with only microsecond latency.  Such software is required for this 

task to ensure that the flow of data is not preempted by the operating system – a critical 

factor in the control architecture of a motor vehicle. 

Data is then communicated to the server (coded green) through an Ethernet line 

using standard TCP/IP protocol where it is recorded and plotted in real-time.  Although 

this is currently accomplished via a physical connection between the client and server, 

future work beyond this study is considering the use of wireless Ethernet protocols to 

simultaneously send commands to, and collect data from, the vehicle without actually 

being inside of it. 
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The sensor interface is accomplished graphically on the server using the 

MATLAB® SIMULINK® environment.  One shortcoming of the Wincon® kernel is that 

it is not readily made to interface with custom hardware such as what was used in this 

study.  Therefore, with the help of Dan Block, custom device drivers were developed that 

interfaced the Client and the DAQ through the parallel port.  Communication between the 

Server and the Client is handled by Wincon® and is a built-in feature of this software. 

One major advantage of this setup is that not only can the data be read in real-

time, but any calibration functions, controller gains, etc. may be tuned in real-time.  This 

feature allows for the quick verification and adjustment of calibration functions prior to 

performing vehicle tests.  Similar capability on more widely used commercial software 

(dSpace, for example) would easily cost roughly an order-of-magnitude more than that of 

the current system setup. 

4.1.2 Steering Angle Sensors 

A requirement for all of the sensors was that they had to be failsafe against a 

power failure.  This implies that on power-up, the DAQ must be able to report accurate 

measurements from the sensors without the need to return any part of the vehicle to a 

“home” position.  As a result it was decided that linear string potentiometers would be 

used to measure the steering angle of the vehicle.  Not only do these sensors satisfy the 

above requirement, but they were readily available from PTI and were simple to interface 

when compared to alternative options such as an absolute encoder for the steering wheel. 
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4.1.2.1 Description of Steering Sensor 

String potentiometers were first developed for NASA in the late 1960’s for use in 

aircraft testing, as there was a need for accurate sensing devices that had flexibility in 

their mounting options.  They are now found frequently in automotive testing 

applications such as monitoring the movements of a crash dummy in testing (such as the 

THOR Alpha and Advanced crash dummies used by NHTSA [1]), recording the 

deformation of points in the interior cabin of a vehicle in a crash [2], and monitoring 

suspension, gas pedal, and brake pedal travel [3] in addition to monitoring the steering 

angle [3, 4]. 

A string potentiometer works the same as a regular potentiometer with the 

exception that the resistance is varied by the actuation of a cable.  This cable is tensioned 

with a constant-torque spring that serves to both prevent the cable from sagging and to 

allow it to retract into the base housing.  The housing itself provides considerable 

protection to the sensor against water and dust.   

A typical circuit diagram of a potentiometer is shown in Figure 4.3.  A reference 

voltage is placed across pins 1 and 3, with the sensor output being indicated by the 

voltage across pins 2 and 3.  As the string translates, the angle theta of the potentiometer 

 

 

Figure 4.2: String Potentiometer Used for Steering Angle Measurement 
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changes, which alters the resistance between pins 2 and 3 and in turn causes a change in 

voltage.  By monitoring the voltage change across these pins, the position of the cable 

may be deduced.  Further information on the operating principles behind potentiometers 

may be found in Ernest Doeblin’s book on page 212 [5]. 

4.1.2.2 Steering Sensor Mounting 

In order to provide redundancy, two string potentiometers were used.  The cable 

of one was directly affixed to the driver’s side of the steering arm, and the other was 

attached to the passenger side.  The bases of the units were mounted to a custom frame 

that was bolted to the undercarriage of the vehicle.  The position of the mount provides a 

clear, straight pathway for each of the potentiometer cables.  The mount itself is 

constructed from 1” box steel to ensure rigidity. 

The frame was designed such that it would mount to preexisting holes in the 

undercarriage.  These holes were tapped to accommodate the mounting fixture.  In order 

to ensure that the bolts will not loosen over time, a lock nut and washer was used on the 

threaded side, and a lock washer sandwiched between regular washers was used on the 

opposing side. 

 

 

Figure 4.3: Typical Potentiometer Circuit Diagram 
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4.1.2.3 Steering Sensor Calibration 

Slip plates were used to calibrate the steering sensors.  These plates are typically 

used to determine if a car needs to have its front end aligned by comparing the left and 

right steering angles for a given displacement of the steering wheel.  They also allowed 

for the creation of a calibration curve for the string potentiometers. 

A reference voltage of +5v was output through one of the DAQ’s analog outputs, 

and one of the analog inputs was used to read the voltage across the potentiometer.  In 

order to determine the voltage corresponding to a zero steering angle, the car was driven 

straight for approximately 400m on flat, level pavement.  The voltage on the 

potentiometers was averaged over this period.  The car was then raised on jacks and the 

wheels were turned until the voltage corresponding to a zero steering angle was reached. 

The measured voltage across each potentiometer was recorded at 5 degree 

intervals and plotted.  Shown in Figure 4.5 and Figure 4.6, it is clear that the sensors do 

indeed follow a linear trend with an R
2
 of 0.998 for the potentiometer on the driver’s side 

 

 

Figure 4.4: Wheel Angle Slip Plates 
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and an R
2
 of 0.9993 for the one on the passenger side.  Since both sensors demonstrated 

such linearity and a limited number of analog inputs were available, it was decided that 

only the driver-side sensor would be utilized, with the passenger-side sensor existing as a 

ready-made backup. 
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Figure 4.5: Driver Side Steering Sensor Calibration Curve 
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4.1.2.4 Known Steering Sensor Issues 

The only issues encountered with the string potentiometers are occasional spikes 

in the readings and the need to check the calibration frequently.  While the former seems 

to occur simultaneously on all of the sensors, indicating an issue with the DAQ, it has a 

negative impact on the predictive ability of the models.   The data is not filtered in real-

time since filtering introduces a phase-lag in the measurements.  The solution currently 

being implemented is to compare the current value to the previous value.  If the 

difference is greater than a specified threshold, then the previous value is used for the 

current time step. 
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Figure 4.6: Passenger Side Steering Sensor Calibration Curve 
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Minor adjustments must be made to the calibration curve on a regular basis.  

While the values have changed by less than 1% over approximately three months, the 

resulting difference in accuracy is considerable.  Fortunately no inaccuracies have been 

found in the slope of the calibration curves, merely in the zero voltage, and so are easy to 

correct. 

4.1.3 Yaw/Roll Rate Sensor 

In order to determine the angular rate of the vehicle about the vertical axis, a 

Bosch yaw rate sensor (model MMR.01) was used.  Power-on reset for this sensor was 

not a concern, as it does not give any absolute measurements, only angular rate.  This 

sensor was also used to determine the roll rate of the vehicle.  While the sensor is 

equipped with a lateral accelerometer, it was not used due to inaccuracies found in its 

sensing capabilities. 

4.1.3.1 Description of the Rate Sensor 

Shown in Figure 4.7, the yaw rate sensor is not very different from a traditional 

fly-ball governor.  The sensor consists of two eccentric masses that are each allowed to 

traverse linearly along a track.  Springs ensure that the travel of the masses is related to 

the centrifugal acceleration acing upon them.  This distance is converted into a voltage, 

which is read from the sensors analog output pins. 
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The sensor outputs a reference voltage from which the calibration curve is 

derived.  By subtracting off this voltage from the yaw rate signal, a more accurate reading 

may be obtained.  For this reason, the yaw rate sensor requires two analog inputs. 

4.1.3.2 Rate Sensor Mounting 

Following the determination of the vehicles center of gravity (CG), the rate sensor 

was placed as close to its location as possible.  The nearest accessible location, shown in 

Figure 4.8, is approximately 0.33m in the negative x direction from the location of the 

CG.  Given the proximity of the sensor to the axis of rotation, it was not deemed 

necessary to apply a coordinate transformation to the measurements. 

 

 

Figure 4.7: Angular Rate Sensor 
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Physically, the rate sensor is mounted to the vehicle’s console by means of self-

locking mushroom-head adhesive-backed strips, with a holding force of 18 pounds per 

square inch of surface area contact.  This material was chosen to mount the sensor since it 

provides a rigid mounting surface that is both non-permanent and does not require any 

drilling which may damage vehicle control components.  

Roll rate was measured by mounting the rate sensor to a piece of 90 degree angle 

aluminum.  The base of the mount was then attached to the console utilizing the 

interlocking mushroom-head strip.  Mounting of the sensor in this manner presented no 

noticeable loss in rigidity.  

4.1.3.3 Rate Sensor Calibration 

The calibration curve for the sensor was provided by Bosch in accompanying 

documentation provided with it.  The relationship between the output voltage of the 

sensor and the angular rate is linear, with a maximum angular velocity of ±1.75 rad/s 

 

 

Figure 4.8: Location of the Angular Rate Sensor Relative to the Vehicle CG 
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(±100 deg/s).  This is well within the range of values expected to be encountered in an 

automobile.  The calibration of the sensor was tested by recording the yaw rate while 

stationary and again while traversing a circular path of known radius at a known speed.  

The only adjustment required was to eliminate a steady-state bias to the sensor of +0.012 

rad/s.  

4.1.3.4 Known Rate Sensor Issues 

 The rate sensor will occasionally give a non-zero reading when the vehicle is not 

in motion.  It is therefore recommended that any evaluation of the sensors calibration be 

done while the vehicle is in motion in order to ensure correct sensor operation. 

4.1.4 Lateral Accelerometer 

The final sensor in the data acquisition architecture is an accelerometer.  Like all 

of the previous sensors, a power-off reset will have no ill effect on this sensor or its 

accuracy.  The range of the accelerometer used in this study is ±2g.  This range is suitable 

for vehicle testing as the linearity conditions specified in Chapter 2 dictate that the lateral 

acceleration should not exceed 0.4g’s. 

4.1.4.1 Description of Accelerometer 

Shown in Figure 4.9, it follows the typical construction of a non-piezoelectric 

accelerometer.  A small mass on the interior is allowed to be displaced in the direction of 
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motion and is balanced by a spring and damper.  The principle of operation is very 

similar to the rate sensor.  Further information may be found in Doeblin’s book on page 

324 [5]. 

4.1.4.2 Accelerometer Mounting 

As with the rate sensor, the accelerometer was mounted in close proximity to the 

CG.  As is indicated in Figure 4.10 the distance between the two is very small in relation 

to the dimensions of the vehicle.  Therefore, no coordinate transform was necessary to 

correct the data.  The sensor was affixed to a mounting plate on the vehicle using non-

permanent high-rigidity putty.   

 

 

Figure 4.9: Accelerometer 
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Like the self-interlocking strips, the putty material securely mounts the sensor to 

the vehicle chassis.  Unlike the adhesive backing of the strips, it does not permanently 

bond with the casing of the sensor.  This was a key concern as the sensor was temporarily 

on loan from the Department of Mechanical and Nuclear Engineering at PSU. 

Additionally, vibration-absorbing pads were placed in between the mount and the vehicle 

frame in an attempt to dampen some of the mechanical noise imparted to the sensor. 

4.1.4.3 Accelerometer Calibration 

The manual supplied with the sensor contained the slope and intercept values for 

the linear calibration curve between voltage and acceleration.  This curve was tested by 

placing the sensor on a stationary, level surface and checking that the sensor reported 

zero g’s of acceleration and by holding it vertically and checking for an acceleration of 1 

g.  The sensor reported the correct value in both situations. 

 

 

Figure 4.10: Accelerometer in relation to the vehicle CG 
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Once the sensor was mounted in the vehicle, the angular offset of the mounting 

needed to be determined.  A test similar to that performed by the angular rate sensor was 

executed, whereby the vehicle was driven around a circle of known radius at a constant 

known speed.  In such steady state situations, the centrifugal acceleration acting upon a 

body is equal to: 

where R is the radius of the turn.  However, as pointed out by Wheeler et. al. [6] the 

acceleration felt by an observer in a body-fixed frame is: 

Given the relationship that, in a steady state turn: 

the lateral acceleration felt by an observer in the body-fixed vehicle frame under steady 

state turning conditions should be zero.  Therefore, Eq. 4.2 was used to adjust the lateral 

acceleration readings such that the lateral acceleration in the body-fixed coordinate frame 

was recorded. 

 By performing a series of steady-state turning tests at various speeds and in both 

positive and negative directions, the steady-state offset of the sensor was determined to 

be +0.9 m/s
2
.  Following the addition of this correction factor and correcting for the 

centripetal acceleration acting on the vehicle, the system reported approximately zero 

lateral acceleration for all steady state turns the vehicle was able to perform without 

sliding. 
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4.1.4.4 Known Accelerometer Issues 

The most apparent problem with the accelerometer was noise.  The instrument 

itself is very sensitive, having a resolution of ±0.001g.  As a result all of the vibrations of 

the vehicle are recorded including high frequency vibrations such as engine noise.  

Therefore all steady-state measurements are very noisy and require post-processing in 

order to determine the actual measured value.  Such an issue is not uncommon when 

using accelerometers in vehicle dynamic analysis and has been found to be an issue in 

other works such as in [7]. 

Another more significant problem with the use of the accelerometer is the 

possibility of incorrect mounting.  As discussed above, tests were performed to determine 

the angular offset associated with the accelerometer’s mounting.  However, this 

correction factor may contain some error.  Since the experiments were performed under 

steady state conditions, the vehicle sprung mass will exhibit a constant roll angle.  This 

roll angle alters the readings of the lateral accelerometer since a gravitational component 

of acceleration is introduced into the data.  As a result, the correction factor will only 

apply under steady-state turning situations, for that specific radius (30.5m in this case).  

This limitation is a direct result of the roll angle of the vehicle being related to the lateral 

acceleration of the vehicle and the axial cross-coupling induced by it. 

The only way to properly determine the orientation of the sensor with respect to 

the vehicle coordinate frame is by using a multi-axis sensor such as an Inertial 

Measurement Unit (IMU).  Further discussion of this issue is given in the following 

section, as cross-axis coupling of dynamics became a significant issue in data collection.  
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Further examination of both the effect of roll dynamics on sensor measurement and the 

influence of noise on data processing will be examined further in Chapter 5. 

A final error in the use of the accelerometer comes from the use of Eq. 4.2 when 

converting the measurements from a global to a body-fixed reference frame.  This 

equation is highly dependent on velocity.  Since velocity is not currently measured and 

there is no cruise control in the vehicle, the accuracy of this equation strongly depends on 

the speed of the vehicle being held constant.   

4.2 Alternate Vehicle Instrumentation Setup 

Not only does the roll motion of the vehicle influence the measurement of lateral 

acceleration, but also it influences yaw and roll rate.  As shown in Figure 4.11, it is seen 

that a roll angle induced on the vehicle will indeed cause the sensors to take 

measurements in a coordinate frame other than the tangential frame in which the 

equations of motion pertain.  Imperfection in the sensors mounting may cause an artificial 

additional rotation about the y-axis, further affecting the measurements. 

 

 

Figure 4.11: Roll Effects on Vehicle Measurements 
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In an attempt to address the issue with incorrect axis alignment and cross-

coupling of sensor readings, a Crossbow IMU (VGX model) was used.  A key feature of 

the IMU is that it is capable of determining the roll and pitch angle of the unit with 

respect to a tangential coordinate plane.  This is accomplished through a two-step 

process:  First, shown in Figure 4.12, the high-bandwidth rate sensors are integrated 

continuously over time.  However, due to inaccuracies in the rate sensors the answer will 

tend to drift from the true value after a matter of a few seconds.  Second, the integration 

drift is corrected by utilizing the relatively low-bandwidth accelerometers. 

If the sensing system relied too heavily on the rate gyros, errors would occur as a 

result of integration.  Likewise if reliance was placed too heavily on the accelerometers, 

the data acquisition rate would be too slow.  By striking a balance between the two, an 

accurate solution may be acquired at high data rates.  It is important to note that the 

degree to which one selects appropriate bandwidth is application dependent, and must be 

tuned for optimum performance and the application at hand. 

 

 

Figure 4.12:  Method Employed By Crossbow to Determine the Global Roll and Pitch 

Angles of the Vehicle 
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The angles reported by this IMU follow the standard Euler angle rotation.  

Therefore, by defining the roll angle as φ and the pitch angle as θ the measured data may 

be converted to measurements in the tangential coordinate frame by  

and: 

The addition of the Crossbow IMU to the data acquisition system required the use 

of one of the two available serial ports.  This modified structure is shown in Figure 4.13. 
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Figure 4.13:  Data Acquisition and Sensing Architecture with the Crossbow IMU 
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4.2.1 Comparison between Sensing Systems 

A series of tests were performed whereby data was collected from all of the 

sensors simultaneously and the data was compared.  In order to provide an objective 

comparison, the sensors were mounted as shown in Figure 4.14 so that they were all 

subjected to similar mounting offsets.  The first test performed involved driving the test 

vehicle about a 30.5m radius circle at 8.9 m/s in both directions in order to show if the 

two systems reported the same measurements under steady-state conditions.  The results 

are shown below. 

 

 

Figure 4.14: Sensor Mounting Following the Addition of the Crossbow IMU 
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Both Figure 4.15 and Figure 4.16 indicate that both the IMU and the original 

sensors report nearly identical measurements under steady state conditions.  Additionally 

the lateral acceleration recorded by the IMU is smoother than output from the 

accelerometer.  This is likely due to the low-pass filter indicated in Figure 4.12. 
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Figure 4.15: Data Comparison, Turning Circle, 8.9 m/s, Clockwise 
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Figure 4.16: Data Comparison, Turning Circle, 8.9 m/s, Counterclockwise 
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The next series of tests involved cyclic oscillation of the vehicle with a fixed 

steering amplitude.  A low frequency test at 0.5 Hz and a high frequency test at 2.5 Hz 

were executed in order to compare the transient behavior of the sensors.  The results of 

the low frequency test are shown in Figure 4.17.  Regarding the lateral acceleration, an 

apparent phase lag exists between the accelerometer and the IMU.  This may also be a 

result of the low-pass filter placed on the output of the IMU’s accelerometers.  In the yaw 

response, minor differences arise in the magnitude of the data. 

 The results of the high frequency test shows disagreement between the sensor 

systems.  Figure 4.18 reveals that while the yaw response still exhibits behavior similar to 

that shown at low frequencies, the IMU shows almost no response in regards to lateral 

acceleration.  However, since the data from the accelerometer was not a sine wave of 

consistent amplitude and frequency as expected, a new set of tests was performed. 
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Figure 4.17: Data Comparison, Low Frequency Oscillation (0.5Hz), 22.4 m/s 
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The next series of tests performed are nearly identical to the cyclic oscillations 

described above.  The key difference is that the speed of the tests was decreased from 

22.4 m/s to 8.9 m/s.  At higher speeds, the dynamics of the vehicle are easily excited.  

However, the limited space on the test track restricts the number of cycles that may be 

performed.  Additionally, at higher speeds it is easier to exceed the linear bounds of the 

models and great care must be taken to keep the input amplitude low enough to maintain 

reasonable lateral accelerations (less than 0.3 g) while still remaining consistent in the 

steering input. 

By executing the tests at low speeds, not only can a large number of oscillations 

be performed but there is more leeway in the input amplitude that may be used.  

Therefore, the tests will be performed at 8.9 m/s at 0.67 Hz and 2.5 Hz.  The lateral 

acceleration results of the low frequency tests are shown in Figure 4.19.  Examination of 

the data shows that while the phase of measurements between the two sensor systems 
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Figure 4.18:  Data Comparison, Low Frequency Oscillation (2.5Hz), 22.4 m/s 
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matched well, the IMU shows significant undershoot on the lower bound of the sine 

wave. 

The higher frequency test results largely agreed with those shown in Figure 4.20 

whereby the IMU measures significantly lower amplitude than the accelerometer.  

Additionally, the phase of the IMU seems to be off as well.  This is consistent with the 

effects of a low-pass filter.  In contrast, the accelerometer clearly captures the dynamics 

of the vehicle, exhibiting a clear sinusoidal structure with a measured frequency of 2.50 

Hz. 
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Figure 4.19:  Data Comparison, Lateral Acceleration, 0.67Hz, 8.9 m/s 
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4.2.2 Evaluation of Hybrid Sensing Architecture 

Since the effects of the low-pass filter inhibit the IMU’s measurement of the 

dynamics of the vehicle, a final hybrid configuration was attempted.  Since the IMU 

primarily relies upon the rate sensors in order to determine the roll and pitch angles of the 

unit during high frequency maneuvers, it was hypothesized that these angles could be 

used to correct the measurements obtained from the original, non-IMU sensors in off-line 

corrections.   

As shown in Eq. 4.5, in order to correct the lateral acceleration measured in the 

rotated frame (shown in red in Figure 4.11), all three acceleration components in that 

frame are required.  Since it was determined that the IMU’s accelerometers could not be 

used, a different approach was required.  An alternate representation is illustrated by 
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Figure 4.20: Data Comparison, Lateral Acceleration, 2.5Hz, 8.9 m/s 
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Figure 4.21 and looks at the orientation of the accelerometer in the y-z plane only.  The 

vectors indicated in the figure have the following definitions: 

• calc: the true lateral acceleration of the vehicle 

• measured: the lateral acceleration measured by the sensor 

• g: gravity 

• φ: roll angle of the vehicle indicated by the IMU 

• unknown: an unknown orthogonal vector to the one that is measured 

Note that in order for this representation to be accurate the vehicle must be on 

relatively level terrain as well from the assumption that gravity is always orthogonal to 

the lateral acceleration of the vehicle.  If the vector unknown were known, a simple 

rotation by the angle φ would be all that was required.  However, since this quantity is 

not known the following formulation was used instead. 

From Figure 4.21, the first equation required to solve for the vector calc is: 

The second equation comes from vector math.  The norm of a vector defined by two 

orthogonal vectors will always be the same, regardless of the orientation of the unit basis 

vectors defining the vector. In other words, rotation does not change the norm of 

orthogonal vectors.  This relationship gives: 

 
 calc 

φ 

g 

measured 

unknown 

 

Figure 4.21: Alternate Coordinate Frame Representation for Lateral Acceleration 

Measurement 

( ) ( )cos sincalc measured unknownφ φ= ⋅ − ⋅  4.6 
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Solving Eq. 4.7 for calc results in: 

Since the angle φ is known, Eq. 4.6 will be used to obtain an expression for 

unknown.  Solving for unknown yields: 

Substituting Eq. 4.9 into Eq. 4.8 gives: 

Utilizing the symbolic solver in MATLAB, an explicit expression for calc may be 

found in terms of g, φ, and meas.  This expression is: 

where ∓  refers to when meas has a positive or negative value, respectively (note the 

difference in sign).  Simplification of Eq. 4.11 yields: 

where ± corresponds to a positive and negative value of meas, respectively. 

In order to avoid cross-axis coupling with the rate sensor measurements, the local 

roll rate and pitch rate measurements from the IMU are combined with the yaw rate 

measurement from the Bosch sensor.  A standard coordinate transformation is then 
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applied to these values as specified by Eq. 4.4, with the measured components of angular 

velocity forming the input vector. 

The first maneuver performed to test the hybrid architecture was a lane change 

maneuver executed at 15.6 m/s.  The vehicle was first brought up to speed and made a 

straight-line approach to the lane change testing area of the test track.  This area consists 

of a single solid yellow line painted on flat terrain that indicates a lane change from the 

right lane to the left lane, and then back again.   
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Figure 4.22: Hybrid Sensing Architecture Test, Lane Change, 17.8 m/s 
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In order to gain a sense of the accuracy of this set up, the data was compared to 

the predicted response of Models 1 – 4.  The parameters used were determined in 

previous experiments which are detailed in Chapter 5.  From the results in Figure 4.22 it 

is seen that the models match both the measured yaw rate and the roll rate well.  

However, significant error exists between the measured and predicted values for both 

lateral acceleration and roll angle. 

Although previous measurements for lateral acceleration are known to contain a 

bias error due to the influence of gravity and variations in longitudinal speed, the 

difference between the measured and predicted values in this test is significant.  

However, the differences between the measured and predicted roll angles are more 

indicative of the problem with the hybrid system: inaccuracies in the global roll and pitch 

angles determined by the IMU.  While the measured and the predicted roll rates match 

well qualitatively, the roll angles differ by an order of magnitude.  Given that both the 

initial measured roll angle and the predicted values are nearly zero, this result would 

suggest an error in the IMU’s estimation of vehicle roll angle.  This error in roll angle 

estimation directly results in the errors so clearly seen in the measured lateral 

acceleration, as this angle is used to correct the lateral acceleration for axial cross 

coupling. 

The second and final test performed on the hybrid system was a step response at 

8.9 m/s.  The vehicle was brought to speed, driven along a straight path, and then a step 

input of approximately 0.095 rad. executed.  As with the previous test the measured data 

was compared to the response predicted by Models 1 – 4.  The results are shown below in 

Figure 4.23. 
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The behavior of the IMU’s roll angle response confirms the inaccuracies in its 

estimation of that parameter.  Even if the predicted roll angle is incorrect, the measured 

value should come to steady state in approximately the same amount of time.  The 

measurements do not even make physical sense, as they suggest that following a step 

input the vehicle takes approximately four seconds to reach a steady state roll angle of 

±0.2 rad.  Much like the data for the lane change maneuver, this roll angle error translates 

directly to the drift seen in the measured lateral acceleration, as the angle is being used to 

correct this state for axial cross coupling. 

As a result of these findings it was decided that the original sensing architecture 

outlined in Section 4.1 would be used.  It should be noted that the IMU itself may have 
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Figure 4.23:  Hybrid Sensing Architecture Test, Lane Change, 8.9 m/s 
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been damaged as it has been used in previous crash-related tests at PTI.  Future work will 

involve the use of a new IMU in conjunction with a differential global positioning system 

(DGPS).  A similar comparison will be performed between the DGPS system and the 

current instrumentation in order to better determine its accuracy. 

 

[1] Thor Alpha User's Manual: National Highway Traffic Safety Administration 

Biomechanics Research Center, 2001. 

[2] G. C. Rains and M. A. Van Voorhis, "Quasi Static and Dynamic Roof Crush 

Testing," National Highway Traffic Safety Administration, Final Report VRTC-

82-0197/VRTC-86-0391, June 1998. 

[3] A. T. Marriott, F. M. Condos, J. A. Garba, D. C. Griffin, A. C. Kanner, M. V. 

Koffman, and A. Y. Lee, "Variable Dynamic Testbed Vehicle Study," Jet 

Propulsion Laboratory, California Institute of Technology, Final Report JPL D-

11266, vol. III, August 30 1994. 

[4] P. Hingwe, J.-Y. Wang, M. Tai, and M. Tomizuka, "Lateral Control of Heavy 

Duty Vehicles for Automated Highway System: Experimental Study on a Tractor 

Semi-trailer," California PATH Program, Institue of Transportation Studies, 

University of California, Berkeley, Working Paper UCB-ITS-PWP-2000-1, 

January 2000. 

[5] E. O. Doeblin, Measurement Systems, Application and Design, 4th ed. New York, 

New York: McGraw-Hill, 1990. 

[6] M. Wheeler, and Shoureshi, R., "A Fuzzy Driver on the Handling Track," 

Transactions of the American Society of Mechanical Engineers (ASME), vol. 118, 

pp. 380-386, 1996. 

[7] P. Stewart, J. C. Zavala, and P. J. Fleming, "Automotive drive by wire controller 

design by multi-objective techniques," Control Engineering Practice, pp. 257-

264, 2005. 

 



 

 

Chapter 5 

 

Experimental Model Validation 

This chapter will present the results of the experiments performed to determine 

which model (or models) represent the measured data to the greatest degree of accuracy. 

The chapter will be divided into three primary sections: determination of vehicle 

parameters, frequency domain model fitting, and time domain model fitting.  Each of the 

two validation methods – time domain and frequency domain – offers some advantages 

over the other, and these will be discussed in further detail in their respective sections. 

By using both frequency and time domain model fitting methods, a “best-fit” will 

be achieved by varying only a limited number of parameters in the models: the cornering 

stiffness, roll damping, and roll stiffness parametric values.  These parameters were 

chosen due to their relatively large amount uncertainty when compared with more certain 

and easily measured or readily available values such as mass, inertia, and CG location. 

5.1 Determination of Vehicle Parameters and Inertial Properties 

This section describes the procedures and experiments used to obtain initial estimates on 

the following vehicle parameters: 

• Mass 

• Location of Vehicle CG, which entails: 

o Axle-to-CG Distances, lf and lr 

o Height of CG from Ground 

o Distance from side of vehicle to CG, e 

• Inertial Properties (Ixx, Izz, and Ixz) 
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• Sprung Mass 

• Roll Stiffness and Roll Damping 

• Cornering Stiffness – governing relationship between Cf and Cr 

5.1.1 Determination of Mass Center 

The first step in the determination of the vehicle’s center of gravity (CG) was to 

measure the total mass of the Mercury Tracer.  This was accomplished by lowering the 

vehicle onto a set of four scales – one on each tire.  The results are shown in Figure 5.1. 

Vehicle length L and track width e were determined by measuring the distance 

between the tire centers with a tape measure.  Combining these measurements with the 

weight distribution of the vehicle, the location of the vehicle CG may be determined by 

proportionality.  These relationships are:  
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 The measured location of the CG and vehicle dimensions are nearly identical to 

those obtained by NHTSA for a 1998 Mercury Tracer [1].  A comparison between the 

values in the NHTSA database and the values obtained by direct measurement on the 

1996 Mercury Tracer is shown in Table 5.1.  While there is a difference of approximately 

10% in the mass, the location of the CG in the X-Y plane is nearly identical.  Given this 

fact, the CG height obtained by NHTSA for the 1998 Mercury Tracer was used in this 

study. 

 The margin of error between the CG locations is so minimal that it suggests that 

the mass distribution between the two models is equally similar. Therefore, it was 

decided that the values from the NHTSA database would be used as an initial estimate of 

inertial parameters.   

 Additionally, the errors in the inertia values provided by NHTSA are reported to 

be ± 1%.  These values were obtained using the Vehicle Inertia Measurement Facility 

(VIMF) developed by S.E.A Limited, located in Columbus, Ohio.  The facility utilizes 

 

 

Figure 5.1: Vehicle Weight Distribution and CG Location – X-Y Plane 
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methods similar to those described by Dixon [2] (pages 17-31) to determine the location 

of the vehicle CG and find the inertial properties.  However, extensive error analysis was 

performed on the system, an analysis which gives rise to the accuracy of inertial 

measurement.  It is generally regarded as the most accurate facility available in the 

United States to determine vehicle inertial parameters [1]. 

5.1.2 Roll Stiffness and Damping 

There is no publicly available database of vehicle roll stiffness and damping 

coefficients.  While some methods have recently been proposed to obtain these 

parameters dynamically [3], there is no established procedure for doing so.  Therefore, an 

initial estimate was obtained using the following procedure: 

• The vehicle begins at rest on a flat surface, and the data-acquisition system 

continuously measures roll rate. 

• The vehicle is then forcibly oscillated about its roll axis.  This oscillation is 

maintained for an undefined period but one that is sufficient for reaching steady-

state response to the sinusoid excitation of input 

• Force input is terminated at an extreme angular displacement, and the vehicle is 

allowed to come to rest. 

Table 5.1: Comparison Between Measured Values and NHTSA Database Values 

Parameter NHTSA Value Measured Value Deviation from NHTSA Value (%)

m (kg) 1224 1106 9.64

L (m) 2.494 2.49 0.20

lf (m) 0.927 0.93 0.32

lr (m) 1.567 1.56 0.51

t (m) 1.43 1.40 2.10  
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• The data is then analyzed by comparing the vehicle to an inverted pendulum 

(shown in Figure 5.2). 

• Initial conditions are obtained from the recorded data, with roll obtained from the 

integration of the recorded roll rate (shown in Figure 5.3). 

 

 

 

Figure 5.2: Free-Body Diagram of Inverted Pendulum Model for Roll Parameter 

Estimation 
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Figure 5.3: Roll Response Test Data 



84 

 

By summing moments about the base of the pendulum in Figure 5.2 a second 

order model is obtained for the system.  This is described by:  

with Ipendulum being defined by the parallel axis theorem as: 

The data between time t = 6.605s and t = 9.5s was used for the model fit.  Examination of 

the data at t = 6.605s gives the initial conditions of 002214.00 =φ� rad/s and 

02179.00 =φ rad.  The free response was simulated as shown in Figure 5.4. 

Manual parametric variation of the sprung mass, roll stiffness, and roll damping 

resulted in the following values: 

• Roll Stiffness: 32,000 N/rad 

• Roll Damping: 1050 N-s/rad 

• Sprung Mass: 825 kg 

 

The resulting model fit, shown below in Figure 5.5, shows fairly accurate results for 

the first half of the simulation.  This accuracy rapidly degenerates as the simulation 

proceeds.  This is likely due to factors such as non-linear damping characteristics that 
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Figure 5.4: Suspension Free Response Simulation – Inverted Pendulum Model 
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occur near zero suspension velocity as in [4], as well as the likely occurrence of lateral 

motion of the suspension.  Lateral suspension displacement would imply that energy 

from the roll mode is transferred to lateral motion and this behavior is suggested by the 

roll data recorded.  This comes from the data in the second half of the simulation 

exhibiting behavior characteristic of systems higher than second order.  However, further 

experimentation would need to be executed to determine if this is the case.  Either of 

these factors would invalidate the model as the suspension would no longer resemble an 

axle supported by a linear spring and damper at either end. 

Despite these shortcomings, it was decided that the values obtained from the fit 

were accurate enough to be used as initial parameter values.  Further refinement of them 

will be discussed in the proceeding sections where experimental validation is used to test 

these initial parameter fits. 
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Figure 5.5: Roll Stiffness and Damping Model Fit Results 
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5.1.3 Experimental Determination of Understeer Gradient 

As discussed in Section 2.2, the understeer gradient of a vehicle is a constant 

indicating the additional amount of steering (measured per g of lateral acceleration in the 

global frame) necessary to maintain a steady-state turn negotiated at increasingly larger 

velocities.  This is expressed mathematically by: 

where Kus is the understeer gradient and ay,global is the lateral acceleration of the vehicle.  

Finding this constant not only gives insight into the behavior of a vehicle, but it also 

provides a relationship between the front and rear cornering stiffnesses, which are 

difficult to measure, and the weight on the front and rear tires, which are easy to measure.  

This relationship is shown below in Eq. 5.7. 

The sensors required for determining the understeer gradient of the vehicle are a 

steering angle sensor and either an accelerometer or a yaw rate sensor.  For this 

experiment, the existing sensors on the vehicle were used.  The Tracer was driven at 6.7, 

8.9, and 11.2 m/s around a 30.5m radius circle.  At speeds below 6.7 m/s, it was difficult 

for the driver to maintain constant speed and for speeds in excess of 11.2 m/s the vehicle 

exceeded the linear bounds of lateral acceleration.  Therefore, only three data points were 

used.  Further experimentation will require a turning circle of larger radius, which is 

currently unavailable.   
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In order to limit the error in the measurement of lateral acceleration, the yaw rate 

of the vehicle was recorded and the lateral acceleration was determined by the 

relationship:  

For each test, the vehicle was driven around the test circle for approximately sixty 

seconds and the recorded steering angle and yaw rate were averaged.  By plotting the 

additional steering angle required to make the turn for a given speed (defined by Eq. 5.9) 

vs. the associated lateral acceleration as was done in Figure 5.6, the understeer gradient is 

easily found by taking the slope of a best fit line. 
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Table 5.2: Tabulated Data from Understeer Gradient Experiments 

Velocity (m/s) Lateral Acceleration (g) Additional Steering Angle (rad)

6.7 0.140 0.025

8.9 0.263 0.030

11.2 0.379 0.036

Understeer Gradient = 0.045 rad/g  
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The results shown in Figure 5.6 suggest that it is reasonable to assume that the measured 

understeer gradient of 0.045 rad/g has a high degree of accuracy. Using this value in 

conjunction with Eq. 5.7, a relationship between the front and rear cornering stiffness 

values is obtained by relating front to rear cornering stiffnesses in terms of understeer 

gradient and vehicle weight.  This relationship is enforced later in estimating cornering 

stiffness. 

5.2 Frequency Domain Model Fitting 

5.2.1 Bicycle Model Fit – Manual Parametric Variation 

In order to determine the validity of the models used in this study, they were first 

compared in the frequency domain.  The frequency response test involved inputting 

sinusoidal steering inputs at evenly spaced frequencies varying between 0.67 Hz and 3.33 

Hz.  Frequencies below 0.67 Hz were omitted due to limited space on the test track, and 
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Figure 5.6: Additional Steering Angle vs. Lateral Acceleration 
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higher frequencies were omitted as a result of physical limitations of the driver.  To 

maintain constant frequency and phase, the sinusoidal steering input was synchronized to 

a digital metronome.  Additionally, witness marks on the steering wheel were used to 

ensure consistency in amplitude.  Nineteen frequencies were used to create each 

frequency response, and data was recorded at two speeds: 8.9 and 16.5 m/s. 

The dynamic frequency response of the vehicle was recorded in the yaw rate, roll 

rate, and lateral acceleration states.  At each frequency, a sinusoid was fit to the recorded 

steering input by using a nonlinear fitting routine that minimized sum-of-squares error 

between measured data and a best-fit sine wave.  From the best fit sine wave, the 

frequency, amplitude, and phase angle of the input signal was obtained. A similar fit was 

then performed on the output data; however, in performing the fit of the output, the 

frequency was not allowed to be a free parameter but was fixed at the input frequency. 

With sinusoid fits for the input and output signals, the frequency response was readily 

determined. 

As mentioned previously the cornering stiffness, roll stiffness, and roll damping 

parameters will be varied in order to determine a best fit match.  In order to simplify the 

process, Model 1 was fit to the frequency response data such that values for the front and 

rear cornering stiffness’ could be obtained.  These values were then applied to Models 2 – 

4 where the roll stiffness and roll damping parameters were varied. 

Solving Eq. 5.7 for Cr, the relationship:  
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will be used to determine the corresponding rear cornering stiffness values as the front 

cornering stiffness is varied between -22,750 and -113,750 N/rad.  The effects of this 

variation on Model 1 in both lateral acceleration and yaw rate are shown in Figure 5.7 for 

both speeds.   

 From Figure 5.7, the most apparent effect of the cornering stiffness values is that 

higher values result in a greater DC gain of the vehicles response in lateral acceleration 

and an increased bandwidth in the yaw rate response.  It may be seen from Figure 5.7 that 

there is no particular set of cornering stiffness parameters that causes the models to match 

the measured output, particularly in the phase of the yaw rate response.  For lateral 

acceleration, there is a match at low frequencies for a front cornering stiffness value of Cf 

= -40,950 N/rad (red), and a match at higher frequencies for a value of Cf = -50,050 

(blue).  Phase also seems to match fairly closely with all values of cornering stiffness 

above Cf = -31,850 N/rad (dark green).  However, Model 1 does not show the drop in 
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Figure 5.7: Parametric Variation, Cf, Model 1, 8.9 m/s 
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both phase and magnitude that occurs at approximately 9 rad/s.  This behavior would 

suggest the existence of unmodeled dynamics that are not included in the bicycle model. 

 Examination of the yaw response in Figure 5.7 shows significantly different 

results than the lateral acceleration response in regards to matching with the above 

cornering stiffness values.  While it would initially appear that high cornering stiffness 

values match the measured data for the magnitude, none of them match the break 

frequency that occurs in the measured data at approximately 15 rad/s.  Additionally, none 

of the variations matches the shape of the measured phase.  Similar disagreement is seen 

in both lateral acceleration and yaw rate appear in the 16.5 m/s test shown in Figure 5.8. 

The exception is that the front cornering stiffness value of Cf = -40,950 N/rad matches the 

magnitude of the yaw rate response very well. 

In summary, a front cornering stiffness of Cf = -40,950 N/rad showed good 

matching at low frequencies for lateral acceleration in both magnitude and phase in the 

8.9 m/s test.  It also showed excellent matching in yaw response magnitude for all 
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Figure 5.8:  Parametric Variation of Cf, Model 1, 16.5 m/s 
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frequencies tested at 16.5 m/s.  Additionally, a front cornering stiffness of Cf = -50,050 

N/rad showed good matching at high frequencies for both magnitude and phase in the 8.9 

m/s test.  Therefore, a front cornering stiffness value of Cf = -45,500 N/rad was chosen 

for further investigation, as it is a compromise between the two.  Solving Eq. 5.10 gives a 

corresponding rear cornering stiffness of Cr = -75,560 N/rad.  Figure 5.9 shows the 

predicted yaw response at 16.5 m/s using the parameters specified by Table 5.3.   

 

Table 5.3: Parameters from initial bicycle model fit 

Parameter Value Units

m 1,100 kg

Wf 6,339 N

Wr 3,781 N

Izz 1,850 kg-m
2

lf 0.93 m

lr 1.56 m

Cf -45,500 N/rad

Cr -75,560 N/rad  
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Figure 5.9: Measured Frequency Response From Steering Angle to Yaw Rate, Model 1, 

16.5 m/s, No Tire Lag 
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It has been shown in literature [5] that a delay effect occurs in tire force 

generation, a phenomenon known as tire lag.  This effect is known to have a significant 

influence on the phase portion of the yaw rate response, whereby the vehicle exhibits 

more lag than predicted [5]. The measured experimental data in Figure 5.9 clearly 

exhibits more lag than is predicted by the bicycle model, suggesting that tire lag may be 

present.  Tire lag is also known to be velocity dependent, i.e. the vehicle must travel a 

certain distance in order for the tire forces to reach steady state.  The tire-lag phenomenon 

is commonly modeled as a first order system with zero steady-state gain and is introduced 

as a feed-forward term. Such a model is introduced in this study using a model described 

by: 

with fδ being the steering input at the tire generated by the driver and *

fδ being the 

effective steering input entering the bicycle model.  Hereτ is defined as:  

where Dss is the distance required for the tire to reach steady state.  Note thatτ is inversely 

proportional to forward velocity, and hence more noticeable for the relatively low-speed 

driving studied in this work (~30 mph). 
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 Typical values of Dss in the literature are between 0.5m and 1m [5].  By varying 

the tire-lag dynamics of the bicycle model (Model 1) and utilizing the parameters 

specified in Table 5.3, it was found that a value of 0.6m fit the measured data quite well 

in both magnitude and phase (Figure 5.10).  The above variations were repeated with the 

tire lag model in place and are shown in Figure 5.11. 
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Figure 5.10: Frequency Response From Steering Angle to Yaw Rate, Varying Dss, Model 

1, 16.5 m/s 
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Figure 5.11:  Parametric Variation of Cf, model 1, 8.9 m/s, tire lag included 
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 Examining the measured lateral acceleration response, the data in Figure 5.11 

indicates that a front cornering stiffness value of -41,000 N/rad (red) matches reasonably 

well at both lower and higher frequencies for magnitude, with a slight overshoot in phase 

for lower and middle frequencies.  Additionally, at approximately 10 rad/s Model 1 is 

slightly concave down, while the data is concave up.  Such a drop in magnitude observed 

in the experimental data suggests that the energy is going into a different mode than just 

those included in Model 1 (the bicycle model), for example into roll. 

 In contrast, this same value for Cf only matches at higher frequencies in 

Figure 5.12 in magnitude, and does not phase at any frequency.  It also suggests that no 

variation of Cf will match the measured data taken at 16.5 m/s as well as it matches the 

data taken at 8.9 m/s for lateral acceleration.   

 A final observation taken from the 16.5 m/s test is that the measured data taken at 

frequencies slower than 8 rad/s does not appear to follow the general trend of the 

predicted response at all.  While one possible cause of this is parametric uncertainty, it is 

 

10
0

10
1

0

20

40

Steering Angle to Lateral Acceleration

w (rad/s)

M
a
g
 (

d
B

)

10
0

10
1

-50

0

50

100

150

w (rad/s)

P
h
a
s
e
 (

d
e
g
)

Increasing C
f

Increasing C
f

  

10
0

10
1

-5

0

5

10

15

Steering Angle to Yaw Rate

w (rad/s)

M
a
g
 (

d
B

)

10
0

10
1

-100

-50

0

w (rad/s)

P
h
a
s
e
 (

d
e
g
)

Measured

Increasing C
f

Increasing C
f

 

Figure 5.12:  Parametric Variation of Cf, Model 1, 16.5 m/s, Tire Lag Included 



96 

 

more likely that the error lies in the data itself.  This effect is not readily apparent at 

lower speeds and is also completely repeatable among trials.  Such conditions suggest 

that it is caused by a dynamic effect that is not being modeled. 

 The observed results for yaw rate are rather different.  At 8.9 m/s, the same 

approximate value of Cf (again shown in red) shows very poor matching in both 

magnitude and phase.  Additionally, all variations have significant error at mid- to high-

range frequencies in magnitude.  At 16.5 m/s, a Cf value of -41,000 N/rad matches the 

phase well, while a Cf  value of -50,000 N/rad gives good matching in yaw magnitude. 

 In summary, while the addition of a tire lag model allowed for significantly better 

matching in the phase of the yaw response, the overall results were similar to the analysis 

performed without tire lag.  As a result a front cornering stiffness value of Cf = -45,500 

N/rad and a rear cornering stiffness value of Cr = -75550 N/rad were chosen as target 

values for further evaluation.  All of the parameters obtained thus far are summarized in 

Table 5.4 and will be used to fit the roll models.  The values for roll stiffness (Kφ) and 

roll damping (Dφ) are highlighted to indicate that they are initial estimates and will be 

allowed to vary. 

Table 5.4: Parameters to be used in roll model fit 

Variable Value Units Variable Value Units

m 1030 kg lf 0.93 m

Wf 6339 N lr 1.56 m

Wr 3781 N l 1.4 m

ms 825 kg h 0.52 m

Izz 1850 kg-m
2

Cf -45500 N/rad

Iyy 1705 kg-m
2

Cr -76650 N/rad

Ixx 375 kg-m
2

Kφ 33000 N*m/rad

Ixz 72 kg-m
2

Dφ 1050 N*m*s/rad^2

Kus 0.045 rad/g  
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5.2.2 Roll Model Fit – Manual Parametric Variation 

Figure 5.13 shows the frequency response of Model 2.  The parameters for this fit 

are defined in Table 5.4, with the roll stiffness and roll damping values determined 

experimentally in Section 5.1.2.  While Figure 5.13 shows that the general trends of the 

roll models agree with Model 1, significant differences occur at the natural frequency of 

10.2 rad/s at 8.9 m/s and 8.1 rad/s at 16.5 m/s.  This frequency is shifted by about 2 rad/s 

between Model 4 and Models 2 and 3. This shift in frequency is a direct result of the 

assumption that the lateral tire forces are equal to the lateral acceleration of the vehicle, 

and is discussed in detail in Section 3.6. 
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As shown in Figure 5.13, the lateral acceleration response at 8.9 m/s matches very 

well with the addition of roll dynamics.  It also agrees with the observation made 

previously that there is a drop in the magnitude response not captured by Model 1 at 

approximately 9 rad/s.  However, at 16.5 m/s, the shape of the measured response is not 

matched by any of the models, with significant model-data disagreement in both DC gain 

and natural frequency. 
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Figure 5.13: Frequency Response Using Initial Values for Roll Parameters, Planar 

Dynamic Modes 
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Further insight is obtained by examining the yaw response.  While the models 

predict an underdamped response, the data in the 8.9 and 16.5 m/s trials indicate a 

response that is well damped.  Aside from this discrepancy, the models match the phase 

well in both trials, match the magnitude well in the 16.5 m/s trial, and match the DC gain 

well in the 8.9 m/s trial.  This matching combined with the likelihood of errors existing in 

the lateral acceleration data as discussed in Section 4.1.4.4 (i.e. axial cross-coupling and 

mechanical noise) suggests that errors may also exist in the values of roll stiffness and 

damping obtained experimentally.  

  Figure 5.14 shows a comparison in frequency response between the measured and 

predicted roll rate response at two speeds: 8.9 m/s and 16.5 m/s.  In both trials, it is clear 

that the data indicates significantly more roll damping as well as a higher natural 

frequency than predicted by the model.  Much like in the planar dynamic modes, Models 

2 and 3 show similar responses, with Model 4 exhibiting a natural frequency 

approximately 2.5 rad/s lower.  Model 4 also has a slightly greater gain and a more abrupt 

phase shift. 

 

10
0

10
1

-10

0

10

20

Steering Input to Roll Rate, 8.9 m/s

w (rad/s)

M
a
g
 (

d
B

)

10
0

10
1

-450

-400

-350

-300

-250

w (rad/s)

P
h
a
s
e
 (

d
e
g
)

measured
Model 2
Model 3
Model 4

  

10
0

10
1

0

10

20

30

Steering Angle to Roll Rate, 16.5 m/s

w (rad/s)

M
a
g
 (

d
B

)

10
0

10
1

-100

-50

0

50

w (rad/s)

P
h
a
s
e
 (

d
e
g
)

Measured
Model 2
Model 3
Model 4

 

Figure 5.14: Frequency Response Using Initial Values for Roll Parameters, Roll Rate 
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While differences exist between each of the roll models, they are not significant 

enough to show the individual effects of parametric variation on them here.  Therefore 

for brevity, the remainder of this section will focus on Model 2 as it contains the most 

detailed description of the vehicles dynamics and closely matches the behavior of Model 

3. 

Figure 5.15 shows the response of Model 2 change as φK is varied from 25,000 

N/rad to 70,000 N/rad in increments of 5,000 N/rad.  Here it may be seen that while an 

increase in roll stiffness is required for good model fitting, the measured response peaks 

at different frequencies for each speed – 11.5 rad/s for the 8.9 m/s trial and 7.3 rad/s for 

the 16.5 rad/s trial.  Considering this, the predicted response at 8.9 m/s with a roll 

stiffness of 60,000 N/rad (gold line) approximately matches the peak at 11.5 rad/s.  In the 

16.5 m/s trial, the peak occurring at 7.3 rad/s is approximately matched by a roll stiffness 

of 30,000 N/rad (dark green line). 
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Figure 5.15: Parametric Variation of φK , Model 2, Roll Rate 
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 A similar discrepancy arises in regards to roll damping.  In Figure 5.16, φD  is 

varied from 3,000 N-rad/s to 11,100 N-rad/s in 900 N-rad/s increments.  Note that the 

lower bound was chosen based upon the above findings that the yaw response was very 

well damped.  Here it is seen that the predicted response approximates the shape of the 

measured data in the 8.9 m/s trial with a roll damping of 3,900 N-rad/s (dark green line).  

For the 16.5 m/s data, a damping value of 8,400 N-rad/s (gold line) causes the predicted 

response to approximate the shape of the measured data.  

 By examining Figure 5.15 and Figure 5.16 and considering all of the roll models, 

it was found that a roll stiffness of 53,000 N/rad and a roll damping rate of 6,000 N-rad/s 

provided a very good match for the roll rate of both trials.  This fit is shown in 

Figure 5.16. The only significant model-mismatch is seen in the 16.5 m/s trial, where the 

data begins to diverge from the predicted magnitude gain at approximately 13 rad/s, and 

the measured phase diverges from the predicted values at approximately 9.5 rad/s.  The 

effect has been shown to be repeatable, and is believed to be a problem with data 
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Figure 5.16:  Parametric Variation of φD , Model 2, Roll Rate 
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collection and not with the individual models, as the behavior does not make physical 

sense.  As a result of the preceding analysis, the final set of parameters was defined to be 

those listed in Table 5.5 and are used to create the lateral acceleration fits shown in 

Figure 5.18 and the yaw rate fits shown in Figure 5.19.   

 

Table 5.5: Final Vehicle Simulation Parameters from Frequency Domain Fit 

Variable Value Units Uncertainty How it was determined

m 1030 kg 5% Measured

W f 6339 N 5% Measured

Wr 3781 N 5% Measured

ms 825 kg 5% Model Fit
2

Izz 1850 kg-m
2

5% Model Fit
1

Iyy 1705 kg-m
2

5% NHTSA database

Ixx 375 kg-m
2

5% NHTSA database

Ixz 72 kg-m
2

5% NHTSA database

lf 0.93 m 5% Measured
1

lr 1.56 m 5% Measured
1

l 1.4 m 5% Measured1

h 0.52 m 5% NHTSA database

Kφ 53000 N*m/rad 10% Model Fit
2

Dφ 6000 N*m*s/rad^2 10% Model Fit
2

Cf -45500 N/rad 10% Model Fit
2

Cr -76650 N/rad 10% Model Fit
2

Kus 0.045 rad/g 5% Experimentally Determined
1
 - Indicates that the value is within 5% of the NHTSA database value.

2
 - Indicates that the value is not published in a readily available public database.  
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Figure 5.17: Parametric Variation Results, Steering Angle to  Roll Rate 
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5.2.3 Investigation of Error in Lateral Acceleration Data 

As mentioned in the previous section and detailed in Section 4.1.4.4, it is 

hypothesized that the error in the frequency response data exhibited between the 
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Figure 5.18: Parametric Variation Results, Steering Angle to Lateral Acceleration 
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Figure 5.19:  Parametric Variation Results, Steering Angle to Yaw Rate 
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predicted response and the measured response at lower frequencies primarily comes from 

either (1) a poor signal-to-noise ratio or (2) axial cross-coupling due to vehicle roll angle.   

These two effects will be studied below. 

5.2.3.1 Investigation of the Effect of Poor Signal-to-Noise Ratio 

The effect of sensor noise on the resulting data points is easily checked by 

inspection.  Lateral acceleration data for the 5.25 rad/s data point (Figure 5.20) and the 

6.28 rad/s data point (Figure 5.21) are shown below. 
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Figure 5.20: Lateral Acceleration Data Segment, 5.25 rad/s 
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In both figures, the raw data is shown, with the fit obtained from the Simplex-

based algorithm overlaid on top of it.  It is clear that this cosine wave is generally correct 

in regards to frequency and phase, but the amplitude appears to be significantly lower 

than is indicated by the data.  In the case of the data point at 1.05 rad/s, the actual data is 

nearly indistinguishable from the noise (Figure 5.22). 
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Figure 5.21: Lateral Acceleration Data Segment, 6.28 rad/s 
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Figure 5.22: Lateral Acceleration Data Segment, 1.05 rad/s 
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Since such an effect is not seen at higher frequencies where the lateral 

acceleration dynamics are more readily excited, it was therefore hypothesized that at 

lower frequencies the poor signal-to-noise ratio is indeed causing significant error in the 

amplitude portion of the measured response.  A quick test of this hypothesis involved 

manually fitting the amplitude of the response for the data points between 4.2 rad/s and 

9.4 rad/s, inclusive, and plotting the results.  A side-by-side comparison between the 

simplex-based method and a simple manual amplitude fit is shown below in Figure 5.23, 

with Figure 5.20 and Figure 5.21 showing examples of the manual fit performed on two 

specific data points. 

While it is clear that the Simplex-based method is very sensitive to a poor signal-

to-noise ratio, manually adjusting the amplitudes of the data points is neither repeatable 

nor practical.  Therefore a more refined approach was developed.  This method is 

outlined as follows: 
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Figure 5.23: Comparison Between Simplex-Based and Simplex-Based with Manual 

Amplitude Adjustment Methods. 
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As indicated by the flow chart, the amplitude-finding function is called following 

the execution of the Simplex-based method.  The frequency, phase, and amplitude 

obtained from the initial fit are passed to the amplitude-finding function along with the 

data set to be analyzed.   

The first step the function performs is to traverse the data and remove outliers 

locally.  An outlier is defined as a data point lying three or more standard deviations from 

the mean.  If the current data point being considered is an outlier when compared to the 

surrounding data, its value is replaced by that of the previous data point.  The decision to 

use the local mean and local standard deviation as opposed to global values was made as 

 

 

Figure 5.24: Flow Chart, Custom Amplitude Solving Method 
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a result of previous trials, where global values caused significant problems when 

considering sinusoidal. 

The next step is to determine the location of each local maxima and minima in the 

data set.  From the initial data supplied by the Simplex-based method, data is 

approximated by the function:  

where a is the initial amplitude, ω is the frequency, and φ is the phase angle.  In order to 

find the approximate locations of the local maxima and minima, the derivative is taken to 

be:  

which is equal to zero when:  

where n is any positive integer.  Solving for t, the location of the local maxima and 

minima in the data set may be found.  This results in the equation:  

 An example of the results of the function at this point is shown in Figure 5.25.  It 

is clear that the data about the extrema (indicated in red) may not necessarily be the true 

value of the peak or trough.  Therefore the mean value about each point will be taken.  

The range taken into consideration is based upon the frequency of the sample, whereby 

( )( ) cosf t a tω φ= ⋅ ⋅ +  5.13 

( )sin
df

a t
dt

ω ω φ= − ⋅ ⋅ ⋅ +  5.14 

t nω φ π⋅ + = ⋅  5.15 

( )
max,0extrema extrema

n
t t t

π φ
ω
⋅ −

= ≤ ≤  5.16 
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higher frequency data has a smaller search window and low frequency data has a larger 

one. 

 

 Using this data, positive and negative amplitude bounds were determined by 

taking the root-sum-square of the local means determined previously.  The root-sum-

square was used instead of the mean so as to weight data points of greater magnitude 

more than points of lesser magnitude.  From these bounds, the amplitude of the cosine 

wave is readily determined.   

 As an example, the amplitude-finding method outlined above is applied to an 

example system defined by Eq. 5.18, and the results are shown below in Figure 5.26.  

Note that in the example system, the local extrema are located correctly and the upper 

and lower amplitude bounds (indicated by the black lines) correctly indicate unit 

amplitude. 
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Figure 5.25: Preliminary Results of Amplitude-Finding Function, 6.28 rad/s 
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 Applying this method to the lateral acceleration frequency response, it is shown 

by Figure 5.27 that there is indeed an improvement in the matching of the data in the 

range attempted manually.  It is also interesting to note that the amplitude-finding method 

has virtually no effect on the first two data points.  This indicates that while the new 

method is indeed less sensitive to a low signal-to-noise-ratio, the quality of the low 

frequency data points is indeed poor and they should be discarded. 

( )cos 6.28 0.52t⋅ +  5.18 
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Figure 5.26: Results of the Amplitude-Finding Method on Test Signal and 0.833Hz Data 

Point 



111 

 

5.2.3.2 Investigation into the Effect of Axial Cross-Coupling 

Further improvement may be found when investigating the effect of axial cross 

coupling on the measurements taken by the accelerometer.  To illustrate this effect, a 

simulation was created to replicate the effect of a sensor being mounted above the roll 

axis, as is the case with the test vehicle.  To accomplish this, a series of inputs having a 

frequency, amplitude, and phase equal to the data points in the above test were generated.  

Two outputs were then recorded – the model response (i.e. the response at the origin) and 

the response recorded by a sensor mounted above the roll axis. 

After recording the outputs, the data was then processed using the Simplex-based 

method.  Note that this method will return correct results when there is a high signal-to-

noise ratio.  In the case of the simulated outputs, there is no noise associated with the 

data.  Additionally, Model 3 was used in this test due to its simplicity and accuracy in 
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Figure 5.27: Results of the Amplitude-Finding Method on the Lateral Acceleration 

Response. 
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modeling the measured roll rate of the vehicle.  The results are shown below in 

Figure 5.28. 

While the effect of axial cross-coupling on the magnitude portion of the response 

is not very large, it has a clear effect on the phase of the response.  By adding the 

difference between the model response and the predicted sensor output, a correcting 

vector may be obtained for both phase and magnitude so that the frequency response may 

be examined as if it had been taken without axial cross-coupling.  Applying these 

corrections to the data obtained from the amplitude-finding method, a comparison 

between the original data and the corrected data shows significant improvement and is 

shown below in Figure 5.29. 
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Figure 5.28: Simulation Results for Axial Cross-Coupling Test. 
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 Note that if the initial two data points are excluded, then the fit would be 

significantly better.  This improvement will likely continue to increase as speed increases.  

This will not only cause the signal-to-noise ratio to drop as it is easier to excite the 

system dynamics, but the effect of vehicle roll angle on the sensor measurements will 

continue to increase.  As a result of these findings, it is highly recommended that better 

sensors such as an IMU capable of determining the absolute roll, pitch, and yaw angles of 

the sensor, be obtained for future testing.  Only in this manner can corrections be applied 

in real-time and are not model-dependent. 
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Figure 5.29: Corrected Lateral Acceleration Response 
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5.3 Time Domain Model Fitting 

This section will detail the model fitting results in the time domain.  First a 

discussion on the predictive capabilities of the models in the time domain will be given 

based on the parameters obtained from the frequency domain model fitting procedures.  

A new set of parameters will then be found by fitting the models in the time domain and 

examining the resulting fit in the frequency domain.  The maneuvers chosen for analysis 

are a lane change and a step response, and were chosen as they are commonly used to 

validate models in literature [6-11]. 

5.3.1 Time Domain Results Utilizing Frequency Domain Fit Parameters 

In order to obtain a more intuitive understanding of the model fit obtained by the 

frequency response tests, time response data was taken.  The first maneuver performed 

was a step response (Figure 5.30).  The vehicle was driven forward at a constant speed of 

8.9 m/s for an unspecified period of time.  A step input of approximately 0.095 rad front 

wheel angle was then executed and the resulting vehicle response was recorded.  Note 

that, due to the current limitations in data collection, the roll rate data was obtained 

during a separate trial, and thus has a slightly different steering command associated with 

it. 
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The predicted yaw response of all of the models is nearly identical and matches 

the measured response well. The lateral acceleration response is also similar to the trends 

seen in the frequency response data, with all of the models producing a response of 

greater magnitude than the measured response. Some phase error can also be seen in 

lateral acceleration. The roll rate matches reasonably well, with the predicted magnitude 

of Model 2 matching the measured peak, Model 3 exceeding it by 11% and Model 4 by 

31%.  Additionally, Model 4 appears to have less damping than Models 2 and 3. 

The next time-domain experiment was a lane change maneuver whereby the 

vehicle moved from the right lane to the left lane, and then back to the right lane 

(Figure 5.31).  To conduct this test, the vehicle was brought up to a constant speed of 

17.8 m/s and was made to follow a reference line specifying the maneuver painted on the 
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Figure 5.30: Step Response, Mercury Tracer, 8.9 m/s, Frequency Domain Fit Parameters 
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test track surface.  The results from the lane change maneuver were similar to those from 

the step response maneuver. 

The yaw response again matches well. The roll rate response is also reasonable 

for all of the models, with Model 4 again appearing to be less damped than Models 2 and 

3 and showing increased magnitude in the response.  This is again likely due to the 

massless frame assumption. 

There is poor model matching observed again in lateral acceleration, and this is 

far more evident with the lane change maneuver.  Much like the frequency response data 

for this state, there is a mismatch in both the magnitude and phase of the data.  As stated 

previously, this is likely due to influence of gravity on the lateral accelerometer as a 

result of vehicle roll angle, mechanical noise, and slight speed variations influencing the 

correction factor to change the measurements from global to body-fixed coordinates. 
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Figure 5.31: Lane Change, Mercury Tracer, 17.8 m/s, Frequency Domain Fit Parameters 
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5.3.2 Model Fitting Using Time Domain Data 

In the previous tests, it was shown that the time response data agreed with the 

findings of the frequency response data.  Such an observation is expected, as the 

frequency domain represents the response of a plant to the complete range of inputs that 

it will encounter.  However, many (if not most) vehicle chassis dynamic models are fit in 

the time domain.  The question as to whether model fitting in the time domain gives a 

better fit than model fitting in the frequency domain was then posed. 

In an attempt to answer this, the models were fit to the time response data shown 

above using manual parametric variation.  The values obtained are listed in Table 5.6, 

with the resulting step response fit shown in Figure 5.32 and the lane change maneuver in 

Figure 5.33. 

At first glance, it would appear as if the parameters found are good matches 

comparable to those obtained in the frequency domain fits of Figures 5.17 - 5.19 (whose 

time-domain fits are shown in Figures 5.30 - 5.31), with the exception that the predicted 

step response is slightly slower than the measured.  However, the model parameters 

identified in the time domain show poor matching in the frequency domain. 

Table 5.6: Parameters Obtained from Time Domain Model Fitting 

Parameter Value from Time Domain Fit Value from Frequency Domain Fit

Cf -22,750 N/rad -45,500 N/rad

Cr -19,958 N/rad -75,563 N/rad

Kφ 38,000 N/rad 53,000 N/rad

Dφ 5,000 N-s/rad 6,000 N-s/rad  
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Figure 5.32: Step Response, Mercury Tracer, 8.9 m/s, Time Domain Fit Parameters 
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Figure 5.33: Lane Change, Mercury Tracer, 17.8 m/s, Time Domain Fit Parameters 
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 Figures 5.34 - 5.36 show that these parameters result in poor model matching in 

all of the states in the 16.5 m/s trial.  Additionally, with the exception of the lateral 

acceleration magnitude, there is slightly worse matching with the 8.9 m/s trial data as 

well.  This suggests a serious shortcoming of using time response data for model 

validation, as it might appear that not all of the input frequencies are excited in a single 

maneuver.  It is yet unclear as to whether time domain signals intentionally made rich in 

frequency content, e.g. chirp inputs, work better.  Again, these tests are ongoing. 
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Figure 5.34: Frequency Response, Steering Input to Lateral Acceleration, Time Domain 

Fit Parameters 
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Figure 5.35: Frequency Response, Steering Input to Yaw Rate, Time Domain Fit 

Parameters 
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Figure 5.36: Frequency Response, Steering Input to Roll Rate, Time Domain Fit 

Parameters 
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5.4 Concluding Remarks on Model Fitting Results 

Experimental results indicate that some models might appear to be a slightly 

better match than others, but that model-to-model differences are largely secondary to 

questions of whether fits should be obtained in time or frequency domains.  The results 

indicate that in the absence of frequency response data, extra care must be taken when 

attempting to determine vehicle parameters against time response data since system 

excitation may not be sufficient, even with step-response inputs.  Future work will 

examine the use of other time response maneuvers such as the chirp response and the 

standard NHTSA maneuvers to determine the reliability of model fitting against these 

when compared to model fitting in the frequency domain. 

In light of the model fitting results, Model 3 will be used for the control analysis 

in the remainder of this work.  While Model 2 shows slightly better model matching 

capabilities, the differences are negligible when compared to the added simplicity of 

Model 3.  Such a tradeoff is found in other works as well, such as in the case of the work 

by Huang et. al. [12].  While Model 4 is again simpler than Model 3, its reduced model 

matching capabilities as a result of its simplifying assumptions make it a poorer candidate 

for controller synthesis. 

 

[1] G. J. Heydinger, R. A. Bixel, W. R. Garrott, M. Pyne, J. G. Howe, and D. A. 

Guenther, "Measured Vehicle Inertial Parameters - NHTSA's Data Through 

November 1998," Society of Automotive Engineers, 1999. 

[2] J. C. Dixon, Tires, Suspension, and Handling, 2nd ed. Warrendale, PA: The 

Society of Automotive Engineers (SAE), 1996. 

[3] J. Ryu, E. J. Rossetter, and J. C. Gerdes, "Vehicle Sideslip and Roll Parameter 

Estimation using GPS," presented at AVEC 2002: 6th International Symposium 

on Advanced Vehicle Control, Hiroshima, Japan, 2002. 



122 

 

[4] G. J. Heydinger, M. K. Salaani, W. R. Garrott, and P. A. Grygier, "Vehicle 

dynamics modelling for the National Advanced Driving Simulator," Proceedures 

of the Institution of Mechanical Engineers Part D: Automobile Engineering, vol. 

216, pp. 307-318, 2002. 

[5] G. J. Heydinger, W. R. Garrott, J. P. Chrstos, and D. A. Guenther, "Dynamic 

Effects of Tire Lag on Simulation Yaw Predictions," Journal of Dynamic Systems, 

Measurement and Control, Transactions of the ASME, vol. 116, pp. 249-256, 

1994. 

[6] B.-C. Chen and H. Peng, "A Real-time Rollover Threat Index for Sports Utility 

Vehicles," presented at Proceedings of the 1999 American Control Conference, 

San Diego, California, 1999. 

[7] B.-C. Chen and H. Peng, "Rollover Prevention for Sports Utility Vehicles with 

Human-In-The-Loop Evaluations," presented at Proceedings of the 5th 

International Symposium on Advanced Vehicle Control (AVEC), Ann Arbor, 

Michigan, 2000. 

[8] K. Kitajima and H. Peng, "Control for Integrated Side-Slip, Roll, and Yaw 

Controls for Ground Vehicles," presented at Proceedings of the 5th International 

Symposium on Advanced Vehicle Control (AVEC), Ann Arbor, Michigan, 2000. 

[9] S. Kueperkoch, J. Ahmed, A. Kojic, and J.-P. Hathout, "Novel Vehicle Stability 

Control Using Steer-by-Wire and Independent Four Wheel Torque Distribution," 

presented at Proceedings of IMECHE, Washington, D.C., 2003. 

[10] S.-W. Oh, H.-C. Chae, S.-C. Yun, and C.-S. Han, "The Design of a Controller for 

the Steer-by-Wire System," JSME International Journal, Series C, vol. 47, pp. 

896-907, 2004. 

[11] S. Takano, M. Nagai, T. Taniguchi, and T. Hatano, "Study on a vehicle dynamics 

model for improving roll stability," Japanese Society of Automotive Engineers 

Review, vol. 24, pp. 149-156, 2003. 

[12] J. Huang, J. Ahmed, A. Kojic, and J.-P. Hathout, "Control Oriented Modeling for 

Enhanced Yaw Stability and Vehicle Steerability," presented at Proceedings of 

the American Control Conference, Boston, Massachusetts, 2004. 

 



 

 

Chapter 6 

 

Rollover Prevention Methods by a Steer-by-Wire System 

The preceding sections have shown that the model presented by Kim and Park [1] 

(Model 3) is capable of accurately modeling both the planar and roll dynamics of a 

vehicle for moderate maneuvers.  Additionally, given its low order and simplicity, the 

model is also well suited for control synthesis.  This chapter will focus on using Model 3 

to investigate control strategies to mitigate untripped single-vehicle rollover. 

The chapter is organized as follows: the first section will develop a methodology 

to determine whether or not a vehicle is likely to slide prior to rollover.  In the event that 

the vehicle will roll prior to sliding, the approximate speed and input frequency to induce 

such a condition will be reported.  The second and third sections will respectively explore 

open-loop filtering techniques and closed-loop control methods for rollover prevention.  

These methods will be developed under the assumption that they are being implemented 

in a vehicle utilizing a steer-by-wire system. 

6.1 A Method for Determining the Existence of a Slide-Before-Roll Condition 

When examining a vehicle’s dynamics in an emergency evasive maneuver on a 

flat roadway with no external collisions, three possible events may occur.  The first and 

most desirable is that the situation is dealt with safely, with the driver maintaining 

complete control of the vehicle and avoiding the obstacle.  The second is less desirable, 
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where the tires saturate and begin to slide at some point in the emergency maneuver.  

When this occurs, the driver can lose control over the vehicle and may not be able to 

effectively deal with the situation.  The third possible event, possibly preceded by tire 

saturation, is when the vehicle rolls over during the evasive maneuver.  Rollover is by far 

the worst possible event that could occur since the possibility of survival is the lowest. 

In the following analysis, the last two possible events will be investigated.  While 

it is impossible to determine a priori a driver’s emergency response, road conditions, 

vehicle setup, etc., it is possible using linear analysis and simple assumptions to 

determine if the vehicle is likely to slide before it rolls.  Such an approach is of critical 

importance, as it allows for the off-line determination of a vehicle’s propensity to rollover 

in a dynamic situation.  Since the method is off-line, it avoids the extensive trial-and-

error experimentation currently performed by NHTSA and others. 

Development of the wheel-lift prediction method is outlined as follows: 

1. Find the dynamic relationship between steering angle and tire slip. 

2. Using the results from (1) and knowledge of nonlinear tire behavior, determine 

the steering angle at which tire saturation occurs as a function of input frequency 

3. Solve for the dynamic relationship between steering angle and roll moment 

induced by the suspension. 

4. Combining the results from (2) and (3), the roll moment acting on the vehicle at 

the point of tire saturation may be solved for as a function of input frequency. 

5. Determine a roll moment threshold for wheel-lift by performing a force balance 

on the wheels. 
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6. Apply this limit to (4) and determine at what speed the vehicle crosses this 

threshold. 

7. Alternatively, use the results from (3) and (5) to determine the minimum steering 

angle at which wheel lift occurs. 

8. Compare the steering angle at which the tires saturate (2) to the steering angle at 

which the wheels lift (7) as a function of frequency.  This will indicate when 

wheel-lift is likely to occur before tire saturation. 

 

The first step to determine whether or not a vehicle will slide before rolling is to 

examine the dynamic input-output relationship between steering angle and tire slip angle. 

Recall the definitions for front and rear slip angle used in Model 3, where: 

defines the slip angle of the front tire and: 

defines the slip angle of the rear tire.  The transfer functions for steering input to front 

and rear tire slip may be readily found using the standard state-space to transfer function 

formula: 

which is derived from the standard state-space representation described by:  
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The plant description A and the input vector b may be found in Appendix A.2.  The 

output vector c and the feedthrough vector d are obtained by examining Eq. 6.1 and 

Eq. 6.2.  For the front slip angle, the output equation is defined as:  

Similarly, the output equation for the rear slip-angle is defined as:  

 The magnitude portion of the bode plots of the resulting transfer functions are 

shown below.  Figure 6.1 and Figure 6.2 compare the response of the bicycle model, 

Model 3, and Model 3 without the influence of roll steer for the front tire and rear tires, 

respectively, at 16.5 m/s.  Here the effect that both roll dynamics and roll steer have on 

the tire slip, and hence the force generating abilities of the tires, may be seen.  It should 

be noted that the effect of roll steer on vehicle response could not readily be seen when 

examining the vehicle states of lateral velocity, lateral acceleration, yaw rate, roll rate, or 

roll angle.  Figure 6.3 and Figure 6.4 show the bode plots of steering input to front and 

rear slip angle as speed is varied.  Unless otherwise noted, the parameters used to 

generate the proceeding graphs are for the 1996 Mercury Tracer test vehicle.  These are 

shown below in Table 6.1 for reference. 
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Table 6.1: Vehicle Parameters for 1996 Mercury Tracer 

Variable Value Units Variable Value Units

m 1030 kg l 1.4 m

ms 825 kg h 0.52 m

Izz 1850 kg-m
2

Cf -45500 N/rad

Ixx 375 kg-m
2

Cr -76650 N/rad

Ixz 72 kg-m
2

Kφ 53000 N*m/rad

lf 0.93 m Dφ 6000 N*m*s/rad

lr 1.56 m  
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Figure 6.1: Magnitude Response of Steering Input to Front Slip Angle, 16.5 m/s 
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Figure 6.2: Magnitude Response of Steering Input to Rear Slip Angle, 16.5 m/s 
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Figure 6.3: Magnitude Response of Steering Input to Front Slip Angle, Speed Varied 
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 In reality a vehicle’s tires cannot produce arbitrarily large forces, and will saturate 

or peak in their force production capability at some finite amount of tire slip.  It has been 

shown by Dixon in [2] (page 96) that tire saturation generally begins to occur at a slip 

angle of approximately 0.09 rad (~5 deg).  The figures above define the relationship 

between steering input and tire slip, assuming linear system dynamics.  What should be 

clear from both the figures as well as their derivation is that the tire slip dynamics are 

governed by eigenvalues of the vehicle chassis behavior.  This is an important insight 

since chassis dynamics are likely to be slow compared to the time periods at which the 

tire is likely to enter saturation.  The time required for transient dynamics of the tire is 

therefore assumed to be quite small relative to the vehicle’s motion. In other words, one 

can approximate the nonlinear tire behavior with a linear model of tire behavior that 

remains linear up to the point of loss of adhesion.  After this point, the tire will be sliding 

and the transition to sliding will be so quick as to be not likely affected by, or coupled to, 

the chassis motion.   
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Figure 6.4:  Magnitude Response of Steering Input to Rear Slip Angle, Speed Varied 
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 There is some conservatism if one uses the linear models to predict skid before 

roll.  The linear tire approximation will predict tire forces at the point of sliding to be 

much higher than would be seen in a vehicle, and hence the excitation of the vehicle will 

be predicted to be much higher than would be observed experimentally.  A comparison 

between the linear and nonlinear tire forces may be obtained by using the formulation 

described by Pajenka and is shown in Figure 6.5.  Further details on this nonlinear tire 

model are beyond the scope of this work, and will therefore not be discussed. 

 Because of this increased excitation, the chassis models will over-predict 

excitation of the vehicle in roll at the point of tire saturation.  Predicted roll angles and 

rollover forces at the time of skidding will be higher than would actually occur.  Thus for 

larger steering inputs, predicted skidding occurs later, and predicted roll occurs sooner, 

than would be seen in practice.  Hence, if one predicts a vehicle to safely skid before roll 

using these linear models and tire approximations, then the true vehicle will be quite 

unlikely to rollover prior to skidding. 
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Figure 6.5: Comparison Between Linear and Nonlinear Tire Models, Front Tire, Mercury 

Tracer. 
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 To solve for the minimum steering input necessary to induce tire saturation, the 

following method is used:  First, the magnitude ratio of the above figures may be 

represented symbolically as:  

Knowing this ratio and the point of tire saturation, one can solve for the minimum 

steering angle at which the front and rear tires saturate at each frequency by: 

for the front tires, and: 

for the rear tires.  Here maxα is the maximum slip angle before tire saturation (specified 

above), frontsatf ,,δ  is the minimum steering angle at which the front tires will saturate, and 

rearsatf ,,δ  is the minimum steering angle at which the rear tires will saturate.  These values 

are of critical importance in determining when a vehicle will slide since they provide an 

indication as to when the tires will saturate based upon driver input.  Once tire saturation 

occurs, they can no longer produce an increased amount of cornering force to 

accommodate the driver’s steering command and the vehicle begins to slide.  Application 

of Eq. 6.8 and Eq. 6.9 to the data in Figure 6.3 and Figure 6.4 provides the minimum 

steering amplitude for a sinusoidal input at which tire saturation occurs at each frequency 

e.g. skidding.  Steering inputs below this amplitude will excite the vehicle much like the 

linear dynamics models, whereas inputs above this amplitude will be largely mitigated 
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and will actually result in less forces on the tire and vehicle, and hence less excitation.  

This results in a smaller reaction torque from the suspension.  This relationship is shown 

in Figure 6.6 for the front tires and Figure 6.7 for the rear tires.  
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Figure 6.6: Minimum Steering Angle for Front Tire Saturation vs. Input Frequency, 

Speed Varied 
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Figure 6.7:  Minimum Steering Angle for Rear Tire Saturation vs. Input Frequency, 

Speed Varied 
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The first important observation is that the front tires appear to saturate before the rear 

tires.  This makes sense since directional control of the vehicle is being modified by front 

steering input. Additionally, there are benefits from a safety standpoint since it would be 

more desirable to lose directional control before loosing directional stability (which 

occurs during rear-wheel saturation).  This safety tradeoff is the reason why brakes are 

typically designed such that the front brakes lock before the rear.   

 The second important observation is that as input frequency increases, the 

minimum steering angle to saturate the front tires levels off to approximately 0.09 rad, 

or maxα , while the minimum steering angle required to saturate the rear tires tends towards 

infinity.  The reason for this may be seen by examining Eq. 6.1 and Eq. 6.2.  As 

frequency increases, the response of the vehicle states (i.e. V, r, and φ) approaches zero.  

Therefore as frequency increases, the slip angle on the front tires approaches δf, and the 

rear slip angle approaches zero. 

 The next step in determining whether or not a vehicle will roll before it slides is to 

determine the ratio of steering input to restoring moment.  The restoring moment comes 

from the suspension components.  This moment is directly related to whether or not the 

wheels of the vehicle will lift off of the ground.  The ratio of steering input to restoring 

moment is found by using the output equation: 

The magnitude portion of the frequency response is shown by Figure 6.8. 

[ ] [ ] frestoring

r

V

DKy δ

φ
φφφ ⋅+



















⋅= 000

�

 6.10 



134 

 

Recognizing that the ratio indicated in Figure 6.8 may be represented symbolically as: 

where ( )ωrestM  is the restoring moment of the suspension at a given frequency.  The 

magnitude of the restoring moment acting on the vehicle body at tire saturation may be 

found by combining Eq. 6.8 and Eq. 6.11 to form the relationship:  

Figure 6.9 shows the suspension torque vs. input frequency.  
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Figure 6.8: Steering Input to Restoring Moment 
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 An interesting result shown in Figure 6.9 is the size of the resonant peak at large 

speeds.  It is clear that when driving fast, a driver may quickly find himself entering a 

rollover when reacting to an emergency situation, as typical highway driving generally 

involves low frequency steering inputs.  However, while a resonant peak is evident in 

Figure 6.9, the moment induced by the suspension cannot be infinite.  At some point, 

wheel lift will occur, and this limiting value Mrest,max must be found.   

 To find the relationship between steering input and suspension moment, a 

procedure is presented based on a simple force balance.  The effect of the suspension on 

the tires is shown graphically in Figure 6.10.  The moment Mrest is the restoring moment 

supplied by the suspension and W is the weight of the vehicle.  The equivalent couple 

moment acting on the tires resulting from the suspension is shown in light blue, and has a 

magnitude of Mrest/t.  Additionally, a positive suspension displacement and equal weight 

distribution about the x-z plane (i.e. Ixz = 0) are assumed.   
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Figure 6.9: Suspension Torque at Tire Saturation vs. Input Frequency, Speed Varied 
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 Summing forces in the vertical direction on the passenger side tire (right-hand 

side) gives:  

Substitution of the vehicle parameters in Table 6.1 gives the threshold torque for wheel 

lift to be:  

 

 Applying the wheel-lift threshold to the vehicle representation in Figure 6.9, the 

approximate speed and frequency at which rollover is most likely may be found.  This 

approximation is made by taking the maximum suspension moment at each speed and 

comparing it to the threshold specified by Eq. 6.14.  Using this criteria, it was found that 

the Mercury Tracer will have a chance of rolling before sliding at approximately 40 m/s 

if the steering command particularly excites frequencies around 9.2 rad/s.  Since this 

speed is significantly higher than typical highway speeds, it is unlikely that the Tracer 

will roll before sliding in an emergency situation unless the vehicle is already being 

driven at unsafe speeds. 
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Figure 6.10: Free-Body Diagram of the Suspension-Wheel Interaction 
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 An alternative approach to determine the slide-before-roll condition is to 

determine the steering angle at which wheel lift will occur.  This angle may then be 

compared to the steering angle at which tire saturation occurs:  If the steering angle for 

wheel lift is lower than the steering angle for tire saturation, then there is an increased 

probability that the vehicle will roll before sliding. 

 By using the ratio defined by Eq. 6.11 and recognizing that the maximum 

allowable moment is expressed in Eq. 6.14, the steering angle at which wheel-lift is likely 

to occur may be solved by the equation:  

This minimum steering angle required for wheel lift can be calculated from Eq. 6.11 and 

Eq. 6.15.  The result is shown in Figure 6.11. 

A qualitative comparison between Figure 6.11 and Figure 6.6 may be obtained.  A side-

by-side comparison between the minimum steering angle required to saturate the tires and 
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Figure 6.11: Minimum Steering Angle for Wheel Lift vs. Input Frequency, Speed Varied 
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the minimum steering angle required induce wheel lift is shown in Figure 6.12 at both 5 

and 40 m/s.  Numerically, the approximate velocity and speed at which wheel lift will 

occur prior to tire saturation may be found by comparing the two steering angles at each 

frequency, for each speed.  Using this procedure, it is readily seen that the predicted 

speed and input frequency for wheel-lift using both methods is identical, 40 m/s and 9.2 

rad/sec steering inputs. 

 The validity of these methods is further enforced when examining the Jeep Grand 

Cherokee.  A complete set of parameters for this vehicle may be found in [3], and are 

shown below in Table 6.2.  Using both of the above methodologies, it is predicted that 

the Jeep Grand Cherokee will slide before rolling at any speed up until 40 m/s – far in 

excess of speeds actually attainable by the vehicle.  The results for the roll-moment 

threshold method are shown below in Figure 6.13, and the results for the steering angle 

comparison method are shown in Figure 6.14. 
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Figure 6.12: Comparison of Minimum Steering Angles for Wheel Lift and Tire 

Saturation at 5 m/s and at 40 m/s, Mercury Tracer 
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Table 6.2: Vehicle Parameters for the Jeep Grand Cherokee 

Variable Value Units Variable Value Units

m 1663 kg l 2.578 m

ms 1338 kg h 0.682 m

Izz 2704 kg-m
2

Kφ 56957 N*m/rad

Ixx 602 kg-m
2

Dφ 3496 N*m*s/rad

Ixz 85 kg-m
2

Cf -29748 N/rad

lf 1.147 m Cr -54700 N/rad

lr 1.431 m  
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Figure 6.13:  Suspension Torque at Tire Saturation vs. Input Frequency, Speed Varied, 

Jeep Grand Cherokee 
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 This result agrees qualitatively with dynamic testing performed by NHTSA [4], 

whose results indicate that they were unable to observe wheel lift for any of their 

standard test maneuvers performed on the Jeep Grand Cherokee.  Another interesting fact 

shown in the report is that the Jeep Grand Cherokee has a nearly identical Static Stability 

Factor (SSF) to the Ford Ranger, the Isuzu Trooper, and the Acura SLX.  However, the 

Ranger, Trooper, and SLX showed wheel lift for all four of the tests performed, while the 

Cherokee showed wheel lift in none of them.  Based on the SSF, the 2001 Grand 

Cherokee received only two stars for rollover resistance.  Such findings show the serious 

flaw in relying on the SSF measurement for determining rollover resistance and reinforce 

why NHTSA includes dynamic testing in their current rating system.  The 2006 Cherokee 

model has a four star rating. 
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Figure 6.14:  Comparison of Minimum Steering Angles for Wheel Lift and Tire 

Saturation at 5 m/s and at 40 m/s, Jeep Grand Cherokee 
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6.2 Rollover Prevention Algorithms 

 While both the Mercury Tracer and the Jeep Grand Cherokee demonstrate 

excellent resistance to experiencing an untripped rollover, it is clear from the NHTSA 

testing performed [4] that many vehicles will exhibit wheel lift due to transient inputs.  

For example, while the Jeep Grand Cherokee has an SSF of 1.07 and performed well 

during the dynamic tests performed by the government, the Isuzu Trooper and Acura 

SLX both have an SSF of 1.08 and showed wheel lift in all of NHTSA’s dynamic tests. 

 Choosing parameters likely to induce wheel lift (and possibly rollover), a 

fictitious vehicle will be created in order to investigate the feasibility of a number of 

proposed control strategies.  This vehicle will have the same characteristics as the 

Mercury Tracer (shown in Table 6.1), yet with the damping rate reduced by one-half.  

This vehicle will hereafter be referred to as the High Roller.  For reference, the restoring-

moment as a function of input frequency for the High Roller is shown below in 

Figure 6.15.   

 The remainder of this Chapter focuses on control methods that prevent wheel lift.  

Specifically, the methods attempt to reduce the resonant peak observed in the roll-

moment response such that steering inputs will not cross the critical threshold until the 

vehicle is traveling at or above 40 m/s, e.g. recover the behavior of the well-designed 

Tracer vehicle.  A challenge of each control method is to achieve rollover prevention 

while having little to no apparent effect on the vehicle’s planar dynamics.  In other 

words, the overall design goal is to have the High Roller perform in much the same 

manner as the Tracer by means of a steer-by-wire system without affecting steerability. 
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6.2.1 Open-Loop Control Methods 

This section outlines the open-loop control methods to be investigated.  The 

reason for exploring open-loop control strategies is their simplicity.  However, there are a 

number of shortcomings to these methods that will be outlined in the proceeding sections.  

The methods that will be investigated are notch filter, pole cancellation, and deadbeat 

control.  This section will provide a definition and general outline of each of the open-

loop control strategies, presenting the general design procedure, overall effect on the 

system, and drawbacks.  A second order, underdamped system will be used as an 

example due to its simplicity and resonant mode comparable to that of the vehicle’s roll 

mode. 
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Figure 6.15:  Suspension Torque at Tire Saturation vs. Input Frequency, Speed Varied, 

High Roller 
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6.2.1.1 Notch Filter Design 

6.2.1.1.1 Basic Principle 

The notch-filter approach assumes that there is a certain range of inputs in the 

frequency domain that greatly contribute to an undesirable response and the filter 

attempts to eliminate signal transfer at these frequencies.  Such a situation is similar to 

what is observed in the High Roller, where a certain frequency range causes a particularly 

high suspension response.  Typically, this range of inputs centers about the natural 

frequency(ies) of the plant to be controlled.  The basic control strategy is outlined in 

Figure 6.16, with the filter designed to block the undesirable frequency range of input.  

An alternative name for the notch filter is a band-stop filter. 

 To present an example of a notch filter, consider a lightly damped SISO second-

order system.  The plant described by Eq. 6.16 has a natural frequency, or nω , of 1.3 

rad/s, and a damping ratio, or ξ, of 0.1.  Examination of its Bode plot (Figure 6.17) shows 

that for inputs corresponding to the natural frequency, an observer may expect to see a 

gain ratio of approximately 15.  Specifying a arbitrary design criteria that the gain cannot 

be greater than 10, the initial boundaries for the band-stop filter are chosen to be between 

1.1 and 1.5 rad/s. 
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Figure 6.16:  Open-Loop Control Strategy 1, Notch Filtering 
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The frequency boundary values for the band-stop filter are passed to the 

MATLAB function butter and a second order band-stop filter is specified.  The resulting 

filter is defined by:  

The effect of the filter may be seen by examining the Bode plot of the cascaded 

filter-plant system.  The frequency response of the filter is shown in Figure 6.18; it is 

seen that the input frequencies are severely reduced the immediate vicinity of the natural 

frequency, while the remainder of the spectrum is largely unaffected. 
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Figure 6.17:  Bode Plot of Example System 
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By cascading the filter with the plant, the resulting input/output frequency response 

indeed meets the gain limits imposed earlier, with a maximum gain of 9.22.  

6.2.1.1.2 Drawbacks of the Notch Filter 

As can be seen from Figure 6.19, the net effect of the notch filter is that the 

influence of the inputs at the natural frequency are not only limited, but are effectively 
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Figure 6.18:  Band-Stop Filter for Example System 
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Figure 6.19:  Example System after Application of Notch Filter 
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eliminated altogether.  This effect may not be desirable for plants such as a passenger 

vehicle.  For instance, if a driver were to attempt a lane change maneuver near the 

frequency chosen for the band-stop filter, the car would not move laterally and hence the 

vehicle may behave unpredictably.  To achieve lateral motion, the driver must 

significantly change his/her input to compensate for the effect of the filter.  An example 

of this type of behavior is shown in Figure 6.20, where the example system is subjected 

to a chirp input.  The starting frequency is 0.5 rad/s, with a final frequency of 3 rad/s at 

the end of 60 seconds.  This simulation is to show the response of the system as the input 

passes through the filtered region. 
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Figure 6.20: Chirp Response of the Example System Before and After the Application of 

the Notch Filter 
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6.2.1.2 Pole Cancellation 

6.2.1.2.1 Basic Principle 

Building on the previous method, it would be more desirable to simply level out 

the resonant peak than to completely eliminate the response about that frequency.  

Placing Eq. 6.16 into factored form, the example system becomes: 

On first examination, a simple method for eliminating the resonant peak would be to 

design the filter to be:  

While application of this filter would eliminate the resonant poles, it would also 

create a system where the order of the numerator is greater than the order of the 

denominator.  Because the order of the numerator is equal to or greater than the 

denominator, the transfer function is not proper.  The importance of proper transfer 

functions relates to a concept known as determinism.  Essentially, if a system is not 

proper, then it is non-deterministic.  This means that the system may have more than one 

possible output for a given input.  In a deterministic system, the output may be 

determined by the current state of the system and thus the time response may be predicted 

exactly.  This may be seen by recognizing that the Laplace transform of the derivative is 

“s”, and the Laplace transform of successive derivatives is s
n
, where n is the order of the 

derivative.  As an example, take the transfer function:  
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From the definitions above, this system is not proper, and is therefore non-

deterministic.  This becomes more apparent when we separate the system back into the 

input and output components:  

and take the inverse Laplace transform:  

Recalling that u is the input to the system and y is the output, Eq. 6.22 implies that the 

second derivative of the input is known, but the second derivative of the output is not 

known.  Such a system is non-deterministic, which means that the state of a system can 

not be predicted exactly i.e. there is more than one possible output for a given input. 

 To ensure a proper filter, one can add higher order dynamics. Such a filter has the 

general structure:  

where p1,2 is the complex pair of poles that are to be canceled and pH1 and pH2 are the 

higher frequency poles that enforce determinism.  For the current example, the filter will 

be defined by the transfer function:  

which has the Bode plot: 
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Note that while the poles of -1 and -2 are not considered to be higher frequency than the 

existing poles, the location of the zero at 1.3 rad/s would cause an increase in magnitude 

gain of 20 dB/decade until the higher frequency poles have any effect.  Following 

application of the filter, we see that the response of the filter changes from:  

 The input/output response of the pole cancellation filter is similar to the notch 

filter in that there is mitigation of the resonant frequency oscillations. However, the pole 

cancellation filter is an improvement because it flattens, rather than cancels, the response 
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Figure 6.21:  Pole Cancellation Filter for Example System 
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Figure 6.22:  Example System after Application of Pole Cancellation Filter 
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of the system to input frequencies near resonance.  The net result is a system with much 

greater damping. 

6.2.1.2.2 Drawbacks of the Pole Cancellation Method 

From the previous example, it would seem that the pole cancellation filter would 

be an ideal choice: it is simple in structure, and is easy to design.  However, the method 

also assumes perfect knowledge of the system.  In practice this is not the typical case.  To 

investigate the effect of model uncertainty, the example system will be the “approximated 

system”, while the “actual system” will be described by the transfer function: 

This system has the same damping ratio as the approximate system, but has a 

natural frequency of 1.6 rad/s as opposed to 1.3 rad/s.  Applying the filter described by 

Eq. 6.24 to this system will result in a frequency response of:  
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Figure 6.23:  Pole Cancellation Filter Applied to Example System with Uncertainty 
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Following the addition of model error, the maximum gain magnitude of the 

filtered system is 10.4dB, violating the 10dB constraint specified earlier.  Additionally, 

the response of the system about the natural frequency now has a rather abrupt change in 

both magnitude and phase.  This example clearly shows how this method, while simple, 

requires accurate knowledge of the system. 

6.2.1.3 Dead-Beat Control 

6.2.1.3.1 Principle of Operation 

The final open-loop control method that will be examined is known as dead-beat 

control.  This form of control does not seek to simply cancel out certain undesirable 

dynamics.  Rather it replaces the dynamics of a system with the desired dynamics.  For 

the current example, the damping ratio is 0.1.  In the desired system this will be increased 

to 0.7 (chosen arbitrarily to illustrate the use of the dead-beat controller).  Additionally, 

the desired system will not have any zeros. 

The structure of this controller is relatively simple.  By representing the example 

system as:  

and defining the desired system as:  
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then the complete system may be represented in block diagram format as:  

By simple block diagram algebra, the resulting system becomes the desired system and 

may be realized by a simplified structure as:  

Therefore, by applying the filter:  

the resulting change in system dynamics are shown in Figure 6.27. 
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Figure 6.24:  Dead-Beat Filter Structure 
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Figure 6.26:  Dead-Beat Filter 
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Clearly, the filter produced the desired system dynamics.  Note that the dead-beat 

controller is quite similar to the pole cancellation controller except that the designer is 

specifying the high-frequency components to achieve dynamic matching to a reference 

model. 

6.2.1.3.2 Drawbacks of the Dead-Beat Control Method 

As with the previous control strategies, this same controller will be applied to a 

system with uncertainty.  By taking the “actual” system defined by Eq. 6.25 and applying 

the dead-beat filter, the resulting system has the response described by Figure 6.28. 
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Figure 6.27:  Filtered System, Dead-Beat Filter, Example System 
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Comparing this result with those shown in Figure 6.23, it is seen that while the DC gain 

of the system remains unchanged, the response about the natural frequency of the actual 

system exhibits an increase in both magnitude and phase similar to the one shown in the 

pole-cancellation controller.  Additionally, the peak gain amplitude of the resulting 

system is 15.9 – considerably higher than the results shown by the application of the 

pole-cancellation filter.  A similar situation will arise if there are unmodeled dynamics in 

the system. 

Another drawback to dead-beat control is that it requires the zeros of the open-

loop system to be stable, a situation that may not necessarily be common.  For example, 

all real systems possess some time delay which can be approximated by unstable zeros 

with a Padé approximation.  A Padé approximation is a rational function that 

approximates another known polynomial to a specified order.  This approximation is 

accomplished by a ratio of two polynomials, and for a time delay (an infinite polynomial)  

is represented in the frequency domain as [5]: 
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Figure 6.28:  Filtered System, Dead-Beat Filter, Actual System 
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where T  is the time delay of the system and n is the order of the approximation.  One can 

see from the numerator that a true time delay introduces an infinite number of unstable 

zeros, and that even low-order approximations of time delay will introduce a few unstable 

zeros.  Non-minimum phase zeros will therefore pervasive in approximating system 

behavior because time delays are quite common in actuator dynamics, sensor acquisition, 

control algorithm computation times, and the like. 

 The application of this time delay on an actual plant P(s) causes the output of the 

system to be changed to be:  

If P(s) is subjected to a step input at t = 0, the effect of a first order Padé approximation 

will cause the input at t = 0 to be slightly negative for an initial transient period [6]. 

 Setting the time delay equal to 0.01s and utilizing a 2
nd
 order Padé approximation, 

the delay is approximated by:  

While the inclusion of this time delay into the dynamic model does not alter the stability 

of the original system, it does in fact make the dead-beat controller unstable as the 

unstable zeros in the numerator of the uncompensated system become the unstable poles 

of the filter. 
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6.2.2 Closed-Loop Control 

All of the open-loop methods described above share a similar intent – canceling 

unwanted dynamics in favor of a preferred behavior.  But they all share a similar 

shortcoming – they are not robust to uncertainty or unmodeled dynamics and therefore 

require absolute knowledge of the system.  In the case of dead-beat control, the problem 

is even worse in that, even with absolute knowledge of the system, one may produce an 

unstable controller.  Such shortcomings are characteristic of open-loop systems:  because 

they lack feedback, open-loop systems can have large sensitivities to unmodeled 

dynamics, modeling errors, and disturbances. 

Building on the desire to create more favorable dynamics in the system, a closed –

loop control method will be employed.  As a result of the necessity of feedback, the 

implementation of such a method is more complex than the open-loop algorithms 

presented above.  However, closed-loop control is typically preferred, as the added 

robustness generally outweighs the cost of implementation.   

6.2.2.1 Model Reference Control 

6.2.2.1.1 Principle of Operation 

The goal of Model Reference Control (MRC) is to control the system in a manner 

that causes it to behave like the desired system through a combination of feed-forward 

and feedback methods that will be described below.  This method is known as model 
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reference control (MRC).  The basic feedforward/feedback structure of MRC is outlined 

in Figure 6.29. 

By selecting T(s), R(s), and S(s) properly, the system will appear to have the 

simplified structure shown by Figure 6.25.  Carrying out block diagram algebra on the 

feedback loop, it is simplified to the form shown in Figure 6.30.  

The yellow-green block may be further simplified by: 

 

( )
( )sR

sTu + ( )
( )sA

sB

( )
( )sR

sS

- 

u’ yd e  

 

Figure 6.29:  MRC Control Architecture 
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Figure 6.30:  MRC Control Structure, Simplification Step 1 
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which allows the system to be fully reduced to the form shown in Figure 6.32. 

Therefore, the transfer function of the MRC system is:  

where: 
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Figure 6.31:  MRC Control Structure, Simplification of Inner Loop 
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Figure 6.32:  MRC Control Structure, Full Simplification 
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is known as the Diophantine equation and is equal to the characteristic polynomial of the 

closed-loop system.  Eq. 6.32 may therefore be rewritten as:  

The remaining equations and conditions will follow the procedure outlined by Astrom 

and Whittenmark [7].  Recalling that the goal of MRC is to have the plant follow the 

dynamics of a reference model, the following relationship is specified as the desired 

dynamics of the system: 

When combined with Eq. 6.34, Eq. 6.35 gives: 

An important insight here is that feedback control does not affect the zeros of a system.  

This may be seen by the appearance of T(s) – part of the feedforward controller – in the 

numerator of Eq. 6.36, while Ac(s) contains S(s) and R(s) – the elements of the feedback 

controller – are in the denominator.  This relationship implies that there is some sort of 

cancellation of terms between the desired system and the closed-loop transfer function 

described by Eq. 6.32.  Knowing this, B(s) must be split into two components described 

by: 
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The first component, B
+
(s), is the portion of B(s) that is stable, well-damped, and will be 

cancelled by the controller.  The second component, ( )sB− , is the portion of B(s) that is 

either unstable or not well damped and therefore cannot be cancelled or affected by the 

controller.  Since B(s) is in the numerator, unstable or poorly damped zeros do not 

necessarily affect the stability of the system.  However, in order to the controller to 

cancel these terms, it would have to have unstable or poorly damped poles – a highly 

undesirable characteristic. 

 From these definitions, it is implied that B
-
(s) is a factor of Bd(s) since it is not 

cancelled by the controller.  Another implication is that B
+
(s) is a factor of Ac(s) since the 

controller cancels it out.  These implications lead to the definitions:  

 

where ( )sBd

' is comprised of the remaining factors of ( )sBd that are not contained in 

( )sB −  and ( )sA0 is comprised of the remaining factors of ( )sAc that do not appear in 

( ) ( )sBsAd

+⋅ .  Substituting Eq. 6.38 and Eq. 6.39 back into Eq. 6.33, the Diophantine 

equation becomes: 

The appearance of ( )sB + on both the left and right sides of Eq. 6.40 and the requirement 

that ( )sB +  must cancel implies that:  

( ) ( ) ( )sBsBsB dd
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making the Diophantine equation:  

which simplifies to: 

 Now, taking:  

and substituting in Eq. 6.38 and Eq. 6.39, Eq. 6.44 becomes:  

Equating sides yields: 

Since the goal in finding a solution is to obtain the polynomials R(s), T(s), and 

S(s) in order to obtain the feedforward controller ( ) ( )sRsT and a feedback element 

( ) ( )sRsS , it is required that the solutions obtained are at least proper (deterministic), 

e.g.:  
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If the plant dynamics ( ) ( )sAsB are restricted to being strictly proper and the restrictions 

provided by Eq. 6.47 and Eq. 6.48 are considered, it may be seen that: 

Since: 

a restriction on the degree of R(s) is determined to be:  

 By examining the possible solutions for the Diophantine equation, the final 

restriction on the degrees of the above equations may be found.  Since Eq. 6.33 has two 

unknowns, an infinite number of solutions may be found.  If R
0
(s) and S

0
(s) are solutions 

to R(s) and S(s), respectively, then the representations:  

 

are also solutions, with Q(s) being an arbitrary polynomial.  This is known as a Youla 

Parameterization; further details may be found in [5] (page 142).  While there are an 

infinite number of solutions, one may always be obtained such that ( )( ) ( )( )sAsS degdeg <  

so one can therefore find a solution where ( )( )sSdeg  is at most equal to ( )( ) 1deg −sA .  As 

a result of this relationship, Eq. 6.47 results in: 
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For this application, equality of the left and right hand sides of Eq. 6.54 will be enforced 

to keep the order of the controller to a minimum. 

 For compatibility between the original plant and the reference plant, the following 

conditions also need to apply:  

 

Under these conditions, Eq. 6.39 implies that:  

Solving for ( )( )sA0deg , the final compatibility condition is obtained as:  

 Application of the above rules and formulas allows for a unique solution of both 

the feedforward and feedback elements of the MRC control loop.  An example will now 

be presented in order to illustrate the design procedure. 

6.2.2.1.2 Application of MRC to the Example System 

Recalling that the example system is: 

the desired system will be defined by:  
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Adhering to the rules defined above, the design procedure is as follows: 

(1) Check compatibility 

• ( )( ) ( )( ) ( ) ( )912.2deg69.113.0degdegdeg 22 ++=++⇒= sssssAsAd  

• ( )( ) ( )( ) ( ) ( )69.1deg9degdegdeg +=+⇒= sssBsBd  

(2) Define components of B(s) and Bd(s) 

• ( ) ( ) ( )sBsBsB −+ ⋅=  

• ( ) 69.1+=+ ssB  

• ( ) 1=− sB  

• ( ) ( ) ( )sBsBsB dd

'⋅= −  

• ( ) 9' += ssBd  

(3) Find A0(s) and Ac(s) 

• ( )( ) ( )( ) ( )( ) 01121degdegdeg 0 =−−=−−= + sBsAsA  

• choose A0(s) = 1 

• ( ) ( ) ( ) ( ) ( ) ( )69.1912.21 2

0 +⋅++⋅=⋅⋅= + ssssBsAsAsA dc  

(4) Solve for R(s) 

• ( )( ) ( )( ) ( )( ) 123degdegdeg =−=−= sAsAsR c  

• ( ) ( ) ( ) ( )69.1'' +⋅=⋅= + ssRsBsRR  

• therefore, R’(s) is a constant and will be set equal to 1 

(5) Solve Diophantine Equation 

• ( )( ) ( )( ) ( )( ) 1degdegdeg =⇒≤ sSsRsS  

• 
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )912.211169.113.0 2

01

2

0

'

++⋅=+⋅⋅+⋅++

⋅=⋅+⋅
⇓

−

sasass

sAsAsSsBsRsA d������� �������� ��
 

• ( ) 31.799.1 +⋅= ssS  

(6) Solve for T(s) 

( )
( ) 912.2

9
2 ++

+
=

ss

s

sA

sB

d

d  6.60 
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• ( ) ( ) ( ) ( )91'

0 +⋅=⋅= ssBsAsT d  

 

Applying the equations R(s), S(s), and T(s) to Eq. 6.32, the resulting frequency response 

reshaped by this MRC in Figure 6.33.  

 In order to test the robustness of the algorithm to parametric uncertainty, the 

controller is tested again with nominal system A(s) and B(s) being replaced with the 

terms from the “perturbed” system defined by Eq. 6.25.  One can see from the response 

of Figure 6.34 that, unlike the open-loop methods described previously, MRC is still able 

to produce results that are quite close to the desired response even with model 

perturbations away from nominal. 
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Figure 6.33:  Effect of MRC on the Example System 
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 Additionally, MRC will work on a system with unstable zeros.  Applying the 

above design method to the following system:  

results in ( ) ( )69.1−= ssR , with T(s) and S(s) remaining unchanged The bode plots of the 

open-loop and closed-loop responses using this controller are shown in Figure 6.35. 
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Figure 6.34:  Effect of MRC on the Actual System 
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Figure 6.35:  Effect of MRC on a Plant with Unstable Zeros 
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6.2.2.1.1 Drawbacks of MRC  

 MRC will mitigate to a certain degree uncertainty in a plant, will work with 

systems that have unstable zeros.  The only apparent drawback to using MRC is that the 

design procedure could become complicated for higher order systems, and the necessity 

of good system feedback. 

6.3 Design of Control Methods to Mitigate Vehicle Rollover 

This section will apply the above control methods to the High Roller.  For a 

steering input, two driving maneuvers were used.  The first maneuver is a sinusoidal 

excitation.  By examining the frequency dependent wheel-lift and tire-slip limits for the 

High Roller at 30 m/s, it was determined that a sinusoidal input of ω = 8.2 rad/s, 

amplitude equal to 0.1 rad would cause the suspension to produce a response at the 

wheel-lift limit.  However, this same input will not cause the tires to saturate.  Thus a 

sinusoidal input with the above frequency and amplitude specification will provide a 

good frequency-based comparison of the performance of each method. 

The second test will be a pseudo-step response similar to the one executed on the 

Mercury Tracer in Chapter 5.  The time specified for the rise and fall portion of the 

steering command is 0.25s each, with a maximum amplitude of 0.09 rad.  This maneuver 

was chosen in order to gain a better qualitative understanding of the vehicle’s 

performance. 

For each of the control methods, the High Roller with and without control effort 

will be compared to the Mercury Tracer with all of the maneuvers being executed at 30 
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m/s.  Also for each controller, a plot will be provided showing a comparison between the 

three vehicles plotting each state and the suspension restoring moment.  An additional 

plot showing the global position of each of the vehicles will be provided in order to give 

a clearer picture of how the different controllers affect the lateral dynamics of the three 

vehicles.  Ideally, they should all be approximately the same as the driver should not see 

major variations in vehicle drivability with the implementation of a roll-prevention 

controller. 

6.3.1 Notch-Filter Implementation 

The design methodology for the notch-filter is rather straightforward.  As 

previously stated, the general control strategy is to make the High Roller behave in a 

similar manner to the Mercury Tracer.  With this in mind, the frequency bounds for the 

notch-filter will be selected with the use of Figure 6.15. 

By examining the curve at 40 m/s, it is seen that sinusoidal inputs ranging from 

7.76 rad/s to 11.97 rad/s presents a risk for wheel lift.  This range is determined by 

detecting the frequency dependent wheel-lift threshold crossover points.  Using the 

MATLAB command butter, the second order Butterworth bandstop filter is given to be:  

with the Bode plot: 

86299.5525.203953.5

86298.185'
234

24

+++
++

=
ssss

ss

u

u
 6.62 
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The results for the sinusoidal excitation maneuver are shown below in 

Figure 6.37.  The steering input is significantly altered, with both the magnitude and 

phase being affected.  The phase is by far the more significant problem, since it 

introduces a lag in the response.  Any lag will be detrimental to quickly responding to 

emergency events; a driver cannot determine in advance when an emergency will occur.  

However, the lag seen in the bandstop filter is expected as the frequency content of the 

maneuver is within the region influenced by the filter. 

While the amplitude of the restoring moment is greatly reduced, the lateral 

dynamics of the High Roller with filtering are significantly different from both the High 

Roller without filtering and the Mercury Tracer.  The aggregated result of these 

differences may be seen when looking at the global position of the three vehicles, shown 

below in Figure 6.38. Here, it is clear that the notch-filter causes the High Roller with 

filtering to travel in nearly a straight line, with very little of the serpentine motion 

exhibited by the other two. 
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Figure 6.37:  Results of the Notch Filter, Individual States, Sinusoidal Excitation, 8.2 

rad/s, 0.1 rad amplitude 
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 Comparison of the response of the individual states for the pseudo-step maneuver 

(Figure 6.39) shows that the High Roller with filtering actually has an increased 

maximum roll moment and roll angle than the High Roller without filtering.  With 

filtering, the maximum roll moment of the High Roller is 5,894 N-m as opposed to 5,703 

N-m for the unfiltered version.  While this is a relatively small difference, it shows that 

the notch-filter is not an apt choice for rollover mitigation. 

 When comparing the global position of the filtered vehicle to the other two 

(Figure 6.40), it is seen that the High Roller without filtering follows nearly the same 

path as the Mercury Tracer.  However, the path of the filtered vehicle is approximately 

1.73 m apart from the Mercury Tracer.  This was determined by taking the maximum 

distance found between the two vehicle paths at each time step.  Such a deviation is 

greater than the width of the vehicle (1.43 m), and is likely not desirable in an emergency 

situation. 
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Figure 6.38: Results of the Notch-Filter, Global Position, Sinusoidal Excitation, 8.2 rad/s, 

0.1 rad amplitude 
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Figure 6.39: Results of the Notch Filter, Individual States, Pseudo-Step, 0.09 rad 

amplitude, 30 m/s 
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 As a result of these observations, it is clear that the use of a notch filter is not 

necessarily the best choice for rollover mitigation.  The primary reason for this is that the 

filter significantly reduces the effect of a portion of the steering response while adding 

phase to it.  While selecting a narrower band for the filter would help with this, it would 

not solve it, since the problem is inherent to the filter.  Additionally, while making the 

filtered band narrower will reduce this problem, it will also begin to have little or no 

effect on some of the critical frequencies. 

6.3.2 Pole Cancellation Implementation 

For the design of the pole cancellation filter, it is necessary to first define the 

pole(s) that need to be cancelled.  Examination of Figure 6.15 shows that the poles will 

be complex and have a natural frequency of approximately 9.5 rad/s.  Solving for the 

poles of the High Roller at 30 m/s shows that the filter needs to cancel out the complex 
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Figure 6.40: Results of the Notch Filter, Global Position, Pseudo-Step, 0.09 rad 

amplitude, 30 m/s 
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pair -2.9984 ± 9.4883i.  These have a natural frequency of ωn= 9.95 rad/s, and a damping 

ratio of ξ = 0.3.   

For the Mercury Tracer, the complex pole pair closest to the complex pair for the 

High Roller specified above is -4.6978 ± 8.2499i.  This gives rise to a natural frequency 

of ωn=9.5 rad/s and a damping ratio of ξ = 0.5.  Therefore, the pole cancellation filter will 

be:  

where the gain of 0.91 is applied to ensure that the DC gain of the filter is zero.  The bode 

plot of the filter is: 

 The results for the sinusoidal excitation are shown below, with the individual 

states shown in Figure 6.42 and the global position shown in Figure 6.43.  It is evident 

from examining the roll dynamics that the High Roller with filtering nearly matches the 
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175 

 

response of the Mercury Tracer.  However, the magnitude of the response of the lateral 

dynamics appears to be significantly lower by comparison.   

When the global positions are compared, however, the largest distance between 

the Tracer and the filtered vehicle is only 14 cm.  Such a difference is acceptable, as it is 

an order of magnitude smaller than the width of the vehicle.   
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Figure 6.42: Results of the Pole Cancellation Filter, Individual States, Sinusoidal 

Excitation, 8.2 rad/s, 0.1 rad amplitude 
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 When executing the step response, the results are equally favorable when 

examining the response of the states (Figure 6.44).  Every response shows much more 

damping in the filtered vehicle than in the unfiltered vehicle.  As with the sinusoidal 

response, the roll moment and roll angle of both the Tracer and the filtered vehicle are 

nearly identical.  The method falls short, however, when comparing the global positions 

of the two cars.  The path of the filtered vehicle under a pseudo-step input differs by as 

much as 1.18m – nearly the width of the vehicle. 

 Given the generally good performance of the pole cancellation filter, it would 

seem to be a fair choice for use in rollover mitigation.  The major shortcomings of the 

method are a slight decrease in lateral response resulting in the high path deviation seen 

in the step response and sensitivity to model uncertainty (as described above).  However, 

the method does produce a much more favorable roll response when compared to the 

unfiltered High Roller. 
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Figure 6.43: Results of the Pole Cancellation Filter, Global Position (Zoomed), 

Sinusoidal Excitation, 8.2 rad/s, 0.1 rad amplitude 
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Figure 6.44: Results of the Pole Cancellation Filter, Individual States, Pseudo-Step, 0.09 

rad amplitude, 30 m/s 
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6.3.3 Dead-Beat Controller 

Following the same design strategy as the pole-cancellation filter, the dead-beat 

controller will be designed such that it completely cancels out the existing roll moment 

response: 

and replaces it with the roll moment response of the Mercury Tracer: 

This makes the deadbeat controller simply:  
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Figure 6.45: Results of the Pole Cancellation Filter, Global Position, Pseudo-Step, 0.09 

rad amplitude, 30 m/s 
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where the constant gain of 2 is applied such that the DC gain of the filter is zero.  The 

bode plot of this filter is shown below: 

 Not surprisingly, the roll moment response (Figure 6.47) of the High Roller with filtering 

matches the response of the Mercury Tracer identically.  There is also a noted decrease in 

the roll angle of the filtered vehicle from the unfiltered High Roller.  Finally, while the 

filtered vehicle shows a reduced magnitude response in the lateral dynamics, the global 

position of the three vehicles (Figure 6.48) is nearly identical, with the maximum 

deviation of the filtered vehicle from the path of the Mercury Tracer to be 5 cm. 
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Figure 6.46: Bode Plot, Deadbeat Filter 
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Figure 6.47: Results of the Deadbeat Filter, Individual States, Sinusoidal Excitation, 8.2 

rad/s, 0.1 rad amplitude 
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 For the step response, the roll moment response for the filtered vehicle and the 

Tracer are again identical (Figure 6.49).  It is interesting to note that the maximum 

magnitude of the roll angle response for both versions of the High Roller are nearly 

identical, but the filtered version has much better damping.  The lateral dynamics are also 

very well damped. 

 A comparison of the global positions of the three vehicles (Figure 6.50) also 

shows that the vehicle under deadbeat control responds in a nearly identical manner to the 

other two vehicles.  The maximum deviation found between the Tracer and the filtered 

vehicle was only 11 cm.  Such a difference is acceptable, as it is less than an order of 

magnitude smaller than the width of the vehicle. 
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Figure 6.48: Results of the Deadbeat Filter, Global Position (Zoomed), Sinusoidal 

Excitation, 8.2 rad/s, 0.1 rad amplitude 
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Figure 6.49:  Results of the Deadbeat Filter, Individual States, Pseudo-Step, 0.09 rad 

amplitude, 30 m/s 
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 At first glance, it would appear that the deadbeat controller is an excellent choice 

for rollover mitigation.  One must be cautioned by the fact that these results are only 

valid under the assumption of perfect model knowledge – something that is not likely in 

the real world.  However, its relative simplicity makes it an attractive option. 

6.3.4 Model-Reference Control Implementation 

As stated previously, the goal of model reference control is to change the input-

output characteristics of a plant or portion of the plant to have more desirable 

characteristics specified by the designer.  In the case of the High Roller, the design has 

focused on the relationship of steering input to restoring moment on the suspension.  As 

indicated in Figure 6.15, the High Roller begins to show a risk of wheel-lift at 

approximately 20 m/s.  In order to improve its performance to be more like the Mercury 

Tracer, the reference model will be the transfer function of steering input to restoring 
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Figure 6.50:  Results of the Deadbeat Filter, Global Position, Pseudo-Step, 0.09 rad 

amplitude, 30 m/s 
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moment of the Mercury Tracer at 30 m/s (Eq. 6.67) and the plant will be the transfer 

function of steering input to restoring moment of the High Roller at the same speed 

(Eq. 6.68). 

 

The procedure to solve for the controller will follow the steps outlined in Section 

6.2.2.1.1 and is as follows: 

(1) Check compatibility 

• ( )( ) ( )( )⇒= sAsAd degdeg

( ) ( )( ) ( ) ( )( )issisis 488.9998.2291.7191.10deg25.8698.4291.7067.12deg ±+⋅±+=±+⋅±+  

• ( )( ) ( )( )⇒= sBsBd degdeg

( ) ( )( ) ( ) ( )( )ississ 23.13258.567.17deg291.7258.5833.8deg ±+⋅+=±+⋅+  

(2) Define components of B(s) and Bd(s) 

• ( ) ( ) ( )sBsBsB −+ ⋅=  

• ( ) ( ) ( )isssB 23.13258.567.17 ±+⋅+=+  

• ( ) 1=− sB  

• ( ) ( ) ( )sBsBsB dd

'⋅= −  

• ( ) ( ) ( )isssBd 291.7258.5833.8' ±+⋅+=  

(3) Find A0(s) and Ac(s) 

• ( )( ) ( )( ) ( )( ) 01341degdegdeg 0 =−−=−−= + sBsAsA  

• choose A0(s) = 1 

• ( ) ( ) ( ) ( )=⋅⋅= + sBsAsAsA dc 0

( ) ( ) ( ) ( )issisis 23.13258.567.1725.8698.4291.7067.121 ±+⋅+⋅±+⋅±+⋅  

( )
( )

( ) ( )
( ) ( )isis

iss

sA

sB

d

d

25.8698.4291.7067.12

291.7258.5833.8

±+⋅±+
±+⋅+

=  6.67 

( )
( )

( ) ( )
( ) ( )isis

iss

sA

sB

488.9998.2291.7191.10

23.13258.567.17

±+⋅±+
±+⋅+

=  6.68 
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(4) Solve for R(s) 

• ( )( ) ( )( ) ( )( ) 347degdegdeg =−=−= sAsAsR c  

• ( ) ( ) ( ) ( ) ( )isssRsBsRR 23.13258.567.17'' ±+⋅+⋅=⋅= +  

• therefore, R’(s) is a constant and will be set equal to 1 

(5) Solve Diophantine Equation 

• ( )( ) ( )( ) ( )( ) 3degdegdeg =⇒≤ sSsRsS  

• 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )isiss

asasasaiss

sAsAsSsBsRsA d

25.8698.4291.7067.12912.21

11488.9998.2291.7191.10

2

01

2

2

3

3

0

'

±+⋅±+⋅++⋅

=+⋅+⋅+⋅⋅+⋅±+⋅±+

⋅=⋅+⋅
⇓

−

������� �������� ��

 

• 
( ) ( ) ( ) ( )

4234

0

4

1

2

2

3

3

4

10791.140436.51553.33

10791.131032.40238.26

×++++

=+×+++++++

ssss

asasasas
 

• ( ) ssssS 9404.11315.7 23 ++=  

(6) Solve for T(s) 

• ( ) ( ) ( ) ( ) ( )isssBsAsT d 291.7258.5833.81'

0 ±+⋅+⋅=⋅=  

 

It is important to note that in Step 5, the coefficients of the terms in A(s) must be smaller 

or equal in order than the corresponding coefficients of Ad(s) in order for the feedback 

portion of the controller to be stable.  Additionally, the order of S(s) should be one degree 

less than the order of Ad(s) in order for it to be able to influence every one of the 

coefficients of A(s). 

 The results of this controller are shown below in Figure 6.51 (individual states) 

and in Figure 6.52 (global position).  The High Roller with and without MRC are 

compared to the Mercury Tracer, with all three vehicles responding to a sinusoidal 

excitation of ω = 8.2 rad/s, amplitude equal to 0.1 rad.   
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Note that in Figure 6.51 the predicted steering limit for tire saturation is indicated 

in the steering angle vs. time plot and the predicted wheel-lift limit is shown in the 

restoring moment vs. time plot, both as black lines.  It may be seen that the restoring 

moment of the High Roller with MRC matches the restoring moment of the Mercury 

Tracer.  While the High Roller without MRC comes up to the predicted wheel-lift limit, 

both the Tracer and the steer-by-wire vehicle do not.   

The effect of MRC on the vehicle states is shown as well, and a more qualitative 

comparison may be obtained in Figure 6.52.  When examining the global position of each 

of the vehicles, there is very little apparent difference.  However, the sinusoidal excitation 

does not command the vehicle to move very much in the lateral direction, and the 

differences between the path traveled by the MRC vehicle and the other two may appear 

to be more significant in maneuvers that command more of a net change in lateral 

position. 



187 

 

 

 

0 2 4 6

-0.1

-0.05

0

0.05

0.1

Steering vs. Time

Time (s)

A
n
g
le

 (
ra

d
)

0 2 4 6

-5

0

5

Lat. Accel. vs. Time

Time (s)

A
c
c
e
l.
 (

m
/s

2
)

0 2 4 6

-0.5

0

0.5

Yaw Rate vs. Time

Time (s)

Y
a
w

 R
a
te

 (
ra

d
/s

)

0 2 4 6

-0.1

-0.05

0

0.05

0.1

Roll Angle vs. Time

Time (s)
A

n
g
le

 (
ra

d
)

0 2 4 6

-5000

0

5000

Restoring Moment vs. Time

Time (s)

M
o
m

e
n
t 

(N
-m

)

High Roller, No MRC
High Roller, MRC
Mercury Tracer

0 2 4 6
0

0.01

0.02

0.03

0.04

Global Path Deviation vs. Time

Time (s)

P
a
th

 E
rr

o
r 

(m
)

 

Figure 6.51: Results of the Model Reference Controller, Individual States,  Sinusoidal 

Excitation, 8.2 rad/s, 0.1 rad amplitude 
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In order to gain a better qualitative understanding of the MRC vehicles 

performance, a pseudo-step response was executed in simulation.  As with the sinusoidal 

excitation shown above, the individual states are plotted vs. time below in Figure 6.53. 

It is readily seen that while the magnitude of the response for all three vehicles is 

roughly similar, the High Roller with MRC and the Mercury Tracer both exhibit 

significantly better damped responses than the High Roller without MRC.  The lateral 

dynamics of the High Roller with MRC appear to be more damped than the dynamics of 

the Mercury Tracer as well.  
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Figure 6.52:  Results of the Model Reference Controller, Global Position (Zoomed),  

Sinusoidal Excitation, 8.2 rad/s, 0.1 rad amplitude 
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Given the similarity in the response of the individual states between the vehicles, 

it is not surprising that the position of one vehicle in the world is nearly indistinguishable 

from the others.  Figure 6.54 shows both the total maneuver and the area around the point 

of execution.  Numerically, the deviation between the High Roller with MRC and the 

other two vehicles is approximately 11 cm. 

From these results, it is reasonable to assume that the High Roller with MRC will 

have the desired results of having an underdamped vehicle respond as if it were well 
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Figure 6.53:  Results of the Model Reference Controller, Individual States, Pseudo-Step, 

0.09 rad amplitude, 30 m/s 
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damped while having little to no obvious decrease in lateral response.  Given the 

relatively simple structure of this controller, combined with its favorable performance, it 

seems a good choice for rollover mitigation.  

6.3.5 The Effect of Parametric Uncertainty on the Model Reference and Deadbeat 

Control Implementations 

In order to gain a better understanding of how uncertainty will affect MRC and 

deadbeat control, a simulation was performed in which parametric error was introduced.  

The premise of the simulation is that the vehicle is weighed down with an additional 

mass placed over the rear axle.  The addition of this mass caused the overall mass of the 

vehicle to be increased by 25%, with a corresponding increase in the sprung mass.  As a 

result, the planar location of the CG was recalculated.  The yaw and roll inertial 

properties were also changed by using the parallel axis theorem and the new CG location.  
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Figure 6.54:  Results of the Model Reference Controller, Global Position, Pseudo-Step, 

0.09 rad amplitude, 30 m/s 
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Finally, both the front and rear cornering stiffness values were increased by 25% to 

account for the additional weight on the vehicle.  This was done to simulate a vehicle 

containing a significant in the trunk. 

In this example, the same pseudo-step was used as described in the previous 

sections.  Additionally, the MRC and deadbeat control parameters were not changed from 

the original designs obtained from the plant without parametric uncertainty.  The results 

are shown below in Figure 6.55 and Figure 6.56  
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 6.55:  Results of MRC and Deadbeat Control with Model Uncertainty, Individual States, 

Pseudo-Step, 0.09 rad amplitude, 30 m/s 
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Examination of the individual states shows that the roll angle response is nearly 

identical for both vehicles.  Regarding the yaw rate and lateral acceleration, the only 

apparent difference is that the High Roller with MRC has a more damped response than 

the High Roller with deadbeat control.  From the driver’s perspective, the vehicle with 

MRC may appear to have better ride comfort as the response is slightly smoother in the 

yaw and roll states. 

Examination of the resulting global position of the vehicle under both controllers 

shows that there is virtually no difference in performance.  Numerically, the maximum 

deviation found for the High Roller with MRC was 0.4m, and 0.12m for the High Roller 

with deadbeat control.  This is somewhat surprising as the open-loop control method 

exhibited far more sensitivity to model uncertainty in the example shown in Section 

6.2.1.3.2.  However, both deviations are still acceptable. 
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 6.56:  Results of  MRC and Deadbeat Control with Model Uncertainty (zoomed), Global 
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6.4 Concluding Remarks 

 This chapter presented a methodology for predicting when a vehicle may be at 

risk for wheel-lift prior to sliding.  Additionally, multiple control strategies were 

presented that use the information derived from this method to mitigate vehicle rollover 

under the assumption of an existing steer-by-wire system.  The wheel-lift prediction 

methodologies give a sense of a vehicle’s dynamic rollover propensity, provide insight 

into the roll dynamics of the vehicle that may not be garnered from examination of the 

response from the individual states alone, and may lead to better automotive designs in 

regards to roll dynamics. 

 Reviewing the control methods, it is clear that the notch-filter is not an acceptable 

control method for rollover mitigation.  It has both a negative impact on the lateral 

dynamics and at times increases the roll moment on the vehicle, as opposed to reducing 

it.  While the pole cancellation filter does not possess this characteristic, the effect it has 

on a vehicles lateral dynamics also brings its usefulness into question. 

 Following these two methods, both the deadbeat controller and the MRC showed 

excellent performance.  The roll moment and angles were reduced and showed much 

better damping for both controllers.  Additionally, the global positions for each were 

comparable and had little apparent difference to the Tracer. 

 An interesting result came from comparing the performance of both MRC and 

deadbeat control to a vehicle with parametric uncertainty.  While this result may not have 

been readily apparent from basic knowledge of the two control methods, it makes the 

necessity for sensitivity analysis of the plant to parametric uncertainty clear.  However, 
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while deadbeat control showed better adherence to the intended path, MRC may be the 

superior choice as a result of its smoother response from the standpoint of ride comfort. 

 In light of these results, a trade-off must be made between complexity, path error, 

and ride comfort.  In order to implement the MRC algorithm, one needs to detect the roll 

moment acting on the vehicle.  While this may be done by sensing the suspension 

displacement and velocity, there may be considerable error in the measurement.  If 

sufficiently large, this sensor error may further degrade the performance of the algorithm 

when compared to deadbeat control, and must be weighed against model uncertainty and 

the benefit of added ride comfort. 

 It should be noted that actual implementation of both MRC and deadbeat control 

would require that the equations include speed as a variable and have it fed back into the 

controller.  Such sensing abilities are all ready included in all modern automobiles and 

therefore would not require any additions to the vehicle setup beyond the controller itself.  

However, it may make the implementation of MRC rather difficult given the complexity 

of its derivation and the additional sensing requirements on the roll moment of the 

vehicle. 
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Chapter 7 

 

Conclusions 

The conclusions for this thesis will be divided into the following subsections: 

general conclusions from the thesis, conclusions regarding vehicle modeling assumptions 

and procedures, conclusions specific to the wheel-lift prediction method developed, and 

conclusions pertaining to the wheel-lift mitigation techniques tried.  A discussion on 

future work that should be pursued in this area will then follow. 

7.1 General Conclusions 

It has been shown that a relatively simple dynamic model is capable of modeling 

both the planar and roll dynamics of a vehicle well under constant speed conditions.  

While this model is subjected to additional constraints on account of it being linear, it 

may be used to predict the propensity of a vehicle to rollover with regard to specific input 

frequencies.  Finally, this information may be used in conjunction with relatively simple 

control algorithms to greatly improve a vehicle’s dynamic handling, with little notice to 

the driver. 

Another interesting conclusion is that relatively accurate measurements may be 

taken of a vehicle’s dynamics with relatively inexpensive commercial grade sensors.  

While more expensive equipment would clearly produce better results in areas such as 

lateral acceleration, it is clear the data provided by the commercial grade equipment is 
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still largely useful.  This is an important result as it shows that the roll dynamics of a 

vehicle may be seen with inexpensive, automotive grade equipment.  Such sensors are 

commonly packaged in production vehicles.  Additionally, experimental vehicle 

dynamics studies may be performed on even a highly restrictive budget provided the 

investigator has access to the appropriate facilities to conduct such research.   

7.2 Conclusions Regarding the Modeling of Vehicle Chassis Dynamics 

One of the most important results from the comparison between the various 

models used in this study is that, while parameters such as cornering stiffness, roll 

stiffness, and roll damping are difficult to directly measure, approximations may be easily 

found using the methods described in this work.  This is a result of the conclusion that a 

complex plant description is not necessary to accurately describe the roll dynamics of a 

vehicle. 

The fact that a complex or high order model is not required is readily shown by 

the data presented in Chapter 5, where the predicted roll rate response in both the 

frequency and time-domain match the measured data well.  If the models used in this 

study were more complex and/or of higher order, additional parameters that are difficult 

to measure would be required.  Such parameters include tire damping as in [1], the 

location of the mass center of the sprung mass and the unsprung mass as in [2], and the 

angle of inclination of the roll axis as in [2-4].  If such parameters were required, 

additional tests to determine them would need to be derived.  The results of this thesis 
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suggest that it is unlikely that an increase in modeling accuracy would be observed by 

adding this additional complexity. 

Considering only the planar dynamics of the vehicle, it was found that the 

inclusion of roll dynamics in the physical description of the model makes little difference 

to the planar motion as long as the roll dynamics are well damped.  This result agrees 

with expectations. However, many vehicles may exist that are lightly damped.  For such 

vehicles, significant differences are predicted in the planar dynamic response, particularly 

around frequencies near the roll mode of the chassis.  One should then expect that, for 

inputs rich in these frequencies, discrepancies between the 2DOF and 3DOF models will 

be seen.  Such discrepancies are typically not observed when examining highway driving 

as the steering inputs are generally low frequency.  This thesis should illustrate that 

careful consideration of driver input must be taken into account when studying a 

vehicle’s planar dynamics. 

In regards to the roll dynamics models, it is interesting that the planar dynamic 

response of a plant including the sprung mass in its description is nearly identical to a 

plant that does not include a sprung mass.  However, the response of the vehicle’s roll 

angle to steering inputs may show a difference as large as several decibels.  This result is 

beneficial to the engineer developing vehicle models primarily concerned in modeling 

planar dynamics.  The assumption to ignore the sprung mass allows for a simplification 

of the plant description and eliminates a parameter that is difficult to directly measure.  

An additional benefit of the simplified model is that it still is a good description of the 

behavior of the planar dynamics about the resonant mode of the roll dynamics.  However, 
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if the researcher is also interested in the roll dynamics of the vehicle, then the sprung 

mass needs to be included in the plant description. 

When examining the response of slip angle to steering input, the inclusion of roll 

steer appears to affect the low frequency response and hence it may be important in the 

determination of whether a car slides before rolling.  However, no apparent difference 

may be seen in the lateral, yaw, or roll response of a vehicle by including this term 

compared to a plant that does not include it. 

7.3 Conclusions Regarding the Wheel-Lift Prediction Methodology 

This thesis presents a method to predict conditions for untripped wheel lift. The 

most important aspect of this method is that it directly relates driver input to vehicle 

wheel-lift through a vehicle model, and not through limits on particular states such as 

accelerations or roll angles.  By basing the wheel lift prediction on a dynamic model, the 

intent is to make clear any interdependencies and frequency-dependent effects that are 

not obvious when one simply examines the individual vehicle states of lateral velocity, 

yaw rate, roll rate, and roll angle.  One insight in the development of this methodology is 

that wheel-lift, e.g. the onset of rollover, is directly related to the restoring moment of the 

suspension and the vehicle’s tires.  Such a result suggests that simply specifying a roll 

angle threshold or lateral acceleration threshold for wheel-lift does not necessarily 

consider the contribution of damping forces – a critical factor in the roll response. 

While experimental work remains to check the validity of this method, it is 

reasonable to assume that it provides an indicator as to the dynamic stability of a 
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vehicle’s roll dynamics when considering wheel-lift.  From the results presented, one 

may infer that, if a given steering command that particularly excites the range of 

frequencies that produce a restoring moment above the wheel-lift threshold, there is an 

increased probability that this may occur. 

Another primary benefit of the proposed wheel-lift prediction method is that it 

provides engineers with an indicator of rollover susceptibility without requiring extensive 

experimental measurements.  Further, it directly reveals the frequency range of inputs 

that should most be examined.  Both are great improvements over the SSF or fixed-

maneuver experimental methods currently in common use to determine rollover 

susceptibility. 

7.4 Conclusions Regarding Wheel-Lift Mitigation Strategies 

It has been shown that if the parameters of a specific vehicle are known within a 

reasonable accuracy, relatively simple control methods may be used to improve the 

dynamic response of a vehicle to driver input.  Additionally, it was shown that while 

open-loop methods such as deadbeat control work well when model uncertainty is low, 

and that a closed-loop method such as Model Reference Control should be used when 

added robustness is needed. 

One important reason for using a robust control algorithm is that vehicles undergo 

parametric variation and uncertainty in day-to-day use.  Using an SUV as an example, 

any rollover prevention algorithm must be able to work when there is only one passenger 

and an empty trunk, or when there are six passengers and the trunk is full.  Additionally, 
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regular wear on vehicle components will gradually alter some of the model parameters 

over time.  This is particularly true with the tires on a vehicle which will cause the 

cornering stiffness and limit friction characteristics to vary. 

7.5 Future Work 

A major issue that remains to be addressed is the quality of the test data – namely 

the lateral acceleration data.  At the writing of this work, a military grade Differential 

GPS system and IMU have been purchased and are being integrated into the system 

architecture of the test vehicle.  The system in question is a Novatel DGPS-RT2 system, 

with a positional accuracy of ±1 cm, velocity RMS of 0.02 m/s, roll and pitch angle RMS 

of 2.6x10
-4
 rad, and yaw angle RMS of 8.7x10

-4
 rad.  The addition of this equipment will 

allow for a comparison between the data taken in this thesis and a “true source”.  It will 

also allow for the direct measurement of vehicle roll angle. 

Further investigations into the validity of the wheel-lift prediction method needs 

to be made.  The first stage of this is to examine the frequency content of the standard 

NHTSA test maneuvers.  If the methodology outlined in this work is correct, then the 

maneuvers that are most noted for causing wheel lift in vehicles undergoing NHTSA 

testing will most exhibit critical frequencies highlighted by the dynamic method proposed 

in this thesis. 

Additional future work could attempt to directly compare NHTSA rollover ratings 

to the safety margins observed with the model-based method of this thesis.  Such a 
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correlation would only require as additional data the cornering stiffness, roll stiffness, and 

roll damping parameters for sample vehicles used in NHTSA testing.   

A final area of future study toward the development of the predictive method 

would be two-fold:  First, work should be conducted toward the creation of a rollover 

resistance metric based on the model-based method.  One means to complete this would 

be to quantify the minimum threshold between sliding and rollover at various 

frequencies.  Second, a new standard test maneuver should be developed to verify the 

mathematical model of a particular vehicle or vehicle set under varying road conditions.  

Such a maneuver would contrast the current NHTSA test maneuvers since it would be 

based off of a frequency-dependent wheel-lift profile that is vehicle-specific.  This is 

opposed to NHTSA’s current practice, where the maneuvers are typically based off of the 

steering angle at which the vehicle experiences 0.3g’s of lateral acceleration [5].  By 

using a time-response maneuver that is designed to excite the roll-mode of the vehicle, 

the test engineer can be better assured that they are indeed testing the worst maneuver for 

a specific vehicle. 

To address model robustness, sensitivity analysis needs to be performed on the 

plant to parametric uncertainty.  This analysis should be conducted under various control 

implementations as each method will have differing levels of sensitivity .  A goal should 

be to obtain a more quantitative analysis of the robustness of each control implementation 

to uncertainties and inaccuracies in the model, the parameters, and the road conditions. 

Finally, additional robust control methods need to be examined outside those 

considered in this thesis.  If uncertainty bounds are known ahead of time, one suggested 

algorithm would be to use H∞ control.  In the event that such specifications are 
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unavailable or impractical to derive, Model Reference Adaptive Control (MRAC) and 

Model Predictive Control (MPC) should be investigated as they will allow for the closed 

loop system to adapt to both parametric and environmental uncertainties as shown in [6, 

7]. 
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Appendix A 

 

Equation Reference 

A.1 State Space Equations for 3DOF Linear Model Presented by Said Mammar et. 

al. (Model 2) 
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A.2 State Space Equations for the 3DOF Model Presented by Hyo-Jun Kim and 

Young-Pil Park (Model 3)  
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A.3 State-Space Equations for the 3DOF Model Presented by Christopher R. 

Carlson and J. Christian Gerdes (Model 4)  
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