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ABSTRACT

The present thesis aims to develop dynamic models suitable for the analysis and

design of robotic snakes in the serpentine gait. Specifically, this research presents an
implicit model with a high degree of design flexibility, namely the ability to change the
number of links and to vary friction characteristics in the model formulation. The implicit
model is validated numerically by comparison to an explicit model with small number of
links. The validated implicit model is then used to establish the optimal gait for a six-link
snake robot that minimizes the energy input while maximizing the kinetic energy of
forward locomotion or in other words the gait that maximizes the efficiency of forward
locomotion. Buckingham pi theorem is used to combine the various parameters
influencing the snake locomotion into a group of dimensionless parameters. The
locomotion is analyzed using two solution methods: 1) an iterative search over a range of
operational parameters - amplitude of angular displacement inputs at each joint and
relative phase lag between the sinusoidal displacement inputs at the joints and 2) a non-
linear multi-variable optimization, to determine the optimally efficient gait. Results
indicate that, an optimal gait exists that maximizes the efficiency of forward locomotion.
The non-linear optimization technique is then used to determine the optimal gait
parameters for a range of friction characteristics. Experimental tests are performed on a
six-link snake robot. Friction characteristics of the snake robot operating on treadmill are
determined and the test results are validated against those established via the analytical

model.
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Furthermore, a mathematical model for continuum snake robot in serpentine gait

is presented based on utilization of the beam bending theory. The gait of continuum
model is compared to that of a rigid-link model assuming the total mass, length of the
snake, and operational parameters are kept identical. Results indicate that the gait of a
six-link articulated snake matches closely to that of a five element continuum snake
model. The operational parameters include frequency, magnitude, and phase lag of the
moments applied to each segment of the continuum robot. A detailed mathematical

formulation of the friction model employed is presented.
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Chapter 1

INTRODUCTION

1.1 Background and Motivation

Snake robots offer a wide range of applications in areas such as reconnaissance,
inspection, exploration etc. Because of their complex motion, it is difficult to analyze
snake locomotion with regard to these various application areas to establish the
underlying dynamic equations governing serpentine locomotion, determine optimal gait
for minimal power consumption, and size on-board power systems to allow snake robots
to operate autonomously with limited power supply.

Hirose ([1] - [4]) was the first to analyze snake-like locomotion by performing a
series of experiments on actual snakes. These experiments sought to determine the path
followed by a snake as it locomotes forward in the serpentine gait, referred to by Hirose
as a Serpenoid Curve. Hirose also established that a net forward motion could be
generated by applying time-varying torque along the length of the snake. Based on these
results, a wheel-based, rigid-link snake-like locomotor was built capable of moving
forward using applied joint torques without driving the wheels. This robot, called the
Active Cord Mechanism (ACM III), shown in Fig. 1.1 consisted of a series of connected
segments, each of which sat upon an actively controlled, rotating wheel base. However,
the control of the position and guidance of the snake robot remained a heuristically

derived procedure, without the ability to give precise feedback control for this form of
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locomotion. The next generation of snake robots built by Hirose (Koryu I and II) were
modified to allow vertical motion and exert a rotational torque on its nearest neighbor.
Furthermore, the wheels were controlled to move together, thus enabling it to climb stairs
and even cross over gaps in the floor. However, the study was purely focused on the
kinematics of motion, leaving open issues related to practical determination of gait.

The Robotics group at the California Institute of Technology developed
mathematical models and theory ([5] - [8]) to expand the study of the kinematics of
snakes to include the dynamics of wheel-based snake-like locomotion. In these models,
forward motion is generated by coupling internal shape changes with external holonomic
constraints assuming no-slip constraints along the wheel axes. Qualitative experiments
were conducted on a 30 degree-of-freedom hyper-redundant robot (Fig.1.2) that
demonstrated locomotion and other applications related to grasping, obstacle avoidance
etc. However, there were few quantitative studies confirming the accuracy and results
obtained by the mathematical models. Further, the predicted locomotion was not studied
with regard to variations in friction characteristics and minimizing the power
consumption.

Design and motion planning issues for an articulated mechanical snake robot
without wheels built at the University of Michigan are presented in [9]. The motion
planning system provides the robot with a basic motion pattern that can be easily
modified for different tasks and environments. Each link has a different number of
degrees-of-freedom in each motion stage, providing the robot with great adaptability even
during contact with obstacles in a cluttered environment. The GMD-snake ([10], [11])

shown in Fig. 1.3 and the snake-like robot presented in [12] utilize motion control
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software that enable them to move on different surfaces and to deal with obstacles.
Experiments were successfully presented to sense the environment and to react
accordingly. A study of the physical modeling and metrics for evaluation of limbless
locomotion and the mechanism and control of a 20 degree of freedom snake robot is
described by Dowling ([13] and [14]). Multiple gaits are demonstrated including novel
non-snake-like gaits. Ma [15] derived the serpentine curve at constant steady-state
velocity for the uniform creeping locomotion of the snake by physiologically analyzing
its muscle characteristics. A multi-segment robot concept is discussed in [16] for use in
space-based construction operations. The notion of shape function is used to position the
serpentine robot at a prescribed position and orientation. An n-body simulation program
is developed based on a Newton-Euler form of the equations of motion of the robot.
Motion tests are presented that compare experimental results with pertinent analytical
predictions. Experiments are performed by Nilsson [17] to demonstrate serpentine
locomotion on uniform surfaces. Theoretical kinematical analysis is then presented to
explain the experimental findings. A biologically based underwater, autonomous vehicle
based on the sea lamprey which swims by rhythmic lateral undulations of the body axis is
presented in [18].

The above studies have provided insight into the mathematical modeling of the
kinematics and dynamics as well as dealing with issues related to the experimental
synthesis of serpentine locomotion. However, issues remain with these models including
questions about the level of mathematical complexity, little if any validation against

experimental results, differing assumptions regarding robot/ground interaction, and
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limited analysis of power consumption as a function of gait parameters, operating speed,
etc.

Iwasaki [19] and his colleagues recently investigated robotic snake gaits that
achieve forward locomotion at a prescribed speed while requiring the least power. Their
mathematical model assumed a multi-link robotic snake without wheels. However, this
model was not validated experimentally to confirm the optimal gait parameters
established via analytical results.

The aforementioned studies analyzed and synthesized the serpentine locomotion
as an articulated mechanism, modeling the snake robot as a series of rigid links. In
general, these snakes had wheels mounted underneath each rigid link. Unfortunately,
such wheel-based robots would not be best suited for rugged or muddy environments, and
the inflexibility of rigid links does not allow the range of motion for which snake robots
are designed. Besides offering better terrain adaptability than the conventional rigid-link
designs, flexible robots that can actually emulate the snakes creeping motion are highly
redundant and robust. However, a continuum dynamic motion requires a more novel
approach than rigid robots.

There have been many studies in the field of continuum robots ([20] - [25]),
though none directly relates to serpentine locomotion. While some have developed beam-
based models to realize robotic mechanisms similar to the elephant trunk, tentacles or
tongues of animal, there has been no research prior to this study that focuses on a

continuum dynamic description of a snake robot.



1.2 Present Study

The present study aims to address issues seen in previous studies to specifically

develop dynamic models suitable for the analysis, design and control of robotic snakes.

Specifically, this research seeks to develop an easily modifiable model which has

flexibility with respect to number of links as well as the ability to change the friction

model. Furthermore, a beam-based continuum formulation of the governing dynamics of

snake motion is presented. The objectives of the present study are:

1.

To provide a basic framework that allows study of the dynamics of planar
serpentine locomotion of a discrete robotic snake model.

To determine the operational parameters which optimize the gait of a six-link
articulated snake robot to achieve maximum performance index.

To experimentally validate the optimal gait results established via the
mathematical analysis.

To provide a mathematical realization of the continuum snake robot in serpentine
gait by deriving the equations of motion describing the dynamics of the
continuum snake based on beam finite elements.

To compare the gait and locomotion achieved by the continuum snake to that
generated by the dynamics of an articulated wheel-based snake robot model.

Chapter 2 deals with the mathematical modeling and analysis of the dynamics of a

three-link articulated snake model in two different methods: 1) a closed-form solution

approach hereafter referred to as the explicit formulation and 2) an approach where link-

to-link joint forces at a present time step are approximated using prior trajectories, an
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approach hereafter referred to as an implicit formulation. A comparison of the two
proposed methods is then presented to confirm that the implicit and explicit formulations
are mathematically equivalent.

The issue of optimal gait resulting in maximum performance index for a six-link
robotic snake is studied in Chapter 3. Dimensional analysis and Buckingham pi theorem
are used to simplify the analysis by combining the physical variables influencing the
system’s characteristics into dimensionless groups. An iterative search through a range of
the operating parameters is first undertaken to determine whether an optimum exists and
is unique. Then, a multi-variable optimization scheme is employed to determine the
optimal gait parameters of the snake operating on surfaces with varying friction
characteristics and simulation results are summarized. Furthermore, the results predicted
by the present study are compared to an earlier study, [19].

In Chapter 4, experimental results based on the tests performed on a six-link
wheel-based robot are presented. The friction characteristics of snake robot operating on
a treadmill are presented. Further, optimal gait is predicted using the multi-variable
optimization scheme for the experimental friction model and is compared to the test
results.

The mathematical modeling of the dynamics of a continuum snake robot based on
beam bending theory is presented in Chapter 5. The gait and locomotion patterns of the
continuum model are compared to that of the rigid-link model established in Chapter 3.
Finally, Chapter 6 summarizes the main results and important conclusions drawn from

the study as well as the scope for future work based on the present models.



Figure 1.1: The Active Cord Mechanism (ACM III)

Figure 1.2: The 30 degree of freedom planar hyper-redundant manipulator



Figure 1.3:The GMD-Snake



Chapter 2

ARTICULATED SNAKE ROBOT MODEL

2.1 Mathematical Modeling and Analysis

For a snake robot, the key to generating forward locomotion is to exploit different
friction coefficients in the normal and tangential directions to the snake at the link-to-
ground contact points. As convention, the normal direction is perpendicular to the link
and the tangential direction is along the length of the link. Most of the studies ([9], [15],
[19], [1] - [4]) assume the normal friction coefficient to be much larger than the
tangential friction coefficient; with some ([7] and [8]) assuming that slip in the lateral
direction is negligible.

Analytical models of a general robotic snake usually consist of » rigid links
actuated at the (n—1) joints connecting these links. Each link is generally assumed to have
one point of contact with the ground at its center of gravity, an assumption also made in
the present study. Additionally, the following assumptions are made within this study to
derive the equations of motion of a snake robot:

e FEach link has uniform mass distribution and the parameters for each link - length,
mass etc. - are identical for all the links.

e A viscous friction model is employed to describe link-to-ground interaction. The
friction coefficients in the normal and tangential direction are assumed constant

over the entire snake. Viscous friction is governed by: F .. =—c-v; where v is

visc
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the velocity in a particular direction, ¢, the viscous friction coefficient in that

direction, and F .,

the friction induced force at the point of contact.
e Only planar serpentine locomotion is considered.
The general robotic snake system consists of a total of n + 2 degrees of freedom
with two degrees of freedom representing the planar position of the center of mass of the

first link and the remaining degrees of freedom representing the orientations of the # links

in the global reference frame.

2.1.1 Explicit Formulation for a three-link robotic snake

To illustrate the mathematical formulation of an explicit model, a three-link
model is considered as it is the simplest rigid-link snake robot that can locomote. The five

independent degrees of freedom for a three-link model are - x, y,6,,6,,6; . A schematic of

the model is shown in Fig. 2.1 and a free-body diagram indicating the forces and

moments acting on each link is shown in Fig. 2.2. The force and moment equilibrium

equations: > F,, =m5,, Y. F,; =m,# and > M_; =1, for each of the three links

17712

can be written as follows:

Link 1
Fg,lx + F,, = m¥, (2.1

T, - F,Isin6, +F, lcos 6, =10, (2.3)



Link 2:

X ..

y _ ..

(T, ~T,)~(F, + F,, Isin6, +(F, + F,, Jcos6, =1.4,

Link 3:

-F

2y+F

y _ .o
2.3 =mys

y _ ..
—Fy, +Fy 57 =mys

where the parameters are defined as follows:

XiyYi»0;

xor iy

Mass of each link

11

(24)

(2.5)

(2.6)

2.7)

(2.8)

(2.9)

Distance from the center of gravity of the link to the joint, equal to half

of the link length assuming uniform mass distribution

Mass moment of inertia of the link about the center of mass

The global position and orientation of the i” link

Torque applied at the i joint (between i” and (i +1)" links)

Frictional forces between the i” link and the ground at the center of

gravity in the global coordinate system, resolved in the x and y

directions.

The joint forces between i” and (i+1)" links in the global coordinate
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system, resolved in the x and y directions
To obtain the time-varying positions and orientations of the various links,
Egs. (2.1 - 2.9) have to be solved simultaneously. Two solution methods, namely explicit
and implicit, are considered in this study. The explicit method utilizes the exact model
without any approximations. The force and moment dynamic equations are simplified by
rearranging them to eliminate the joint forces. These equations are further simplified by
enforcing the compatibility conditions that describe the positions of the links in terms of

the five independent variables x,y,6,,0,,0,. The resulting number of governing

equations is always equal to the number of independent degrees of freedom; hence this
solution method is hereafter referred to as an explicit method.

The challenge with the explicit model formulation is that the joint force and
compatibility algebraic equations are highly nonlinear, making it difficult to write the
governing differential equations in only the independent variables. One can overcome
this algebraic difficulty by allowing more system differential equations than are
necessary, e.g. by approximating the joint connections by spring-damper systems. The
dynamics of the system are simulated individually for each link without the necessity of
algebraic solutions for the joint forces. Further, the algebraic compatibility conditions are
also not needed in the solution method. Because there are more equations than the
number of independent degrees of freedom, this solution method is hereafter referred to
as an implicit method. These distinctions between explicit and implicit formulations are
best illustrated by direct comparison, shown in the following sections.

As an illustration, the explicit equations of motion for a three-link snake are now

derived. From Fig. 2.1, the coordinates of the center of mass of each link can be
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expressed as a function of the aforementioned five independent variables, x, y,6,,6,,0,

as follows:

X =X (2.10)

=y (2.11)

X, =x+[-cosf, +1-cosb, (2.12)

Y, =y+Il-sin@, +1-sin b, (2.13)

Xy =x+1[-cos@, +2/-cosb, +1-cos b, (2.14)
Yy =y+/[-sinf +2/-sinf, +1-sin b, (2.15)

Differentiating Eqgs. (2.10 - 2.15) with respect to time yields the velocities of the

center of mass of the links in the global coordinate system as:

X =X (2.16)
=y (2.17)

%, = x—16,sin6, —16,sin 6, (2.18)

Y, = y+16, cos 6, +10, cos 0, (2.19)

X; = x —16,sin 6, — 210, sin 6, — 6, sin b, (2.20)

V3 = 3 +16,cos6, + 216, cos b, +10; cosb, (2.21)
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Similarly, differentiating the velocities i.e. Egs. (2.16 - 2.21) with respect to time

yields the accelerations of the center of mass of the links as:

¥, =¥ (2.22)

Vi =y (2.23)

%, =¥—-10, sin@, —16, sin 6, —16,” cos 6, —10," cos 9, (2.24)

¥, = y+16, cos @, +16, cos 0, —16,” sin 6, 16, sin 6, (2.25)

%y = Xi—10,sin 0, — 216, sin 0, — 16, sin O —16,” cos§, —216," cos b, (2.26)
—1932 cos 6, .

J5 = y+106, cos 0, + 216, cos 6, + 10, cos 0 —16,” sin 6, — 216, sin 6, 2.27)
—16,? sin 6, '

The contact forces between the ground and the link at the center of mass are
modeled assuming the viscous friction model stated previously. The friction coefficients
and hence the contact forces are defined locally i.e. in the normal and tangential
directions and then transformed back into the global coordinate system. With reference to
Fig. 2.3, the contact forces in the tangential and normal directions can be written using

the viscous friction model described earlier as:

~
I

|
a
<
I

~C," (%, cosf, + y, sin6),) (2.28)

g,i i i i

b
I
|

A

<

I

~C," (- x,sin 6, + y, cosh,) (2.29)

g.i i Vi i
where C; and C, are the tangential and normal friction coefficients respectively.

Equations (2.28 - 2.29) can be expressed in matrix form as follows:
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F, ;! c' 0 cosf, sinf, | [x;
70 || 1 (2.30)
Fy, 0 C —sinf; cos6, | |y,

The contact forces in the normal and tangential directions can be transformed

back into the global coordinate system as follows:

X t L
F,;” =F,; cost, —F, sing, (2.31)
F,' = ngl.t sing, + F, ;" cos 6, (2.32)

Using Eqs. (2.30 - 2.32) the friction forces associated with the i” link can be

expressed in the global coordinate system as:

F. " cos. —sinf. | |C' 0 cosf. sinf. | [x.
8l e . ! ! . ! . . ! ! ° ! (2.33)
Fg’iy sinfd;,  cos0, 0 Cl." —sin@, cos6, | |,
Equations (2.10 —2.33) describe how the compatibility constraints and frictional
forces enter the dynamic model. It is now possible to write the governing differential

equations, with the first goal to eliminate joint forces. One can eliminate several
coupling forces by summing Egs. (2.1), (2.4), and (2.7):

m(¥ +3, +55)=Fy " +F, " +F 5" (2.34)
Similarly, summing Egs. (2.2), (2.5), and (2.8) results in:

m(j}1 +, +j}3):Fg,1y +Fg,2y +Fg,3y (2.35)

The joint forces, Fj and Fj, are to be eliminated from Egs. (2.3), (2.6) and (2.9)

to obtain the remaining governing equations. This is achieved by expressing the joint
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forces in terms of known quantities. Summing Egs. (2.4), (2.7) and (2.5), (2.8) and

solving for F'i, and F', respectively results in:

By =mli, +3)-(F,, +F, ) (2.36)
-F, =m(p, +ﬁ3)—(Fg,2y +Fg,3y) (2.37)

Solving Eqgs. (2.7) and (2.8) for F, and F, yields:

- sz = mjé:; - Fg’3x (2.38)

The right hand side of Egs. (2.34) and (2.35) can be expressed solely in terms of
the independent variables using the generalized Eq. (2.33) and Egs. (2.16 - 2.21). The
resulting differential equations will be functions of linear and angular displacements and
velocities of the center of mass of the links. The left hand side of Egs. (2.34) and (2.35)
can be rewritten in terms of the independent variables and their derivatives alone using

Eqgs. (2.22 - 2.27). These equations, upon simplification, yield:

3mit - mi(26), sin 6, + 6, sin 0, + G sin 6, )

. : : (2.40)
=0 +mi|26,% cosO, +36,” cosb, + 6, cosd
1 1 1 2 2 U3 3

3my + ml(Zél cos, + 36, cos B, + 0, cos 03)

. . . 2.41)
=0, +mi(26,> sin 6, + 36, sin 0, + 6.* sin O (
2 1 1 2 2 3 3

where, Q) and O, are defined as:
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0 = Fgalx + Fg’zx + Fg,f (2.42)
0, = Fg’ly +Fg,2y +Fg,3y (2.43)
Substituting Egs. (2.36) and (2.37) into Eq. (2.3) and simultaneously using Egs.

(2.22 - 2.27) and simplifying results in:

1,0, + 2ml(j) cosf, —xsinb, )+ mil* [352 cos(@1 -0, ) +6, 005(03 -0, )]

. . 2.44
= 0, +ml* L 30,” sin(0, — 6, )+ 05> sin(60; — 6, )} (249

where, O; is defined as:
0y =—(F, " + F, " Jsing, +(F, " + F, " Jeoso, (2.45)

Similarly, using Eqgs. (2.36 - 2.39) in Eq. (2.6) and simplifying utilizing Eqgs. (2.22

- 2.27) yields:
I0p0, +3mi(3cos 0, — ksin 0, )+ mi> 36, cos(0, — 0, )+ 205 cos(0, — 05 )]
=0, +ml? {3912 sin(6, — 0, )— 2657 sin(6, — 6, )} (2.46)
where, Qj is defined as:
0, = —(Fg,zx + 2Fg,3")lsin62 + (Fg,zy +2F, 5 )Icosﬁ2 (2.47)

Finally, using Egs. (2.22 -2.27) and Egs. (2.38) and (2.39) in Eq. (2.9) and
simplifying yields the last of the five governing equations as:

10393 + ml(j) cosf; — xsin O, )+ ml* [él 005(03 -0, )+ 2[92 005(02 -0, )] (2.48)
= Q. +mi’ % 6,% sin(6; — 6, )+ 26,7 sin(6, — 6, )} '

where Qs is defined as:

Qs =—F,3'Isin0; + F, ;" cos b, (2.49)
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Equations (2.40), (2.41), (2.44), (2.46), and (2.48) are the five equations

governing the dynamics of a three-link articulated robot. Rewriting these equations in

matrix form yields:

[ 3m 0 — 2mlsin6, —3mlsin0, —mlsino,

0 3m 2mlcos6, 3mlcost, mlcoso,
—2mlsin€, 2mlcos6, Iy, 3ml* cos@, —0,) ml*cos@; —6))
—3mlsing, 3mlcosO, 3ml*cos@ —0,) Iy 2ml* cos(®, — 65)

| —misin@, mlcosfy; ml’ cos@ —6,) 2ml* cos@®, —0y) I3 |
T Sy - - 1 o (2.50)
X 0 ml(20,” cos6, +30,” cosh, + 05" cosby) | | O
j 0 ml(20,> sin@, +36,% sin6, + 0, sin6;) | |0,
x30, p=| T, |+| mI*[=36,” sin(0, — 0,) + 05 sin(65 — 6,)] | +| O3
O, |T=T,| | mI*[30,”sin(0, —0,)— 265" sin(0, —0;)] | | O4
0, ~T, | | mi*[-0,? sin(0; - 0,) + 26, sin(0, - 6,)]| | Os |

The above equation is of the form A(X)-X:f(X,X) orX:g(X,X). These
simplified equations can be solved numerically. In this study the MATLAB Simulink
software is used to numerically integrate Eq. (2.50) to obtain a solution X (t)

Solution methods describing the kinematics and dynamics of the serpentine
locomotion resembling the above explicit method detailed have been presented in the
literature by many researchers ([9], [11] - [17], and [4] - [8]). Although the solution
methods differ, they all share an ultimate goal of obtaining the time-varying positions and

orientations of the links.
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2.1.2 Implicit Formulation for a three-link robotic snake

While it is relatively easy to solve for the explicit equations of motion for a three-
link model, it is algebraically quite challenging and tedious to solve for the nonlinear
equations for snakes with even a moderate number of links. The implicit method
simplifies the algebraic manipulations considerably by relaxing an algebraic constraint of
connection between the joints and instead modeling them by spring-damper systems. The
damper and spring are designed to have vibration dynamics several orders of magnitude
faster than the snake’s gross motion and therefore this motion should not greatly affect
the predicted motion of the snake. This assumption is tested in later sections of this study.

Although replacing each joint’s algebraic constraints with joint dynamics greatly
increases the order of the dynamic model, it greatly simplifies the necessary
mathematical manipulations. Specifically, the positions, velocities and accelerations of
the center of mass of the links need not be expressed in terms of the position of the center

of mass of the first link, orientations of the links, e.g. in x,y,6,,60,,6;, and their

derivatives. The original snake consisting of one articulated n-link body is therefore
deconstructed into n coupled but independent bodies. The dynamics of the spring-damper
system can be simulated to directly obtain the coupling forces between joints while
simultaneously solving for the dynamics of the collective robot snake system. Thus, this
method does not even require solving for the joint forces as in the explicit method.

The primary disadvantage of the implicit method over the explicit is that the

additional differential equations greatly increase the required simulation time. With the
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steady and exponential increase in desktop computing capability, this tradeoff is
increasingly unimportant.

To model the joint connections by spring-damper systems, the spring stiffness and
damping constant need to be chosen. The spring stiffness is chosen such that the joints
are stiff enough to exhibit very fast dynamics and damping constant is chosen to have as
minimal vibration as possible. All locomotion torques at each joint are assumed to span

the joint such that an equal and opposite torque acts on each link. From Fig. 2.4, the

expressions for the joint forces at i” joint can be written as:

Fy =l (n =¥+ ;- (¥r — ) (2.51)

ix
F, =k, '(yim —y[i)+ c; -()'/[z'+1 —)'/ii) (2.52)
where the parameters are defined as follows:
k; Spring stiffness
¢; Damping constant
x'is1, "1 Coordinates of the i” joint expressed as a function of the coordinates of
the (i +1)" link’s center of mass
x'i, v Coordinates of the i” joint expressed as a function of the coordinates of
the i link’s center of mass
The coordinates x';, y';, x'i1, and y'1 can be expressed in terms of the

coordinates of the centers of mass of i and (i +1)" links as:
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x'ivt = x;,, —1-cosb,,, (2.53)
x'i = x, +1-cosb, (2.54)
Vi =y, —1-sind,,, (2.55)
Vi =y, +1-sinb, (2.56)

The time derivatives of the positions, i.e. X';, ¥, X'i+1,and y'i1 are obtained by
differentiating Eqgs. (2.53 - 2.56), which are obtained numerically using velocities from
the previous time steps. Besides Egs. (2.51 - 2.56), the friction formulation equations, i.e.
Egs. (2.28 -2.33) as established in the explicit formulation are also needed. A key
advantage of the implicit method is that the friction model is not inter-linked with the
formulation or derivation of the system dynamics. This is quite unlike the explicit model
where the governing differential equations have to be re-derived to account for the
changes in friction characteristics.

With the joint and contact forces known, the implicit method is easily solved
numerically. Egs. (2.1 - 2.9) are integrated using the MATLAB Simulink software to
determine the positions and velocities of the center of mass of each link. A flowchart

describing the implementation of implicit model in Simulink is presented in Fig. 2.5.
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2.2 Comparison of Implicit and Explicit Formulation Results

To confirm that the implicit and explicit formulations are mathematically
equivalent, a three-link snake model is constructed using both methods. The relative
errors in the rotations and velocities are compared. The time-step used for the simulations
1s 0.001s. This was found to be sufficiently small as smaller time steps resulted in only a
maximum of 0.1% or less error.

Figures 2.6, 2.7 and 2.8 represent the relative errors between the implicit and
explicit angular displacement and translational velocities of the tail link i.e. link 1 for a
three-link snake robot. It appears from these plots that the magnitude of the difference
between the two models is quite small (order of 10™) as compared to the magnitude of
motion (7/6). Similar plots are obtained for the other two links. Such results suggest very

close agreement between the two methods.
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Figure 2.1: Schematic of a three-link articulated snake model

Figure 2.2: Free-body diagram of the three-link model
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Figure 2.3: Representation of frictional forces on a generic link
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Figure 2.4: Representation of spring-damper system at the " joint
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Figure 2.5: Flowchart representing the implementation of implicit formulation in

Simulink
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Figure 2.6: Plot of the relative error in the angular displacements of the tail link between
the explicit and implicit models for a three-link snake robot
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Figure 2.7: Plot of the relative error in the forward velocities of the tail link between the
explicit and implicit models for a three-link snake robot
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Figure 2.8: Plot of the relative error in the transverse velocities of the tail link between

the explicit and implicit models for a three-link snake robot



Chapter 3

OPTIMALLY EFFICIENT SERPENTINE LOCOMOTION

Having confirmed that the implicit method predicts locomotion behavior equally
as well as an explicit model for a simple three-link robot, the implicit model is now used
to analyze a six-link robot. Specifically, locomotion dynamics are studied to determine
the optimal gait that minimizes the input energy (i.e. input power integrated over a given
time) while maximizing the kinetic energy of forward locomotion. Earlier research [4]
indicates that the undulatory motion of snake can be replicated by sending a traveling
sine wave along the length of the snake. This wave can be approximated in a discrete
snake model by incrementing the phase angle of applied torque or prescribed angular

motion at each joint of the snake robot. This analysis considers the input to be a

commanded joint angle with the angular motion at i” joint described by the form:
0,(t)= asin(wt + ;) 3.1)

where, g, =(i—1)f and i=1,2,..n—1

The parameter o (frequency of sine wave input) is related to the speed of
locomotion, while the parameters a (amplitude of angular displacement input) and S
(relative phase lag) are related to the shape of forward motion. A trace of the path
followed by the snake robot at o = 30 deg, = 80 deg and @ = 5 rads™ and C, = 0.1 and
C, = 10 is presented in Fig. 3.1 and a plot of the snake’s position and orientation at six

instances over one time period is shown in Fig. 3.2. Performance index, #, is defined as
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the ratio of kinetic energy of forward locomotion to input energy over one time period.
The optimally efficient motion is defined as the set of parameters - a and f that maximize
the performance index for a given frequency w and friction characteristics. The input
energy, denoted by /E, is calculated by integrating the power input over one time period.

Equivalently, input energy is defined as: P, - T'; where, P;, is the mean power input and

T = 2 is the time period. The power input is defined as the sum of the products of joint
1)

torques and corresponding relative angular velocities at all the joints. A plot of the
variation of power input with time for & = 30 deg, # = 80 deg and @ = 5 rads™ is shown in
Fig. 3.3. The mean power input is determined by averaging the periodic input power over

14 time periods from 7 to 15*7. The kinetic energy of forward locomotion, KE, is
defined as: %mv2 where, v is the mean forward velocity of the center of mass of the

snake in the global x-direction averaged over 14 time periods as indicated earlier.

An effective method for analyzing the optimally efficient locomotion is to utilize
the dimensional analysis and Buckingham’s pi theorem [26] to combine the various
parameters influencing the snake’s locomotion into a group of dimensionless parameters.
This helps in reducing the computational difficulties associated with the wide range of
parameter search in the dimensional domain. The following sections will concentrate
upon the introduction of dimensional analysis and Buckingham’s pi theorem and their
application in the analysis of non-dimensional parameter space to determine the optimal

gait of the snake robot.
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3.1 Dimensional Analysis

In many applications of science and engineering, the mathematical relationships
between variables in a system are unknown. In order to find the relationship between
these variables, one would require to incrementally change the value of one variable
while holding all of the other variables constant. This process would then be repeated for
each variable until the relationships were discovered. This would be a difficult and
sometimes impossible procedure to perform. By combining the terms to reduce the
number of variables, the process becomes less complicated and more reasonable to
perform. Furthermore, the number of variables influencing the system’s characteristics is
also reduced; thus making it easy to analyze the overall system. This is achieved by
performing a dimensional analysis on the set of parameters involved in a given physical
problem.

Dimensional analysis is a mathematical technique where the parameters
considered being likely to affect the flow can be combined into a number of
dimensionless groups. If it is possible to identify the factors involved in a physical
situation, dimensional analysis can usually establish the form of relationship between
them. In dimensional analysis, one is concerned only with the nature of factors involved
in the situation and not with their numerical values. This process of dimensional analysis

is based on the Buckingham’s pi theorem explained in the following section.
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3.2 Buckingham pi theorem

The Buckingham pi theorem states that for a physically meaningful equation
involving a certain number (N) of physical variables, where these N variables are
expressible in terms of k independent fundamental physical quantities, the original
expression is equivalent to an equation involving a set of p = N — k dimensionless
variables constructed from the original variables. These dimensionless variables are often
referred to as = parameters. Thus the number of 7 variables required to describe a
system 1is k less than the original number of variables. The k repeating (independent)
variables that will be combined with each remaining variable to form the 7 parameters
must include all the basic dimensions, but should not form a 7 -parameter by themselves.

Consider a physically meaningful equation such as:
fa1:425-.9,)=0 (3.2)
where, ¢;,(i=1,2,...,n) are the N physical variables, which are expressed in terms of k
independent physical units, then the above equation can be rewritten as:
F(ﬂl,nz,...,np)zo 3.3)

where, the 7z;’s are p dimensionless parameters constructed from the ¢;’s and are

represented by equations of the form:

i =4 '(9p+1 )mli '(qp+2 )mzj (g, )mki (3-4)
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where i=1,2,..., p; q,,, —q, are k independent physical quantities and the exponents

m ji’s (j=1,2,..., k) are constants and are determined subject to the dimensional

homogeneity criterion i.e. all z;’s should necessarily be non-dimensional.

The Buckingham pi theorem provides a method for computing sets of
dimensionless parameters from the given variables, even if the form of the equation is
unknown. However, the choice of dimensionless parameters is not unique. However, one
must choose a set of parameters that tend to simplify the analysis as much as possible.
The application of pi theorem to analyze the optimally efficient serpentine locomotion is
detailed below.

In order to perform dimensional analysis, one must first list all of the variables
that define a problem, including dimensional and non-dimensional quantities. For a snake
robot, the physical variables governing the dynamics are — n, m, [, a, S, @, Ci, Cp, Pin, v,
T, k, c, dt, K, and K,. The last three parameters not listed in the analysis earlier are

defined as follows:

dt Fixed time step used in simulation
K, Proportional gain
Ky Derivative gain

An equation similar to Eq. (3.2), involving these N (= 16) physical variables can

be written as:

f(n, m,l,a, f,0,C,,C,, P,

in°

v, T, k,c,dt, K,, K;)=0 (3.5)

The dimensions of these variables are:
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[n] = [Number (of links)] = 1]
[m] = [Mass (of link)] [M]
[/] [Length (of link)] [L]
[a] [Angle (amplitude), radians] [1]
Bl = [Angle (phase), radians] [1]
0] = [Frequency] = [T
=  angentia drecton] [MT]
) T Ueesbamesiom ey
P,] = [Power] = [ML*T?] (3-6)
v] = [Velocity] = [LT']
71 = [Time] = [T]
(k] = [Spring stiffness] = [MT7?]
[c] = [Damping constant] = [MT]
[dr] = [Time] = [T]
K] = [Angular displgcement. to torque = ML2T ]
proportional gain]
K,] = [Angular displacement to torque = [ML’T ]

derivative gain]

The number of fundamental dimensions in the above set of variables is: k£ =3 (M,
L, and T) and the number of dimensionless parameters is p = n — k = 13. Thus, three
independent physical quantities have to be chosen such that they include the three
aforementioned basic dimensions — M, L and T. Let the independent quantities be: m, /,
and w. A procedure to determine the non-dimensional quantity associated with the power
input, 7, is detailed as follows:

Since P;, contains all the three fundamental dimensions M, L and T, all three of
the repeating variables will feature in the corresponding dimensionless group. Expressing

T, as:

m, = Pm“I"o* (3.7)
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and replacing the variables by their corresponding dimensions, yields:
[MPLOT ]=[ML*T = J[M]*[L]"[T"]* (3.8)

Comparing the powers of M, L and T, on either side results in:

= 2+b (3.9)

The above set of simple equations can be solved to obtain the values of the

indices as: a =-1, b =-2 and ¢ = -3. The 7 parameter associated with the power input is

in
2 3
ml“w

therefore expressed as: 7, = . The above process is repeated for the remaining

variables and the thirteen 7 parameters are found to be as follows:



35

_ 5
o= 2 3
ml”w
v
71' = —_—
2
low
T, = p
Ct
7[5 =
mao
C
7T6 = n
mao
7[7 = T'w
i (3.10)
T =
8 2
mao
c
7[9 = _
mao
o = dt-w
T = i)
1= > >
ml~w
Ky
Ty, = 5
ml”w
Tz = n
Since m; and 7, (i.e. outputs) are dependent on 75, 7,,..., 75 (inputs); as long as

these eleven input 7 parameters are held constant, the dependent parameters will remain
the same. Hence the fundamental physical quantities, m, [ and @ do not influence the
dimensionless outputs 7, and 7, , and any other output 7 parameter (e.g. dimensionless
kinetic energy or input energy) as long as the input 7 parameters are held constant. It is to

be noted that =g, 7y, 7;, and 7;, do not directly influence the outputs, but are needed to

meet the compatibility conditions.
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3.3 Optimal Gait Analysis

As defined earlier, optimally efficient motion is the set of parameters - a and S
that maximize the ratio of kinetic energy to input energy (ratio denoted as #) at a given
frequency, w. Other design parameters also affect the optimal motion; these include the
tangential and normal friction coefficients, the mass and length of the link, and the
number of links. But these input parameters namely; friction coefficients, number of
links, etc. (except o and ) are fixed in the design of the snake and cannot be modified by
the input to the joints, e.g. the snake’s control algorithm. Since the analysis is performed
in the dimensionless space and m, [ and w are the base variables, these do not have any
bearing on the optimal solution as stated earlier. This attribute of the dimensional analysis
is useful in experimental analysis, where changes in mass or length of the link do not
change the predicted optimal gait and the optimal parameters do not have to be rederived.

To determine the optimally efficient gait, one can use either a mathematical
solution or an iterative search. In this study, both the solution methods are considered. To
begin with, a search through a range of the parameters a and f is undertaken to determine
the existence of optimal gait parameters. This is necessary to establish the uniqueness of

the optimal solution. The performance index, 7 can be expressed as:

|

—my
_KE_2 3.11)

IE P,-T

Eq. (3.11) can be rearranged to obtain the following:
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2
)
No) 1 (3.12)

1
'7_2( P ]Tw
mL’w?

Furthermore, the above equation can be rewritten using the dimensionless groups

derived in Eq. (3.10) as follows:

1

(3.13)

2 T,
which can be considered as another output besides x; and 7, and hence, will satisfy all

the properties that hold true for 7, and z, .

A plot of the performance index, # as a function of o and f is shown in Fig. 3.4
and projections of the plot onto the a — # and f — 7 planes are shown in Figs. 3.5 and 3.6
respectively. A contour plot illustrating the variation of # with o and g is shown in
Fig. 3.7. An enlarged version of the same plot around the optimal value (the blue dot) is
presented in Fig. 3.8. These plots indicate that an optimum exists and that it is unique.

The maximum performance index, 7,,, predicted by the iterative search technique for
n5=0.1, 7, =10.0 is approximately 0.106. The corresponding values of optimal phase

B,y and optimal amplitude a,, predicted are 85 deg and 34 deg respectively. From

opt

Fig. 3.8, the variation of 7, around a=a,, t5deg and p=p,, £5deg is

opt opt
approximately 1%. This indicates that the maximum performance index is fairly robust to
minor variations in the optimal parameters.

It is however numerically challenging to determine these optimal parameters

using the iterative search because of the enormous amount of time and effort required, the
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lack of efficiency and accuracy of the predicted optimal solution. A non-linear
optimization routine is therefore used to overcome these difficulties associated with the
iterative search technique and simplify the solution process.

Matlab multi-variable optimization search routine - fininsearch is used to estimate
the maxima. Since fininsearch can only find the minimum of a function, the variables that
maximize 7 (i.e. « and /) are equivalently obtained by searching for the minimum of (-7).
Table 3.1 represents the variation of optimal parameters as a function of the frequency

maintaining the non-dimensional friction coefficients constant at 75 = 0.1 and 7, =10. It

can be seen that there is no variation in the optimal parameters with w, as suggested by
the Buckingham pi theorem. So for a given set of dimensionless friction coefficients, the
optimal parameter search can be done at any frequency as long as the dimensionless
inputs are kept constant. This methodology is hereafter used to determine the optimal
parameters of the snake robot operating at a frequency of 5 rads™.

The variation of optimal parameters with dimensionless friction coefficients,

n 7[6 _ Cn

s =—- and n4 = while maintaining the friction ratio - — = —* constant at 10 is
me meo s C,

presented in Table 3.2. This ratio is characteristic of the snake operating on a treadmill
and further description of this friction model is presented in Chapter 4. A plot of the
variation of 7., with 75 is shown in Fig.3.9. The maximum performance index
decreases with the non-dimensional tangential friction coefficient as seen in the plot. A

plot of the variation of corresponding optimal values of amplitude and relative phase

angle is presented in Fig. 3.10 and a plot of the variation of non-dimensional velocity and
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power is shown in Fig. 3.11. The following conclusions can be drawn from the above

plots:

The variation of optimal amplitude and phase with the friction coefficient is
relatively small for values of 75 <10. This indicates that for a given friction ratio,
the dependence of optimal parameters upon the actual tangential friction ratio is
minimal.

The dimensionless forward locomotion velocity initially increases with increase

in tangential friction coefficient but then decreases for higher values of 7. The
non-dimensional power input seems to increase steadily with z5. As indicated
earlier, #,,,, decreases approximately by an order of magnitude with an order of
magnitude increase in the tangential friction coefficient.

For a given frequency, as x5 increases, the tangential friction coefficient
increases. For the snake to translate forward at approximately the same velocity,
the power consumption has to increase with increase in tangential friction
coefficient; which is confirmed by the results plotted in Fig. 3.11 and in Table 3.2.
The drop in velocity at higher values of 75 can be attributed to the fact that more
energy is expended in overcoming the friction in forward direction and not as

much is converted into kinetic energy

In addition to determining the variation of optimal parameters with dimensionless

friction coefficients for a friction ratio of 10, the variation for other friction ratios can also

be studied. Tables 3.3 and 3.4 show the variation of the optimal parameters for friction

ratios of 100 and 1000 respectively. The variations of «

o between Tabs. 3.2 - 3.4 for
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various friction ratios is plotted in a single graph and is shown in Fig. 3.12. Similarly, the
variations of other optimal parameters are shown in Figs. 3.13 - 3.16.

Furthermore, the variation of 7, is studied maintaining 75 constant at 1, a
value characteristic of the snake robot operating on the treadmill and varying the ratio of

n

friction coefficients and the results are tabulated in Tab. 3.5. A plot of the variation

t

of 7, Wwith the friction ratio is shown in Fig.3.17. A plot of the variation of

corresponding a, . and f, . is presented in Fig. 3.18 and a plot of the variation of the

opt opt

outputs x, and z, is shown in Fig. 3.19. The following conclusions can be drawn from
these plots in conjunction with Figs. 3.12 - 3.16:

o At 7 =1 (Fig. 3.17), the maximum performance index increases with increase in

friction ratio. This indicates that for a given tangential friction coefficient, as the

normal coefficient increases, #,,, increases. This is expected because, at higher

values of normal friction coefficient, the snake is not as much prone to move
sideways as it is at lower normal friction coefficients. However, the change in

Nmax With friction ratio is not as high as compared to the change in 7,,,, with the

actual tangential friction coefficient (see Fig. 3.14).

e From Fig.3.18, at 75 =1 and for friction ratios less than 100, «,, seems to

opt

decrease exponentially with friction ratio, but £, seems to be approximately

opt

constant. However, at higher values of 75 and friction ratio, i.e. higher values of
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tangential and normal friction coefficients, there seems to be a sudden increase in

B op: - This trend is also confirmed by Fig. 3.13.

e The velocity at =5 =1, appears to increase with increase in friction

ratio(Fig. 3.19), but seems to decrease as the ratio is increased beyond 100.

However, for values of 75 <0.1 (Fig.3.16), the optimal velocity increases

steadily with increase in the friction ratio. The variation of power does not exhibit

any particular trend, but similar to #,,, , the variation with friction ratio is not as

predominant as the variation with tangential friction coefficient.
Compared to an earlier study [19], the results of the present research match
qualitatively but not quantitatively. For instance, the present study predicts that an

optimal motion for a friction ratio of 100 and 1 < 75 < 0.02 should consist of slightly

more than one full sine wave (1.4 sine waves), while this earlier study predicted optimal
motion for exactly one sine wave. This is equivalently described by comparing the

optimal phase, f,, of a six-link robot. The present study predicts S,, to be at

opt
approximately 85 deg between links, while [19] predicts this to be at 60 deg. The

variation of optimal amplitude «,, predicted by [19] seems to be roughly linear with

desired velocity, while the present study predicts a nearly constant value at 34 deg. The

optimal frequency of serpentine motion, @, , is predicted by the present study to vary

opt >

linearly with the desired velocity in agreement with this prior work.
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Figure 3.6: Plot of the performance index, # as a function of amplitude, a indicating the

occurrence of maximum at a = 34 deg
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Table 3.1: Variation of the optimal parameters as a function of @ while maintaining the
non-dimensional friction coefficients constant at 75 =0.1 and 7, =10.0

P.

aopt ﬁopt w q nmax 71_2 — l 7f1 — 21n 5

(deg) (deg) (rads™) lw ml*w
33.561 85.144 1 1.061%107" 0.912 0.624
33.561 85.144 2 1.061%107" 0912 0.624
33.561 85.144 3 1.061%107" 0.912 0.624
33.561 85.144 4 1.061%107" 0.912 0.624
33.561 85.144 5 1.061%107" 0.912 0.624
33.561 85.144 6 1.061%107" 0.912 0.624
33.561 85.144 10 1.061%107" 0.912 0.624
33.561 85.144 15 1.061%107" 0912 0.624
33.561 85.144 20 1.061%107" 0.912 0.624
33.561 85.144 25 1.061%107" 0912 0.624

Table 3.2:Variation of the optimal parameters with dimensionless friction coefficients,
Ts

ms and 7, while maintaining the friction ratio — constant at 10
5
P
" (Zg) (ggl;) C o

0.01 56.669 88.646 2.278%107" 0.397 0.055
0.10 52.755 86.786 5261107 0.546 0.448
1.00 53.447 82.965 5.871%107° 0.614 5.101
10.0 54.141 83.575 5.874%107 0.598 49.168

100.0 63.658 103210  3.306%107 0.252 152.116
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Table 3.3: Variation of the optimal parameters with dimensionless friction coefficients,

s and m, while maintaining the friction ratio ~% constant at 100

s
s Sopr 'B()pl Mmax T, - T = b
(deg) (deg) lw ml* o’
0.01 41.669 87.854 5.399x10"" 0.808 0.096
0.05 33.923 85.588 2.067%107" 0.902 0.312
0.10 33.561 85.144 1.061%107" 0.912 0.624
0.50 34.079 85.122 2.135%107° 0.912 3.103
1.00 34.441 85.554 1.064%107* 0.902 6.088
5.00 41.826 105.83 2.007%107° 0.588 13.6704
10.0 45.985 112.590 9.173%107* 0.472 19.268

Table 3.4: Variation of the optimal parameters with dimensionless friction coefficients,

s and m, while maintaining the friction ratio ~% constant at 1000

s
(deg) (deg) lw ml*w’
0.01 22.111 85.447  6.140%107" 1.027 0.137
0.05 19.769 85.601  2.483%10°" 1.024 0.336
0.10 20.087 85.946  1.241%107" 1.016 0.664
0.50 25.768 115.120  2.447%107° 0.586 1.116

1.00 28.725 125.540  1.197%107 0.460 1.404
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Table 3.5: Variation of the optimal parameters with the ratio of friction coefficients, —>

s

while maintaining the non-dimensional tangential friction component, 75 constant at 1

10

25

50
100
250
500
1000

aopt

(deg)

64.915
59.153
53.462
45.440
39.622
34.441
30.031
29.976
28.722

Bopt
(deg)
79.887
81.986
82.968
84.043
84.751
85.554
89.306
112.93
125.51

77max

8.876%107*
3.637%107°
5.871%107°
8.300%107°
9.653%107°
1.064 %107
1.144%1072
1.180%1072
1.197%1072

0.204
0.456
0.614
0.768
0.850
0.902
0.894
0.592
0.460

3.7
4.536
5.101
5.652
5.940
6.088
5.552
2.356
1.404



Chapter 4

EXPERIMENTAL VALIDATION

To validate the analytical results, a snake robot which consists of six rigid
wheeled members actuated by servos at the five joints has been built. The wheels have
been chosen so that they have little slip in the lateral direction i.e. they are able to
generate large friction coefficients in the normal direction and have relatively low friction
coefficients in the tangential or forward direction. Thus the experimental conditions were
designed to qualitatively match the assumed friction characteristics in the analytic
formulation. A picture of the six link snake robot operating on treadmill can be seen in
Fig. 4.1. The mass of each link, m is 75.6 grams and the length of each link (2*/) is 7.6
cm. The friction characteristics are measured by utilizing the capability of the treadmill to

tilt it to a desired angle of forward inclination (or tilt) (y) and run at a desired velocity.

4.1 Friction Characteristics of Treadmill

To measure the tangential friction characteristics, the snake is set free perfectly
straight on the treadmill i.e. relative angles between the links to be 180 deg. This is
accomplished by setting all the servo angles at 90 deg. Initially, y is set to a very small
angle (2 deg in this case) and then increased steadily. The velocity of the treadmill is
increased until the gravity of the snake almost balances the frictional forces on the snake.

The above process is repeated in steps of 0.2 deg until a speed of 1 m/s is reached which
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is approximately the physical limit of the snake. Knowing the mass of the snake, m, and
the tilt angle, y, the tangential friction force, F; can be calculated using the following

relationship:
F,=m-g-siny (4.1)

where, g: acceleration due to gravity.
Figure 4.2 shows a plot of the tangential friction characteristics. Assuming the
tangential friction force to vary linearly with the tangential velocity, the tangential

friction characteristics are predicted to vary as:

F, =0.084-v, +0.14 (4.2)

where, v, is the velocity in tangential direction.

To estimate the friction characteristics in the normal direction, the links are
slightly bent alternately with the relative angle between adjacent links slightly less than
180 deg (Fig. 4.3) (165 deg in this case (=180—-24 by definition)). As in the earlier case,
this is attained by setting the servo angles alternatively at (90i/1)deg. The friction
measurements are repeated as indicated above. The force equilibrium equation in the
direction of treadmill velocity can be written as:

F,-cos A+ F,-sinA=m-g-siny (4.3)

where, F, is the friction force in the normal direction.

Assuming F; known in Eq. (4.3), solving for F), yields:

o (m-g-siny—F, -cos 1)

n

4.4
sin A “@4)
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A plot of the normal friction characteristics is shown in Fig. 4.4. Again, assuming
a linear variation of normal friction force with the normal velocity, the normal friction

characteristics are predicted to vary as follows:
F =12-v,+0.27 (4.5)

where, v, is the velocity in normal direction.

Equations (4.2) and (4.5) indicate that the friction characteristics of a snake
operating on a treadmill surface resemble that of a viscous friction model with an offset
or in other words, a Bingham friction model and not purely viscous as assumed in the
analysis of optimal gait in Chapter 3. The optimal gait parameters have to be derived
considering the offset in the friction characteristics. The procedure is detailed in the

following section.

4.2 Optimal gait parameters for a Coulomb plus viscous friction model

A simple Coulomb plus viscous friction model (Fig.4.5) is governed by the

relationship: F,, = sign(v)- ¢, + ¢+ v, where the signum function, sign(v) is defined as:

-1 when v<0
sign(v)=< 0  when v=0 (4.6)
1 when v >0

and c, is the Coulomb friction coefficient, ¢ the viscous friction coefficient and F., the

friction induced force at the point of contact. Considering the tangential and normal

directions, there are four friction coefficients; C, ,C, ,C, andC,. In addition to the
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thirteen 7 parameters established in Chapter 3 (Eq. (3.10)), two additional 7 parameters

corresponding to the Coulomb friction coefficients, C, and C, ~are needed to complete

the set of dimensionless parameters. These two « variables are expressed as:

Ty, = Cto
4=
mlw
4.7
) (47)
T
1 mlw®

The variation of the optimal gait parameters under the influence of Coulomb plus
viscous friction model is studied maintaining the tangential and normal viscous friction

coefficients constant at 7;=1.0 and 7, =10.0. The dimensionless Coulomb friction

) Ty

coefficients 5 and

are varied around the experimentally determined nominal
mlw mlw

values of 2 and 4 respectively. Specifically, the optimal parameters are determined for

mandms =1, 2, 5, 10 and are presented in Tab. 4.1. A plot of the variation of 7,
with 7, and 5 is presented in Fig. 4.6. It can be seen that for a given dimensionless

tangential Coulomb friction coefficient, =, in general increases with increase in

nmax

dimensionless normal Coulomb friction coefficient, 7,5. Also, for a given 7,5, #,.

decreases with increasing m,,. Overall 7,  1s in general less than the base value of 0.59

% at zero Coulomb friction in the tangential and normal directions.

A plot of the variation of optimal amplitude «,, and optimal phase f,, with

opt

m 4 and 75 is shown in Figs. 4.7 and 4.8 respectively. Variations in a,, and f,, do not

exhibit any particular trend except that f,  for a given x,, and 7,5 is in general less than

opt
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the base value of 83 deg at zero Coulomb friction in the tangential and normal directions.

Figure 4.9 represents the variation of optimal dimensionless velocity with 7z, and 5. In
general for a given dimensionless tangential Coulomb friction coefficient, 7, increases
with increase in dimensionless normal Coulomb friction coefficient and for a given 75,

7, decreases with increase in m,,. Finally, a plot of the variation of optimal

dimensionless power with the dimensionless Coulomb friction coefficients for a given set
of dimensionless viscous friction coefficients is presented in Fig. 4.10. There is no

particular trend observed in the variation of z#, with x,, and 75, but the dimensionless

power consumption for a given set of dimensionless tangential and normal Coulomb
friction coefficients is in general higher than the dimensionless power consumption for
pure viscous friction model i.e. zero Coulomb friction.

Having established the variation of optimal parameters with the Coulomb friction
coefficients, experiments are performed on the snake robot to validate these results.

However, on the treadmill, the actual friction coefficients C, ,C, ,C,andC, are

>
constant rather than their dimensionless counterparts. Hence the dimensionless friction
coefficients change from one value of omega to another, with the ratios of viscous and
Coulomb friction coefficients remaining constant. This is essentially the same problem
that was dealt with in Chapter 3 (Tabs. 3.2 - 3.4) i.e., variation of optimal parameters with
the dimensionless friction coefficients while maintaining the friction ratio constant. Table
4.2 represents the variation of optimal parameters with dimensionless friction
do not

coefficients. It can however be seen that the optimal parameters a , and f

opt opt
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vary much with dimensionless friction coefficients for a given set of friction ratios. This
further corroborates the results established in chapter 3.

Tests are performed on the treadmill to validate the frequency-velocity
relationship at the optimal parameter settings. The optimal parameters of Tab. 4.2 are
used to operate the snake at different frequencies and the velocity of forward locomotion
is measured and tabulated along with the corresponding velocity predicted by the
analytical model and is presented in Tab. 4.3. A plot of the analytical and experimental
velocities predicted is shown in Fig. 4.11 along with the corresponding curve fits. The
experimental velocity measured seems to match closely with the analytical predictions.
The slight variations in the values predicted by the experiment can be attributed to the
difficulty in predicting the friction characteristics of the snake in the normal direction.
Normal friction characteristics are relatively more sensitive to minor variations in the
angle A, while the tangential friction characteristics are independent and these differences

get amplified at higher frequencies.
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Figure 4.1: Six-link robotic snake on treadmill
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Figure 4.2: Plot of mean tangential (or longitudinal) force, F; versus mean tangential (or
forward) velocity V; to determine the tangential friction coefficient, C;
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Figure 4.3: Orientation of the links to determine the normal friction characteristics
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Figure 4.4: Plot of the mean normal (or transverse) force, F, versus the mean normal (or
transverse) velocity V, to determine the normal friction coefficient, C,
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Figure 4.6: Plot of the variation of 7, ,, with dimensionless Coulomb friction coefficients

7,4, and ;5 while maintaining 75 and 4 constant at 1 and 10 respectively
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Table 4.1: Variation of the optimal parameters with dimensionless Coulomb friction

67

coefficients, m,, and 7,5 while maintaining the dimensionless viscous friction coefficients

10

s

10

75 and r, constant at 1 and 10 respectively

aopt

(deg)

53.462

61.090
63.552
51.564
36.370

62.255
62.490
64.060
44.982

64.784
64.102
72.388
68.905

50.741
50.285
72.972
73.288

IB opt
(deg)

82.968

67.5576
74.7369
74.8673
67.8002

52.453
55.9522
73.2438
67.2627

44.5561
45.3546
52.6545
73.3142

68.3025
69.737
48.4928
49.3475

nmax

5.871%1073

2.166%107°
2.871%107°
4.886%107°
5.987%107°

9.115%10~*
1.204%1073
2.482%107°
3.679%107°

1.495%107*
2.088+107*
4270107
1.101 %107

8.145%107°
6.490%107°
5.422%107°
1.896+107*

v
T, =—
2

lo

0.613

0.693
0.738
1.005
1.251

0.665
0.734
0.867
1.167

0.395
0.465
0.629
0.799

-0.210
-0.188
0.300
0.574

.- b

ml’w?

5.098

17.660
15.089
16.471
20.806

38.649
35.616
24.093
29.470

83.169
82.539
73.671
46.168

43.190
43.451
132.506
138.426




Table 4.2: Variation of the optimal gait parameters with frequency maintaining the
friction coefficients constant at the experimentally determined values: C, = 0.084,

C, =120, C, =0.14 and C, =027

w

(rad/s)

3.16
5
7.07
10
15.81

aopt

(deg)
69
66
66
68
62

IB opt
(deg)

73
73
72
75
74

0.11
0.17
0.23
0.31
0.43

s v
(”6:15'775) (”15=2'7T14)
0.35 5.0
0.22 2.0
0.16 1.0
0.11 0.5
0.07 0.2

68

Table 4.3: Experimental determination of the variation of velocity with frequency on the
treadmill at the optimal values predicted by the analytical model

w

(rad/s)

N N W

aopt

(deg)

69
66
66
68
66
68
68
68

Bopi
(deg)
73
73
75
75
73
75
72
75

Analytical

velocity (v

0.035
0.070
0.11
0.14
0.17
0.20
0.23
0.31

ana )

Experimental

velocity (v

0.042
0.083
0.13
0.17
0.21
0.25
0.28
0.38

exp )



Chapter 5

CONTINUUM SNAKE ROBOT MODEL

5.1 Finite element formulation of the governing dynamics

A mathematical model for continuum snake robot is based on utilizing the beam
bending theory to emulate serpentine locomotion. An elementary beam model consists of
two degrees of freedom at each node, the transverse displacement and rotation. In
addition, an axial degree of freedom at each node should be considered to account for
forward motion. Similar to the applied joint torques in an articulated model considered in
Chapter 2, the continuum model has bending moments applied to each beam element.
Fig. 5.1 shows a five-element (or an 18-degrees of freedom) finite element model used in
the design of a continuous snake and Fig. 5.2 describes the nodal parameters of a generic
link. The gait of continuum model is first studied in the absence of friction by comparing
it to that of a rigid-link model established in Chapter 2. This is achieved by ignoring
friction while formulating the governing equations of motion of the flexible snake robot.
A viscous friction model is then incorporated into the governing equations to explore
locomotion patterns. A five element flexible beam model is assumed to be equivalent to a
six-link articulated model based on the fact that each beam element is an actuator in
itself.

From the elementary finite element beam theory [27], beam element mass and

stiffness matrices and force and displacement vectors can be written as follows:
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The element mass matrix, [m] is defined as:

(140 0 0 70 0 0 |
0 156 221 0 54 —13]
(] = 24! 0 220 4* 0 13 -3 -
m|=——-— .
420070 0 0 140 0 0 G-
54 131 0 156 —221
L0 -13/ =37 0 -2201 4° |
The element stiffness matrix, [£] is given by:
[ C, 0 0 -G 0 0 |
0 12C, 6C,0 0 —12C,0 6C,l
[k]= 0  6C,0 4C,1* 0 —6C,0 2C,I* <
|l-c, 0 0 C, 0 0 (52)
0 -12C, -6C,0 0 12C, —6C,l
L0 6C, 0 2C,017 0 —6C,1  4C,I* |
where C; and C, are defined as follows:
. _H (5.3)
s

The element force vector, f. comprises of the externally applied forces and

moments to the beam element. Since there are no external forces applied to the beam

element and only bending moments are applied to the beam element as shown in Fig. 5.2.

The external force vector for i beam element is given by:



71

0

0

Ml'
{fe}= 0 (5.4)

0

- M,
with applied bending moment assumed to be of the form:

M,=M,sin(wt + ;) (5.5)

where, f, =(i—1)f and i=1,2,..n

The element friction vector, f 4., is derived from the non-conservative work done
in overcoming friction. Based on the viscous friction model developed in Chapter 2, i.e.
Egs. (2.28 - 2.33), the frictional losses can be derived. The friction forces at any given
point on a beam element are depicted in the local (¢ - n) and global (x - y) frames of
reference in Fig. 5.3. The work expended (per unit length) in overcoming the contact
forces between the ground and an infinitesimal element length can be expressed in the

global coordinate system as follows:

oW, =6u-F,+6w-F (5.6)

where, Wf is the work done per unit length; F, and Fy are frictional forces per unit

element length and du and ow are the infinitesimal displacements in x and y directions

respectively.

Equation (5.6) can be rewritten in matrix form as:

W, =[ou M]-{?} (5.7)

y
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Using a similar form of Eq. (2.33) in Eq. (5.7) results in:

— cos® —sinf]|C, 0 cosf) sinf | |u
oW, =—lou ow| S I : .
s o on] Lin@ cosf } { 0 CJ {— sinf) cos 9} {w} 58)
where Et and En are the tangential and normal friction coefficients per unit length.

The total energy lost in overcoming friction and hence the element friction matrix
is obtained by integrating Eq. (5.8) over the element length. This procedure is detailed in
Section 5.3 where locomotion of a continuous snake is analyzed.

The element displacement vector consists of nodal translational and rotational

displacements and is given as:

{x}= (5.9)

where the various parameters used in Egs. (5.1 - 5.9) are defined as follows:

n Total number of beam elements

p Mass density of each beam element

A Cross-sectional area of the beam

/ Length of the beam element

E Modulus of elasticity

1 Area moment of inertia of the beam cross section

M; Moment applied to the i” beam element
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u,w;,0; Linear and angular displacements of the i node

M, Magnitude of the applied bending moment to the i” element

® Frequency of sine-wave input

S Relative phase lag between the sinusoidal inputs of the adjacent beam

elements
The element matrices are assembled, assuming identical properties for all the
elements, to arrive at the global matrices and hence the global equations of motion. These

global equations of motion can be expressed as follows:

[MUX} +[KI{X} ={F,} + {F,.} (5.10)
where
M Global mass matrix
K Global stiffness matrix
F, Global load vector

F e Global friction vector
X Global displacement vector

The MATLAB Simulink software is used to numerically integrate Eq. (5.10) to
obtain a solution X (t) Fig. 5.4 represents the implementation of the dynamics of a
continuum model in MATLAB Simulink software. After obtaining the nodal
displacement vector, X(¢), the variation of translational and rotational displacements
between any two adjacent nodes is determined by using the appropriate shape functions.

The variation of the longitudinal displacement, u(§,t) over the element length and as a

function of time is given as:
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) =00 Mol 11

where the linear shape functions N, (&), N,,(&) utilized above are described as follows:

u

T
(5.12)
Nu2 = _(1 + gZ)
with
E= % -1 (5.13)

being the dimensionless coordinate along the length of a beam element. The coordinate &
as seen in Fig. 5.2 varies from £ = -1 at node 1 (x =0) to = +1 at node 2 (x = /).
Similarly, the variation of transverse displacement between two adjacent nodes of

an element is given by:

(& 1) =[N, (&) Ny(&) N,u(@) Ny ) (5.14)
)

where the cubic shape functions of a plane beam element used to interpolate between any

two adjacent nodes of an element are given by:

N =5 1-¢P@+2)
Nop = 100-£P(1+8)
| (5.15)
Ny =5 1+£)(2-¢)
Ny == 1l1+€)(1-8)



Finally, the rotation between two adjacent nodes is governed by:
d
e(é:a t) = d_ W(é:’ t)
X
which can be rewritten as:

0le0)= Jomen) 5

Further, differentiating Eq. (5.13) with respect to x yields:

g _2
dx |

Substituting Egs. (5.14, 5.15 and 5.18) in Eq. (5.17) results in:

Upon simplification, this results in:

s

o) =21B.1() By() Bul) Bnl)]

>

[\

where the quadratic interpolation functions are given as:

B =2 (6 1NE+)
By = (5 +1)¢-1)
B == (-1 +1)
B =B +1YE-1)

D
—~
SN—

—

S
~
SN—" e’

75

(5.16)

(5.17)

(5.18)

(5.19)

(5.20)

(5.21)
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Equations (5.11, 5.14 and 5.20) can be assembled together into one single

equation that describes the variations of displacements and rotations as a function of time

and element length as follows:

ul(t)
wEn)] [Na) 0 0 N,»(¢) 0 0 Zl((tt))
wid)p=| 0 Nu(&) Nue) 0 N,L(E) Ny ul(t) 522
) 0 Bu) Bu) 0 B,() Bpl) wz(r)

0, (1)

Thus, using the Global displacement vector, X(¢) obtained from Simulink and the

shape functions described by Eq. (5.22), the beam’s displacement and rotation at any time

instant can be determined.

5.2 Gait comparison to a discrete snake model

As stated earlier, to compare the gait of a continuum model to that of a rigid link
snake robot established in chapter 2, friction is neglected. Thus the governing equations

of motion established in Eq. (5.10) take the form:
[MI{X} +[K]{X} ={F} (5.23)

The dynamics of the above system are simulated using Simulink software and a
plot of the snake’s gait at six time instances over one time period for phase angle, 5 = 80
deg, and frequency, w = 3 rads™'is shown in Fig. 5.5 A similar plot is made for the rigid-
link snake robot and is shown in Fig. 5.6. The total mass and length of the snake are

maintained the same between the two models.
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Comparing Figs. 5.5 and 5.6, one can conclude that the gait of the continuum

snake matches closely to the rigid-link snake. A six-link articulated model is equivalent

to a five-link flexible model as stated earlier. In order to match the transverse

displacement of the flexible snake to that of a rigid-link snake, tuning of the beam

bending rigidity and (or) the applied bending moment is necessary.

5.3 Introduction to locomotion

The locomotion of a continuum snake robot is analyzed by employing a viscous

friction model to describe the element-to-ground interaction as in the case of an

articulated model. Eq. (5.8) established earlier has to be integrated over the element

length to obtain the element friction vector. Using Egs. (5.11) and (5.14), ou, u,owand w

can be expressed as follows:

and

5WZ[Nw1 Ngp Nyp» Nez]'

(5.24)

(5.25)

(5.26)
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W:[Nwl Nogi Ny Nez]' . (5.27)

Combining Egs. (5.24) and (5.26) into a single equation results in:

'N, O
0 N,
0 Ny
[ou ow|=[ou, ow, 6, ou, ow, 56,] N, 0 (5.28)
0 N,
0 Ny |
Similarly, combining Egs. (5.25) and (5.27) yields:
1’21
Wl
w| [N, O 0 N, 0 076
{w}{ 0 N, N, O N, Ngj' iy (5:29)
Wz
0,

Substituting Egs. (5.28) and (5.29) into Eq. (5.8) yields:
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N, ©
0 N,
— 0 Ny | |cos@ —sinf
oW, ==[ou; ow, 00, Su, ow, 90,] { }
N, 0 sinf  cos®
0 N,
L0 Mo , (5.30)
U
W
C, 0 cosf sin@ || N, O 0O N, O 0 6,
{O fn}{—sinﬁ COSQ:|'|:0 N, Ng 0 N, N(,z] u,
W,
0,
Integrating Eq. (5.30) over element length yields:
Ny 0]
0 N,
L L
[W Jx=—[\[ou, ow, 66, ou, ow, 66,] 0 No
0 0 Ny 0
0 N,
0 Ny, |
{cos@ —sin@} {Et 0} {cos@ sin @ |
. L 2T - (5.31)
sinf  cos@ 0 C,||—sinf cosb |
i
Wi
{Nul O 0 N, 0 o] 0, "
0 Ny Ngg 0 Ny Ny i
Wy
0,

Simplifying Eq. (5.31) using Eq. (5.18) results in:
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N, O
0 N,
1
5Wf=—é-[5u1 ow, 00, Su, Ow, 0,] jl N(; Nom
0 N,
| 0 Ny, |
{cos@ —sin@]{a _O]{cosﬁ sin@} (5.32)
sinf  cosf 0 C,||—sinf cost
0
Wy
{Nul 0O 0 N, 0 OD}QI
ac -9 .
0 N, Ny 0 N, Ny U
WZ
0,

where Wy is the total energy expended in overcoming the contact forces between the

ground and beam element. Eq. (5.32) can be rewritten utilizing Eq. (5.9) as follows:

o, ~olsh{ -4 o] 1] {61} ol | 4 533

where, the shape function matrix, D, the transformation matrix, 7, and the friction

coefficient matrix, G are defined as:

S [Na 0 0 Ny 00
- 0 Nwl Né‘l 0 Nw2 N02

. cosf) sind s34
| —sin@® cosO (5:34)
6=|C O

0 C,

Eq. (5.33) is of the form:
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oW, =0{x} [ (5.35)

The element friction matrix, f 4, is given by:
Lt oot .
fon (— o] 17 ~[G]~[T]-[D1ds){x} 536)

which is of the form,
Spie ==le]- 43} (5.37)

where [c] is analogous to element damping matrix and is of the same dimensions (6x6) as

the element mass and stiffness matrices and is given by:
I v ooy

[d=5{ﬂﬂ-V]IG}Vlﬁ&ﬁ (5.38)

Due to the non-linear nature of the integrand in Eq. (5.38), numerical integration

is carried out to determine the [c] matrix. The element damping matrices are then

assembled assuming identical properties for all the elements, to arrive at the global

damping matrix, [C] Thus, the global equations of motion for a beam element as

indicated in Eq. (5.10) can be simplified using Eq. (5.37) as:
[MI{X} +[K]{X} +[CIH{X} ={F,} (5.39)

where [(] is equivalent to global damping matrix.

Eq. (5.39) is solved numerically using MATLAB Simulink software to obtain the
nodal displacements and rotations of the beam elements as a function of time. A plot of
the snake’s gait at # = 81 deg and w = 5 rads™ at five instances over one time period is

shown in Fig. 5.7. A trace of the path followed by the snake robot at f# = 81 deg and w =
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5 rads™ is presented in Fig. 5.8. Similar plots for the rigid-link snake robot are presented
in Chapter 2. The total mass and length of the snake as well the overall friction

characteristics are maintained the same between the two models.
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Figure 5.1: Five-element beam model of continuum snake
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Figure 5.2: A representation of nodal parameters on the i™ element
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snake robot model

i

lia |

Matrizx IC]
Multigly

(1111




85

Link Le‘ngth =72 cm __t=0sec
c 2\ Link mW 2
o
~— —2* | 1 1 L
2 2 ‘ ‘ . ‘
o 2 ‘ ‘ ' |
E’ —25_-_—-\ 1 1 1
5]
a 2f ‘ ‘ ' ‘
L \
% _2/ L 1 |
O DF ‘ ; : :
5 ~ 5_____/
c 2L ‘ : i : g
© ‘ ‘ . t = 2n/o sec
-2t ‘ , } ‘ |
0 7.2 14.4 21.6 28.8 36

Length of the Snake (cm)

Figure 5.5: Plot of the gait of continuum model over one time period for f = 80 deg, and
o =3 rads™ for zero friction case
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Figure 5.7: Plot of the continuum snake robot’s gait at five instances over one time period
at =80 deg, and w = 5 rads™

E 01 Link mass = 1.2 Kg |
E Link Length = 0.072 m

o 0.05- ]
Q

@

O

5 N VVVVVVNVNV VW
©

3

S -0.05¢ 1
=

73]

c

S 01 1
|_

1 15 2 25 3 35

Distance traveled in x-direction (m)

Figure 5.8: A trace of the path followed by the flexible snake robot at =80 deg, and w
=5 rads™



Chapter 6

CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

The primary goal of this study has been to develop mathematical models suitable
for the analysis, design and control of snake-like locomotors. An implicit method to study
the dynamics of serpentine locomotion has been established. Using this implicit model,
optimal gait of a six-link snake robot that maximizes the performance index is established
for a wide range of friction characteristics. Experimental tests are performed on a six-link
robotic snake to validate the optimal gait established via the analytical model. Further, a
dynamic model for continuum snake robot is presented with details of the friction
modeling and comparisons to rigid-link model.

In Chapter 2, a detailed formulation of the dynamics of a three-link articulated
model is presented in two different methods - explicit and implicit. A comparison of the
results from the two methods is then presented to confirm that the two methods are
equivalent. It is algebraically quite challenging and tedious to solve for the governing
equations of motion for higher number of links by the explicit method. The implicit
method simplifies the algebraic manipulations considerably by relaxing an algebraic
constraint of connection between the joints by modeling them using spring-damper
systems. The dynamics of the spring-damper system can be simulated to directly obtain

the coupling forces between the joints and hence does not require solving for the joint
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forces as in the implicit method. The key advantages of implicit method are that the
friction model is not inter-linked with the formulation or derivation of the system
dynamics and the ability to extend the theory to higher number of links. This is quite
unlike the explicit model where the governing differential equations have to be re-derived
to account for the changes in friction characteristics and extending the explicit model to
higher number of links is very challenging.

Having established that the implicit model predicts locomotion behavior equally
as well as an explicit model for a three-link snake robot, the implicit model is then used
in Chapter 3 to establish the optimal gait of a six-link snake robot. Dimensional analysis
and Buckingham’s pi theorem are used to effectively analyze the optimally efficient
locomotion by combining the various parameters influencing the snake’s locomotion into
a group of dimensionless parameters. In order to determine the optimally efficient gait,
two solution methods are considered: 1) an iterative search through a range of parameters
o and f and 2) a non-linear multi-variable optimization technique. Although an iterative
search method helps in establishing the presence of a unique optimal operating point, it is
however numerically quite challenging to determine the optimal parameters using this
method. A non-linear multi-variable optimization routine is instead used to predict the
optimal gait parameters for varying tangential and normal viscous friction characteristics.
The following are some of the important conclusions drawn from the study:

e For maximum performance index, one has to operate at low values of tangential

friction coefficient (75 between 0.01 and 0.1) and high values of friction ratio

(n—6 between 100 and 1000). The same holds true even for maximum velocity.
s
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Nmax 10 general does not vary as much with the friction ratio as compared to the

actual dimensionless value of tangential friction. This is quite unlike the variation

in the optimal gait parameter «, ,, which is greatly influenced by the friction ratio

opt >
rather than the magnitude of friction coefficient.

e At lower values of tangential friction, (75 < 0.1) optimal velocity increases with

the friction ratio, but at values of w5 > 0.1, optimal velocity decreases for higher

values of friction ratio (n—6 > 100). This drop in velocity increases for higher
s

values of friction ratio. Furthermore, for a given friction ratio, there is a limit on

w5, and for a given xy, there is limit on friction ratio, upto which the velocity

increases and beyond which it starts decreasing.

Results from the experimental tests performed on a six-link snake robot are
presented in Chapter 4. Specifically, friction characteristics of the treadmill are measured
and found to resemble that of a Coulomb plus viscous friction model. The variation of the
optimal gait parameters with the tangential and normal Coulomb friction coefficients is
established maintaining the viscous friction coefficients constant. The maximum
performance index in general increases with increasing dimensionless normal Coulomb
friction coefficient and decreases with increase in dimensionless tangential friction

coefficient. The same trend is also observed in the variation of optimal velocity. f,, for

a given set of dimensionless Coulomb friction coefficients is in general less than the
value at zero Coulomb friction. This means the optimal motion consists of lesser number

of sine waves in the presence of Coulomb friction. Finally, experiments are performed on
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the snake robot at the optimal parameters obtained by the analysis and the variation of
optimal velocity with frequency is studied. The experimental predictions indicated close

agreement with the analytical results.

6.2 Recommendations for Future Work

In the present study a comprehensive theory has been presented that can be used
as a foundation for further study of serpentine locomotion. This thesis has however
opened up as many questions for future research as it has answered regarding the basic
understanding of snake-like locomotion. This section summarizes the areas of possible
future research.

1. The variation of optimal parameters with number of links. Specifically how the
velocity, power consumption and performance index vary with the number of
links; and what would an optimal number of links be to operate on a surface with
a given set of friction characteristics to achieve maximum performance index.
Does an optimal value for number of links exist? What should be the number of
links for end-effects to not have an influence on the joint forces of intermediate
links?

2. Robustness of the maximum performance index predicted with uncertainty in
system parameters i.e. how would the performance index be affected if the
friction characteristics are uncertain or if the power input is limited and how

would the optimal gait parameters change.
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Experimental validation of the power consumption and optimal gait parameters.
Although the variation of experimentally measured power consumption matches
qualitatively with the analytical results, the exact values could not be matched
because of the high standby current consumption of the servo actuators. Other
methods to measure the power consumption such that this offset is accounted or
eliminated have to be considered.

Variation of the optimal gait parameters and the corresponding maximum
performance index for a continuum snake robot. It has been observed that even
assuming discrete points of contacts with the ground at the nodes, the distance
traveled by the snake seemed to be comparable to that of a snake with continuous
friction contact with the surface. This issue needs to be further analyzed with
regards to performance index to determine whether a discrete friction model
would still be enough even for a continuum snake robot.

In addition to the above possible areas of future work based on the currently

established models, new mathematical models can be developed to explore the following

arcas:

The present study deals only with the analysis of planar serpentine locomotion.
There are however other gaits e.g. sidewinding, concertina and rectilinear that
needs to be explored along with three-dimensional motion. The variation of
performance index with different gaits; and given a set of friction characteristics,
what would be an appropriate gait to operate in to achieve maximum performance

index?
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Effect of other friction models i.e. fluid drag model, Coulomb friction
approximation, biviscous friction model etc. on the maximum performance index
and other optimal parameters. Additionally, methods to measure or estimate the
robot/ground interaction to further improve adaptability to the environment and
minimize the power consumption or equivalently maximize the performance
index can also be studied. Serpentine locomotion on surfaces with uniform
friction characteristics reminiscent of [17] is also open to investigation.

On the experimental front, friction characteristics can be determined for various
other surfaces and the optimal gait parameters established via the analytical model
can be validated with the experimental results.

Although, a mathematical framework has been established for the analysis of
dynamics of a continuum snake robot explicitly, other methods of investigating
the flexible robot locomotion is still open to exploration. For instance, is there an
implicit method of analyzing the dynamics of a continuum snake similar to the
articulated model remains to be answered? This might be of interest in the optimal
gait analysis where an implicit method, if existed, may take lesser simulation time
than the explicit method.

The continuum snake robot analysis can further be extended to adapt to various
friction environments and a continuum snake can be built to validate the
analytical results.

Applications related to grasping, path planning, motion control, obstacle
avoidance, etc. can be studied to make the snake robot adapt to environment and

perform various tasks.
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