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ABSTRACT 

Vehicle rollover is a large concern in the automobile industry.  It claims many 

lives each year.  Research to investigate the dynamics involved in rollover accidents is 

necessary in order to mitigate rollover. 

This work focuses on an initial investigation of predicting vehicle wheel lift 

thresholds and determining a means to prevent it.  Through simulation and experimental 

results, road conditions and vehicle parameters that increase rollover susceptibility are 

explored.   

First, vehicle dynamic models are derived to create a better understanding of the 

physics behind rollover.  A two-degree-of-freedom model is compared to a three-degree-

of-freedom model for validation of the planar dynamics.  The threshold for tire saturation 

is determined with both models.  Then it is juxtaposed with the threshold determined for 

wheel lift of a vehicle calculated in terms of the maximum restoring moment of the 

suspension in order to determine if a roll before slip condition exists.  The effects of a 

banked surface on the wheel lift threshold are also established   

Second, a feed-forward control method is used to modify the dynamics of a 

vehicle that is likely to experience wheel lift and hence rollover.  By taking the 

differences in parameters of a more stable vehicle into account, an algorithm is designed 

to alter the steering input of a vehicle to avert perilous conditions. 

Finally, the control algorithm is implemented in an experiment utilizing a scaled 

vehicle.  The vehicle has similar dimensionless parameters to that of an actual vehicle.  
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Wheel lift is achieved for the scaled vehicle on a banked surface with a sinusoidal 

steering input and then prevented by the controller at the same conditions.   
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Chapter 1 
 

Introduction 

This thesis will focus on studying the thresholds for wheel lift predicted by 

vehicle models, developing a control algorithm to modify unsafe steering inputs that 

might lead to wheel lift, and using a scaled vehicle to test the algorithm’s ability to 

prevent vehicle rollover on a banked road surface.  The main goals for this work are to 

show how a banked surface affects the likelihood of vehicle rollover and to use a control 

algorithm to mitigate wheel lift on this type of surface. 

1.1 Motivation 

There are various sources of motivation for this work.  The first is to help find a 

way to make vehicles safer.  In order to help prevent vehicle rollover, an understanding 

of vehicle roll models and the conditions that cause rollover must be explored.  Therefore 

the second source of motivation for this work is to further the knowledge in this area.  

Finally, exploration of safe and cost efficient methods of vehicle rollover experiments is 

advantageous to academic research.  This work will demonstrate the benefits of using a 

scaled vehicle instead of a full-size vehicle for controller testing. 
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1.1.1 Safety Goals of the Automobile Industry 

One of the largest concerns of automobile manufacturers is safety.  The 

development of the automobile has made transportation much more feasible for the 

average person, but the problem of accidents has not been solved.  In 2001, more than 

42,000 fatal car crashes occurred in the United States [1].  It is a common goal to 

eliminate or at least help prevent this large number of deaths.  The U.S. Department of 

Transportation reports that automotive safety features have saved 329,000 lives since 

1960 [2]. Commercials often boast that their cars have surpassed safety standards to 

appeal to customers who are rightfully worried about the wellbeing of their family and 

friends.  According to a poll led by Harris Interactive Inc., six of the top ten most desired 

features by consumers were safety related [2]. Automobile safety will continue to be an 

issue throughout the years to come. 

One of the latest ideas in the automobile industry is the development of crash 

avoidance systems which have the purpose of helping drivers avoid and prevent accidents 

before they occur.  This is much different than the majority of today’s safety features 

which collaborate to protect the driver and passengers during or after the event of a car 

crash.  Reducing the total number of accidents would consequently reduce the number of 

fatalities caused by automobiles.   

A key challenge in preventing accidents is deciding how to intercede.  Driver 

error causes ninety percent of all crashes [3].  Decreasing the amount of driver error 

would potentially create safer roads.  That is why one of the main ideas in industry is to 

warn the driver in the case of an impending accident or alter the input of the driver before 
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it causes an accident.  Unfortunately, the driver reaction times and the limitations of 

advanced warning systems limit the effectiveness of a driver-centered approach. 

Automobile manufacturers are already beginning to provide new automated-assist 

features that will help prevent collision.  For example, both Honda and Toyota have 

developed systems for this purpose.  Honda’s system uses radar to detect possible 

collisions and warns the driver with a buzzer and light on the dashboard.  Automation 

immediately begins to assist the driver as the system tightens the seatbelt and begins to 

apply the brakes slightly.  If the driver applies the brakes, the power of the brakes is 

strengthened.  If the driver seems oblivious, the car will increase its braking and prepare 

for a crash [1].  Toyota, on the other hand, is utilizing a system that activates only when 

the driver reacts.  It also tightens the seatbelt and assists in braking before a crash, but 

only if the driver responds to the possibility [1]. 

These developments are promising for avoiding or mitigating collision, but what 

about rollover prevention?  For passenger vehicles, 33% of fatalities are caused by 

rollover crashes even though only 3% of automobile crashes involve rollover [4].  Over 

10,000 people are killed each year when a vehicle experiences rollover [4].  For this 

reason, the safety focus in industry and government has increasingly looked at rollover 

prevention. 

For example, the National Highway Traffic Safety Administration (NHTSA) has 

recently begun roll stability evaluation of vehicles using their New Car Assessment 

Program (NCAP).  The review consists of calculating a Static Stability Factor (SSF), 

which is based on the height of the center of gravity of the vehicle and its track width, 

and a dynamic maneuvering test [4].  The SSF is given a larger weighting in the rating, 
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however, and the dynamic test is limited.  This is not necessarily a good measure of 

rollover stability since the SSF is based on only static measurements for steady-state 

maneuvers [5].  In a real rollover situation, driver input is a large factor in determining 

whether an accident will happen.  The NHTSA admits that a vehicle with its highest 

rating of five stars still has a 10% chance of rollover in a single-vehicle accident.   In fact, 

the number of rollover accidents for some five-star vehicles is higher than those of some 

three-star vehicles due to the increased likelihood of aggressive maneuvers in certain 

types of automobiles such as sports cars [4].  Furthermore, the ratings are primarily 

focused on tripped rollover, so they are not entirely relevant to the study of preventing 

un-tripped rollover.   

Industry has also begun deploying many basic rollover prevention systems.  One 

concept is the use of a variable ride-height suspension (VRHS) technique.  Vehicles with 

high suspensions required for off-road travel can lower their suspension height for on-

road, higher speed conditions and therefore decrease the probability of rollover [6].  

Active suspensions are also a common feature.  Anti-roll bars are used to help reduce the 

roll angle of vehicles [7].  Other methods include traction and electronic stability controls 

(ESC) [8].  The feasibility of active torsion bar control systems is also a current research 

topic [9].  Algorithms are also being developed by manufacturers to prevent rollover, but 

the details often are not shared with the public for proprietary reasons. 

The development of rollover prevention systems is promising.  For example, ESC 

reduces the odds of fatal rollovers by 73 percent in SUVs and 40 percent in passenger 

cars, according to the University of Michigan Transportation Research Institute [10].  

Ford plans to include rollover-reducing ESC as a standard feature in all vehicles by 2009 
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[11].  The technology is actually going to be federally required for all vehicles in the 

future [10].   

Changing the dynamics of the vehicle is not the only way to prevent rollover.  

Research is also leading to methods that involve predicting when wheel lift will occur so 

that a driver can be warned of the danger.  Time-To-Rollover (TTR) metrics, which are 

used to find the amount of time it takes for rollover to occur after a given steering input, 

are also being used in research [12].  The amount of time, however, is too small for a 

human to react in time [5].  If this method is implemented, it will be necessary to use a 

system to make the necessary changes in steering for a safe maneuver.   

1.1.2 Study of Rollover Dynamics and Conditions  

The dynamics of vehicle rollover are difficult to model.  There are many 

parameters such as roll stiffness and damping that are challenging to measure.  The 

limited amount of funds available in the academic realm for purchasing vehicles to 

collect data also makes research difficult.  Multiple vehicle roll models have been 

developed by researchers in the field including those by Carlson and Gerdes, Mammar, 

and Kim and Park [13-15].  In previous work by the research group, many of these 

models were studied and narrowed down to a few that were validated experimentally by 

the authors and used model parameters that can be measured or inferred [16].   

It is also important to understand the human factors that lead to rollover.  It is 

challenging to foresee the steering input of a human driver in an emergency maneuver.  

Attempts to model drivers have been made, but none of them accurately model every 
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single possible scenario [5].  When predicting rollover, various steering inputs must be 

considered and their effects must be studied.   

Research in steering modification has also been initiated.  One of the most 

obvious ways to prevent rollover is to never allow an unsafe steering input.  This can be 

achieved by using a steer-by-wire system.  Such systems used to help control yaw rate 

have been designed since the 1980s [17].  These controllers are now being developed to 

maintain roll stability [13].  Both feed-forward and feedback controllers were studied in 

previous work by the research group [5].  Further testing and experimental validation of 

these control methods may lead to working control systems that will successfully mitigate 

unsafe steering inputs.  Before developing these algorithms, an understanding of the 

effects of the steering input must be achieved.   

1.1.3 Scaled Vehicle Testing 

Testing roll models and algorithms created to prevent rollover can become 

extremely complicated and expensive.  If scaled vehicles could be used instead, the costs 

can be reduced and safety concerns can be eliminated.  The dynamics of a scaled vehicle 

have been shown to be similar enough to those of actual vehicles through dimensional 

analysis to be used for testing controllers [18].  The vehicles can also easily be tested at 

various road conditions, including a banked surface, that are likely to promote rollover. 
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1.2 Outline of Remaining Chapters 

The remainder of this thesis will be organized as follows:  First, a two-degree-of-

freedom model will be derived and the threshold for tire saturation will be explored in 

Chapter 2.  Then, a three-degree-of-freedom model will be derived to incorporate roll 

dynamics in Chapter 3.  The threshold for wheel lift will be calculated and compared to 

the threshold for tire saturation to predict whether a vehicle will first experience slip or 

roll. 

Chapter 4 will present a feedforward control method to prevent wheel lift by 

modifying the steering input and reducing the restoring moment acting on the vehicle’s 

suspension.  Chapter 5 will explore how a banked road surface will affect the likelihood 

of rollover and demonstrate how a similar control algorithm can be used to prevent wheel 

lift in this situation.  The algorithm will be tested through experiment using a scaled 

vehicle in Chapter 6.  The main conclusions of the work will be discussed in Chapter 7. 
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Chapter 2 
 

Two-Degree-of-Freedom-Model 

The chassis dynamics of vehicles are often described using a simplified Two-

Degree-of-Freedom (2DOF) model, and so it is important to understand this basic model 

before studying the Three-Degree-of-Freedom (3DOF) models which incorporate roll 

dynamics.  This chapter will present the 2DOF model by describing the assumptions 

associated with the model, the corresponding force equations resulting from Newtonian 

mechanics, and the final equations of motion.  The equations of motion will then be used 

to find both the algebraic forms of the transfer functions and state space models for 

various inputs such as steering angle and outputs such as lateral velocity, yaw rate, and 

tire slip. 

2.1 The Bicycle Model 

The classical “bicycle model,” which only describes lateral and yaw dynamics, 

will be used for the 2DOF analysis of this chapter.  To derive this model, the Society of 

Automotive Engineers (SAE) body-fixed coordinate system will be used [1].  This 

coordinate system is shown in Figure 2-1, and the parameters for this model are defined 

in Table 2-1.  The lateral velocity and yaw rate are often chosen as the state space 

variables.  To better demonstrate these parameters, the slip coordinate model is shown in 

Figure 2-2  
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Figure 2-1: SAE Vehicle Coordinate System 

Table 2-1: Parameters for 2DOF Model 

  
 

Parameter Definition 
U Longitudinal Velocity (body-fixed frame) 
r Yaw rate (angular rate about vertical axis) 
m Vehicle mass 
Izz Inertia about the vehicle axis 
l f Front-axle-to-CG distance 
lr Rear-axle-to-CG distance 
L Track of vehicle (lf + lr) 
t Width of vehicle 
β Slip angle of the vehicle body 
Cf Front cornering stiffness 
Cr Rear cornering stiffness 
δf Front steering angle 
α Tire side-slip angle 

 

 

 

Figure 2-2: Slip Coordinate Model 
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Certain assumptions are necessary to derive the equations of motion for the 

bicycle model.  First, small angles are assumed such that cos(θ) ≈ 1 and sin(θ) ≈ θ.  The 

longitudinal velocity, U, is assumed to be constant.  It is also assumed that the lateral 

force acting on a tire is linearly proportional to its side-slip angle.  The tire side-slip 

angle, α, is defined as the difference between the longitudinal axis of the tire and the 

tire’s local velocity vector, Vtire, and can be clearly seen in Figure 2-3.  Another 

assumption is that the tires must be rolling without slipping in the longitudinal direction.  

Finally, the forces acting on the right half of the vehicle are assumed to be symmetric to 

the forces acting on the left half of the vehicle.  The last assumption simplifies the four-

tire model to the single-track model with only two tires that looks similar to a bicycle, 

hence the name “bicycle model.”  However, the dynamics of an actual bicycle are notably 

different from this representation such that, ironically, the bicycle model is not suitable to 

describe the motion of a bicycle. 

 

 

Figure 2-3: Tire Velocity Vectors 
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2.1.1 Newtonian Force Equations for the 2DOF Model 

Now that the parameters and assumptions have been defined, the force equations 

can be derived.  As mentioned before, the side-slip angle of a tire is defined as the 

difference between the steering angle of the tire and the tire’s local velocity vector, Vtire, 

as shown in Figure 2-3.  The lateral force on the tire is related to the side-slip angle by a 

constant called the cornering stiffness.  The front and rear tires have different values for 

the cornering stiffness and are defined as Cf and Cr respectively.  The units for these 

terms are N/rad.  This relationship is shown in Eq. 2.1 

and again in matrix form in Eq. 2.2  

 By examining Figure 2-3, the slip angles of each tire may be redefined as a ratio 

of the local velocities of each tire.  The true velocity vector, Vtire, is offset from the 

longitudinal axis by the side-slip angle α.  From geometry, the new relationship is found 

in Eq. 2.3.  

 Now returning to Figure 2-2, the lateral velocity vectors for the front and rear tire 

can be found. 
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These definitions can be substituted into Eq. 2.3 to give the slip angles for the front and 

rear tires shown in Eq. 2.5 and Eq. 2.6. 

Assuming there is no rear steering input results in the final equations for the front and 

rear tire slip angles in matrix form:   

Now the Newtonian force equations can be found by substituting the tire slip equations 

into Eq. 2.1.resulting in the following algebraic force equations which are written in 

matrix form in Eq. 2.10  
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2.1.2 Motion Equations for the 2DOF Model 

Now the equations of motion for the bicycle model can be developed.  The system 

described above, however, is a non-Newtonian system because the lateral velocity and 

yaw rate are given in body-fixed coordinates.  Since the bicycle model was formulated 

with respect to the vehicle frame, the equations of motion for the vehicle with respect to 

Earth-fixed axes must be developed.  First, the longitudinal and lateral accelerations must 

be found.  If ωr  is the angular velocity of the body-fixed axes (x,y,z), and P
r

 is a vector 

whose components are time-varying with respect to the same axes, the time derivative of 

the vector can be calculated [2]. 

Therefore, the accelerations relative to the body-fixed axes may be expressed by taking 

the derivative of the velocity vector v
r

 as in Eq. 2.12. 

Here, a
v

 is the total acceleration of the body in global coordinates, v&
r

is the time rate of 

change of v
r

 in global coordinates, and ωr  is the vehicle’s yaw rate in body-fixed 

coordinates.  

P
dt

Pd
P

rr
r

&r ×+= ω  2.11 

vva &rrrr +×= ω  2.12 
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 The velocities U and V have already been defined to be along the x- and y- axes 

of the body-fixed frame respectively as shown in Figure 2-4 .  If the unit vectors of the 

body-fixed (x,y,z) coordinate system are ( kji ˆ,ˆ,ˆ ) and  

Eq. 2.12 can be expressed as:  

which becomes:  

after taking the vector cross product.  The terms can be separated to give the x and y 

components of acceleration:  

 

 

Figure 2-4: Motion of a Body-Fixed Coordinate System 
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 Eq. 2.16 is equal to zero due to the previous assumption that longitudinal velocity 

is constant and the tires are rolling without slipping.  Therefore the acceleration along the 

longitudinal axis is zero.  This means there are no net forces acting along the x-axis.  By 

summing the forces in the lateral direction and the moments about the vertical axis, the 

equations of motion are formed.  

Substituting Eq. 2.8 and Eq. 2.9 into the equations of motion results in:  

Rearranging the equations gives:  

Recognizing the state space matrices terms of the dynamic matrix A and the input matrix 

B:  
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the equations of motion can be written in the state space model form: 

or with the substituted coefficients:  

The algebraic transfer functions can also be derived from Eq. 2.22.   

Then they can easily be solved for V(s) and r(s) as shown in Eq. 2.26. 

mU

CC
a rf +

=11  

U
mU

lClC
a rrff −

−
=12  

UI

lClC
a

zz

rrff −
=21  

UI

lClC
a

zz

rrff
22

22

+
=  

m

C
b f−=1  

zz

ff

I

lC
b −=2  

2.21 

fbraVaV δ11211 ++=&  

fbraVar δ22221 ++=&  
2.22 

fb

b

r

V

aa

aa

r

V δ







+
















=









2

1

2221

1211

&

&

 2.23 

f

zz

ff

f

zz

rrff

zz

rrff

rrffrf

I

lC
m

C

r

V

UI

lClC

UI

lClC

U
mU

lClC

mU

CC

r

V δ



















−

−
+


























+−

−
−+

=







22

&

&

 2.24 

( ) ( ) ( ) ( )sbsrasVassV fδ11211 ++=  

( ) ( ) ( ) ( )sbsrasVassr fδ22221 ++=  
2.25 



19 

 

Then these two equations can be substituted into each other:  

Solving Eq. 2.27 for the output to input ratio results in:  

And finally, after some distributing and rearranging, the transfer functions are: 

To caution there were no mistakes, in either the state-space or transfer-function 

formulations, the models were compared.  Both the state space method and the transfer 
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function method resulted in the same Bode plots for lateral velocity and yaw rate which 

can be seen for various longitudinal velocities for a given vehicle in Figure 2-5.   

 The next point of interest is the set of equations describing tire slip due to steering 

input.  Returning to the state space model in Eq. 2.23 and Eq. 2.24 , the state variables 

were chosen as the lateral velocity V and the yaw rate r.  These were also chosen as the  

output variables, so the output matrix C and the direct transmission matrix D were self-

evident for the state space model.  To modify the model such that tire slip will be the 

output, the C and D matrices must be chosen accordingly.  Returning to Eq. 2.7 for tire 
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slip in terms of V and r, the state space matrices terms can be recognized as those shown 

in Eq. 2.30  

The second state space equation can be written as:  

The generic transfer function for input u(t) and output y(t) can be written in terms of the 

four state space matrices:  

For front and rear slip, the transfer functions can be written in matrix or algebraic form: 
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Again, both the state space method and the transfer function method result in the same 

Bode plots for front and rear tire slip which can be seen for various longitudinal 

velocities for a given vehicle in Figure 2-6 and Figure 2-7. 
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Using the ratio of slip angle to steering input, the maximum steering input before tire 

saturation and slip occurs can be calculated by substitution of a known maximum slip 

angle.  The ratio of slip angle to steering input is found from the Bode analysis done 

previously.  Because tires cannot produce an unlimited amount of force, the tires will 

begin to skid at some maximum slip angle, which through experiment is found to be 

approximately 10 degrees [3].  Assuming that tire saturation occurs when the slip angle is 

at this maximum value, the following equation can be used to find the steering angle at 

which saturation occurs by substituting the 10 degree value in for maxfα .  
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This maximum steering input can then be plotted against the frequency to see which 

steering frequencies are most likely to cause slip as seen in Figure 2-8 and Figure 2-9.   
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2.2 Conclusions 

 In this chapter, the simple bicycle model was derived using Newtonian 

mechanics.  Then these equations were manipulated into the state space form to see how 

a front steering input affects lateral velocity, yaw rate, and tire slip.  These results will be 

compared to those of a more complicated model in later chapters to verify their accuracy.  

Methods similar to the ones used to find steering inputs which cause tire slip will be used 

to find the inputs at the threshold for wheel lift, and hence roll.  The two cases will be 

compared to determine whether slip or roll occurs first at various steering inputs. 

 1. “Surface Vehicle Recommended Practice,” Society of Automotive Engineers 
J670e, July 1976. 

 2. J.H. Ginsberg, Advanced Engineering Dynamics, 2nd ed. New York, NY: 
Cambridge University Press, 1998. 

 3. J.C. Dixon, Tires, Suspension, and Handling, 2nd Ed. Warrendale, PA: The 
Society of Automotive Engineers (SAE), 1996. 



 

 

Chapter 3 
 

Three-Degree-of-Freedom Model 

Although the bicycle model is helpful in describing simple vehicle dynamics, a 

Three-Degree-of-Freedom (3DOF) model must be used if one wishes to consider roll 

dynamics.  This chapter will present a 3DOF model including its derivation and its state 

space representation.  In previous work by the research group and in literature, multiple 

roll models have been developed for study [1].  This chapter, for brevity, focuses on one 

model in particular.  Using this model, the conditions for wheel lift will be explored.  The 

steering inputs necessary for wheel lift are then compared to those necessary for tire slip 

to find which will occur first at various steering conditions. 

3.1 Roll Model 

The roll model chosen for examination in this work was originally created and 

published by Kim and Park [2].  To include roll dynamics, this linear model incorporates 

roll angle degrees of freedom in addition to the lateral velocity and yaw rate motions 

described earlier.  The same SAE coordinate system defined in the previous chapter will 

be used as shown in Figure 3-1.  The parameters for this model are defined in Table 3-1.  

The roll angle is defined in Figure 3-2.   
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The assumptions included in this model are similar to those of the bicycle model.  

First, small angles are assumed such that cos(θ) ≈ 1 and sin(θ) ≈ θ.  The longitudinal 

velocity, U, is assumed to be constant.  It is also assumed that the lateral force acting on a  

 

 

 

Figure 3-1:  SAE Vehicle Coordinate System 
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Table 3-1: Parameters for 3DOF Model 

   Parameter Definition 
U Longitudinal velocity (body-fixed frame) 
r Yaw rate (angular rate about vertical axis) 
φ  Roll angle 

φ&  Roll rate 

m Vehicle mass 
ms Sprung mass 
mu Unsprung mass 
Izz Inertia about the vehicle axis 
Iyy Inertia about the pitch axis 
Ixx Inertia about the roll axis 
Ixz Inertia product 
l f Front-axle-to-CG distance 
lr Rear-axle-to-CG distance 
L Track of vehicle (lf + lr) 
t Width of vehicle 
h Height of CG above roll axis 
β Slip angle of the vehicle body 
Cf Front cornering stiffness 
Cr Rear cornering stiffness 
Kφ Roll stiffness 
Dφ Roll damping 
δf Front steering angle 
α Tire side-slip angle 
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tire is linearly proportional to its side-slip angle.  Another assumption is that the tires 

must be rolling without slipping in the longitudinal direction.  A new assumption is that 

the vehicle also has a sprung mass.  The sprung mass is defined as all of the mass that is 

supported by the suspension [3].  For simplification, symmetry about the x-z plane will 

be assumed so that Ixz = 0.  

3.1.1 Motion Equations 

The motion equations may be developed using the kinematics methods described 

in [4].  The vehicle is subject to inertial forces and is affected by the motion of the center 

of gravity (CG) about the origin Ov.  The coordinate system is not centered at the CG, so 

the equations of motion are expressed in terms of the acceleration at the origin aOv and 

the angular momentum about the origin HOv.  Therefore the sum of the moments is 

expressed as:  

 

  

Figure 3-2: Roll Angle Definition for 3DOF Model 
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The angular momentum is defined as:  

where [I] is the inertia matrix:  

and [ ]ωr  is the angular velocity vector: 

with components along the body-fixed axes.  The inertial properties of the vehicle are 

constant since the vehicle is not moving with respect to the body-fixed axes.  The time 

derivative of Eq. 3.2 is shown to be: 

 in [4] where α is the angular acceleration about the body-fixed coordinate axes.   

 Assuming that Ixz, Ixy, and Iyz are negligible, the inertia matrix can be simplified 

to:  
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From the geometry shown in Figure 3-2, the angular velocity can be rewritten as:  

The angular acceleration can easily be found by taking the derivative of the angular 

velocity just found in Eq. 3.7:  

The angular acceleration is vital in calculating the change of angular momentum with 

respect to time.  The linear acceleration is often broken down into two components [4]:  

where the two terms are normal and tangential acceleration respectively.  The two 

components may be defined as:  

Now returning to Eq. 3.1, the total moment about the body-fixed axes can be found since 

the time rate of change of angular momentum and linear acceleration are known.   

 If the forces and moments are summed as they were in the previous chapter for 

the bicycle model, a set of non-linear equations results.  Using the same lateral tire force 

equations as in the bicycle model and again assuming there are no longitudinal forces 

acting on the tires, the external forces acting on the vehicle can be found.  In the roll 

model, a third equation for the moments about the x-axis is necessary:  
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The result in Eq. 3.12 is in the MDK form:  

This form demonstrates the contributions from inertial, damping, and stiffness forces, but 

the equations would be easier to work with in the general state-space form with the state 

vector:  

and input vector:  

in the form:  

This transformation can be completed by first defining the transformation matrices  

where In represents the identity matrix of size n.  The state space matrices are then 

defined as the following in terms of M, D, K, and F: 
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For direct comparison to the bicycle model, the model must be written in terms of 

steering input instead of the force input vector.  As shown in the previous chapter, the 

lateral tire force is a function of the tire slip angle.  

The tire slip angle can be written in terms of the lateral velocity, yaw rate, and front 

steering input.  

The slip angles can be expressed in terms of the new state vector using the same 

relationship: 

Now returning to Eq. 3.16 where the force was used as the input, a new state-space model 

with steering as the input can be derived by substituting the relationships in Eq. 3.20 and 

Eq. 3.22. 
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The Bode plots for lateral velocity, yaw rate, roll angle, and roll rate can be plotted using 

the state-space model in Eq. 3.23.  The Bode plot for roll angle is shown in Figure 3-3. 
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If tire slip is the desired output, Eq. 3.22 can be used as the output equation in the state 

space model.  The Bode plots for front and rear tire slip are shown in Figure 3-4 and 

Figure 3-5.  The bicycle model and the roll model magnitudes are also compared in these 

figures for a velocity of 20 m/s.  The models appear to match very well. 
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Figure 3-5:  Bode Diagram for Front Steering Input to Rear Tire Slip Angle for the Roll 
Model and Comparison to Bicycle Model of Rear Tire Slip at 20 m/s 
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Using the same method as the previous chapter, the maximum steering input before tire 

saturation can be plotted versus frequency to see which steering frequencies are most 

likely to cause slip as seen in Figure 3-6 and Figure 3-7 . 
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3.1.2 Wheel Lift Threshold 

 In order to determine wheel lift, it is important to look at the restoring moment of 

the vehicle.  The maximum restoring moment max,restM  can be found using a simple force 

balance.  The forces from the suspension on the wheels are shown in Figure 3-8. 
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The suspension provides the restoring moment.  On the passenger tire, summing of the 

vertical forces results in:  

Therefore the threshold for wheel lift is:  

because the restoring moment will exceed the force from the weight of the vehicle if it is 

greater than the above value.  The restoring moment can be found using the following 

output equation in the state-space model:  
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The Bode plot for steering to restoring moment is shown in Figure 3-9  

Using a similar method to the one used to find the steering input at tire saturation, the 

steering input at which wheel lift will occur can also be calculated.  The Bode plot 

provides the ratio of restoring moment, restM , to steering input at a given frequency.  The 

magnitude of the maximum steering angle before wheel lift, liftf ,δ , can be calculated 

using the given ratio and the maximum restoring moment, max,restM :  
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Substituting the value in Eq. 3.25 into Eq. 3.27 allows the calculation of the maximum 

steering angle before wheel lift occurs.  Figure 3-10 shows the maximum steering input 

before wheel lift as a function of frequency. 

The maximum steering before wheel lift can then be directly compared to the maximum 

steering before tire saturation.  Using the vehicle parameters for a Mercury Tracer, the 

maximum steering angle for saturation and wheel lift were plotted together at various 

speeds in Figure 3-11.  As expected, the Tracer is much more likely to achieve tire 

saturation than wheel lift primarily due to its low CG height. 
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A direct comparison of individual speeds is shown in Figure 3-12 and Figure 3-13.   
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Figure 3-12: Maximum Steering Before Wheel Lift and Tire Saturation for the Mercury 
Tracer at 10 m/s and 20 m/s 
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Figure 3-13:  Maximum Steering Before Wheel Lift and Tire Saturation for the Mercury 
Tracer at 30 m/s and 40 m/s 
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Using the parameters of a Jeep Grand Cherokee for further analysis, the following plots 

in Figure 3-14 and Figure 3-15 compare the maximum steering for wheel lift and tire 

saturation at various speeds for the Jeep. 
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Figure 3-14:  Maximum Steering Before Wheel Lift and Tire Saturation for the Jeep 
Grand Cherokee at 10 m/s and 20 m/s 
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The Jeep is more likely to slip than achieve wheel lift at lower speeds, but it will 

experience wheel lift at higher speeds for a limited range of frequencies. 
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Figure 3-15:   Maximum Steering Before Wheel Lift and Tire Saturation for the Jeep 
Grand Cherokee at 30 m/s and 40 m/s  
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3.2 Conclusions 

In this chapter, a roll model was derived using Newtonian mechanics.  Unlike the bicycle 

model, the roll model has 3DOF.  State-space models were used to demonstrate how front 

steering input affects roll angle, tire slip, and restoring moment.  The maximum steering 

input before tire saturation was calculated for various frequencies and speeds using the 

same method that was used for the bicycle model.  A similar method was used to 

calculate the maximum steering input before wheel lift based on the restoring moment 

from the suspension.  The maximum steering input before slip and the maximum steering 

input before wheel lift were then directly compared for both the Mercury Tracer and the 

Jeep Grand Cherokee to predict whether the vehicles would slip before wheel lift, and 

hence rollover. 
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Chapter 4 
 

Rollover Prevention Algorithm 

In the previous chapter, the threshold for wheel lift was calculated for the 

Mercury Tracer and the Jeep Grand Cherokee.  Neither vehicle was extremely susceptible 

to wheel lift since they were much more likely to experience tire saturation first.  Other 

vehicles, such as SUVs, for example, are known to have problems with wheel lift.  In this 

chapter, a feed-forward controller will be proposed to help prevent wheel lift.  The 

parameters of the Mercury Tracer will be adjusted by adding a load at the top of the 

vehicle and reducing the damping rate in order to make the vehicle more likely to 

experience rollover.  Then the new system will be subjected to an open-loop controller 

which will help reduce the restoring moment acting on the vehicle and therefore the 

likelihood of rollover. 

4.1 Dead-Beat Control 

The dead-beat control method was chosen for its simplicity [1].  In this open-loop 

control method, the goal is to replace the undesired dynamics of a system with those of a 

desired system.  For demonstration, a simple system represented by the transfer function 

in Eq. 4.1 will be used.  This damping ratio of this example system is 0.1.   
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If the output of this system was undesirable, one may wish to make it resemble an 

acceptable system.  The system in Eq. 4.2 with a damping ratio of 0.9 will be used as the 

desirable system. 

 The dead-beat filter is then chosen so that it will completely cancel out the first 

system and replace it with the desired system.  The complete system is shown in 

Figure 4-1 in block diagram format. 

The system simplifies to the one shown in Figure 4-2 below. 

In this example, the dead-beat filter would be:  
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Figure 4-1: Sample Dead-Beat Filter System 

 

 

Figure 4-2: Filtered System 
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By applying the filter, the system dynamics clearly become more damped.  Figure 4-4 

shows the example system and the filtered system.  Figure 4-5 shows a comparison of the 

filtered system and the desired system.  As expected, the desired and filtered plots show 

the systems are identical. 
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Figure 4-4: Example System and Filtered System for Dead-Beat Controller 
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Figure 4-5: Desired System and Filtered System for Dead-Beat Controller 
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The effects of the filter can also be seen in the time domain in Figure 4-6  

4.2 Creating the High Roller 

To demonstrate the use of the dead-beat controller on vehicle dynamics, a 

fictitious vehicle was created to implement the method used in Cameron’s work [2].  

First, the damping rate of the vehicle was reduced by forty percent.  For the Mercury 

Tracer this resulted in a decrease of the roll damping from 5000 N-s/rad to 3000 N-s/rad.  

Then an imaginary load of 200 kg was added to the vehicle at a height of 2 meters.  This 

increased the total mass of the vehicle, modified the value of Ixx, and increased the height 
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of the center of gravity.  The remaining parameters were unchanged.  The modified 

vehicle will be referred to as the High Roller as it was  referred to in Cameron’s work.  A 

comparison of the parameters is found in Table 4-1. 

4.3 Implementation of Dead-Beat Controller 

In this section the dead-beat controller is applied to the High Roller to reduce the 

wheel lift propensity.  As shown in the previous chapter, wheel lift will occur when the 

restoring moment exceeds a certain value.  By replacing the dynamics associated with the 

restoring moment of the High Roller with those of the Mercury Tracer, the dead-beat 

Table 4-1: Comparison of Mercury Tracer and High Roller Parameters 

Parameter Mercury Tracer High Roller Units 
m 1031.92 1231.92 kg 
ms 825.5 985.5 kg 
Izz 1850.5 1850.5 kg-m2 
Iyy 1705 1705 kg-m2 
Ixx 375 456.25 kg-m2 
Ixz 72 72 kg-m2 
l f 0.9271 0.9271 m 
lr 1.5621 1.5621 m 
L 2.4892 2.4892 m 
t 1.43 1.43 m 
h 0.25 0.534 m 
Cf -83014 -83014 N/rad 
Cr -88385 -88385 N/rad 
Kφ 17000 17000 N-m/rad 
Dφ 5000 3000 N-s/rad  
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controller will help reduce the magnitude of the restoring moment and thereby prevent 

wheel lift from occurring.   

The transfer function for the restoring moment as the output and the front steering 

as the input for the High Roller at 30 m/s is:  

The desired dynamics are those of the Mercury Tracer with the corresponding 

transfer function:  

Therefore, the dead-beat filter is:  

The roll moment response of the High Roller, for a sinusoidal steering input, 

shown in Figure 4-7 is reduced to that of the Mercury Tracer.  The roll moment response 

is also reduced for a pseudo-step input as shown in Figure 4-8. 
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It appears that the dead-beat controller is very effective in preventing rollover, 

and it is certainly very easy to design.  The controller, however, requires perfect model 

knowledge [2].  Unfortunately, this is not realistic in the real world, but it may still be 

effective for a practical model.  This issue is not the direct focus of this work, but issues 

of model uncertainty are discussed further in Cameron’s thesis and the interested reader 

is referred there for details [2]. 
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4.4 Conclusions 

The dead-beat controller is a great option for rollover mitigation due to its 

simplicity.  In this chapter, it was successfully used to reduce the restoring moment 

experienced by the High Roller.  In the next chapter, a dead-beat filter will be used to 

help prevent rollover for a vehicle traveling on a banked surface. 

 1. S. Skogestad and I. Postlethwaite, Multivariable Feedback Control, Analysis and 
Design, West Sussex, England: John Wiley & Sons Ltd., 1996. 

 2. J.T. Cameron, “Vehicle Dynamic Modeling for the Prediction and Prevention of 
Vehicle Rollover,” M.S. Thesis, Mechanical and Nuclear Engineering, 
Pennsylvania State University, Dec. 2005. 
 



 

 

Chapter 5 
 

Rollover Prevention on a Banked Surface 

In the previous chapters, the conditions for wheel lift were explored and a control 

algorithm was implemented to help prevent rollover at the same conditions.  The 

thresholds for tire saturation and wheel lift as a function of steering were calculated to 

determine when slip would occur before wheel lift.  If the surface of the road is not flat, it 

is expected that the threshold for wheel lift will decrease with an increase in bank angle.  

In this chapter, the conditions leading to wheel lift on a banked surface will be explored.  

Then the dead-beat control method will be implemented to prevent wheel lift under these 

new conditions.   

5.1 Wheel Lift Threshold on a Banked Surface 

First, the wheel lift threshold must be recalculated for the banked surface.  As in 

Chapter 3, the maximum steering angle before wheel lift can be calculated using the 

maximum restoring moment.  Using Figure 5-1 below, the maximum restoring moment 

can be calculated using the force balance in Eq. 5.1 for a surface banked at an angle of θ.   
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Therefore, the threshold for wheel lift is:  

For the following calculations, the system is assumed to still be in linear operation at the 

banked angle.  When calculating the frequency response, left and right turning maneuvers 

were not differentiated between.  In reality, the equations for the moment required for 

wheel lift will be different for the uphill or downhill sides.  Substituting the value found 

in Eq. 5.2 into the previous Eq. 3.27, the maximum steering angle can be plotted for 

various values of θ.  The maximum steering angle for wheel lift and tire saturation at 10 

m/s versus frequency is shown in Figure 5-2.  As expected, the minimum steering input 

required for wheel lift decreases as the angle of the banked surface increases.  An 

increase in speed of the vehicle also decreases the steering input required for wheel lift.  

 

 

Figure 5-1:  Force Balance Between the Suspension and Wheels on Banked Surface 
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The difference in maximum steering input before wheel lift for different speeds can be 

seen in Figure 5-3 which compares the threshold for 10 m/s and 40 m/s. 
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The Tracer will still experience tire saturation at high bank angles and high speeds as 

shown in Figure 5-4 for a bank angle of 25 degrees and a speed of 40 m/s. 
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If the High Roller, however, is subjected to the same conditions, wheel lift will occur 

before tire saturation for a certain range of frequencies.  In fact, the High Roller will 

experience wheel lift before tire saturation at 20 m/s at a bank angle of 25 degrees.  

Figure 5-5 shows the thresholds for wheel lift for the High Roller at these two conditions.  
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 For both vehicles, an increase in bank angle clearly reduces the steering angle for 

wheel lift as expected.  For the High Roller, however, an increased bank angle will cause 

wheel lift to occur before tire saturation. 

5.2 Implementation of Dead-Beat Controller on a Banked Surface 

Now the dead-beat controller will be applied to the High Roller on a banked 

surface to prevent wheel lift.  In Figure 5-5, the High Roller experiences wheel lift before 

tire saturation at a speed of 20 m/s and a bank angle of 25 degrees around a frequency 

input of 3 rad/s.  The Mercury Tracer will experience tire saturation before wheel lift at 

the same conditions.  Therefore, the Mercury Tracer will be used as the desired system 

again for the dead-beat control method.   

The transfer functions for the High Roller and the Mercury Tracer at 20 m/s are 

shown in Eq. 5.3 and Eq. 5.4 respectively.  The bank angle is only used to calculate the 

maximum restoring moment before wheel lift, so the transfer functions do not change 

with respect to bank angle. 

 

Therefore, the dead-beat filter is:  
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For a sinusoidal input at frequency of 3 rad/s with amplitude of 0.1 rad at a speed 

of 20 m/s, the filter successfully reduces the restoring moment of the High Roller to that 

of the Mercury Tracer.  The results of this example are shown in Figure 5-6.   

For a pseudo-step input at the same amplitude of 0.1 rad and at the same speed of 

20 m/s, the restoring moment of the High Roller is again reduced to that of the Mercury 

Tracer as shown in Figure 5-7. 
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Figure 5-6:  Comparison of the Tracer, High Roller, and Filtered High Roller Dynamics, 
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5.3 Developing the Scaled Vehicle Controller 

In the previous section, the High Roller was subjected to a filter to change the 

dynamics of the desired dynamics of the Mercury Tracer.  A banked surface, however, 

can trip rollover for vehicles that are not usually susceptible to rollover.  In the next 

chapter, wheel lift will be induced for a scale-sized vehicle similar to the Mercury Tracer 

by creating aggressive steering inputs on a banked surface.  The scaled vehicle simulation 

model does not use the same body-fixed coordinates that were used to develop the 
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previous control algorithm.  Instead, it is based on an error-coordinate system.  This 

system is convenient for running the scaled vehicle in order to help stabilize the yaw 

angle of the vehicle.  The model was developed in previous work of the research group.  

Two additional variables are added to the state vector of this model shown in Eq. 5.6.  

The state-variables are lateral velocity, lateral acceleration, yaw angle, yaw rate, roll 

angle, and roll rate respectively. 

The output equation for restoring moment is then:  

Instead of creating a fictitious vehicle that is likely to experience rollover like the 

High Roller, this time an ideal vehicle which is less likely to experience rollover will be 

developed.  Although the scaled vehicle resembles the Tracer which is not likely to 

rollover even at a banked angle, the ideal vehicle method was chosen to increase the 

effect of the controller.  Furthermore, an algorithm based on an ideal vehicle could be 

used for a vehicle that does not normally experience rollover but may do so in a tripped 

situation such as driving on a banked surface.  First, the CG of the vehicle will be 

lowered.  Furthermore, the roll damping is increased for added rollover prevention.  

Using the scaled vehicle and ideal vehicle parameters in Table 5-1, the transfer functions 

for restoring moment as the output can be calculated for both.  The following controller is 
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calculated for an example longitudinal velocity of 2.866 m/s because the scaled vehicle 

model was formulated at the same speed.  It is interesting to note that the calculation of 

each transfer function is not dependent on the bank angle of the surface.  The transfer 

functions only depend on the speed of the vehicle in addition to its parameters. 

The transfer function for the scaled vehicle is: 

The transfer function for the ideal vehicle is:  

The dead-beat controller can then be found as in the previous sections: 

Table 5-1: Scaled Vehicle and Ideal Vehicle Parameters 

Parameter 
Scaled 
Vehicle 

Ideal 
Vehicle 

Units 

m 11.4 11.4 kg 
ms 11.4 11.4 kg 
Izz 1.2766 1.2766 kg-m2 
Ixx 0.1843 0.1843 kg-m2 
Ixz 0 0 kg-m2 
lf 0.240 0.240 m 
lr 0.415 0.415 m 
L 0.655 0.655 m 
t 0.369 0.369 m 
h 0.138 0.0874 m 
Cf -219.59 -219.59 N/rad 
Cr -304.76 -304.76 N/rad 
Kφ 239.12 239.12 N-m/rad 
Dφ 11 25 N-s/rad  
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5.4 Conclusions 

Vehicle rollover is more likely to occur on a banked surface.  The threshold for 

wheel lift decreases with an increase in bank angle.  The design of a dead-beat controller, 

however, is not affected by the bank angle.  The controller needs to be recalculated only 

for new speeds because it is dependent only on speed and the constant parameters of the 

vehicle.  For the scaled vehicle experiments, however, a different set of coordinates must 

be used and therefore a different roll model.  The dead-beat controller is still designed 

using the same principle of replacing the undesired dynamics with those of a desired 

vehicle.  The transfer functions must be formulated using the state-space representation in 

the error-fixed coordinates used to operate the scaled vehicle.  In this chapter, a control 

algorithm was developed to mitigate rollover of the scaled vehicle on a banked surface by 

changing the dynamics of the system to those of an ideal vehicle that is less likely to 

experience rollover.  The algorithm will be tested through experiment in the next chapter.



 

 

Chapter 6 
 

Scaled Vehicle Implementation 

In this chapter, the dead-beat controller method will be tested for effectiveness on 

the scaled vehicle.  First, the scaled vehicle was operated at various conditions that 

induce wheel lift.  Then a dead-beat controller was created to modify the steering input at 

those conditions.  The effects of the filter were evaluated. 

6.1 Wheel Lift in the Scaled Vehicle 

Using the Penn State University Rolling Roadway Simulator (PURRS), the scaled 

vehicle can be operated under many different conditions.  The scaled vehicle used is a 1/5 

model of the Mercury Tracer.  Table 6-1 shows a comparison of the dimensionless 

parameters for the scaled vehicle and Tracer as formulated during research on the 

PURRS.  The parameters are relatively close in value.  It is also interesting to note that a 

speed of 2.8 m/s for the scaled vehicle corresponds to a speed of 11.2 m/s for the Tracer.  

The dimensionless parameters ensure similar behavior, but the actual magnitudes of the 

dynamics may vary.  The steering input can be chosen by selecting a lateral position input 

in the simulator.  For this experiment, both a sinewave and a step input were used.  The 

speed of the vehicle can also be adjusted by changing the speed of the treadmill.  Finally, 

the treadmill can be rotated about the pitch and roll axes.  Figure 6-1 is a picture of the 

PURRS.   
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Figure 6-1: Penn State University Rolling Roadway Simulator 

 6-1: Comparison of the Dimensionless Parameters for the Scaled Vehicle and the 
Mercury Tracer 

Dimensionless Parameter Scaled Vehicle Mercury Tracer 
П1 0.366 0.373 
П2 0.634 0.626 
П3 0.204 0.209 
П4 0.563 0.562 
П5 0.261 0.290 
П6 0.038 0.059 
П7 1.607 1.607 
П8 2.230 1.710  

 



72 

 

Initially, aggressive step and sinewave inputs of multiple frequencies were used at 

speeds up to approximately 5.5 m/s while increasing the bank angle to approximately 25 

degrees.  The scaled vehicle did not experience wheel lift for any of these conditions.  As 

seen in the previous chapter, the Tracer was not expected to experience wheel lift at high 

speeds or high bank angles.  These results confirmed that the scaled vehicle did in fact 

have behavior similar to the Tracer, at least in regard to wheel lift propensity.   

In order to test the control algorithm designed previously, the scaled vehicle 

needed to be modified such that wheel lift would occur.  The CG height of the vehicle 

was increased by raising the mass attached to the front of the vehicle.  Pictures of the 

vehicle before and after modifications are shown in Figure 6-2.  After modifications, the 

parameters of the vehicle were recalculated, and the modified parameters are listed in 

Table 6-2.  For comparison, the parameters of the original scaled vehicle are also listed.  

Note that unlike the creation of the High Roller, the overall mass of the scaled vehicle 

was not modified. 
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Table 6-2: Modified Scaled Vehicle Parameters 

Parameter 
Modified Scale 

Vehicle 
Scale 

Vehicle 
Units 

m 11.4 11.4 kg 
ms 11.4 11.4 kg 

Izz 1.2766 1.2766 kg-m2 

Ixx 0.4792 0.1843 kg-m2 

Ixz 0 0 kg-m2 

lf 0.240 0.240 m 
lr 0.415 0.415 m 
L 0.655 0.655 m 
t 0.369 0.369 m 
h 0.195 0.138 m 
Cf -219.59 -219.59 N/rad 
Cr -304.76 -304.76 N/rad 
Kφ 239.12 239.12 N-m/rad 
Dφ 11 11 N-s/rad  
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Figure 6-2: Scaled Vehicle Before and After Raising the CG Height 
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After the modifications were complete, the scaled vehicle was placed on the 

treadmill for further experiment.  An initial lateral position sinusoidal input of 0.6 Hz and 

amplitude of 0.1 m was selected based on previous data collected for the scaled vehicle 

which showed yaw rate instability near these areas.  Furthermore, it was found that if the 

Tracer parameters were modified by increasing the height of its CG by the same amount 

with respect to the dimensionless parameters of the scaled vehicle, the Tracer would 

experience wheel lift at various speeds on a banked angle of 24 degrees.  The wheel lift 

and tire slip thresholds are shown for the Tracer at a speed of 13.86 m/s in Figure 6-3.  

Both the front and rear tires will experience wheel lift before slip for a range of input 

frequencies.  It is interesting to note that the rear wheels are much more likely to 

experience wheel lift than tire saturation at these conditions.   
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In the experiment, the bank angle of the treadmill was increased slowly along with the 

speed for the 0.6 Hz input.  At a bank angle of approximately 24 degrees and a speed of 

3.466 m/s, which corresponds to a speed of 13.86 m/s for the Tracer, the rear tires of the 

scaled vehicle began to experience wheel lift.  The vehicle was then operated at the same 

speed and bank angle at a steering frequency of 0.9 Hz.  The increase in frequency 

resulted in a larger roll angle and greater wheel lift.  The frequency was then increased to 

1.2 Hz.  The vehicle also experienced wheel lift at these conditions, though the 

magnitude did not increase significantly.   
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Using the parameters of the modified scaled vehicle and the ideal vehicle from the 

previous chapter, a dead-beat control filter was designed for a speed of 3.466 m/s.  The 

algorithm was then incorporated into the simulator to directly modify the steering input to 

the vehicle.  At the same speed, bank angle, and frequencies the vehicle did not 

experience wheel lift.  The control algorithm was successful in preventing the onset of 

rollover.  The following figures show the recorded roll angle of the scaled vehicle at the 

various conditions with and without the implementation of the dead-beat controller.  In 

all three cases, the roll angle of the vehicle is reduced significantly by the controller.  The 

magnitude of the roll angle is decreased more at the higher frequencies.  The algorithm 

appears to work exactly as expected. 
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Figure 6-4: Roll Angle of the Scaled Vehicle Reduced by the Filter at Speed of 3.466 
m/s and Bank Angle of 24 degrees at Frequency 0.6 Hz 
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Figure 6-5:   Roll Angle of the Scaled Vehicle Reduced by the Filter at Speed of 3.466 
m/s and Bank Angle of 24 degrees at Frequency 0.9 Hz 
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6.2 Conclusions 

The scaled vehicle confirmed the results of the Tracer simulation and the 

effectiveness of the dead-beat controller.  The scaled vehicle was unable to experience 

wheel lift at either sinewave or step inputs without modifying it parameters.  Increasing 

the height of the CG, however, induced rollover.  After wheel lift was achieved at various 

conditions, the dead-beat controller was used to modify the steering input to replace the 

unwanted dynamics with those of an ideal vehicle.  Wheel lift no longer occurred at the 
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same conditions while the controller was implemented.  The controller appears to be a 

promising method for preventing wheel lift, and hence rollover.



 

 

Chapter 7 
 

Conclusions 

The conclusions of this thesis are organized as follows: conclusions regarding to 

the use of dynamic vehicle models to determine wheel lift thresholds, conclusions 

pertaining to feed-forward control as a method to prevent wheel lift, and conclusions 

relevant to the implementation of the dead-beat controller using the scaled vehicle.  A 

discussion of future work pertinent to this thesis follows. 

7.1 Determining Wheel Lift Thresholds Using Vehicle Dynamics 

Before the conditions for wheel lift could be explored, vehicle dynamics must be 

understood.  In this work, 2DOF and 3DOF models were used to study planar and roll 

motion respectively.  The models largely agreed on their predictions for tire slip at 

various steering input frequencies.  For the 3DOF model, the wheel lift threshold for 

vehicles was found to be related to the restoring moment of the suspension.  If the 

maximum restoring moment is exceeded before tire saturation occurs, a vehicle may 

experience wheel lift and possibly rollover.   

The effect of vehicle parameters pertaining to a vehicle’s susceptibility to rollover 

were demonstrated by comparing the Mercury Tracer to its own High Roller version.  

Increasing the height of the center of gravity and decreasing the roll damping both 

increased propensity for wheel lift.  It was also shown that rollover can be tripped by 



82 

 

driving on a banked surface.  As the angle of the banked surface increased, so did the 

propensity for wheel lift.  Increasing the speed of the vehicle under the same conditions 

increased wheel lift susceptibility as well.   

7.2 Using Feed-forward Control to Prevent Wheel Lift 

To reduce wheel lift it is necessary to mitigate the dynamics that cause it.  

Decreasing the restoring moment of the suspension effectivley decreases the chance of 

rollover, and unsafe steering inputs can result in dangerous restoring moments.  By 

modifying the steering input to prevent such hazardous conditions, the restoring moment 

can be reduced. 

Feed-forward control was shown to be a simple way to directly change the input 

to the vehicle.  In this work, dead-beat control was chosen for its simplicity, a technique 

that replaces the dynamics of an undesired system with those of a desired one.  It was 

shown through simulation that the restoring moment could be decreased in magnitude by 

using this simple controller.   

7.3  Scaled Vehicle Implementation 

To demonstrate the ability of the dead-beat controller to change the dynamics of a 

vehicle to mitigate wheel lift, a scaled vehicle experiment was employed.  The scaled 

vehicle was shown to have dimensionless parameters similar to those of the Tracer.  Like 

the Tracer, the scaled vehicle was difficult to induce wheel lift for in an unmodified form.  



83 

 

By increasing the height of the center of gravity, however, the vehicle began to 

experience wheel lift when given a sinusoidal steering input on a banked surface.  A 

similar modification of the Tracer parameters was simulated and it was shown that the 

Tracer would also experience wheel lift under similar conditions.  Therefore, scaled 

vehicle testing proves to be a potential alternative to full-scale vehicle testing which can 

be extremely expensive and dangerous.   

A dead-beat controller was then designed to help prevent rollover in the scaled 

vehicle.  After implementation of the controller, the vehicle experienced a drastic 

reduction in roll angle and hence wheel lift.  The controller was successful in preventing 

wheel lift under situations where the unmodified vehicle response clearly exhibited wheel 

lift. 

7.4 Future Work 

In further research, the scaled vehicle should be tested at many more conditions 

that produce wheel lift.  Multiple bank angles, speeds, and alternate steering maneuvers 

should be incorporated in additional experiments.  The controller should also be tested at 

conditions for which it was not specifically designed.  In reality, the vehicle parameters 

may not be known accurately, and this may have a great effect on the viability of the 

controller.  The dead-beat control method could also be compared to different algorithms 

to see if there is a more effective method that may not affect other dynamics of the 

vehicle.  The possibility of negative effects on the dynamics exist and should be 

determined if so. 
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The ability of the scaled vehicle to accurately predict the roll dynamics of the full-

scaled Tracer should also be explored.  If the scaled vehicle method shows substantial 

evidence of its ability to foretell the behavior of the Tracer at various conditions, it may 

be used to confidently test the ability of various other algorithms to prevent rollover and 

other types of accidents.  Parameters of the vehicle can easily be adjusted to simulate 

other vehicles as well.  In addition, scaled vehicle testing may be able to replace or at 

least assist in full-scale vehicle testing.  Scaled vehicle experimentation may help groups 

such as NHTSA determine what the worst case conditions for a vehicle are and 

consequently make their tests more effective in the process. 

Further insight into the dynamic models used to describe vehicle behavior would 

also be beneficial.  Other factors such as roll-steer and tire lag may need to be 

incorporated to fully depict the behavior of a vehicle.  Future models may also wish to 

incorporate human factors.  In an emergency situation, the reaction of the driver plays a 

large part in determining what input is given to the vehicle.  As models of human-vehicle 

interaction become more accurate, the ability of the models to determine when undesired 

dynamics will occur under human input might also improve.   

 

 


