
The Pennsylvania State University

The Graduate School

Department of Mechanical and Nuclear Engineering

DESIGN AND TESTING OF A TERRAIN MAPPING SYSTEM

FOR MEDIAN SLOPE MEASUREMENT

A Thesis in

Mechanical Engineering

by

Pramod Vemulapalli

 2008 Pramod Vemulapalli

Submitted in Partial Fulfillment
of the Requirements

for the Degree of

Master of Science

Dec 2008

The thesis of Pramod Vemulapalli was reviewed and approved* by the following:

Sean N. Brennan
Assistant Professor of Mechanical Engineering
Thesis Advisor

Henry J. Sommer III
Professor of Mechanical Engineering

*Signatures are on file in the Graduate School

Karen A. Thole
Professor of Mechanical Engineering
Head of the Department of Mechanical and Nuclear Engineering

iii

ABSTRACT

This thesis presents the details of a terrain mapping system that has been used to measure

median profiles. Details are presented of the system construction, design, and algorithms to

process the data. The capability of the system is gauged by performing tests to compensate for

vehicle orientation, tests for repeatability, and tests comparing the system with manual

measurement. Results demonstrate the feasibility of using the system for median slope

measurement. The advantages of using such a system as compared to traditional manual

measurements are also demonstrated in practice as this system has been used to scan over 5000

miles of highways for measuring the slopes of divided rural medians. While the research focuses

on median slope measurement, the thesis can be viewed as providing a general direction for the

design and testing of terrain mapping systems.

iv

TABLE OF CONTENTS

LIST OF FIGURES .. v

Chapter 1 Introduction ... 1

Chapter 2 Literature Survey ... 3

Chapter 3 Data Acquisition System .. 5

Power Electronics .. 5
GPS – IMU Unit .. 7
LIDAR Unit ... 7
Data Routing Architecture.. 8
Software .. 8

Chapter 4 Data Processing Algorithm ... 9

Step 1) Correct the LIDAR scan for vehicle orientation. 9

Step 2) Identify the road and road edge .. 10

Step 3) Given the road edge, identify the adjacent slope from the scan and
approximate it to a line and then identify the edge of the adjacent slope. 12

Step 4) Given the edge of the adjacent slope, identify the opposing slope from
the scan and approximate it to a line and then identify the edge of the
opposing slope.. 13

Chapter 5 Tests and Analysis ... 15

Variation in median slope .. 23

Chapter 6 Conclusions and Future Work .. 26

BIBLIOGRAPHY ... 29

Appendix A Architecture of the Power Circuitry .. 32

Appendix B Matlab Code for the Data processing Algorithm ... 35

Pseudo Code .. 35
Matlab Code .. 39
script_iterate_through_data.m .. 39
fun_get_avg_slope_4_goodroads.m ... 41

testa3.m ... 49
tetsa3_fcn_get_adjacent_slope_start_point.m ... 54

tetsa3_fcn_get_optimalslope.m .. 58
tetsa3_fcn_get_optimalslope_at_a_point_by_changing_slope.m........................... 62

tetsa3_analyze_fit_of_a_line.m .. 65
fcn_convert_latlongelev_to_xyz.m ... 71

v

LIST OF FIGURES

Figure 3-1: Data Acquisition Platform ... 6

Figure 3-2: The Entire Data Acquisition System When Mounted on a Vehicle 6

Figure 3-3: Data Routing Architecture .. 8

Figure 4-2: The Figure Shows the Identification of a Road Line and the Associated Edge
of the Road by Using that Line. ... 11

Figure 4-3: The Figure Illustrates the Processing Done by the Search Algorithm. The
Final Result of the Search Algorithm has been Lifted Up for Visibility. 13

Figure 4-4: The Processed Scan Data for a Typical Road Cross Section Showing the
Road, the Adjacent Slope and the Opposing Slope as Identified by the Algorithm.
(The Raw LIDAR Scan Data has Also Been Shown and has been Shifted Up for
Visibility) .. 14

Figure 5-1: The Figure Shows the System Configuration in Which the Roll of the Vehicle
is Measured by Placing the IMU on the LIDAR. .. 16

Figure 5-2: The Figure Shows the Roll, Experienced by the IMU, Measured Under Two
Different Conditions in Which the IMU is Placed Inside the Vehicle (Figure 3-2)
and on the LIDAR (Figure 5-1). .. 16

Figure 5-3: The Figure Shows the Pitch, Experienced by the IMU, Measured Under Two
Different Conditions in Which the IMU is Placed Inside the Vehicle (Figure 3-2)
and On the LIDAR (Figure 5-1). .. 17

Figure 5-4: The Figure Shows the Yaw, Experienced by the IMU, Measured Under Two
Different Conditions in Which the IMU is Placed Inside the Vehicle (Figure 3-2)
and on the LIDAR (Figure 5-1). .. 17

Figure 5-5: The Figure Illustrates the Ability of the IMU Data to Compensate for the Roll
Experienced by the Vehicle. .. 19

Figure 5-6: The Figure Shows the Horizontal Surface Under the LIDAR, Under Different
Levels of Correction for the Roll. .. 20

Figure 5-7: A Photograph and the LIDAR Visualization of the Controlled Sample
Surface that has been Used to Compare the LIDAR Slope Measurements with the
Manual Slope Measurements. .. 20

Figure 5-8: Comparison of Digital Slope Measurements to Manual Slope Measurements. ... 21

Figure 5-9: Repeatability Test for LIDAR Slope Measurement at Different Known GPS
locations. ... 22

vi

Figure 5-10: LIDAR Scans Obtained in Three Different Runs At a Known GPS Location. .. 23

Figure 5-11: The Variation of a Slope Measured Across a Median Cross Section
Measured Manually and with LIDAR. ... 24

Figure 5-12: The Plot Illustrates the Variation in the Median Profile at a Distance of +/-
50 Meters Around Milemarker 213 on Route 220S, in Centre County, PA. 25

Figure 6-1: All the Routes that were Covered as a Part of Median Slope Measurement
Effort for the NCHRP 22-21 Median Design Project. ... 27

Figure 6-2: 3-D Visualization of the Road Profile on US 220 S Center County, PA. 28

Figure 6-3: 3-D Visualization of LIDAR Point Cloud, Taken at Foxhill Road West
Bound. .. 28

Figure App A-1: A Schematic Illustrating the Architecture of the Power System. 32

vii

ACKNOWLEDGEMENTS

Firstly, I would like to thank and acknowledge all the community activists, organizers

and social workers who have made this world a better place and the fruits of whose sacrifice and

action I am currently enjoying.

I would like to thank the Department of Mechanical Engineering and the Thomas D.

Larson Pennsylvania Transportation Institute for providing support for this work. I would like to

express my gratitude for my advisor, Dr.Brennan, whose patience and enthusiasm was invaluable.

I would also like to thank him for being kind and understanding during all the variety of

situations that I faced during the last two years. I admire his commitment to teaching and I am

amazed by the time and energy he channels into this passion.

I would also like to thank Dr.Sommer for taking time out of his busy schedule to be my

reader. I would like to thank Vishi for all his help, from my first semester at Penn State. Vishi’s

candid and thoughtful analysis of any situation has been incredibly helpful all throughout. Adam

and Sittikorn are great guys and have been awesome to work with.

I would like to thank my family for their support and encouragement in all my endeavors.

I would like to thank my parents who have whole heartedly dedicated the better part of their lives

to making sure that I had better opportunities than they ever did. I would like to thank my

maternal grandmother for her unconditional love and support from the day I was born. I would

like to thank my paternal grandmother whose selfless work for the community and the family has

always inspired me.

Finally, I would like to thank all the good friends that I have made at Penn State and my

old friends from IITM for all their time and company.

Chapter 1

Introduction

Median geometry is critical in determining the nature of crashes that occur in a particular

median, and selection of geometry requires tradeoffs: “flattened” medians may result in more

crossover median crashes, while medians which are steep might cause the vehicle to rollover. The

makeup in the vehicle fleet has also affected aspects of this tradeoff, particularly in regard to

rollover. In the past decades, consumers have purchased a significant number of Sport Utility

Vehicles (SUVs) which have a greater propensity to overturn than some of the smaller cars. The

increased travel speeds and traffic volumes also call to attention the need to make possible

changes to the American Association of State Highway and Transportation Officials (AASHTO)

policy on geometric design of highways and streets, a policy which has remained largely

unchanged over the last many years (1). Median geometry also plays a pivotal role in the

selection and evaluation of in-median corrective factors such as median barriers. In particular, the

relative positioning of a median barrier inside a median directly affects the nature and number of

crashes that happen on that median.

While there are a number of research projects that seek to find analytical or descriptive

models relating median design to crash incidents, a key shortcoming is the lack of knowledge of

median geometries on existing roadways. For example, a descriptive method would be to check

for statistical correlation between the median geometry on an existing segment and the roll over

and cross over crashes that have occurred therein. However, details of the median geometry

within that particular segment are crucial, but often missing. Or one might use an analytical

approach where one simulates the behavior of different vehicles on an idealized slope using

2

vehicle dynamics software packages. However, the selection of representative “idealized” slopes

must be motivated by existing median geometries.

Careful study of median geometric design clearly requires collection of significant

amounts of median data, a process which in turn requires an easy and reliable method to obtain

the median geometry. This thesis describes the design of an automated Light Detecting and

Ranging (LIDAR) based terrain mapping system which has been used to collect the median

profile data for the study. This automated system satisfies a number of design constraints

including:

• use of only off-the-shelf items to stay within budget and time constraints,

• keeping the entire system portable so that it could be shipped to any location for rapid

mapping,

• allowing the design to be fitted to any existing large sized rental SUV without causing

any permanent changes or making any custom modifications to the vehicle,

• developing a simple and intuitive GUI to control the equipment when on the road ,

• designing software that can process the huge amount of data collected by the system and

extract the parameters of median geometry (the adjacent slope and the opposing slope),

• testing the reliability of the system through repeated deployments in a wide range of

roadway conditions,

• testing the repeatability of the system to evaluate expected variability of the data, and

• calibrating and conducting error analysis to understand the most common sources of error

and accuracy versus existing methods of median measurement.

This thesis presents a system developed to meet these needs, and in particular details the error and

repeatability analysis aspects of the system design and evaluation process.

Chapter 2

Literature Survey

The most common modern practice to survey wide swaths of geometry is the use of

LIDAR, and LIDAR-based terrain mapping technology has been demonstrated across a variety of

applications. While aerial LIDAR technology has been present for some time and has been

extremely useful in survey applications (2), there are some limitations with regard to the level of

detail that could be obtained by this means. For example, a recent study by Souleyrette (3)

revealed that it was infeasible to extract shoulder slope data from aerial LIDAR because of the

narrowness of the shoulder. Road vehicle-based LIDAR mapping technology is another option

which typically involves collecting terrain information from LIDARs and Global Positioning

System – Inertial Measurement Unit (GPS-IMU) units mounted on a vehicle. This approach has

the advantage of providing the required amount of detail to accurately measure parameters like

the road cross-slope, median geometry etc., but has the disadvantage of complexity in calibration

and removing vehicle motion, issues discussed herein. Road cross-slope measurement with

LIDARs was initially patented by Mekemson (4). It must be noted that this patent delves into

measuring the cross slope of the pavement and is different from the work in this thesis which

looks into the measuring the cross slope of off-road features like medians. In this patent, a ring-

laser gyroscope is used to specify the roll of the vehicle with respect to a level datum and the

LIDARS, which are placed on either side of a platform extending from the rear of the vehicle, are

used to measure the roll of the vehicle with respect to the pavement. By subtracting out the roll of

the vehicle with respect to the pavement from the roll measured from the ring laser gyro, this

method is able to measure the cross slope of the pavement very accurately. In our experiments we

have assumed that the roll of the vehicle with respect to the pavement is negligible, this

4

assumption was based on the work done by Mraz (5) who has shown that accurate measurement

of the cross slope of the road is possible by simply using a well calibrated GPS-IMU system

mounted on a vehicle. Some of the other applications for which LIDAR based mapping has been

used are in road profilometry, for measuring pavement and ride quality (6)(7) (8) (9) (10) (11).

These applications typically use high frequency and high accuracy LIDAR systems that usually

measure the pavement surface from close proximity (6-10 inches off the ground) and determine

the smoothness of the pavement and thereby access whether it meets ride quality standards.

Active research is also being conducted in terrain mapping with the aid of LIDARs for its

applications in robotics (12) (13) (14). This area is the closest in terms of the sensors and systems

used in our design and while the applications in robotics are typically satisfied with detecting and

extracting the obstacles in the path of the robot by processing the LIDAR data, we were more

concerned about how accurately the LIDAR was measuring the terrain profile.

Another method of terrain mapping is to utilize additional sensors like cameras on the

vehicles. This provides interesting opportunities to fuse the information obtained from multiple

sensors (15)(16), and vision sensors can also be used to extract interesting features such as road

conditions (17), lane markers etc. An example combining vision and LIDAR sensors to obtain

road and off-road features for road safety has been presented by the ARRB group (18) (19).

While one may see parallels in some of the above work and the work presented in this

thesis, it is important to note that this is the first time a detailed study has been performed to study

the feasibility of utilizing a terrain based LIDAR scanning system for the purpose of measuring

off-road features such as median slopes.

Chapter 3

Data Acquisition System

The sensors present in a typical terrain mapping vehicle are a LIDAR, a GPS and an

IMU. While the LIDAR scans the environment and provides the terrain information relative to

the vehicle, the global position of the vehicle is measured at relatively long intervals by the GPS.

The orientation and fine motion of the vehicle is measured by the IMU. One can observe that a

particular challenge to operate mobile mapping systems is to obtain very accurate position and

orientation information at very high bandwidth by fusion of GPS and IMU data, a process which

requires high accuracy and high-bandwidth IMU’s. Only within the past decade have such units

been available at reasonable cost, outside of defense applications.

To measure information from these three sensors simultaneously, an integrated data

acquisition system is needed. Such a system was developed (Figure 3-1, Figure 3-2), and the

resulting unit is a portable instrument frame that has been designed to acquire data from multiple

sensors simultaneously. The main aspects of the system including power electronics, sensor

systems, data routing architecture and data acquisition software are described below:

Power Electronics

A key problem with mobile data acquisition, particularly with a moderate power LIDAR

scanner, is the issue of power quality. To solve this, a complete stand-alone power system was

developed alongside the data-collection system. A two-level design of the instrument frame was

adopted to separate the power electronics systems from the sensor and the computer systems; the

power circuitry is located on the bottom level. The details of the architecture for the power

6

circuitry are specified in Appendix A; this system basically combines the power input from the

on-board battery packs and the vehicle’s alternator to provide well-regulated output independent

of the highly variable vehicle power system.

Figure 3-1: Data Acquisition Platform

Figure 3-2: The Entire Data Acquisition System When Mounted on a Vehicle

7

 GPS – IMU Unit

To obtain integrated GPS-IMU data at the rate of 100Hz, the NovAtel’s Synchronized

Position Attitude Navigation (SPAN) system was used, based on an OEM4 DL4-PLUS GPS

receiver and the HONEYWELL HG1700 military tactical IMU. This is a defense-grade system

whose position errors in the latitude and longitude data, with full satellite visibility, are about 2

meters (one sigma) and the errors in the orientation angles are 0.017, 0.02 and 0.042 degrees (one

sigma) for the roll, pitch and the yaw angles respectively (20) (21). While the GPS location errors

are large, the high-accuracy IMU filters the errors such that the data exhibits a very slowly

drifting bias, not a measurement-to-measurement random change typical of most GPS systems.

The orientation accuracies are critical in determining the repeatability and the accuracy of the

terrain data mapped by using this system.

LIDAR Unit

The LIDAR sensor used on the system is the SICK LMS 291. With a range of up to 30

meters and accuracy of +/- 35mm, it is able to view most traversable medians, e.g. medians

without obstructions to vehicle motion such as barriers, trees, etc. It has a scan rate of 37.5 Hz,

and each scan includes 361 LIDAR data points subtending an angle of 180 degrees at 0.5 degree

increments. The data rate of the LIDAR corresponds to having a combined LIDAR-GPS-IMU

data packet, and hence one complete lateral scan, once every 0.8 meters of road when travelling

at highway speeds (30 meters/sec).

8

Data Routing Architecture

The schematic in Figure 3-3 illustrates the data routing architecture of the instrumentation

setup. The setup consists of an Ethernet hub which routes data between the sensors and the data

acquisition laptops. A network of sensors approach was used because it facilitates distributed

processing of the data and complex command and control structures through different laptops.

Software

To facilitate debugging, the data acquisition interface was coded in Simulink within a

Windows environment. The LIDAR acquisition code was written in the PLAYER environment

(21). The field data is then post-processed to obtain the adjacent and the opposing median slopes

using a code written in MATLAB.

Figure 3-3: Data Routing Architecture

Chapter 4

Data Processing Algorithm

Each scan contains within it information that provides estimates of the adjacent and the

opposing slope, but extraction of this information is not trivial. The task of the data processing

algorithm can be broken down into four main parts:

Step 1) Correct the LIDAR scan for vehicle orientation.

The LIDAR is positioned on the vehicle to look down perpendicularly to the road,

orthogonal to the direction of travel, and any deviation from the perpendicularity of the LIDAR

with respect to the road must be corrected. Static offsets are initially identified through an offline

calibration routine. Dynamic offsets are caused mainly by vehicle roll angle changes while on the

road, pitch and yaw effects are both found to be minor. To correct for the roll, a single LIDAR

data point (�, �) where � is the distance of the LIDAR hit at an angle �. The equations to

transform the LIDAR data into a Cartesian coordinate system while compensating for just the

vehicle roll angle (�) and the initial calibration angle (�) are as follows:

	 = � cos(� − � − �)

� = � sin(� − � − �)

Figure 4-1 shows the effect of this transformation on a LIDAR scan. Once the coordinate

data is obtained the data is re-sampled so that the final data is at regular intervals of the

	 coordinate. This re-sampled data is used in all subsequent analysis.

10

Step 2) Identify the road and road edge

 As the LIDAR is setup perpendicular to the road, the LIDAR data points obtained from

immediately underneath the LIDAR are assumed to be from the road. These form a very smooth

line up to the point of the road edge, and by applying regression, a road line (��) is identified.

Once the road line is identified (Figure 4-2), the edge of the road must be inferred and

because this determination is based on LIDAR data, it might not be the true road edge. A

definition to arrive at the edge of the road from the LIDAR data points, given the equation for the

line of the road, has been formulated by incorporating multiple thresholds as a single threshold

would be very noise sensitive. The definition uses the metric ����(�, �) = ��������
√(�����)� which is

the perpendicular distance of a point (�, �) from a line 	 + "� + # = 0. The definition

presented here has been used in computing the edge of the adjacent and the opposing slopes as

well. We also define the

Figure 4-1: Compensating for Roll and Calibration in the LIDAR Scan

-30 -20 -10 0 10 20 30
-3000

-2500

-2000

-1500

-1000

-500

0

Distance (meters)

D
is

ta
n

ce
 (

m
m

)

LIDAR scan after compensating for roll and calibration
Raw LIDAR scan without any compensation
(assumes that the LIDAR is aligned in the direction of gravity)

11

Point of Significant Departure(%&'): Given a set of n points ((, �() where) ∈ + and + =

,1,2,3 … . 23. Suppose there exists a line 	 + "� + # = 0 and there exists 4 ∈ + , such that 4 is

the smallest value that satisfies

����5	6, �67 > 9ℎ��1 ;<� == 4 < � < 4 + 9ℎ��2

Then the PSD is defined as the point (? , �?) where @ ∈ + and @ is the smallest value that

satisfies

����5	A , �A7 > 9ℎ��3 ;<� == @ < B < 4

where 9ℎ��1, 9ℎ��2 and 9ℎ��3 are empirically determined thresholds and 9ℎ��3 is set lower than

9ℎ��1. The road edge is defined as the %&' of the road line.

Figure 4-2: The Figure Shows the Identification of a Road Line and the Associated Edge of the
Road by Using that Line.

-10 -5 0 5 10 15 20
-3000

-2500

-2000

-1500

Distance (meters)

D
is

ta
n

ce
 (

m
m

)

LIDAR SCAN
ROAD LINE
EDGE OF THE ROAD
(PSD OF THE ROAD LINE)

12

Step 3) Given the road edge, identify the adjacent slope from the scan and approximate it to
a line and then identify the edge of the adjacent slope.

The search algorithm starts from the road edge and considers a small length of the

median each time and finds the point in that stretch whose height is the statistical median of all

the heights within that stretch. The slope of the tangent to the profile at this point is calculated.

The slope of this tangent is varied and a few lines from the resulting set of lines are chosen based

on a set of criterion, presented below. Each line that satisfies the criterion is characterized by the

means of an optimization function which calculates the number of points whose perpendicular

distance from the line is less than a threshold (25mm). This process is repeated along the whole

median until no lines satisfying the above criterions are found. Figure 4.3 shows the lines which

have been tried, by the search algorithm, in blue and those which match the set of criterion in

black. We can see that as we reach closer to the end of the adjacent slope the number of black

lines decreases until there are not any lines that satisfy the criterion and the search is terminated.

Once the search is terminated and the line having the optimal value, e.g. the most points fit by

that line, is selected as the adjacent slope (red line), the %&' of the line is selected as the edge of

the adjacent slope.

The set of criterion used to select a line are as follows:

• The %&' for the line is identified and the line is checked to confirm that the length of the

data segment fitting this line is within reasonable limits (between 1.5m and 10m).

• If the slope of the line is not within a reasonable limit (between 4 degrees and 18

degrees), the line is eliminated.

• If the perpendicular distance of any point between the road edge and the %&' for the line

is beyond a certain threshold (250mm) away from the line, the line is considered to have

an obstruction and is eliminated.

13

Step 4) Given the edge of the adjacent slope, identify the opposing slope from the scan and
approximate it to a line and then identify the edge of the opposing slope.

Step4 is identical to Step3 and it finds the opposing slope. The %&' for the line

representing the opposing slope is identified as the edge of the opposing slope. As an example of

these steps, Figure 4-4 illustrates a raw LIDAR data scan and the data points and lines obtained

after processing the scan. Appendix B contains the MATLAB code for the data processing

algorithm presented in this chapter.

Figure 4-3: The Figure Illustrates the Processing Done by the Search Algorithm. The Final Result
of the Search Algorithm has been Lifted Up for Visibility.

2 4 6 8 10 12 14 16 18
-3000

-2800

-2600

-2400

-2200

-2000

-1800

-1600

-1400

-1200

Distance (meters)

D
is

ta
n

ce
 (

m
m

)

 Median Profile (Green)

Optimal Line representing
the adjacent slope (red)

 All the lines that were
tried by the search

algorithm (Blue)

 All the lines that
satisifed the given

set of criterion (Black)

 PSD of the adjacent
slope (Blue Dot)

A stretch of the median
where no line satisying the

criterion was found
(indication to end the search)

14

Figure 4-4: The Processed Scan Data for a Typical Road Cross Section Showing the Road, the
Adjacent Slope and the Opposing Slope as Identified by the Algorithm. (The Raw LIDAR Scan
Data has Also Been Shown and has been Shifted Up for Visibility)

Chapter 5

Tests and Analysis

One of the important design considerations for the system was to choose the location of

the IMU. Ideally one would want the IMU to be placed directly on top of the LIDAR so that the

dynamics of the LIDAR system during the scanning process could be directly measured. The

IMU unit has been placed inside the vehicle for safety purposes as shown in Figure 5-1, but this

placement assumes that in-vehicle IMU measurements are equivalent to measurements made with

the IMU rigidly mounted to the sensor. To confirm this assumption, an experiment was conducted

with the IMU mounted in both locations while the vehicle is driven as close as possible to the

same path. The results (Figure 5-2) indicate a very small average difference of 0.22 degrees and a

maximum error of 0.66 degrees. This agreement is mainly because the frame holding the LIDAR

is very rigid. During operation, the only observable motion of the sensor relative to the vehicle is

a small oscillation in the vertical direction; this would only affect the pitch angle of the LIDAR

but not the roll. Figures 5-2, 5-3 and 5-4 detail the plots of the roll, pitch and yaw measurements

under the two different conditions. While the pitch and yaw values do not affect the median slope

calculation, they are of importance in any three dimensional mapping application. Mean errors of

0.13 degrees and 0.35 degrees, and maximum errors of 1.08 degrees and 0.96 degrees were

observed between the pitch readings and the yaw readings under the two different conditions. It

must be noted that a significant portion of the error in these tests could be because of the small

differences in the path of the vehicle between the two times the experiments were performed.

16

Figure 5-1: The Figure Shows the System Configuration in Which the Roll of the Vehicle is
Measured by Placing the IMU on the LIDAR.

Figure 5-2: The Figure Shows the Roll, Experienced by the IMU, Measured Under Two Different
Conditions in Which the IMU is Placed Inside the Vehicle (Figure 3-2) and on the LIDAR
(Figure 5-1).

0 100 200 300 400 500 600 700 800
-9

-8

-7

-6

-5

-4

-3

-2

-1

0

1

Distance (Meters)

R
o

ll
A

n
g

le
 (

D
eg

re
es

)

IMU placed inside the vehicle
IMU placed on the LIDAR

LIDAR

IMU GPS

17

Figure 5-3: The Figure Shows the Pitch, Experienced by the IMU, Measured Under Two
Different Conditions in Which the IMU is Placed Inside the Vehicle (Figure 3-2) and On the
LIDAR (Figure 5-1).

Figure 5-4: The Figure Shows the Yaw, Experienced by the IMU, Measured Under Two Different
Conditions in Which the IMU is Placed Inside the Vehicle (Figure 3-2) and on the LIDAR
(Figure 5-1).

0 100 200 300 400 500 600 700 800
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Distance (Meters)

P
it

ch
 A

n
g

le
 (

D
eg

re
es

)

IMU placed inside the vehicle
IMU place on the LIDAR

0 100 200 300 400 500 600 700 800
100

150

200

250

300

350

Distance (Meters)

Y
A

W
 A

n
g

le
 (

D
eg

re
es

)

IMU placed inside the vehicle
IMU placed on the LIDAR

To illustrate the ability of the IMU data to dynamically compensate for vehicle roll in the

LIDAR scan data, the data collection vehicle was rocked violently in roll while it was parked on a

horizontal surface and simultaneously scanning. This is a worst case scenario because the roll

amplitude is significantly higher than what would be expected by the vehicle under ordinary road

conditions. The rocking motion moves the LIDAR and consequently the horizontal surface

underneath it as seen from the perspective of the LIDAR. While the roll of the vehicle can be

obtained from the IMU onboard, the change in the roll of the vehicle can also be computed by

observing the change in the slope of the ground as observed by the LIDAR, since the same

surface is being repeatedly measured.

Figure 5-5 illustrates the data collected by the sensors in this test, and the small diagram

to the bottom-right corner of the figure illustrates the back-view of the motion of the vehicle as

this test is performed. The close match between the blue line, indicating the change in roll as

measured by the IMU, and the green line, which is the change in the slope of the horizontal

surface as seen through the LIDAR, indicates the effectiveness of using the IMU for roll

compensation. There is a small phase difference between the IMU data and the LIDAR slope

measurement due to buffers and other time delays in the electronic equipment associated with the

37 Hz scan rate. This constant phase delay is easily corrected in post-processing, and with this

correction, the difference between the slopes is indicated by the black line in Figure 5-5, and the

difference amounts to a standard deviation of the error of about 0.03 degrees.

The effect of the compensation on the LIDAR scan data acquired when rocking the

vehicle is clearly illustrated in Figure 5-6. In this figure, the raw LIDAR data of the horizontal

surface underneath the vehicle is plotted in red, the LIDAR data with roll compensation is plotted

in blue, and the LIDAR data with roll compensation and phase correction is plotted in green.

Higher accuracy might be obtained if each point within a scan were delay-corrected individually

rather than the entire scan as implemented here; however, this level of accuracy was found

unnecessary for the mapping task.

was about 0.2 degrees. The vertical band of the green data at 0 meters in

combination of the vertical motion

and the error in the LIDAR

 In order to test the ability of the system to measure slopes in a controlled environment,

two boards (40in x 32 in) were placed as shown in F

slope surface to serve as a reference for comparison of manual and LI

slopes of the boards were measured manually by using a

LEVEL) which has a resolution of 0.1 degrees, and length of 4 feet. This manual measurement

process is a low-order survey method commonly used for

While higher-order survey methods would facilitate point

point correspondence is not trivial to obtain from LIDAR data. Fortunately, such validation is not

necessary if the LIDAR data is on

Figure 5-5: The Figure Illustrates the Ability of the IMU Data to Compensate for the Roll
Experienced by the Vehicle.

unnecessary for the mapping task. After scan-level compensation, the maximum error in

The vertical band of the green data at 0 meters in

combination of the vertical motion of the frame holding the LIDAR when the vehicle was r

and the error in the LIDAR measurements (+/- 3.5mm).

In order to test the ability of the system to measure slopes in a controlled environment,

32 in) were placed as shown in Figure 5-7 to represent a controlled, constant

slope surface to serve as a reference for comparison of manual and LIDAR measurements. The

slopes of the boards were measured manually by using a digital inclinometer (PRO SMART

LEVEL) which has a resolution of 0.1 degrees, and length of 4 feet. This manual measurement

order survey method commonly used for the measurement of median slope.

order survey methods would facilitate point-to-point correspondence checking,

point correspondence is not trivial to obtain from LIDAR data. Fortunately, such validation is not

necessary if the LIDAR data is only used for automated median slope measurement.

: The Figure Illustrates the Ability of the IMU Data to Compensate for the Roll
ehicle.

19

maximum error in this test

The vertical band of the green data at 0 meters in Figure 5-6 is due to a

when the vehicle was rocked

In order to test the ability of the system to measure slopes in a controlled environment,

7 to represent a controlled, constant-

DAR measurements. The

inclinometer (PRO SMART

LEVEL) which has a resolution of 0.1 degrees, and length of 4 feet. This manual measurement

the measurement of median slope.

point correspondence checking,

point correspondence is not trivial to obtain from LIDAR data. Fortunately, such validation is not

ly used for automated median slope measurement.

: The Figure Illustrates the Ability of the IMU Data to Compensate for the Roll

20

Figure 5-6: The Figure Shows the Horizontal Surface Under the LIDAR, Under Different Levels
of Correction for the Roll.

Figure 5-7: A Photograph and the LIDAR Visualization of the Controlled Sample Surface that
has been Used to Compare the LIDAR Slope Measurements with the Manual Slope
Measurements.

21

 To test the median scanning system, the LIDAR data was collected while driving past the

boards at a spacing of 2-3 meters between the vehicle and the boards. The LIDAR slope data was

then compared to manual measurements, as shown in Figure 5-8. Figure 5-8 also compares

manual and LIDAR slope measurements for an actual median, a test performed by scanning a

stretch of road with the system and manually measuring the median slope at different mile marker

locations with the same digital inclinometer. The controlled surface measurements showed an

average error of 0.36 degrees, and an average variation of 0.62 degrees was observed in actual

medians. Possible reasons for the larger variation observed in actual medians are due to the

LIDAR scans hitting vegetation (grass) on the median, while the same grass is impressed by the

inclinometer when the slope is measured manually. The errors have been calculated on V-style

medians whose center was an average distance of 10 – 20 meters away from the vehicle, and this

larger distance versus that of the controlled surfaces can also explain some of the added

inaccuracy.

Figure 5-8: Comparison of Digital Slope Measurements to Manual Slope Measurements.

0 2 4 6 8 10 12
0

2

4

6

8

10

12

Slope measured from Lidar (Degrees)

S
lo

p
e

m
ea

su
re

d
 f

ro
m

 D
ig

it
al

 In
cl

in
o

m
et

er
 (

D
eg

re
es

)

Median Slope Data
45 Degrees Line
Controlled Surface
Slope Data
0.36 Degrees
Average Variation Line
0.62 degrees
Average Variation Line

22

Figure 5-9 shows results where the repeatability of the system was examined. To test the

repeatability of slope measurements, the vehicle was driven at highway speeds on the same

section of the road for three different times, and the slopes measured by the system in two of the

trials are plotted against the first trial. An average variation of 0.42 degrees in the slope data was

observed across all trials. A possible cause for the variation in the data could be that the LIDAR

scans are not obtained from exactly the same location in each of the trials, simply due to the

motion of the vehicle and uncertainty in position. The system is obviously constrained in its

ability to locate a particular scan by the accuracy of the GPS system and the resolution of the

scans. It is interesting to note the variation of the slope in the opposing slope is 0.29 degrees,

while that on the adjacent slope is 0.56 degrees. The reason for the better opposing slope

measurement (despite this slope being farther away) is that the opposing slope is angled towards

the LIDAR system and thus has greater number of LIDAR hits when compared to the adjacent

slope. Figure 5-10 illustrates these concepts in a clear way as one can observe the shift of the blue

scan away from the red and the green scans because of positional inaccuracies of the GPS system.

One can also observe that the LIDAR points on the adjacent slope are sparser than the opposing

slope.

Figure 5-9: Repeatability Test for LIDAR Slope Measurement at Different Known GPS locations.

0 2 4 6 8 10 12
0

2

4

6

8

10

12

Trial1 (Degrees)

T
ri

al
2

&
 T

ri
al

3
(D

eg
re

es
)

Trial 2
45 Degrees Line
Trial 3
0.42 Degrees
Average Variation Line

23

Variation in median slope

An interesting observation that was made during these measurements was that significant

variations of the slope could occur within a single median cross section and between several

scans separated by a relatively short distance. This was unexpected given that build plans

generally specify a constant slope within the median sections that were scanned. Figure 5-11

illustrates the manual and the LIDAR based slope measurements over small sections of a single

median. The manual locations were not surveyed but instead measured using a tape guide from

the edge of the road, and hence have lateral position error visible in the graph. Even so, the graph

clearly shows that a significant variation in slope is possible depending on where one placed the

manual slope meter. Hence, the manual measurement system typically used for measuring the

median slope might not be very repeatable. The source of this problem is that a hand

Figure 5-10: LIDAR Scans Obtained in Three Different Runs At a Known GPS Location.

24

measurement usually records slope data at only a few points and with a relatively short span (1

meter) of the entire slope. This large source of potential error is not evident until one compares to

the LIDAR based measurement that uses the entire slope to characterize the median.

The LIDAR scans for road sections have also revealed that there could be a significant

variation of the median slope even across a small stretch of a road. This is illustrated in Figure 5-

12. By providing a vastly larger amount of data, one can conclude that the LIDAR system might

present a clearer picture of the median than conventional manual measurement. Further, the

scanning can be done at highway speeds without any obstruction to the on-going traffic.

Figure 5-11: The Variation of a Slope Measured Across a Median Cross Section Measured
Manually and with LIDAR.

25

Figure 5-12: The Plot Illustrates the Variation in the Median Profile at a Distance of +/- 50
Meters Around Milemarker 213 on Route 220S, in Centre County, PA.

Chapter 6

Conclusions and Future Work

This paper presents a LIDAR-based scanning technology for measuring the median slope

and compares it to manual measurement techniques. The results indicate accuracies on the order

of 0.36 degrees in controlled tests with fixed surfaces, and 0.62 degrees for tests on actual

medians. Repeatability was found to be approximately 0.42 degrees for actual median scans. The

compensation of vehicle motion was found to quite good, and independent of whether the IMU

was mounted on the LIDAR sensor or mounted within the vehicle. Using tests where the vehicle

was aggressively rocked back and forth, the error due to compensation for vehicle motion was

found to be 0.03 degrees

 The system is very cost effective with an approximate expense of $1/mile (2250 data

points/mile/minute) to take measurements as compared to manual measurement which has been

estimated to cost $100/mile (5 data points/mile/100 minutes), an estimate from past work by

researchers at Penn State. This 100 times cost savings agrees with estimates from other

researchers. (22)

Thus far, this particular system has been used to scan more than 5000 miles of road

(Figure 6-1) in order to extract slopes from divided rural median highways. A number of design

modifications have been made in the system over the past year and the final version presented in

this paper is a product of this extensive field testing.

A simple way to avoid the inaccuracies in measuring the adjacent slope as compared to

the opposing slope would be to measure the slope of the road from either side. Currently work is

being done to fuse such data in 3D. Additionally, this also enables one to visualize the terrain

27

information in a 3D environment, and Figures 6-2 and 6-3 show examples in this regard for road

segments with interesting features.

 The above terrain mapping system can be briefly described as an integrated DAQ system

for a Sick LIDAR scanner and a GPS-IMU system that can be used for terrain mapping. An

important feature of this system is that the timing issues involved in the data acquisition process

have been closely examined and understood and this enables that system to be readily used for

other research applications. The system can be used in road surveying applications, which include

the measurement of a variety of on-road and off-road parameters. The system can also be used in

surveillance applications wherein the difference in the maps of the terrain can be observed over

time. It is important to note that the current system contains a fairly common configuration of

sensors that have been implemented in other robotic systems (14), (23). Most of these robotics

systems have been used to study a variety of robotic research areas such as Simultaneous

Localization and Mapping (SLAM), mapping, map based localization, lost robot problems etc in

Figure 6-1: All the Routes that were Covered as a Part of Median Slope Measurement Effort for
the NCHRP 22-21 Median Design Project.

28

the indoor environments; the system developed as a part of this research project has been

specially designed for the outdoor vehicular environment and will enable progress in solving the

above research problems for outdoor applications. A camera can be added to the current system

and a registered camera LIDAR data can also lead to research in interesting areas such as building

facade models, and localization based on facade models etc.

Figure 6-2: 3-D Visualization of the Road Profile on US 220 S Center County, PA.

Figure 6-3: 3-D Visualization of LIDAR Point Cloud, Taken at Foxhill Road West Bound.

Guard Rail

Mesh Fence
Barbed Wire Fence

29

BIBLIOGRAPHY

1. Graham, Jerry. Median Cross-Section Design for Rural Divided Highways. [Online]

Transportation Research Board . http://www.trb.org/TRBNet/ProjectDisplay.asp?ProjectID=694..

2. Light detection and ranging (LIDAR): An emerging tool for multiple resource inventory.

Reutebuch SE, Andersen HE, McGaughey RJ. 2005, Journal of Forestry, pp. 286-292.

3. Souleyrette R., S. Hallmark, S. Pattnaik, M. O’brien, and D. Veneziano. Grade and Cross

Slope Estimation From LIDAR-Based Surface Models. Ames, Iowa : Midwest Transportation

Consortium, 2003.

4. Mekemson James R., and Nicolas Gagarin. Method and Apparatus for Pavement Cross

Slope Measurement. US 7,142,952 B2 United States, 11 08, 2006.

5. Innovative Techniques for Automated Analysis of Cross-Slope Data Using Multipurpose

Survey Vehicle. Mraz Alexander, and Abdenour Nazef. 2008. Transportation Research Board

87th Annual Meeting.

6. Walker, Roger S. Using Profile Measurements to Locate and Measure Grind and Fill Areas

to Improve Ride. s.l. : Texas Department of Transportation, 2006.

7. Phares Brent, Halil Ceylan, and Reginald S. Development of a Device for Analysis of

Portland Cement Concrete and Composite Pavements: Phase 1 Feasibility Study. [Online] 10 31,

2007. [Cited: 3 4, 2008.] http://www.ctre.iastate.edu/research/detail.cfm?projectID=1173987080.

30

8. Fernando, Emmanuel G., Cindy Estakhri, Gerry Harrison, Eric Becker, and Roger

Walker. Evaluation of Methods to Measure Ride and Cross Profile on New Base Course and

Pavements. s.l. : Texas Department of Transportation, 2006.

9. Schmitt Measurement Systems, Inc. Laser Displacement Sensor for Road Profilometry.

[Online] 2003. [Cited: 3 4, 2008.] http://www.acuitylaser.com/pdf/ar600-road-profiling.pdf.

10. Application of Profile Data to Detect Localized Roughness. Fernando E., and C. Bertrand.

2002, Journal of the Transportation Research Board, pp. 55-61.

11. Wavelength-Related Ride Equation. Walker, R. S., E. Fernando, and C. Bertrand. 2004,

Journal of the Transportation Research Board, pp. 136-144.

12. Fast Digitization of Large-Scale Hazardous Facilities. B. Grinstead, A. Koschan, and M.

Abidi. Gainesville,FL : s.n., 2004. Proc. of 10th Int. Conf. on Robotics & Remote Systems for

Hazardous Environments. pp. 521-525.

13. Developing detailed a priori models of large environments to aid in robotic navigation tasks.

B. Grinstead, A. Koschan, and M. Abidi. Orlando,FL : s.n., 2004. Proc. of the SPIE Defense &

Security Symposium: Unmanned Ground Vehicle Technology. pp. 561-568 .

14. Stanley: The robot that won the DARPA grand challenge. S. Thrun, M. Montemerlo, H.

Dahlkamp, D. Stavens, A. Aron, J. Diebel, P. Fong, J. Gale, M. Halpenny, G. Hoffmann, K.

Lau, C. Oakley, M. Palatucci, V. Pratt, P. Stang, S. Strohband, C. Dupont, L.-E.

Jendrossek, C. Koelen, C. Markey, C. Rummel J. van Nieke. 9, s.l. : Journal of Field

Robotics, 2006, Vol. 23.

15. Calibration of Inertial and Vision Systems as a Prelude to Multi Sensor Fusion. D.

Randeniya, Gunaratne Manjriker, Sarkar S., and Nazef Abdenour. s.l. : Transportation

Research Part C, 2006, pp. 255-274.

31

16. Hybrid Self Localization for a Mobile Robotic Platform in Indoor and Outdoor Environments.

B. Grinstead, A. Koschan, and M. Abidi. San Deigo,CA : s.n., 2005. In Transactions of the

American Nuclear Society. pp. 52-53.

17. Experimental Evaluation of a Pavement Imaging System: Florida Department of

Transportation's Multipurpose Survey Vehicle. Marz Alexander, Manjriker Gunaratne,

Abdenour Nazef, and Bouzid Choubane. 2006, Journal of Transportation Research Board, pp.

97-106.

18. Road infrastructure safety assessment. Appleton, I. Hannah, J. Noone, Wilkie S.

Canberra,Australia : s.n., 2006. 22nd ARRB conference: Research into Practice.

19. Turner Blair, and Lee Comport. Automatic Collection of Safety Related Road and Roadside

Data. Melbourne, Australia : Arrb Group.

20. The Player Stage Project: Tools for Multi-Robot and Distributed Sensor Systems. Brian P.

Gerkey, Richard T. Vaughan, and Andrew Howard. Coimbra, Portugal : s.n., 2003. In Proc.

Of the Intl. Con. on Advanced Robotics. pp. 317-323.

21. NovAtel.Inc. SPAN Technology System Characteristics and Performance. Alberta, Canada :

s.n., 2005.

22. FDOT Multi-Purpose Survey Vehicle - An Enhancement to Inertial Roadway Profilers. Road

Profiler's User Group Meeting. Mraz, Alexander and Nazef, Abdenour. Columbus :

http://www.rpug.org/2005/RPUGPresentationsPDF/Alex%20Mraz%20Nour%20Nazef%20FLD

OT%20MPV.pdf.

23. Inc, MobileRobots. Mobile Robots Research & University Robots, Software & Accessories.

Mobile Robots Inc. [Online] http://www.activrobots.com/.

32

Appendix A

Architecture of the Power Circuitry

Figure App A-1: A Schematic Illustrating the Architecture of the Power System.

LAPTOP
100 Watts
(16V/4.5A)

A

+ 12V
BATTERY PACK

+ 12V
CAR BATTERY

Power Line

AC Power
Adapter

A

Data
Connection

Input: 12 V Supply
POWER INVERTER

Output: 120 V AC 2500 W

Input: 120v AC
POWER SUPPLY
Output: 5V, 12V,

24V DC

TCP/IP

TCP/IP

TCP/IP

SERIAL

SERIAL

HUB
5.5 Watts
(3.8V/1 A)

DEVICEMASTER500
1PORT

2.5 Watts
(5-30v/0.5-0.083A)

DEVICEMASTER500
1PORT

2.5 Watts
(5-30v/0.5-0.083A)

L IDAR
50 watts
(24V/2A)

GPS UNIT
5 Watts

(5-18 V/1-0.27A)

24V DC to DC
STEP UP/ DOWN

CONVERTER

 A stable and consistent power supply is very important for all the sensors and the

computers on board the system. Unstable power supplies can jeopardize the expensive equipment

and induce unpredictable behavior in the sensor systems. Figure App A-1 has the schematic

illustrating the power architecture used for the scanning system. The key to having a stable power

supply is to have a backup battery system which would be able to support the power requirements

of the equipment when the vehicle is turned off or in case of a low vehicle battery. Typically,

three 12v-20 Amp Hour batteries were linked parallel to the car battery and the setup would

usually suffice for 6 hours of scanning. An AIMS 2500 watt modified power inverter was chosen

to convert the 12v DC power to AC power. Some of the features of this inverter that were very

useful for this application were:

1) Low Battery Voltage Alarm which would set off when the battery voltage reached

10.5V (+/-0.5V) indicated the need to change to a new set of batteries.

2) Low Voltage Automatic Shutdown which would turn off the output power supply

when the input dc voltage was at 10V (+/-0.5V). This implies that the power would

“blackout” instead of “browning out”. This is an important safety feature to protect

the sensor equipment.

3) It has high input voltage protection

4) AC output short circuit protection

The AC output of the inverter is used to power the laptop and the power supply which converts

the AC voltage back to DC. A Sorenson model power supply which outputs 5V, 10 V and 24 V

DC voltages has been chosen for this purpose. A DC to DC step up/Down down converter made

by Neuron Technology Limited has been used to ensure a very consistent 24V supply to the

LIDAR under all conditions. It must be noted that all the device servers and the sensors have a

common ground supplied by the Sorensen Model Power Supply; this reduces the possibility of

34

equipment damage as all the operating equipment have a common ground. An alternative to this

design would be to use a separate AC adaptor for each piece of electronic equipment and isolate

the serial interface connections between the equipment by using serial isolators.

35

Appendix B

Matlab Code for the Data processing Algorithm

 The pseudo code for the data processing algorithm is presented below and the Matlab

code for the functions is presented thereafter. The Matlab code can be run by running the script

“script_iterate_through_data.m”.

Pseudo Code

__

script_iterate_through_data.m

% The script iterates through mile marker data stored in data files and feeds the data into

% fun_get_avg_slope_4_goodroads to get the average slope, of the adjacent and the opposing

% sides of the median, for all the mile markers.

For (All Mile Marker Data) {

[Average Slope Data] = fun_get_avg_slope_4_goodroads (Mile Marker Data);

Store Average Slope Data;

}

__

[Average Slope Data] = fun_get_avg_slope_4_goodroads (Mile Marker Data) {

36

% The function iterates through the LIDAR scans for a particular mile marker and calculates the

% slope data for each of the scans by calling testa3 and returns the average slope for the mile

% marker.

For (LIDAR scans within a mile marker segment) {

Slope data = Testa3(LIDAR scan);

}

Return Average Slope Data;

}

__

Slope Data = testa3 (LIDAR Scan) {

% Calculates the adjacent slope and the opposing slope for a particular LIDAR scan by calling

% the following functions

Road End Point = tetsa3_fcn_get_adjacent_slope_start_point (LIDAR Scan);

[Adjacent Slope, Adjacent Slope End Point] = tetsa3_fcn_get_optimalslope (LIDAR Scan, Road

End Point);

[Opposing Slope, Opposing Slope End Point] = tetsa3_fcn_get_optimalslope (LIDAR Scan,

Adjacent Slope End Point);

Slope Data = [Adjacent Slope, Opposing Slope];

Return Slope Data;

}

__

Road End Point = tetsa3_fcn_get_adjacent_slope_start_point (LIDAR Scan) {

37

% The function observes the points that have been obtained from immediately underneath the

% laser to identify the road and subsequently identifies the road edge.

Return Road End Point;

}

__

[Slope, Slope End Point] = tetsa3_fcn_get_optimalslope (LIDAR Scan, End Point) {

% The function searches for the optimal slope to represent the profile. The search is performed at

% different points on the median profile. At any given point on the profile the search is performed

% by calling tetsa3_fcn_get_optimalslope_at_a_point_by_changing_slope

For (Perform Search at different points on the profile) {

[Optimal Slope for a Point] = tetsa3_fcn_get_optimalslope_at_a_point_by_changing_slope

(LIDAR Scan, Point On The Scan);

}

Return Optimal Slope Along The Whole Profile;

}

__

[Optimal Slope for a Point] = tetsa3_fcn_get_optimalslope_at_a_point_by_changing_slope

(LIDAR Scan, Point On The Scan){

% The function iterates through a reasonable set of lines with different slopes and which pass

% through the given point and finds the line with the optimal fit to the profile

For (Lines With Different Slopes) {

[Value to characterize the fit of the Line] = tetsa3_analyze_fit_of_a_line (LIDAR scan, Line)

38

}

Return Optimal Slope For The Given Point;

}

__

[Value to characterize the fit of the Line] = tetsa3_analyze_fit_of_a_line (LIDAR scan, Line) {

% The function checks to see if the line satisfies a fixed set of criterion and then computes a value

% that characterizes the goodness of fit of the line with the LIDAR scan.

Return Value to characterize the fit of the Line;

}

__

39

Matlab Code

script_iterate_through_data.m

% The script processes the entire data collected ov er the
% span of a day. The data is stored as a set of dat a segments ,
% where each data segment contains data for a conti nuous set of
% mile markers on a particular road. The script bas ically loads
% each data segment and then feeds the data for eac h mile marker
% in to 'fun_get_avg_slope_4_goodroads' which compu tes the mean
% and standard deviation for the adjacent and the o pposing slopes
% for that particular mile marker. The resulting pr ocessed data
% is stored in a variable named 'ans_mat' which is eventually
% stored in a file. The script results in the creat ion of as many
% processed files as the number of data segments th at were
% processed by the script.

num_data_segments=1;

for count00=1:num_data_segments

 %% The static calibration offset
 comp_angle=-1;

 %% create the filename for the data segment that is to be loaded

filename_datasegment=cat(2, 'day2_batch_carolina' ,num2str(count00), '.mat
');

 %% Loads the appropriate data segment
 %% which has the variables 'file_str' and 'indi'
 load (filename_datasegment);

 %% The number of rows in variable indi is stored in
 %% variable size_data. indi is a variable with 2 co lumns.
 %% the first column contains the mile marker locati ons and
 %% the second column contains the index of the scan that was
 %% collected at those mile markers
 size_data=size(indi,1);

 %% creates a variable 'ans_mat 'to store the proces sed
 %% median slope data
 ans_mat=zeros((size_data-1),5);

 %% The below code iterates through mile marker data for a
 %% particular data segment and the resulting proces sed data
 %% is stored in 'ans_mat'
 for count1=1:size_data-1

40

 %% the first column of 'ans_mat' stores the mile ma rker
 %% number
 ans_mat(count1,1)=indi(count1,1);

 %% the remaining four columns of 'ans_mat' contain the
 %% mean and standard deviation of the adjacent slop e and
 %% the mean and the standard deviation of the oppos ing slope.
 %% file_str is a variable holding the filename of t he
 %% file that contains the LIDAR and the GPS data fo r
 %% this particular data segment.
 [ans_mat(count1,2),ans_mat(count1,3), ...
 ans_mat(count1,4),ans_mat(count1,5)] ...
 = fun_get_avg_slope_4_goodroads ...
 (file_str,indi(count1,2),indi(count1+1, 2), ...
 indi(count1,1),comp_angle,indi(count1,3));

 %% displays the processed slope data on the screen
 ans_mat(count1,1:5)

 end

 %% store the processed data in a file whose filenam e is stored in
 %% the variable filename_processed_data
 filename_processed_data=cat(2, 'processed' ,filename_datasegment);
 save(filename_processed_data);

 %% clear all the variables before loading the next data segment
 clear indi size_data ans_mat filename_datasegment ...
 count1 file_str filename_processed_data ;

end

clear;

41

fun_get_avg_slope_4_goodroads.m

function [adjacent_mean,adjacent_std,opposing_mean,opposing _std]= ...
 fun_get_avg_slope_4_goodroads(str,start_index,e nd_index, ...
 milemarker,comp_a ngle, ...
 cable_barrier_fla g)

% the function calculates the mean and the standard deviation
% of the adjacent and the opposing slope for a part icular mile
% marker location. The input variables and the outp ut variables
% of the function are described below:

%%%%%%%%%%%%%%%% INPUT VARIABLES %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% str - contains the file name of the file holding the LIDAR and
% the GPS data for this mile marker segment

% start_index - contains the starting index for the mile marker
% data in the LIDAR and GPS data

% end_index - contains the ending index for the mil e marker data
% in the LIDAR and GPS data

% milemarker - contains the milemarker whose data i s being
% processed

% comp_angle - contains the static calibration comp ensation angle

% cable_barrier_flag - is a flag to indicate if a c able median
% barrier is present in the median for this mile ma rker

%%%%%%%%%%%%%%% OUTPUT VARIABLES %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% adjacent_mean - mean of the adjacent slope data

% adjacent_std - standard deviation of the adjacent slope data

% opposing_mean - mean of the opposing slope

% opposing_std - standard deviation of the opposing slope

%%

% load the LIDAR and GPS data
load(str);

% flag_graphics is a flag that when set to differen t values
% allows visualization of the data in a Matlab figu re

42

% flag_grahics =1; Plots data shown in figure 4-4
% flag_graphics =2; Plots data shown in figure 4-1
% flag_graphics =0; is used to avoid plotting the a bove plots
flag_graphics=0;

% create variables to store the processed adjacent and opposing
% slope data
final_data_adjacent_slope=zeros(1,1000);
final_data_opposing_slope=zeros(1,1000);

% The following code computes the exact index in th e
% GPS and LIDAR data at which this mile marker star ts
count1=1;
while (final_gps_data(7,count1)<start_index)

 count1=count1+1;

end

% Incase flag_graphics is set to 1,
% The following code creates the handles for
% all the elements in the figure which will be used
% later on.

if (flag_graphics==1)

 h_fig=figure(1);

 MileMarker=milemarker;

 set(gca, 'Title' ,text('String' ,sprintf ...
 ('Profile Of The Median At MileMarker %6.3f Route 40 W NC' , ...
 MileMarker), ...
 'FontSize' ,18, 'FontWeight' , 'bold' , 'FontAngle' , 'italic'));
 set(gca, 'XLabel' ,text('String' , 'meters' , 'FontSize' , ...
 16, 'FontWeight' , 'normal' , 'FontAngle' , 'italic'));
 set(gca, 'YLabel' ,text('String' , 'mm' , 'FontSize' ,16, ...
 'FontWeight' , 'normal' , 'FontAngle' , 'italic'));
 set(gca, 'XLim' ,[-15,75], 'YLim' ,[-4000,0]);

 x_c=0;
 y_c=0;
 hold on;
 h_otherdata=plot(x_c,y_c, 'g' , 'LineWidth' ,3);
 h_road=plot(x_c,y_c, 'm' , 'LineWidth' ,4);
 h_adjacent_slope=plot(x_c,y_c, 'b' , 'LineWidth' ,4);
 h_opposing_slope=plot(x_c,y_c, 'r' , 'LineWidth' ,4);
 h_adjacentline=plot(x_c,y_c, 'k' , 'LineWidth' ,2);
 h_opposingline=plot(x_c,y_c, 'k' , 'LineWidth' ,2);
 h_redline=plot(x_c,y_c, 'r');

43

 set(h_otherdata, 'XData' ,x_c, 'YData' ,y_c);
 set(h_otherdata, 'YData' ,y_c);

 h_leg=legend([h_otherdata;h_road; ...
 h_adjacent_slope;h_opposing_slope], ...
 'OtherData' , 'Road' , 'adjacent Slope' , 'opposing_slope');

set(h_leg, 'FontSize' ,16, 'FontWeight' , 'normal' , 'FontAngle' , 'italic');

 cons=0;
 h_annotate=annotation(h_fig, 'textbox' , ...
 'String' ,{sprintf('At '' 0'' Lat %8.6f N' ,cons), ...
 sprintf(' Long %8.6f W' ,cons), ...
 sprintf(' adjacent Slope %3.1f deg' ,cons), ...
 sprintf(' opposing Slope %3.1f deg' ,cons), ...
 }, ...
 'FontSize' ,16, ...
 'FontName' , 'Arial' , ...
 'FontAngle' , 'italic' , ...
 'FitHeightToText' , 'off' , ...
 'Position' ,[0.1389 0.7468 0.2197 0.1672]);

end

% increments by 1 when an adjacent slope is identi fied
count_adjacent_slope=0;

% increments by 1 when an opposing slope is identif ied
count_opposing_slope=0;

% increments the distance corresponding to each LI DAR scan
total_dist=0;

% increments the distance for which a slope has bee n
% identified
dist_with_slopes=0;

% counts the total number of scans for the milemark er
count_total_scans=0;

old_index=count1;
% code to iterate through all the scans for the mil e marker
while (final_gps_data(7,count1)<end_index)

 [count1-old_index,end_index-old_index]
 gps_data_count1=final_gps_data(1:6,count1);
 z=final_laser_data(:,count1);
 theta = ((0:0.5:180)*pi/180-0.5*pi/180) ...
 - ((gps_data_count1(4)+comp_angle)*pi/180);
 cost=cos(theta');
 sint=sin(theta');

44

 % calculate the distance between the current scan a nd the
 % previous scan
 [distance_btw] = fcn_convert_latlongelev_to_xyz ...
 (final_gps_data(1:3,count1), ...
 final_gps_data(1:3,count1-1));
 dist_value= sqrt((distance_btw(1)*distance_btw(1))+ ...
 (distance_btw(2)*distance_btw(2))+ ...
 (distance_btw(3)*distance_btw(3)));

 % convert the laser range data into coordinate data
 range_y_data=-z.*sint;
 range_x_data=z.*cost;

 % incase flag_graphics is set to 2, plot the approp riate
 % graphics
 if (flag_graphics==2)
 plot(range_x_data/1000,range_y_data, 'b' , 'Linewidth' ,3)
 hold on
 theta1=((0:0.5:180)*pi/180-0.5*pi/180);
 cost1=cos(theta1');
 sint1=sin(theta1');
 range_y_data_1=-z.*sint1;
 range_x_data_1=z.*cost1;
 plot(range_x_data_1/1000,range_y_data_1, 'g' , 'Linewidth' ,3)
 axis([-30 30 -3000 0])
 xlabel({ 'Distance (meters)' }, ...
 'FontWeight' , 'bold' , 'FontSize' ,14, ...
 'FontName' , 'Arial');
 ylabel({ 'Distance (mm)' }, ...
 'FontWeight' , 'bold' , 'FontSize' ,14, ...
 'FontName' , 'Arial');
 legend1 = legend(gca, 'show');
 set(legend1, 'FontWeight' , 'bold' , ...
 'FontSize' ,12, 'FontName' , 'Arial');
 hold off ;
 end

 % Eliminate all the range data points which have a range greater
 % than 80 meters
 z_80=find(z>80000);
 range_y_data(z_80)=[];
 range_x_data(z_80)=[];
 range_y_data(1)=[];
 range_x_data(1)=[];

 minx=min(range_x_data);
 maxx=max(range_x_data);

 % Interpolate Y data at regular intervals of X data
 x_new=-10*1000:100:maxx;
 y_new = interp1(range_x_data,range_y_data,x_new , 'linear');

45

 % Median filtering eliminates the cable median barr ier from the
 % scan
 if (cable_barrier_flag ==1)
 y_new = medfilt2(y_new, [1 15]);
 end

 % Call the testa3 function which computes the media n slopes for
 % this particular scan
 [opposingslopeangle,adjacentslopeangle,opposing _slope_coords, ...
 adjacent_slope_coords,slope_exists,reply]=t etsa3(x_new,y_new);
 % note the reply output variable can take any of th e following
values:
 % 'm' -- when both adjacent and opposing slopes exi st
 % 'q' -- when only the adjacent slope exists
 % 'e' -- when only the opposing slope exists
 % 'z' -- when neither exist

 % The following code plots the data obtained from processing the
scan
 if (flag_graphics==1)

 if (slope_exists==1 && adjacentslopeangle~=0)

 greenline=[-5000;24000];
 pinkline=[-2500;adjacent_slope_coords(1 ,1)];
 blueline=[adjacent_slope_coords(1,1); ...
 adjacent_slope_coords(end,1)];
 redline=[adjacent_slope_coords(end,1); ...
 opposing_slope_coords(end,1)];

 % h_fig=figure;
 x2=greenline(1):100:greenline(2);
 linex1=pinkline(1):100:pinkline(2);
 linex2=blueline(1):100:blueline(2);
 linex3=redline(1):100:redline(2);
 y2 = interp1(range_x_data,range_y_data, x2, 'linear');
 set(h_otherdata, 'XData' ,x2/1000, 'YData' ,y2);
 liney1 =
interp1(range_x_data,range_y_data,linex1, 'linear');
 set(h_road, 'XData' ,linex1/1000, 'YData' ,liney1);
 liney2 =
interp1(range_x_data,range_y_data,linex2, 'linear');
 set(h_adjacent_slope, 'XData' ,linex2/1000, 'YData' ,liney2);
 liney3 =
interp1(range_x_data,range_y_data,linex3, 'linear');
 set(h_opposing_slope, 'XData' ,linex3/1000, 'YData' ,liney3);
 if (adjacentslopeangle~=0)
 set(h_adjacentline, 'XData' , ...
 adjacent_slope_coords(:,1)/1000 , ...
 'YData' ,adjacent_slope_coords(:,2));

46

 end
 if (opposingslopeangle~=0)
 set(h_opposingline, ...
 'XData' ,opposing_slope_coords(:,1)/1000, ...
 'YData' ,opposing_slope_coords(:,2));
 end
 set(h_annotate, 'String' , ...
 {sprintf('At '' 0'' Lat %8.6f N' , ...
 gps_data_count1(1)), ...
 sprintf(' Long %8.6f W' , ...
 gps_data_count1(2)), ...
 sprintf(' adjacent Slope %3.1f deg' , ...
 adjacentslopeangle), ...
 sprintf(' opposing Slope %3.1f deg' , ...
 opposingslopeangle) });
 set(h_redline, 'XData' ,0, 'YData' ,0);

 else

 set(h_redline, 'XData' ,x_new/1000, 'YData' ,y_new);
 set(h_otherdata, 'XData' ,0, 'YData' ,0);
 set(h_road, 'XData' ,0, 'YData' ,0);
 set(h_adjacent_slope, 'XData' ,0, 'YData' ,0);
 set(h_opposing_slope, 'XData' ,0, 'YData' ,0);

 set(h_annotate, 'String' , ...
 {sprintf('At '' 0'' Lat %8.6f N' , ...
 gps_data_count1(1)), ...
 sprintf(' Long %8.6f W' , ...
 gps_data_count1(2)), ...
 sprintf(' adjacent Slope %3.1f deg' , ...
 adjacentslopeangle), ...
 sprintf(' opposing Slope %3.1f deg' , ...
 opposingslopeangle) });

 if (adjacentslopeangle~=0)
 set(h_adjacentline, 'XData' , ...
 adjacent_slope_coords(:,1)/1000 , 'YData' , ...
 adjacent_slope_coords(:,2));
 else
 set(h_adjacentline, 'XData' ,0, 'YData' ,0);
 end
 if (opposingslopeangle~=0)
 set(h_opposingline, 'XData' , ...
 opposing_slope_coords(:,1)/1000 , 'YData' , ...
 opposing_slope_coords(:,2));
 else
 set(h_opposingline, 'XData' ,0, 'YData' ,0);
 end

 end

47

 end

 %% if graphics are ON then pause for user input
 if (flag_graphics~=0)
 user_entry = input('Press enter to continue');
 end

 % the total distance for the mile marker is increme nted
 total_dist=total_dist+dist_value;

 % the total scans for the mile marker are increment ed
 count_total_scans=count_total_scans+1;

 switch reply

 % if reply == m ; both the adjacent and the opposin g slope
 % are recorded
 case 'm'
 if (adjacentslopeangle~=0 && opposingslopeangle~=0)
 dist_with_slopes=dist_with_slopes+d ist_value;
 count_adjacent_slope=count_adjacent _slope+1;
 count_opposing_slope=count_opposing _slope+1;
 final_data_adjacent_slope(1,count_a djacent_slope) ...
 =adjacentslopeangle;
 final_data_opposing_slope(1,count_o pposing_slope) ...
 =opposingslopeangle;
 end

 % if reply == q ; only the adjacent slope is record ed

 case 'q'

 if (adjacentslopeangle~=0)
 dist_with_slopes=dist_with_slopes+d ist_value;
 count_adjacent_slope=count_adjacent _slope+1;
 final_data_adjacent_slope(1,count_a djacent_slope) ...
 =adjacentslopeangle;
 end

 % if reply == e; only the opposing slope is recorde d
 case 'e'

 if (opposingslopeangle~=0)
 dist_with_slopes=dist_with_slopes+d ist_value;
 count_opposing_slope=count_opposing _slope+1;
 final_data_opposing_slope(1,count_o pposing_slope) ...
 =opposingslopeangle;
 end

48

 end

 % the count is incremented to process the next scan
 count1=count1+1;

end

final_data_adjacent_slope=final_data_adjacent_slope ...
 (1,1:count_adjacent_slope);
final_data_opposing_slope=final_data_opposing_slope ...
 (1,1:count_opposing_slope);

% median filtering the slope data smoothes out any sudden spikes in
% the data
final_data_adjacent_slope=medfilt1(final_data_adjac ent_slope,3);
final_data_opposing_slope=medfilt1(final_data_oppos ing_slope,3);

min_qty_thre=30;
% if the number of scans for which a slope has been observed is less
% than min_qty_thre then a slope is not reported fo r this mile marker
% , else a mean and standard deviation of the slope value is
% reported to the program calling the function

if (size(final_data_adjacent_slope,2)>min_qty_thre)
 adjacent_mean=mean(final_data_adjacent_slope);
 adjacent_std=std(final_data_adjacent_slope);
else
 adjacent_mean=0;
 adjacent_std=0;
end

if (size(final_data_opposing_slope,2)>min_qty_thre)
 opposing_mean=mean(final_data_opposing_slope);
 opposing_std=std(final_data_opposing_slope);
else
 opposing_mean=0;
 opposing_std=0;
end

49

testa3.m

function [opposing_slopeangle,adjacent_slopeangle, ...
 opposing__slope_coords,adjacent__slope_coords, ...
 flag_continue_processing,reply] ...
 =tetsa3(x_new,y_new)

%%%
%%%% INPUT VARIABLES

% x_new contains the x coordinates of the median pr ofile
% y_new contains the y coordinates of the median pr ofile

%%%% OUTPUT VARIABLES

% opposing_slopeangle contains the opposing slope's angle
% calculated for the input median profile
% adjacent_slopeangle contains the adjacent slope's angle
% calculated for the input median profile
% opposing__slope_coords contains the x,y coordinat es of the line that
% represents the opposing slope
% adjacent__slope_coords contains the x,y coordinat es of the line that
% represents the adjacent slope
%%%

% plot_val is used for debugging purposes in order to visualize
% the data
plot_val=0;

% flag_continue_processing is a flag that turns to 0 when the start
% point for the next segment of the median is not i dentified
flag_continue_processing=1;

% reply is set to default
reply= 'z' ;

%%%
% Choose the relevant portion of x_newdata by
% restricting the search for the median to
% (651-100)*100 mm= 55 meters
% (refer to line 196 of fcn_get_avg_slope_4_goodroa ds.m)
index_of_maxwidth_in_x=min(651,size(x_new,2));

% Check to see if the scan has the required number of data points
if (size(x_new,2)>150)

 % the points 95:105 are data points that are expect ed to lie
 % immediately underneath the laser and are from the road

50

 road_x_points=x_new(95:105);
 road_y_points=y_new(95:105);

 % calculating the road line
 coeff_roadline=polyfit(road_x_points,road_y_poi nts,1);

 % The road edge and median data points are computed
 % by calling the tetsa3_fcn_get_adjacent_slope_star t_point
 % function
 [road_edge_point,median_x_points, ...
 median_x_points_indices ,flag_continue_proc essing]= ...
 tetsa3_fcn_get_adjacent_slope_start_point ...
 (coeff_roadline,x_new,y_new,100);
else
 road_edge_point=0;
end

%%%

if (road_edge_point~=0)

 if plot_val;

 plot(x_new/1000,y_new, 'b' , 'Linewidth' ,3);
 hold on;

 plot(-5:1:2, ...
 polyval(coeff_roadline,(-5:1:2)*1000), ...
 'k' , 'Linewidth' ,2);

 plot(median_x_points(road_edge_point)/1000, ...
 y_new(median_x_points_indices ...
 (road_edge_point)+100-1), ...
 'rX' , 'Linewidth' ,3);

 axis([-10 20 -3000 -1500]);

 xlabel({ 'Distance (meters)' }, ...
 'FontWeight' , 'bold' , 'FontSize' ,14, ...
 'FontName' , 'Arial');

 ylabel({ 'Distance (mm)' }, ...
 'FontWeight' , 'bold' , 'FontSize' ,14, ...
 'FontName' , 'Arial');

 legend1 = legend(gca, 'show');

 set(legend1, 'FontWeight' , 'bold' , ...
 'FontSize' ,12, 'FontName' , 'Arial');

51

 end ;

end

%%%
% Given the edge of the road and the coordinates of the median
% the following code feeds this data into the
% tetsa3_fcn_get_optimalslope function in order to
% search for the adjacent slope. Once this slope is identified
% the coordinates of the adjacent slope line are ca lculated.
adjacent_slopeangle=0;
adjacent__slope_coords=0;
if (road_edge_point~=0 && flag_continue_processing==1)
 slopes_region_x=x_new ...
 ((median_x_points ...
 (road_edge_point)/100)+100:index_of_maxwidt h_in_x);
 slopes_region_y=y_new ...
 ((median_x_points ...
 (road_edge_point)/100)+100:index_of_maxwidt h_in_x);

 [start_val,adjacent_slopeangle, ...
 adjacent_slope_end,flag_continue_processing]= ...
 tetsa3_fcn_get_optimalslope ...
 (slopes_region_x,slopes_region_y,0,25);

 if plot_val ;
 if adjacent_slopeangle(1)~=0; ...

plot(slopes_region_x(start_val:adjacent_slope_end)/ 1000, ...
 polyval(adjacent_slopeangle, ...
 slopes_region_x(start_val:adjacent_ slope_end)) ...
 , 'm');
 end ;
 end

 if start_val~=0;
 if adjacent_slope_end~=0 ;
 adjacent__slope_coords= ...
 [slopes_region_x(start_val:adjacent _slope_end); ...
 polyval(adjacent_slopeangle, ...
 slopes_region_x(start_val:adjacent_ slope_end))]' ...
 ;adjacent_slopeangle=adjacent_slope angle(1);
 end ;
 end ;

 if (adjacent_slopeangle(1)<0)
 adjacent_slopeangle=atand(adjacent_slopeang le(1));
 reply= 'q' ;
 else
 adjacent_slopeangle=0;
 end

52

end

%%%
% Given the edge of the adjacent slope and the coor dinates of the
% median pertaining to the opposing slope
% the following code feeds this data into the
% tetsa3_fcn_get_optimalslope function in order to
% search for the opposing slope. Once this slope is identified
% the coordinates of the opposing slope line are ca lculated.
opposing_slopeangle=0;
opposing__slope_coords=0;
if (road_edge_point~=0 && ...
 adjacent_slopeangle(1)~=0 && ...
 flag_continue_processing==1)

 slopes_region_opposing_x=slopes_region_x(adjace nt_slope_end:end);
 slopes_region_opposing_y=slopes_region_y(adjace nt_slope_end:end);
 [start_val,opposing_slopeangle, ...
 opposing_slope_end,flag_continue_processing]= ...
 tetsa3_fcn_get_optimalslope ...
 (slopes_region_opposing_x,slopes_region_opp osing_y,1,25);

 if plot_val;
 if opposing_slopeangle(1)~=0;
 plot(slopes_region_opposing_x ...
 (start_val:opposing_slope_end)/1000 ...
 ,polyval(opposing_slopeangle, ...
 slopes_region_opposing_x ...
 (start_val:opposing_slope_end)), 'm');
 end ;
 end ;

 if start_val~=0 ;
 if opposing_slope_end~=0
 opposing__slope_coords= ...
 [slopes_region_opposing_x ...
 (start_val:opposing_slope_end); ...
 polyval(opposing_slopeangle, ...
 slopes_region_opposing_x ...
 (start_val:opposing_slope_end))]';
 opposing_slopeangle=opposing_slopeangle (1);
 end ;
 end ;

 if (opposing_slopeangle(1)>0 && reply== 'q')
 opposing_slopeangle=atand(opposing_slopeang le(1));
 reply= 'm' ;
 else
 if (opposing_slopeangle(1)>0)
 reply= 'e' ;
 else
 opposing_slopeangle=0;
 end

53

 end

end

%%

54

 tetsa3_fcn_get_adjacent_slope_start_point.m

function [roadedge_point,median_x_points, ...
 median_x_points_indices ,flag_continue_ processing] ...
 =tetsa3_fcn_get_adjacent_slope_start_po int ...
 (coeff_roadline,x_new,y_new,start_pos)

%%%%%%%%%%%%%%% INPUT VARIABLES
% coeff_roadline contains the coefficients for the line
% representing the road.
% x_new and y_new contain the x and y coordinate da ta
% for the LIDAR scan.
% start_pos contains the point in the coordinate da ta
% from which the road starts.

%%%%%%%%%%%%%% OUTPUT VARIABLES
% roadedge_point contains the index of the point in the coordinate
% data where the road ends.
% median_x_points_indices contains the indices of all the points in
% the coordinate data which are part of the median (and are hence not
% part of the road)
% median_x_points contains the x coordinate data of all the points in
% the coordinate data which are part of the median (and are hence not
% part of the road)
% flag_continue_processing is a flag that indicates if a road edge
% has been found by the below algorithm
%%%

debug=0;

% thre1 is the threshold that sets the height(mm), from the roadline,
% for the point where the road ends and where the m edian adjacent slope
% begins .It is the same as thre1 defined in chapte r 4
thre1=75;

% if there are thre2 continuous points(thre2*100 mm of distance worth
% of points) above thre1 after a particular point
% then that point is considered to be the start of the median
% downslope. It is the same as thre2 defined in cha pter 4
thre2=30;

% thre3 is the second layer of threshold included t o prevent any
% effects of noise that may occur if only thre1 was used.
% It is the same as thre3 defined in chapter 4
thre3=25;

% thre_roadedge_maxdistance sets the threshold for the case when a
road
% edge cannot be identified by the above thresholdi ng system within a

55

% reasonable distance. The 'reasonable' distance is set by
% thre_roadedge_maxdistance = 14 meters
thre_roadedge_maxdistance=14000;

% Choose the relevant portion of x_newdata by
% restricting the search, for the road edge,
% to (351-100)*100 mm= 25 meters
% (refer to line 196 of fcn_get_avg_slope_4_goodroa ds.m)
thre_25meters_xnew=min(351,size(x_new,2));

% threshold to check for obstruction objects.
% A scan is considered to have an obstruction
% if it has a point whose height is
% above 250mm from the road line
thre_obstruction=-250;

% no_roadedge_flag is set to 1 if any of the above thresholds
% has been crossed. Once the no_median_flag is set, the program
% skips over the remaining steps and reports to the program
% calling the function that a road edge could not b e found
no_roadedge_flag=0;

% Calculates the distance of the points on the scan
% from the road line
hits_above_line=(polyval(coeff_roadline, ...
 x_new(start_pos:thre_25meters_xnew)) ...
 -y_new(start_pos:thre_25meters_xnew));
% ax+by+c>0 if the point(x,y) is to the that side
% of the line which does not contain the origin

% implementing thre1
% median_x_points_indices holds all the points whic h cross thre1
median_x_points_indices =find(hits_above_line>thre1);
median_x_points=x_new(median_x_points_indices +star t_pos-1);
size_median_x_points_indices =size(median_x_points_ indices ,2);

% implementing thre2 & thre3
% as described in chapter 4
roadedge_point=0;
found_downslope_flag=0;
if (no_roadedge_flag==0)

 roadedge_point=0;
 while (found_downslope_flag==0&& ...
 roadedge_point+thre2<size_median_x_poin ts_indices)

56

 roadedge_point=roadedge_point+1;
 if isequal(median_x_points_indices ...
 (roadedge_point+1:roadedge_point+th re2), ...
 median_x_points_indices (roadedge_p oint) ...
 +1:median_x_points_indices (roadedg e_point)+thre2)
 found_downslope_flag=1;
 if debug==1;
 fprintf(1, 'continuous set of thre2 points found !!\n');
 end ;
 end
 end
 if (roadedge_point>0)
 no_roadedge_flag=0;
 while (hits_above_line ...
 (median_x_points_indices (roadedge_ point))>thre3)
 median_x_points_indices (roadedge_point) ...
 =median_x_points_indices (roadedge_ point)-1;
 median_x_points(roadedge_point)= ...
 x_new(median_x_points_indices ...
 (roadedge_point)+start_pos-1);
 end
 else
 no_roadedge_flag=1;
 if debug==1;
 fprintf(1, 'no continuous set of thre2 points found !!!\n');
 end ;
 end

end

% Step 2 : Implements thre_roadedge_maxdistance
if (no_roadedge_flag==0)
 if (...
 (x_new(median_x_points_indices (roadedge_poi nt) ...
 +start_pos-1)-x_new(start_pos)) ...
 > thre_roadedge_maxdistance ...
)
 no_roadedge_flag=1;
 if debug==1;
 fprintf(1, 'The Segment length has been exceeded \n');
 end ;
 end

end

% Step 3: Checks for any obstructions and implement s the
% thre_obstruction

57

if (no_roadedge_flag==0)

 obstruction_points=find(hits_above_line ...
 (1:(median_x_points_indices
(roadedge_point)))<thre_obstruction);
 x_obstruction_points=x_new(obstruction_points+1 00-1);

 if (~isempty(obstruction_points))
 no_roadedge_flag=1;
 if debug==1;
 fprintf(1, 'There is thre_obstruction obstruction \n');
 end ;
 end

end

% notify the calling program that a road edge was n ot detected
if (no_roadedge_flag==0)

 flag_continue_processing=1;

else

 flag_continue_processing=0;

end

58

tetsa3_fcn_get_optimalslope.m

function [final_slope_start,final_slopeangle, ...
 final_slope_end,final_slope_exists]= ...
 tetsa3_fcn_get_optimalslope ...
 (slopes_region_x1,slopes_region_y1,direc,no_of_ search_points)

%%%%%%%%%%%%%%INPUT VARIABLES

% slopes_region_x1 and slopes_region_y1 contains th e x and y coordinate
% data of the adjacent or the opposing slope.
% direc indicates if the search for the slope data pertains to an
% adjacent slope or the opposing slope.
% no_of_search_points sets the maximum number of di screte
% search points that will be processed by the below algo.
no_of_search_points=25;

%%%%%%%%%%%%%% OUTPUT VARIABLES
% final_slope_start contains the index of the start point of the
% adjacent or the opposing slope.
% final_slope_end contains the index of the end poi nt of the
% adjacent or the opposing slope.
% final_slope_exists is a flag which indicates if t he
% algorithm was able to identify a slope.
% final_slopeangle contains the angle of the line t hat
% best represents the adjacent or the opposing slop e of this
% median.

%%%
% The below set of 'store_' variables store the res ults obtained
% from searching for the optimal slope, by calling
% tetsa3_fcn_get_optimalslope_at_a_point_by_changin g_slope'
% at each of the search points

% store_slopestart stores the index of the start po int of the
% optimal slope line at all search points.
store_slopestart=zeros(no_of_search_points,1);

% store_search_points stores the index of all the s earch points.
store_search_points=zeros(no_of_search_points,1);

% store_slopeangle stores the slope of the optimal slope line
% at all search points.
store_slopeangle=zeros(no_of_search_points,1,2);

% store_slope_end stores the index of the end point of the
% optimal slope line at all search points.
store_slope_end=zeros(no_of_search_points,1);

59

% store_optval stores the value that characterizes the optimal
% fit at all the search points.
store_optval=-25*ones(no_of_search_points,1);

% store_slope_exists stores a flag that indicates i f a slope
% has been found at each of the search points
store_slope_exists=zeros(no_of_search_points,1);
%%%

% plot(slopes_region_x1/1000,slopes_region_y1+200,' g','Linewidth',3);
% hold on;
% plot(slopes_region_x1/1000,slopes_region_y1,'g',' Linewidth',3);

count1=0;
flag_endcount=0;
count_noslope=0;
while (flag_endcount==0)

 % The below code sets the width of the stretch of m edian profile
 % that will be used to identify a search point
 count1=count1+1;
 if (direc==0)
 width=6;
 else
 width=12;
 end

 % The statistical median of all the heights of the points within
 % that region is chosen and is fed as the search po int to
 % tetsa3_fcn_get_optimalslope_at_a_point_by_changin g_slope
 sort_y=slopes_region_y1((width*(count1-1)+1) ...
 :min((width*(count1)+1),size(slopes_region_ y1,2)));
 [sort_hold,IX]=sort(sort_y);
 if (round(size(IX,2)/2)>0)
 pos1=IX(round(size(IX,2)/2));
 end

 % the following code feeds the search point into th e function
 % tetsa3_fcn_get_optimalslope_at_a_point_by_changin g_slope
 % and keeps a tab on them to see if lines represent ing the slope
 % are being found by the search function, in order to
 % stop the search process if no lines are being fou nd.
 if (size(slopes_region_y1,2)>(width*(count1-1)+1)+pos 1+10)

 [slopestart,slopeangle,slope_end,opt_val,sl ope_exists] ...

=tetsa3_fcn_get_optimalslope_at_a_point_by_changing _slope ...
 (slopes_region_x1, ...
 slopes_region_y1, ...
 (width*(count1-1)+1)+pos1, ...

60

 direc);
 % The iteration stops if three consecutive search p oints
 % donot find any line that fit the profile and pass through
them
 if (slope_exists==0)
 count_noslope=count_noslope+1;
 if (count_noslope==3)
 flag_endcount=1;
 end
 else
 count_noslope=0;
 end

 else
 slopestart=0;
 slopeangle=0;
 slope_end=0;
 opt_val=0;
 pos1=0;
 slope_exists=0;
 end

 if (count1>no_of_search_points)
 flag_endcount=1;
 end

 % store the optimal parameters at each point
 store_slopestart(count1,:)=slopestart;
 store_slopeangle(count1,:,:)=slopeangle;
 store_slope_end(count1,:)=slope_end;
 store_optval(count1,:)=opt_val;
 store_slope_exists(count1,1)=slope_exists;
 store_search_points(count1,1)= (width*(count1-1)+1)+pos1;

end

% the following code calculates the optimal line re presenting
% the profile of the median and stores the paramete rs in
% the set of 'final_' variables which transfer this data
% back to the calling program
[max_val,max_pos]=max(store_optval);

% plot(slopes_region_x1(store_search_points...
% (max_pos):store_search_points(max_pos)+10)/10 00,...
% polyval(squeeze(store_slopeangle(max_pos,:,:))...
% ,slopes_region_x1(store_search_points(max_pos):...
% store_search_points(max_pos)+10)),...
% 'r','Linewidth',2);
% plot(slopes_region_x1(store_slopestart(max_pos,:) ...
% :store_slope_end(max_pos,:))/1000,...
% polyval(squeeze(store_slopeangle(max_pos,:,:))...
% ,slopes_region_x1(store_slopestart(max_pos,:) ...
% :store_slope_end(max_pos,:)))+200,...
% 'r','Linewidth',2)

61

% plot(slopes_region_x1(store_slope_end(max_pos,:)) ...
% /1000,slopes_region_y1(store_slope_end(max_po s,:))+200 ...
% ,'bx','Linewidth',3);
% axis([1 18 -3000 -1200])
% xlabel({'Distance (meters)'},'FontWeight','bold', 'FontSize',14,...
% 'FontName','Arial');
% ylabel({'Distance (mm)'},'FontWeight','bold','Fon tSize',14,...
% 'FontName','Arial');

final_slope_start=store_slopestart(max_pos,:);
final_slopeangle=squeeze(store_slopeangle(max_pos,: ,:));
final_slope_end=store_slope_end(max_pos);
final_slope_exists=store_slope_exists(max_pos);

62

tetsa3_fcn_get_optimalslope_at_a_point_by_changing_slope.m

function [slope_start,slope_angle, ...
 slope_end,opt_val,flag_slope_exists]= ...
 tetsa3_fcn_get_optimalslope_at_a_point_ by_changing_slope ...
 (slopes_region_x,slopes_region_y,start_ pos,direc)

%%%%%%%%%%%%%%% INPUT VARIABLES
% slopes_region_x, slopes_region_y contain the x an d y coordinate
% data of the median slope
% start_pos contains the point about which the slop e has to be changed
% direc has a value of 1 for opposing slope and 0 f or adjacent slope

%%%%%%%%%%%%%% OUTPUT VARIABLES
% slope_start contains the index, in the coordinate data, where
% the slope starts.
% slope_angle contains the angle of the slope
% slope_end contains the index, in the coordinate data, where
% the slope ends.
% opt_val contains the value that characterizes the goodness of
% the slope line fit to the median profile.
% flag_slope_exists is a flag that indicates to the calling program
% whether a viable line has been found by the searc h algorithm.
%%

flag_slope_exists=1;

% The following check is to make sure that a median of sufficient
% length (2m) exists beyond the start_pos to perfor m the below tests
if (size(slopes_region_x,2)-start_pos>20)

 % Calculate the slope at start_pos by considering v arious segments
 % of the median, that include the start_pos, and ch oosing the
 % statistical median of all the slopes that have be en calculated
 slopes(1:5)=0;
 j=0;
 for i=5:3:19
 j=j+1;
 p1=polyfit(slopes_region_x(start_pos:start_ pos+i) ...
 ,slopes_region_y(start_pos:start_pos+i) ,1);
 slopes(j)=p1(1);
 end
 slopes=sort(slopes);
 start_slope=atand(slopes(3));

63

 % Once the slope of the line is calculated at the s tart_pos by
 % the above code. This slope is varied to achieve a n optimal
 % fit by the following code
 %
 opt_val=0;
 opt_slope=0;
 opt_end=0;
 opt_start_val=0;
 slope_ok=0;
 for i=start_slope-12:0.5:start_slope+12

 if ((direc==1&&i>0) || (direc==0&&i<0))

 cons= slopes_region_y(start_pos) ...
 -(slopes_region_x(start_pos)*tand(i));
 % y-mx=c calculate constant c

 [curr_val,start_val,end_val,slope_ok]= ...
 tetsa3_analyze_fit_of_a_line([tand(i),cons], ...
 slopes_region_x,slopes_region_y,dir ec,start_pos);
 % calculate the goodness of fit for line of each sl ope

 if (curr_val>opt_val && slope_ok==1)
 % store the characteristics of the line which has t he
 % most optimal fit

 opt_slope=[tand(i),cons];
 opt_end=end_val;
 opt_val=curr_val;
 opt_start_val=start_val;

 end
 end

 end

 % finally optimal fit parameters for a line passing through
 % start_pos and fitting the median profile are tran smitted back
 % to the calling program
 if (opt_end>1 && opt_start_val<opt_end)
 slope_start=opt_start_val;
 slope_angle=opt_slope;
 slope_end=opt_end;
 else
 flag_slope_exists=0;
 slope_end=0;
 slope_angle=0;
 slope_start=0;

64

 end

else

 flag_slope_exists=0;
 slope_start=0;
 slope_end=0;
 slope_angle=0;
 opt_val=0;

end

65

tetsa3_analyze_fit_of_a_line.m

function [value,start_val,end_val,slope_ok]= ...
 tetsa3_analyze_fit_of_a_line ...
 (coeff_slopeline,x_new,y_new,direc,star t_pos)

%%%%%%%%%% INPUT VARIABLES

% coeff_slopeline -- contains the coefficients of t he line
% representing the slope.
% x_new contains the x coordinates of the median pr ofile.
% y_new contains the y coordinates of the median pr ofile.
% direc is a flag which indicates whether the curre nt data
% pertains to the adjacent slope or the opposing sl ope.
% start_pos contains the index of the starting coor dinate
% in x_new and y_new after which we expect the adja cent or
% the opposing slope to be present
%%

%%%%%%%%%%%% OUTPUT VARIABLES

% value contains the goodness of fit parameter that characterizes
% the fit of the line to the median profile.
% start_val contains the index of the starting poin t of the line
% ,representing the adjacent or the opposing slope, in the coordinate
% data.
% end_val contains the index of the ending point of the line
% ,representing the adjacent or the opposing slope, in the coordinate
% data .
% slope_ok is a flag that indicates if a line repre senting the slope
% has been identified
%%%

% Use debug to indicate the results of each process ing step
debug=0;

% thre1 is the threshold that sets the height(mm) , from the adjacent
% line or the opposing line, to find the PSD (Point of Significant
% Departure) for the corresponding line
% It is the same as thre1 defined in chapter 4
thre1=100;

% if there are thre2 continuous points(thre2*100 mm of distance worth
% of points) above thre1 after a particular point
% then that point is considered to be the PSD of th e corresponding
% adjacent line or the opposing line
% It is the same as thre2 defined in chapter 4
thre2=40;

66

% Step 2 Segment length
% The thresholds check to see if the length of the line representing
% the slope is within reasonable limits. (1.5 meter s to 20 meters)
thre3_max_segmentlength=20000;
thre3_min_segmentlength=1500;

% Choose the relevant portion of x_newdata by
% restricting the search, for the PSD of the opposi ng or
% adjacent slope,
% to (351-100)*100 mm= 25 meters
% (refer to line 196 of fcn_get_avg_slope_4_goodroa ds.m)
thre_25meters_xnew=min(351,size(x_new,2));

% threshold to check for obstructions.
% A scan is considered to have an obstruction
% if it has a point whose height is
% above 250mm from the slope line.
thre_obstruction=250;

% Step 4 angle limitation
thre_min_slopeangle=4;
thre_max_slopeangle=18;

if (direc==0)
 slope_str= 'AdjSlope' ;
 pow_startpos=0;
else
 slope_str= 'OppSlope' ;
 pow_startpos=0.15;
end

%%%

% no_median_flag is set to 1 if any of the above th resholds
% have been violated. Once the no_median_flag is se t, the program
% skips over the remaining steps and reports to the program
% calling the function that a road edge could not b e found.
no_median_flag=0;
hits_above_line= ...
 abs(polyval(coeff_slopeline,x_new(start_pos:thr e_25meters_xnew)) ...
 -y_new(start_pos:thre_25meters_xnew));
% ax+by+c>0 if the point(x,y) is to the that
% side of the line which doesnot contain the origin

% implementing thre1
% good_thre1_points holds all the points which cros s thre1
good_thre1_points=find(hits_above_line>thre1);

67

x_good_thre1_points=x_new(good_thre1_points+start_p os-1);
size_good_thre1_points=size(good_thre1_points,2);

% implementing thre2
c_i=0;
found_downslope_flag=0;
if (no_median_flag==0)

 c_i=0;
 while (found_downslope_flag==0&& c_i+thre2<size_good_thre 1_points)
 c_i=c_i+1;
 if isequal(good_thre1_points(c_i+1:c_i+thre2), ...
 good_thre1_points(c_i)+1:good_thre1 _points(c_i)+thre2)
 found_downslope_flag=1;
 if debug==1;
 fprintf(1, ...
 '%s continuous set of thre2 points found !\n' ,slope_str);
 end ;
 end
 end
 if (c_i>0)
 no_median_flag=0;
 else
 no_median_flag=1;
 if debug==1;
 fprintf(1, ...
 '%s no continuous set of thre2 points found
!!!\n' ,slope_str);
 end ;
 end

end

%%
% Step 2 : check for segment length
if (no_median_flag==0)

 xdist=(x_new(good_thre1_points(c_i)+start_pos-1)-x_new(start_pos));
 ydist=(y_new(good_thre1_points(c_i)+start_pos-1)-y_new(start_pos));

 xydist=sqrt((xdist*xdist)+(ydist*ydist));
 if (xydist > thre3_max_segmentlength)
 no_median_flag=1;
 if debug==1;
 fprintf(1, '%s The Segment length has been exceeded \n' ...
 ,slope_str);
 end ;
 end

end

68

if (no_median_flag==0)
 if (xydist < thre3_min_segmentlength)
 no_median_flag=1;
 if debug==1;
 fprintf(1, ...
 '%s The Segment length is too short \n' ...
 ,slope_str);
 end ;
 end

end

%%
% Step 3: Check for Obstruction
if (no_median_flag==0)

 bad_th5_points=find(hits_above_line ...
 (1:(good_thre1_points(c_i)))>thre_obstructi on);

 if (~isempty(bad_th5_points))
 no_median_flag=1;
 if debug==1;
 fprintf(1, ...
 '%s There is thre_obstruction obstruction \n' ,slope_str);
 end ;
 end

end

%%
% Step 4: Check for Angle constraints

if (no_median_flag==0)
 if (direc==0 && atand(coeff_slopeline(1))>-thre_min_s lopeangle)
 no_median_flag=1;
 if debug==1;
 fprintf(1, '%s adjslopeangle too small\n' ,slope_str);
 end ;
 end
end
if (no_median_flag==0)
 if (direc==0 && atand(coeff_slopeline(1))<-thre_max_s lopeangle)
 no_median_flag=1;
 if debug==1;
 fprintf(1, '%s adjslopeangle too large\n' ,slope_str);
 end ;
 end
end
if (no_median_flag==0)
 if (direc==1 && atand(coeff_slopeline(1))<thre_min_sl opeangle)
 no_median_flag=1;

69

 if debug==1;
 fprintf(1, '%s Oppslopeangle too small\n' ,slope_str);
 end ;
 end
end
if (no_median_flag==0)
 if (direc==1 && atand(coeff_slopeline(1))>thre_max_sl opeangle)
 no_median_flag=1;
 if debug==1;
 fprintf(1, '%s Oppslopeangle too large\n' ,slope_str);
 end ;
 end
end

%%%
% Step 5 : In case the current check is being condu cted on the adj
% slope, then a check needs to be done to see if an opp slope exists

if (no_median_flag==0)
 if (direc==1 && start_pos>35)
 no_median_flag=1;
 if debug==1;
 fprintf(1, '%s Oppslopeangle has gone too far
\n' ,slope_str);
 end ;
 end
end

if (direc==1)
 direc=direc;
end

%%
% Step 6 : Calculation of the value that characteri zes the fit of the
% line to the adjacent or the opposing slope

value=0;
end_val=0;
start_val=0;

if (no_median_flag==0)

 debug1=0;
 slope_ok=1;

 a=x_new(1:(good_thre1_points(c_i)+start_pos-1)) ;
 b=y_new(1:(good_thre1_points(c_i)+start_pos-1)) ;
 z=abs(polyval(coeff_slopeline,a)-b);

 % all the points on the median that lie within a di stance of
 % 25 mm from the line are used to estimate the good ness of fit

70

 % for the line
 numbelow_thre=find(z<25);
 if debug1;

plot(a(numbelow_thre2)/1000,polyval(p1,a(numbelow_t hre2)), 'kx');
 end
 if debug1;plot(a/1000,polyval(p1,a), 'k'); end

 if (~isempty(numbelow_thre))

 % The start value estimates the starting point from where the
 % the line represents the median based on the above criterion
 start_val=min(numbelow_thre);

 % The value characterizes the goodness of the fit o f the line
 % to the median profile
 value=size(numbelow_thre,2)/(start_val^pow_ startpos);

 % The end value estimates the end point till where the
 % the line represents the median based on the above criterion
 end_val=max(numbelow_thre);

 % This check is performed to make sure that the sta rt and end
 % points are away from each other by a distance of more than
2.5 meters
 if ((end_val-start_val)<25)
 no_median_flag=1;
 slope_ok=0;
 end
 else
 slope_ok=0;
 end

else

 slope_ok=0;

end

71

fcn_convert_latlongelev_to_xyz.m

function [location,factor_conv] =
fcn_convert_latlongelev_to_xyz(latlongelev, origin)

% Adapted from script_lla2lp_track.m by Ryan Martin i

% fcn_convert_latlongelev_to_xyz
% - converts latitude and longitude to local x, y , z
% Input 1: a 3x1 vector of [lat long elev],
% representing the measurement to convert
% Input 2: a 3x1 vector of [lat long elev],
% representing the origin
% Output 1: a 3x1 vector of consisting of [x, y, z] ,
% representing converted position in meters

format long

origin(3)=latlongelev(3);

% latitude of measurement (degrees)
lat = latlongelev(1);
% longitude of measurement (degrees)
long = latlongelev(2);
% height of measurement (meters)
% above reference ellipsoid (WGS84)
elev = latlongelev(3);
% latitude of origin (degrees)
lat0 = origin(1);
% longitude of origin (degrees)
long0 = origin(2);
% height of origin (meters) above
% reference ellipsoid (WGS84)
elev0 = origin(3);

% intermediate calculation
% (prime vertical radius of curvature)

aa = 6378137;
ee = 8.1819190842622e-2;

% intermediate calculation
% (prime vertical radius of curvature)
% arc_distance = 6372795.477598; % units are meter s
arc_distance = aa ./ sqrt(1 - ee^2 .* sin((lat).*pi /180).^2);

arc_distance_long = arc_distance .* cos(lat*pi/180) ;

factor_conv(1)=(arc_distance+elev)*pi/180;

72

factor_conv(2)=(arc_distance_long+elev)*pi/180;
factor_conv(3)=1;

x = (lat-lat0)*factor_conv(1);
y = (long-long0)*factor_conv(2);
z = -(elev-elev0)*factor_conv(3);
location = [x y z];

