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Abstract

When engineered items fail, there are often indicators of decay long before the system collapses.
This thesis explores this concept applied to complex vehicles operated in public transportation,
but can be extrapolated to any vehicle system. The Altoona Bus Research and Test Center
and Pennsylvania Transportation Institute have operated a federally funded transit bus testing
program since 1988. The testing regimen aims to simulate how the bus would perform during
in-transit use, and subsequently increase the likelihood that only reliable buses are purchased for
public transportation applications. This work provides an overview of the relationships between
the results of testing conducted at PTI versus performance of the same model during in-transit
service. Further, an analysis of vehicle subsystem component failures is conducted, where the
theory of repairable reliability systems is applied to the in-transit data to determine if component
failures can be detected by increases in the cumulative and subsystem level failure rates.
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Chapter 1
Introduction

In this chapter, the motivation for the underlying research of this thesis is introduced, including

why buses are tested, how resulting bus reports are used, and why the results of the program

require verification. In the first section, the impact of the transit industry on the everyday lives

of an individual, as well as relevant operating statistics are introduced. The next section details

the evolution and operating procedures of the transit bus testing program at Penn State. Next,

the concept of subsystem failure analysis, the basis of this thesis, is developed, as well as how

this concept materialized within the underlying Federal Transit Administration (FTA) study.

Finally, an outline of this thesis is presented.

1.1 The Transit Industry

Public transportation plays a vital role in the infrastructure of the United States. Patrons can

ride a train into Chicago without worrying about traffic jams, parking, or fuel prices. They can

ride a transit bus to and from work in downtown Los Angeles, or to take guided trolley tour of

their favorite national park. They can even take a ferry between, among others, Manhattan and

Staten Island. Public transportation takes many forms, but they all serve a unifying goal: to

move people in an efficient manner and at an affordable cost.

The majority of Americans using public transportation choose transit bus service as their

primary carrier. According to a 2002 Bureau of Transportation Statistics (BTS) study, 60% of
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all public transportation is represented by transit bus ridership (Figure 1.1). Nationwide, there

were more than 500 million individual transit bus trips made in January 2002 alone. According

to a 2005 survey, BTS statistics show that 4.4% of working Americans use public transportation

to get to work. This percentage has remained constant since 1989, even though the amount of

working Americans has increased by 14% [7]. Thus, the total usage of public transit is steadily

growing.

Figure 1.1. U.S. Transit Ridership by Mode [1].

Transit buses are consistently the most widely form of public transportation used due to a

few key features:

� Schedule Flexibility: Transit agencies can define and redefine pick-up times to best accom-

modate passengers. Light rail does not have a similar capability.

� Route Flexibility: Transit agencies define and redefine routes to carry passengers to their

most desired locations.

� Affordability: Transit bus fares rank near the most affordable in public transportation [8].

This trait is particularly appealing with current fuel costs reaching all-time highs.

Even though transit bus ridership represents 60% of all public transportation utilization, the

American Public Transportation Association (APTA) reported that only 46.5% of public trans-

portation revenues were generated from transit bus ridership [8]. The affordability of transit bus
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service makes it extremely appealing with ever-increasing fuel and automobile costs. Automobile

owners are paying premium costs to operate their vehicles on a daily basis in both operating

costs (Table 1.1) and total annual costs (Table 1.2). Transit bus service costs, on the other hand,

totaled only 20 cents/mile in 2000, reinforcing low ticket costs [6].

Table 1.1. Automobile Operating Costs - 2005 (gas, oil, maintenance, tires) [6]

Sm. Car Med. Car Lg. Car SUV Bus
Operating Costs (cents/mile) 12.1 15.0 15.2 17.0 20

Table 1.2. Automobile Total Annual Operating Cost (in dollars) [6]

10,000 (miles/yr) 5987 6905 7574 7774
15,000 (miles/yr) 7142 8580 9509 9574
20,000 (miles/yr) 8397 10,280 11,444 11,349

1.2 PTI Bus Testing

The transit bus testing program at Penn State was formed in 1988 in response to a piece of

legislation that established a transit bus testing program to examine all new bus models that

would be purchased with federal funds. This section details the history of the bus testing program,

including test facilities, procedures, and reporting test results.

1.2.1 Bus Testing Laws

In order to keep public transportation costs low and services reliable, vehicle maintenance must be

timely and efficient. Furthermore, the buses available for purchase must be of the highest quality

to ensure that maintenance costs will be low and the useful life of the bus will be extensive.

In 1987, congress passed the Surface Transportation and Uniform Relocation Assistance Act

(STURA) (Pub. L. No. 100-17) which was an amendment to Section 12 of the Federal Transit

Administration (FTA) Act of 1964 [9]. STURA established that after September 30, 1989, no

new bus models may be purchased with federal funds unless it was first tested at an approved

bus testing facility.

Subsection 317(b) of STURA made funds available to the Department of Transportation

(DOT) to establish a bus testing facility to test new bus models for maintainability, reliability,
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safety, performance, structural integrity, fuel economy, and noise [9]. Thus, the Altoona Bus

Research Testing Center (ABRTC), in conjunction with The Pennsylvania State University and

the Federal Transit Administration, was established to meet the new bus testing needs. In 1991,

the Intermodal Surface Transportation Efficiency Act (ISTEA) was passed to mandate that the

federal government subsidize 80% of the cost of the mandated testing, and also include braking

and emissions testing in the test center’s program [9].

The testing is preformed by staff at the ABRTC, as well as staff at the Pennsylvania Trans-

portation Institute (PTI) test track. The test center can accommodate up to eight buses at one

time. To date, the center has tested over 300 buses and has identified more than 7,200 malfunc-

tions [5]. The duration of the bus tests are based on estimated useful life; the procedure consists

of an accelerated test regimen that approximates up to 25% of its service life [5].

1.2.2 Durability Test Center

The objective of durability tests performed at PTI are to accelerate the damage inflicted on a bus

through a shorter mileage than would be experienced during in-transit usage. The durability test

approximates up to 25% of the service life of a transit bus. According to Klinikowski ([10]), the

PTI test track was designed to be similar to other tracks in existence. This processed developed

a track that consisted of load induced road elements that would be encountered both on other

tracks and during in-transit use. According to market requirements, the PTI track contains a high

crown intersection, a railroad crossing, and frame twist elements in order to better approximate

an urban environment ([10]). The frame twist was particularly important to fully evaluate the

torsional characteristics of longer vehicles ([10]). Chuck holes, staggered bumps, chatter bumps,

and chuck holes were also introduced to simulate pavement discontinuities such as pot holes and

weathered roads. The testing regimen was also designed to emulate other test track programs,

where the acceleration factors were verified by stress level and cumulative damage analyses.([10])

The span of the durability testing regimen varies by the expected useful life of the bus being

tested. Consider the following example: A bus is brought in for a 500,000 mile test. During

testing, the bus would be driven for a total of 15,000 miles: 12,500 miles on the durability track,

and 2,500 miscellaneous miles. The bus would be tested under three different loading conditions:
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6,250 miles driven at gross vehicle weight (GVW), 2,500 miles driven at seated load weight (SLW),

and 6,250 miles at curb weight (CW) [5]. Further, all non-scheduled maintenance performed on

the bus during the durability testing is recorded and listed in the final bus report.

The PTI test track (Figure 1.2), built in 1970, is a 5042 ft long oval-shaped track that is used

for a variety of research at Penn State [2]. Particularly, the test track is the primary locale for

durability testing for the transit bus testing program.

Figure 1.2. The PTI Test Track [2].

The track has a 1,665 ft long vehicle durability course (Figure 1.3) that contains a variety of

pavement discontinuities that simulate in-transit use of buses at an accelerated rate [2].

Figure 1.3. The Durability Course at the PTI Test Track [2].

The durability track contains seven distinct events (Figure 1.4) that the buses experience

during in-transit use:

� Staggered bumps
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� Railroad crossing

� 1” Random chuck holes

� Chatter bumps

� 4” Chuck holes

� High crown intersection

� Frame twist

Figure 1.4. The Durability Course Profile [2].

The end product of bus testing is a report detailing the results of all the various tests per-

formed at Penn State. The report may, at the manufacturer’s request, list recommendations

for possible design changes [5]. Paper copies of the reports are available for purchase or can be

downloaded for free from the ABRTC website. The reports are considered confidential until the

manufacturer gives permission to publish it or until the manufacturer responds to a procurement
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bid by an FTA-funded recipient[5]. Transit agencies use the reports to gain insight into how a

particular bus has preformed at the ABRTC in order to make the best purchasing decision for

their application.

1.2.3 The Transit Study

The ABRTC has been conducting tests for over 20 years encompassing over 300 different models,

while producing a detailed report for each bus [5]. Thus, a significant data set of performance

measures obtained in the bus testing program now exists, particularly nonscheduled maintenance

occurrences. Additionally, many bus models that have been tested at PTI are currently in use

in various transit agencies, which often collect similar performance and reliability data. Hence,

there is a valuable opportunity to compare the performances of the same bus model at PTI and

at transit agencies to determine if the results of the ABRTC program represent in-transit usage.

Consequently, the FTA contracted researchers at Penn State to conduct a reliability analysis

of the transit bus testing program. The study aimed to investigate such a comparison and, in

the process, achieve the following objectives:

� Help the ABRTC evaluate and review its accelerated testing program

� Guide transit agencies to better interpret PTI bus reports and use them as a resource in

making fleet purchase decisions

Throughout the course of the study, a large sample of data was collected from numerous

agencies throughout the continental United States. Various techniques (described later) were

introduced in an effort to determine correlation between the tested and in-service buses. One

particular technique plotted the cumulative rate of failure versus mileage of each bus (Figure 1.5).

Interestingly, the trend of the failure rate had multiple cycles consisting of an increase, peak, and

decrease. Furthermore, many of the peaks coincided with the the replacement of major compo-

nents. The data was further analyzed to determine if this phenomena was purely coincidence,

or if there was substance in this relationship. Thus, the crux of this thesis is the a study aimed

at understanding the relationship between the peaks in failure rate plots and the corresponding

replacement of major system components.
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Figure 1.5. A Sample Failure Rate Subsystem Plot.

1.3 Thesis Outline

The remainder of the thesis is summarized as follows:

Chapter 2 outlines a literature review on the concepts of reliability engineering with emphasis

on cases studies that represent research similar to that which has been described here.

Chapter 3 describes the extensive data collection efforts that were made on behalf of this

research. This chapter includes the process of objectively ranking the buses tested at Penn State

based their performance at the ABRTC, and then determining transit agencies around the United

States that run these buses. Also described are the trials and tribulations of attempting to collect

data from a transit agency.

Chapter 4 explains yet another extensive body of work that contributed to this thesis:

preprocessing of the received data. This chapter details how the data was recategorized, arranged,

and prepared for processing.

Chapter 5 explains initial comparisons made between PTI and in-transit data sets, including

cumulative, major, and minor failure comparisons.

Chapter 6 delves into cumulative and subsystem failure rate analysis. The algorithms for

differentiation are explained, coupled with an examination of the failure rate, and how a sub-

system level analysis led to correlation between major component replacements and peaks in
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the cumulative failure rate. Finally, a filtered numerical derivative approach is presented which

strengthens conclusions based on the obtained results.

Finally, Chapter 7 summarizes the conclusions made from the research presented in this

thesis. Further, future research topics are presented to aid the next generation of students who

will take over this project in the coming years.



Chapter 2
Literature Search

This chapter describes a survey of available literature pertaining to the reliability and failure

prediction of transit buses. The literature review was conducted to determine the implications of

this research, particularly how this research complements items already existing in the body of

knowledge, and how it adds depth to the topic of vehicle reliability. A majority of the publications

on vehicle reliability and failure prediction are focused on determining an optimum maintenance

schedule to prevent any downtime associated with non-scheduled maintenance. Additional work

focuses on matching past data to a Weibull distribution to develop predictive models, inferring

information from accelerated testing regiments to predict high mileage vehicle reliability.

2.1 Reliability Engineering

No engineered device is or ever will be“perfect”. There are inherent flaws associated with design,

materials, manufacturing, construction, operational conditions (etc.) such that the useful life of

the device is never infinite [11]. Thus, the field of reliability engineering has emerged to develop

methods of design, analysis, and prediction such that a product could reasonably be expected to

survive under normal operating conditions over a predetermined useful life.
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2.1.1 Reliability Theory

No one can dispute the fact that devices need to be reliable. The origins of reliability theory

started during World War II when German engineers tried to improve the reliability of their rock-

ets. Since then, engineers have been studying these and other potential failure mechanisms in an

effort to plan for and/or predict failures, or at least minimize their impact on the performance of

the system [11, 4]. Consumers investigate the reliability of products before making purchasing

decisions [12]. Manufacturers strive to generate a reliable produce in order to reduce warranty

claims, maximize their profit margins, and ultimately generate return customers by achieving a

well known and respected reputation [12]. Other industries such as airlines, aerospace, and

the military require a certain degree of reliability in designs to assure the safety of those who

would be exposed to their equipment [12]. Each group may have different expectations as to the

reliability of a product, but all can agree that the product needs to perform when required.

Generally speaking, reliability refers to an item’s ability to successfully perform an intended

function throughout a predetermined life [12]. One may ask, “Why can’t a design survive forever,

or at least through it’s preselected life?” Unfortunately, there will always exist some limiting

factor that will cause the design to fail before it would be desirable. If technical knowledge is

not a limiting factor in the design, manufacture, testing, materials, or engineering analysis of a

product, pure practical and economical limitations will force the use of ‘not-so-perfect’ designs

[11]. In response, the field of reliability engineering has emerged to minimize failures in engineered

systems by understanding “why”, “when”, and “how” systems fail [11].

There are many potential reasons why a design might fail, including [12]:

� The design is inherently incapable of preforming the desired function

� The design is over-stressed (i.e. voltage, current, compressive stresses)

� The design is worn-out

� The design specifications are incorrect

� The design is not maintained properly

� The design is not used as it is intended
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Reliability engineers evaluate designs in the pre-manufacture stage of development in an attempt

to eliminate any of the previously mentioned causes of failure from occurring. It is for these

reasons that actions such as periodic maintenance, product work instructions, design reviews,

and inspections take place.

Reliability must be quantified in order to be incorporated into the design process [13]. The

methods of quantifying reliability are derived from the mathematics of probability and statistics

[12]. Consider the following example: a Penn State graduate student obtains a laser that he plans

to use in his research. The laser manufacturer claims their product fails at an average rate of once

per 2,000 hours of operation. However, neither the Penn State student nor the manufacturer can

be certain that the laser will operate without failure prior to his research being completed. The

manufacturer can only reach conclusions about the probability of the laser’s performance within

a specified statistical confidence interval [12].

Generally speaking, reliability has two interpretations: deterministic and probabilistic [11].

A deterministic approach to reliability involves studying the ‘how’ and ‘why’ an item failed,

such as field reports, failure analysis, testing, and/or redesign. The probabilistic approach in-

volves realizing the probability that an item will survive through its predetermined lifetime [11].

Mathematically, reliability, R(t) is defined as [11]:

R(t) = Pr(T ≥ t) (2.1)

where

T = time to failure of the item

t = item’s predetermined lifetime

Pr = probability

Conversely, the probability, Pr( ), that the item will fail at sometime up to time t, F(t), is defined

as [11]:

F (t) = Pr(T ≤ t) (2.2)
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Thus, reliability function can be defined as [11]:

R(t) = 1− F (t) (2.3)

The failure rate of a system describes the frequency in which failures occur. The failure rate

can be determined numerically by [11]:

h(t) = lim
τ→0

1
τ

(
F (t+ τ)− F (t)

R(t)
) (2.4)

The failure rate is a critical function when considering system reliability because it determines

the changes in probability of failure over the lifetime of a part [11, 13].

Figure 2.1. The bathtub curve [3].

For non-repairable systems, if the failure rate, h(t), is plotted versus time, it generally exhibits

a bathtub shape, and thus is referred to as the bathtub curve (Figure 2.1). The bathtub curve

can be broken into three distinct periods. The first period is known as the Infant Mortality or

Burn-In period [14]. This period represents the beginning of a product’s life cycle, where the

failure rate starts off very high, but also decreases rapidly. The next period, characterized by a

somewhat constant failure rate where mostly random failures occur, is known as the Useful Life

of the product [14]. A product spends most of its life here. The final period, characterized by
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an increasing failure rate, is called Wear-Out [14]. It is during this period that a component or

system would be replaced because it has outlived its useful life.

Although the bathtub curve provides a general outline for how a product will behave over

its lifetime, other statistical tools are better developed to make more bold predictions. To

model reliability, engineers typically rely on the more versatile Weibull Distribution. The Weibull

Distribution is a continuous probability distribution that is used to mimic many other statistical

distributions by changing parameters in its probability density function [15, 11]. Due to its

flexibility, the Weibull Distribution can also model all three regions of the bathtub curve, and

can approximate a system made of one or many components [11].

Reliability engineers often generate Weibull parameters that allow the resulting distribution to

approximate their data [16]. Once the distribution fits the data, it is possible to make predictions

about the future life of the product within varying intervals of confidence. The main applications

of Weibull Distribution in reliability modeling lie in [11]:

� Corrosion resistance studies

� Time-to-failure for electrical hardware (capacitors, transistors, etc.)

� Time-to-failure for mechanical hardware (ball bearings, motors, etc.)

� Time-to-failure of system components

For instance, Ion and Sander [17] used three months of electronic product warranty data

to obtain Weibull parameters, and subsequently a Weibull distribution that was used to make

early life reliability predictions. They found the Weibull distribution was a very useful tool in

determining early life reliability. Fisher, Weber, and Marx [18] used the same two parameter

approach to determine the lifetime of ceramic bridges that dentists install in patient’s mouths.

The bridge and teeth were modeled for varying stress levels with a finite element package, and the

Weibull Distribution was used to evaluate the failure probability of the complex ceramic bridge

under those stresses.
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2.1.2 System Reliability

For simple components, the previous section provides a sufficient background on the theory be-

hind component failures and methods of using statistical distributions to represent known data

and predict future reliability. It is a well known fact, however, that very few components are de-

signed to work alone; rather, they are designed to be installed in or contribute to the operation of

systems. A system is hereafter defined as a collection of components whose coordinated operation

leads to the successful functioning of the device [11]. In order to make a predictive assessment

of a system, it is important to not only understand the reliability of individual components, but

also to understand the relationships that the components holds in the operation of the system

to realize the reliability of that system [11].

A common tool used in analyzing system reliability is called the Reliability Block Diagram.

The reliability block diagram is a somewhat physical approach to analyzing the system in that

the way the diagram is connected shows the interdependence of the actual system. For example,

a dump truck with two hydraulic cylinders lifting its dump box could be represented as two

mechanical systems in parallel. If one of the cylinders fails, is still possible that the dump box

could be lifted if the system was designed to do so. Conversely, if a section of the drive shaft on

an automobile fails, it is certain that the auto will not move because there is no way to transmit

mechanical energy to the wheels. This drive shaft example represents a series system as shown

in (Figure 2.2).

Figure 2.2. A Series Reliability Block Diagram [4].

In the reliability block diagram, each block represents the reliability of a component and its

functional location in the system. The series block diagram (Figure 2.2) represents a system whose

functional success is dependent on the the functional success of each previous component in the

system. If any component of the series system fails, the entire system would fail. The reliability

of Figure 2.2 is the probability that all blocks preform as expected during their predetermined
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life [11]. Mathematically, the reliability of the series system is expressed as [11]:

Rs(t) = R1(t) ·R2(t) . . . Rn(t) =
n∏
i=1

Ri(t) (2.5)

The parallel block diagram (Figure 2.3) represents systems in which the successful function

of just one the components results in successful operation of the entire system. This type of ar-

rangement may have multiple blocks that preform the same function in order to build redundancy

into the system. Mathematically, the reliability of the parallel system is expressed as [11]:

Rp(t) = 1−
n∏
i=1

(1−Ri(t)) (2.6)

The Space Shuttle main avionic computer system is a great example of a system that was

intentionally built in the parallel arrangement [19]. The main avionics system was designed to be

quadruple redundant, meaning any of four identical computer systems could communicate with

the avionics system and preform critical flight operations [19].

Figure 2.3. A Parallel Reliability Block Diagram [4].

2.2 Vehicle and Transportation Related Reliability

Reliability analysis is a critical tool in maintaining an operating a fleet and minimizing operating

costs in transit systems [4]. In this section, case studies and research results are summarized

that investigate transit system operation and reliability, automotive reliability, transit agency

maintenance optimization, accelerated aging.
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2.2.1 Vehicle Maintenance

In order to set guidelines on preventative maintenance scheduling, Guenthner and Sinha [20]

analyzed the relationship between maintenance policy, reliability of the transit schedule, and

performance of the system. They developed a model that predicted expected passenger wait

times along a transit route by computing dependability as a function of the number of available

mechanics and spare buses. Their model also considered typical maintenance statistics such as

miles between failure, costs per repair, and average repair time of various subsystem repairs (i.e.

brakes, drivetrain). Passenger wait times were then used to evaluate optimal maintenance policy

and its effect on system performance. Their model then allowed transit agency managers to

evaluate vehicle acquisitions based on operating conditions in their transit system.

Drake and Carter [21] conducted a study on transit bus maintenance manpower utiliza-

tion. The goal of their study was to examine historical maintenance manpower utilization at

various transit agencies about the United States, and to generate statistically significant, yet

uncomplicated models that would allow maintenance managers to better plan their manpower

requirements. The authors searched out manpower data from fifteen transit agencies around the

United States based on the following conditions:

� Climate conditions

� Fleet size

� Terrain

� Data availability

� Fleet composition

The authors collected information such as time-to-repair estimates for certain jobs, manpower

utilization, vehicle fleet information, and local policies that shaped agency operating procedures

[21]. The obtained data was examined to determine the manpower distribution of hours worked

based on the following categories:

� Cleaning
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� Body

� Inspection

� Various subsystems

Their analysis determined the average number of man-hours for each vehicle subsystem across

all agencies, as well as an associated standard deviation. The results of their modeling proved

that manpower distribution requirements varied substantially among transit agencies with local

operating characteristics accounting for the majority of the standard deviation [21].

2.2.2 Vehicle Reliability

In the area of vehicle reliability, Binggang and Shuijun [22] developed methods to evaluate the

reliability of automotive products by categorizing failures according to degree of harmfulness

and determining weighting coefficients for each failures and, subsequently, an equivalent number.

They also discussed both merits and demerits of utilizing evaluation indices such as Mean Time

Between Failurs (MTBF), Mean Time to First Failure (MTTFF), Mean Repair Time (MRT), and

Availability. Finally, the authors described methodology for establishing a relationship between

the “bench test life” of a part and it’s “service life” expressing the cumulative failure number

function as an exponential function of time, the Weibull distributive curve.

Singh and Kankam [23] reported their effort of creating a database for reliability of transit

vehicles and their components. Their research involved collecting failure data on 500 subway cars,

400 streetcars, and 1,100 buses from the Toronto Transit commission. The authors developed

their initial database filled with 28 weeks worth of data. Analysis on the available data provided

some profound conclusions including:

� Accounting for all defects, the Mean Time Between Failures of all vehicles was approxi-

mately 100 hours,

� Reliability analysis revealed an inverse relationship between production year and reliability

of subway cars,

� Reliability analysis revealed a positive relationship between production year and reliability

of transit buses, and
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� The Miles Between Failure follow a Weibull distribution with shape parameter less than

one.

2.2.3 Accelerated Aging and High Mileage Reliability

Accelerated life testing is a method of exposing the weak links of a design by imposing operating

stresses that simulate a vehicle’s actual service life in a fraction of the cumulative miles [24]. In

the vehicle world, accelerated testing could take the form of durability track testing, laboratory

testing on a dynamometer, utilizing a driving simulator, or hardware-in-the-loop testing. In any

case, the goal of the testing is to expose and remedy vulnerable components in order to bring a

more reliable product to market.

Horvath and Wasiloff [25] of Ford Motor Company studied the process for extrapolating test

data from the manufacturing process to predict high mileage reliability of vehicles. Their study

focused on ways to determine long term product reliability in the manufacturing or design stage

of product of development, rather than relying on customers identifying critical design flaws via

warranty claims or complaints. Horvath and Wasiloff [25] used the Ford process of testing each

transmission “as manufactured and assembled” based on a subjectively established criteria that

did not consider degradation over time. The majority of Ford’s feedback on the field performance

of the particular transmission systems was realized from warranty claims, which expired after a

certain amount of time or mileage. There was no direct link between “end-of-the-line” (EOL)

test data and high mileage reliability. The authors proposed a statistical process control (SPC)

model that used EOL data and preliminary warranty claim information to determine customer

satisfaction versus degradation over time. Once this relationship was understood, they proposed

to develop a model to predict expected high mileage performance based on understanding the

degradation over time of critical performance parameters measured at the EOL.

Capitano, Anderson, and Sverzhinsky [26] wrote about accelerated aging experiences of

Siemens NAMO, a manufacturer of electric motors/drives. Siemens NAMO implemented an

accelerated-aging test program (simulation) to reduce durability test time without drastically in-

creasing overhead by purchasing expensive testing equipment. The testing protocol they designed

established an aging factor for the particular environment a motor would operate in, and then
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developed accelerated test profiles that were no longer than one-tenth of the normal product life.

Siemens NAMO developed a simulation that emulated environmental conditions which would be

imposed on their motors. They modeled such properties such as:

� Mass rate of change per degree C per minute

� Number of thermal cycles

� Total hours of exposure to environment

� Temperature range

Based on these results, Siemens reduced their test times significantly; for example, a system

whose designed life is 2,000 hours was able to be tested in less than 170 hours with accelerated

aging simulations.

Heverly [24] researched a accelerated-based correlation method to relate transit bus service

life events with similar events experienced at the Pennsylvania Transportation Institute (PTI)

durability test track. Heverly equipped a bus with accelerometers to measure accelerations as

the bus traversed various designed obstacles at the test track. The accelerations were used to

classify the relationship between each pavement discontinuity and forces (accelerations) on the

bus frame. Then, based on the expected service life of a bus tested at the track, a correlation

equation was used to determine the number of times each proving ground element should be

traversed during testing to represent the entire service life. The research also included driving a

bus equipped with accelerometers around State College, Pennsylvania and categorizing pavement

discontinuities in terms of accelerations observed on the track.

Fisher [27] expanded on Heverly’s work [24] by using test track and transit service data to

analytically determine “compressibility factors” for various vehicle components encountered by

traversing pavement discontinuities. His work focused on determining a compressibility factor

for air springs by measuring the vertical displacement of the suspension system and body due

to pavement discontinuities. Once the displacements were known, Fisher used a cyclical stress

chart, or S-N diagram, to determine the life of the spring for displacements measured on the

track and from driving around State College, Pennsylvania.
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Klinikowski et al. [10] conducted a study on the correlation of data obtained at the transit bus

testing program at the Pennsylvania Transportation Institute (PTI) with in-transit bus failures.

They collected in-transit failure data from two different transit agencies for three different bus

models, with ten buses worth of data for each model. The in-transit data was first broken into

subsystem occurrences, and then was compared to data from PTI tests on the basis of number of

failures. The two data sets were then compared with a rank correlation coefficient to determine

how well the transit data compared to test track data. The data correlated with r=0.944 with a

99% confidence interval, which indicated that there was a very good correlation between in-service

and test track failures.

2.2.4 Shortcomings in Literature

A majority of the research on vehicle reliability is concerned with warranty claims and their

effect on company profits. There is not a substantial body of work concerned with predicting

vehicle reliability from proving ground analysis or accelerated subsystem level testing to predict

high mileage reliability. Further, it is difficult to find research dealing specifically with transit

bus reliability. Most of the work published addresses reliability of the transit scheduling system,

rather than the transit bus itself. This work aims to fill that void by investigating the failure rate

of various subsystems in an effort to identify vehicle component replacements, and lead future

researchers down the path of developing predictive failure models to prevent failures before they

occur.



Chapter 3
Data Collection Efforts

This chapter introduces the extensive data collection efforts undertaken to complete this study.

Bus testing at Penn State has been been ongoing for over 20 years, ranging over 300 different

models. Consequently, a significant body of reliability data is available for analysis. Furthermore,

many bus models previously tested at PTI are currently in use at various transit agencies around

the United States. These agencies often collect similar reliability data (nonscheduled maintenance

occurrences) at their site. Hence, there is a valuable opportunity to compare the performance

of a bus model tested at PTI with that of the same model under in-transit conditions at various

transit agencies nationwide.

3.1 PTI Data

This section explains the data available at PTI, how it is categorized, and how it was classified

for use in this study.

3.1.1 Available PTI Data

The Surface Transportation and Uniform Relocation Assistance Act (STURAA) of 1987 estab-

lished a requirement that any new model buses be tested at a federal test cite prior to purchase

with federal funds [9]. This law established the Altoona Bus Research and Test Center (ABRTC)

where new bus models are tested for maintainability, structural integrity, reliability, fuel econ-
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omy, safety, performance (acceleration and gradeability) and noise. The tests performed at PTI

are accelerated by a 10 times acceleration factor, in that the total mileage driven at PTI will be

no more than 1/10 the expected life of the bus. For example, a bus with a estimated useful life

of 250,000 miles would be tested up to 25,000 miles at PTI under an accelerated testing regimen.

However, the test results represent anywhere from 1/10 to 1/4 of the useful life of a particular

bus [5].

The end product of bus testing is a report detailing the results of all the various tests per-

formed at Penn State. Paper copies of the reports are available for purchase or can be downloaded

for free from the ABRTC website. The website (Figure 3.1) allows users to query information

based on a numerous criteria including: year tested, fuel type, number of axles, and manufacturer.

Figure 3.1. The ABRTC Bus Report Search Page [5].
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3.1.2 PTI Data Classification

During durability testing, any occurrence that requires maintenance outside of the manufacturer’s

preventative maintenance schedule would be considered a reliability issue. These instances would

be recorded in the final bus report as “nonscheduled maintenance” (Figure 3.2).

Figure 3.2. A Sample Reliability Report [5].

The nonscheduled maintenance instances are logged by PTI test professionals. Each instance

is recorded along with the corresponding test mileage, date, description of the failure, the action

taken by PTI mechanics, and the downtime. Test professionals also categorize each failure as a

Class 1, 2, 3, or 4 so transit agencies can judge the severity of the failures experienced during

testing. The ABRTC defines the failure classification system as [5]:

� Class 1 : Physical Safety - A failure that could lead directly to passenger or driver injury

and represents a severe crash situation.

� Class 2 : Road Call - A failure resulting in an enroute interruption of revenue service.

Service is immediately discontinued until the bus is replaced or repaired at the point of
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failure.

� Class 3 : Bus Change - A failure that requires removal of the bus from service during its

assignments. The bus is operable to a rendezvous point with a replacement bus.

� Class 4 : Bad Order - A failure that does not require removal of the bus from serviced

during its assignments but does degrade coach operation.

The four class failure classification system is advantageous in that it gives a snapshot of how a

bus performed during testing. However, this system does not allow a direct comparison between

bus models or models tested on different regimens since all buses are not tested for the same

duration. Furthermore, this system contains no objective metric to rank all buses tested at PTI

based on the results of reliability testing.

To normalize the results of the four class system, a cumulative score method was employed.

The cumulative score (a dimensionless number) was calculated as:

CS =
4∑
i=1

Ci
C(i.mean)

(3.1)

where Ci refers to the number of “Class i” failures per 1000 miles of PTI testing. The cumulative

score, as defined, would produce a score of 4 for an average bus. A score of less than 4 would

be achieved by a bus performing better than average. The cumulative score allows buses to

be compared to each other without regard to the duration of their test, type of power plant,

configuration of bus, or any other distinguishing characteristic. Most importantly, each of the

300+ buses tested at PTI can be objectively ranked from “best performing” to “worst performing”

based on their cumulative score.

3.1.3 PTI Data Reclassification

This study focuses solely on two axle diesel fueled transit buses tested at PTI prior to the

start of this project. One hundred and twenty-four such buses were tested. The ten best and

worst performing buses were identified from the cumulative score ranking that was described

in Section 3.1.2. Then, the National Transit Database (NTD) was consulted to identify transit

agencies that operated these particular bus models [28].
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The NTD is the FTA’s primary database for transit industry statistics including financials,

fleet composition, ridership, and other pertinent information [28]. The information is available

free of charge on the organization’s website. Any agency receiving federal funds to operate their

fleet must report the required statistics yearly to the NTD.

Agencies submitting data to the NTD are required to categorize the failures that their fleet

vehicles experienced during each operating year. The NTD requires agencies categorize failures

based on the following criteria [28]:

� Major Failure: A failure of some mechanical element of the revenue vehicle that prevents

the vehicle from completing a scheduled revenue trip or from starting the next

scheduled revenue trip because actual movement is limited or because of safety concerns.

Major failures include breakdowns of air equipment, brakes, engine cooling system, steering

and front axle, rear axle and suspension and torque converters.

� Minor Failure: A failure of some mechanical element of the revenue vehicle that, be-

cause of local agency policy, prevents the revenue vehicle from completing a

scheduled revenue trip or from starting the next scheduled revenue trip even

though the vehicle is physically able to continue in revenue service. Examples of

minor mechanical failures include breakdown of fare boxes, wheelchair lifts, heating, ven-

tilation and air conditioning (HVAC) systems and other problems not included as a major

mechanical systems failure.

The requirement of classifying data as major or minor for the NTD is obviously different than

the Class 1-4 system employed at PTI. Furthermore, the published NTD statistics only supply

the number of major or minor failures, and not a description of the failure. Thus, to compare

in-transit and PTI reliability statistics, each prospective agency would have to be contacted and

asked to provide descriptions for their nonscheduled maintenance. Furthermore, the PTI data

would have to be reclassified to the major/minor system for direct comparison.

In response, each PTI test report was downloaded from the web server, the reliability section

was printed, and each reliability entry was reclassified as a major or minor failure. The decision

was made to reclassify every bus’s data in addition to the best and worst performing buses that
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would be studied with the possibility that this study would be extended with additional funding.

Thus, each failure from every bus ever tested at PTI was reclassified, which required over 7,500

individual line item changes.

3.2 In-Service Data

This section explains the process of obtaining in-transit data by selecting transit agencies to

contact, reaching the appropriate person at the agency, and obtaining the desired data in order

to begin analysis.

3.2.1 Agencies Contacted

Starting Monday, April 16, 2007, selected transit agencies were contacted in an effort to obtain

reliability data from their maintenance departments. Agencies were chosen based on a variety of

criteria including:

� Operating one of the best or worst performing models tested at PTI

� Agency size

� Agency location

� Suggestions from PTI staff

A total of fourteen agencies were contacted between April 2007 and December 2007 (Figure 3.3).

Each agency’s contact information was obtained from the NTD. The process of obtaining

each agency started with a phone call, usually to the general switch board. The operators were

asked to put the call through to a maintenance or facility manager. Once in contact with a

manager, the project was described in detail, as well as the request to obtain reliability data

similar to what was submitted for the NTD. The manager would then put the call through to

the individual(s) responsible for gathering reliability data and preparing the NTD statistics.

When the appropriate individual was reached, they were asked to fill out a web based survey.

The survey was designed in HTML by the author of this thesis and published on a secure server

with the help of the College of Engineering Network and Information Systems department. The
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Figure 3.3. Summary of Contacted Agencies.

answers to the survey were stored in an Microsoft Access database on a College of Engineering

server. The survey asked questions such as:

� Is the desired bus model still operated by your agency?

� What is the average speed/miles traveled/number of passengers for these buses?

� How are failures categorized?

� Is a description of each failure recorded?

� Is the data arranged in an exportable database?

The answers to these and other questions were critical in determining the course of action that

would need to be taken in obtaining the appropriate data, and identifying if the agency could

supply what was needed.

The process of contacting agencies seems quite trivial, but was extremely time consuming,

difficult, and frustrating. First, many agencies were extremely unwilling to help during calls.

Many times the initial call went well and it was mutually agreed that the agency could provide

what was requested. However, more often than not, promised data was never sent, which led to



29

lengthy sessions of “phone tag” or just having calls ignored. Some claimed they had no access to

any such data, while others just ignored numerous attempts to contact them.

The data requested of each agency required three key components:

� A description of any non-scheduled maintenance performed on the bus

� An associated mileage

� An associated date (if available)

This information was necessary to determine the correlation with PTI data. The data sought was

stored in many forms. Some agencies had their historical data on paper copies only, while others

had just recently updated their maintenance software and, hence, only had a few years of data

available. Others could provide years worth of data, while others could only provide individual

work orders in raw format. This broad range of data format led to an extensive and exhausting

data collection stage of the project.

The initial goal for the project was to obtain data from ten agencies from various locales

throughout the continental United States. When the data collection stage of the project ended

in December 2007, eight agencies had been able to supply data (Figure 3.4).

Figure 3.4. Summary of Agencies that Provided Data.
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3.2.2 Obtained In-Service Data

The Port Authority of Allegheny County located in Pittsburgh, Pennsylvania was first contacted

on April 16, 2007. The data collection information specialist was reached, who stated that the

agency had an in-house designed data management system. Data was available from 2003 through

present which, depending on the bus model being requested, encompassed 300,000+ miles. In

less than one week, the Pittsburgh representative sent complete work order data for fifteen buses

including both scheduled and nonscheduled maintenance, totaling over 8,000 line items.

The Manchester Transit Authority located in Manchester, New Hampshire was first contacted

on April 16, 2007. The transit manager was reached and confirmed that his agency could provide

data to help with the study. The data was available on a system that could not export to be

emailed, but spreadsheets could be printed and mailed for manual entry into the Penn State

database. The data was available from approximately 0 through 350,000 miles. After eight

additional phone calls, the agency sent out data for three buses which arrived in early September

2007, totaling over 1,000 line items.

Space Coast Area Transit of Cocoa Beach, Florida was first contacted on April 16, 2007. After

four phone calls and a variety of phone conversations, the Manager of Planning, responsible for

gathering and submitting the NTD statistics, was reached. The data at Space Coast was printed

from a non-exportable database, and mailed to Penn State. After another four phone calls, data

for three buses from approximately 30,000 through 300,000 miles was sent and arrived in late

July 2007. Over 1,000 line items were reported.

Delaware Transit Corporation of Dover, Delaware was first contacted on April 16, 2007.

After three phone calls, the Operations Control Manager was reached. He stated that Delaware

Transit could provide data in Microsoft Excel format. The data was available from approximately

0 through 100,000 miles. After two additional phone calls, data for three buses was received in

early July 2007 totaling over 500 line items.

The City of Greeley Transit Services of Greeley, Colorado was first contacted on April 17,

2007. After six unsuccessful phone calls to the maintenance manager over three months, the

Transit Superintendent was reached. He contacted the maintenance manager and requested that

Penn State receive the data it requested. The data was only able to be sent as a Microsoft Word
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document of work orders, where each page of the document was one work order. After four addi-

tional phone calls, data was received for four buses via email in late October 2007 encompassing

approximately 50,000 through 250,000 miles. The data originally received encompassed both

scheduled and nonscheduled work performed on the buses, totaling over 6,500 line items.

The Metropolitan Transit Authority of Nashville, Tennessee was first contacted on April 16,

2007. After nine phone calls over four months, the Planning Manager was reached, who agreed to

help obtain the desired data. He stated that the Maintenance Manager and Information Technol-

ogy Manager could gather the data and send it via email in text format. After seven additional

phone calls, the data was received in mid December 2007 for nine buses for approximately 0

through 115,000 miles and totaling over 2,250 line items.

Long Beach Transit Authority of Long Beach, California was first contacted on August 30,

2007. After five phone calls, the Maintenance Manager agreed to send data in Microsoft Excel

format via email. After four additional phone calls, data was received in early December 2007 for

three buses. The data spanned approximately 280,000 through 450,000 miles and totaled over

1,100 line items.

Harford County Transportation Services of Abingdon, Maryland was first contacted on April

16, 2007. The first phone call was quite promising, in that the transit administrator was reached,

and he agreed to gather what data we would need and prepare to send it via email. However, ten

phone calls and five months later, the same administrator said that the data could not be emailed

because it was in paper format, and that no one had worked on gathering it. On November 13,

2007, an on-site visit was made to the transit agency to manually enter the reliability data. Data

was collected for six buses from approximately 80,000 through 200,000 miles. It appeared that

the work orders available at the site were not complete, but it was all that was available. The

work orders totaled over 500 line items.

There were seven agencies that were contacted who did not provide data.

� King County Department of Transportation in Seattle, Washington claimed they did not

operate the bus model that was requested.

� Pace Suburban Bus Division of Arlington Heights, Illinois stated that their data system

was too antiquated to gather any usable information.
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� Hillsborough Area Regional Transit Authority declined to participate in the study citing

they did not have the resources to collect any data, nor could they support an on-site visit.

� Niagra Frontier Transportation Authority of Buffalo, New York gave no response to multiple

inquiries.

� The Regional Transportation Commission of Southern Nevada in Las Vegas, Nevada stated

that their maintenance information was kept by a subcontracted maintenance company.

Subsequent attempts to contact the maintenance subcontractor were unanswered.

� Metropolitan Transit Authority of Harris County in Houston, Texas was contacted numer-

ous times and data was promised two times. However subsequent attempts to contact the

agency were left unanswered and no data was ever received.

� Santa Fe Transit of Santa Fe New Mexico did not respond to any contact attempts.

In all, reliability data was obtained from eight agencies for forty six buses. Other pertinent

statistics include:

Table 3.1. In-Transit Data Collection Statistics
Agencies Contacted 15

Agencies Providing Data 8
Bus Models Represented 7

Buses Collected 46
Phone Calls Made 117

Line Item Reliability Instances ≈ 21, 000

The obtained data now had to be processed and categorized with the major or minor failure

distinction.



Chapter 4
Preprocessing and Data

Classification

This chapter discusses the required preprocessing of the obtained transit agency data into a

standardized Microsoft Excel template. The data, received in paper, electronic spreadsheet,

or electronic work-order format, was entered into a Microsoft Excel database. Once entered,

each item was classified as a major or minor failure in accordance with NTD definitions and

specifications unique to this study.

4.1 Major and Minor Failure Distinction

This section defines the distinction between major and minor failures, an issue which must be

clear both for readers of this thesis and those future researchers who will reference this work. The

NTD’s definitions distinguishing between the two classifications were presented in Section 3.1.3.

Specifically, a major failure was defined as one that would cause the bus to diverge from its route,

schedule, or that would endanger the welfare and/or safety of the passengers. However, a more

stringent approach was taken when categorizing data for this work. Any repair corresponding

to a critical system of the bus was classified as a major failure. This keeps the classification

process focused on the easier task of determining which system exhibited a failure rather than
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how it failed and to what degree. This method eliminates any “judgement calls” that might arise

in future reclassifications.

For instance, consider brake failures. According to the NTD’s definitions, slack brakes or

brake replacements would not be considered a major failure because these items could be re-

placed at the bus’s next scheduled preventative maintenance (PM). However, for the purposes

of this study, any failure relating to the brakes was classified as a major failure, as well as any

other component directly on the drivetrain. Other systems that automatically received a “major

failure” classification include:

� Transmission and components

� Suspension and components

� Vehicle frame

� Steering and components

� Any safety equipment

Examples of failures that were classified as major include:

� Turbo replacement

� Engine overheating or radiator issues

� No start/starter issues/glow plug replacements

� Wheelchair lift issues

Conversely, a minor failure was determined to be an issue that allows the bus to maintain

its schedule, but requires repair at the next available opportunity. Minor failures may cause the

passenger slight discomfort, but would not endanger the safety or wellbeing of a patron. It was

recognized that some minor failures could endanger the passenger in extreme cases. For example,

all heating and air conditioning failures were classified as minor failures. However, if a transit

bus operating in Alaska loses heat on a rural route, the results could very well endanger patrons.

This extreme case is obviously an outlier which was ignored to ease classification for this and
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future studies. The focus on classification was placed on what failed, not how or to what degree.

Examples of minor failures encountered in data classification include:

� Heating/Air Conditioning issues

� Lamps in need of replacement

� Torn seats/ damaged passenger compartment

� Windshield wipers

� Farebox repairs

By following these guidelines, future researchers will be able to classify new data sets without

having to reclassify any of the data included in this research.

4.2 In-Service Data

The reliability data sent by transit agencies was made available in a variety of forms. As stated

in Section 3.2.2, three agencies sent data via electronic spreadsheet, three sent paper copies that

required manual entry into the Penn State database, and one sent electronic work orders.

4.2.1 Pittsburgh Data

The Port Authority of Allegheny County in Pittsburgh, Pennsylvania emailed data in a Microsoft

Excel spreadsheet with each of the fifteen buses data occupying a separate worksheet. The data

was queried through Pittsburgh’s internally developed maintenance software, and exported to

Excel. There was, however, a problem with the format of this data: the mileage accompanying

each maintenance instance was surrounded by text in the cell (Figure 4.1). The mileage needs to

exist in as numerical value in its own cell, so the data could be plotted as a function of mileage.

The College of Engineering Network and Information Systems Department aided in sorting

this data by compiling a Visual Basic macro used to extract the mileage and failure description

data, and place it in new Excel spreadsheet. The macro was run for each of the fifteen buses, and

the results were saved in fifteen separate files. Then, each instance was categorized as a major
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Figure 4.1. Pittsburgh Data - Original Format.

or minor failure. The spreadsheet was also configured to calculate the number of cumulative,

major, and minor failures throughout the duration of the available data (Figure 4.2).

Figure 4.2. Pittsburgh Data - Sorted and Categorized.
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4.2.2 Manchester Data

The Manchester Transit Authority in Manchester, New Hampshire provided data (Figure 4.3)

as a printout of their maintenance database. They could not export directly to Excel, nor could

they export to a text program because their database was quite antiquated. The system was

queried, and the results were printed for three buses. The paper copies included all the relevant

information that was required for this project. Thus, upon arrival the information was manually

entered into the Penn State database in the exact same template shown in Figure 4.2. The failure

instances were then categorized as major or minor.

Figure 4.3. Manchester Data - Original Format.

4.2.3 Cocoa Beach Data

Space Coast Area Transit of Cocoa Beach, Florida provided data (Figure 4.4) as a printout of

their maintenance database. They, like Manchester, could not export from their software to an

Excel or text program because of both the age and configuration of their software. Their system

was queried, and the results were printed for three buses. The information had to be manually

entered and categorized in the Penn State database as previously described.
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Figure 4.4. Cocoa Beach Data - Original Format.

4.2.4 Dover Data

Delaware Transit Corporation of Dover, Delaware was able to query their maintenance software

and export the required information to Excel. They were able to provide mileage, date, failure

descriptions for three buses (Figure 4.5). The original data was arranged to be compatible with

the Penn State template that was perviously developed, and categorized as major or minor.

Figure 4.5. Dover Data - Original Format.
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4.2.5 Greeley Data

The City of Greeley Transit Services of Greeley, Colorado emailed a complete list of work orders

in Microsoft Word format. The data was queried through Greeley’s maintenance software. The

software did not allow a particular mileage or work order description to be exported to a text

or database file. The software did allow each work order to be sent to Microsoft Word while

retaining its formatting, so the document could be read as if it was still in the Greeley system

(Figure 4.6). Thus, all available work orders were sent for four buses in this configuration.

Figure 4.6. Greeley Data - Original Format.

The Greeley data presented a similar problem to Pittsburgh, in that the data had to be purged

with a Visual Basic macro to extract the pertinent information and place it into a spreadsheet.

The College of Engineering Network and Information Systems Department was again consulted to

aid in sorting this data by modifying the existing a Visual Basic macro used to extract the mileage

and failure descriptions from the Pittsburgh data, and place then in new Excel spreadsheet. Once

in the spreadsheet, each instance was categorized as major or minor through the duration of the

available data as previously described.
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4.2.6 Nashville Data

The Metropolitan Transit Authority of Nashville, Tennessee was able to provide data for nine

buses. Their maintenance software allowed the technicians to query based on bus model, and

sorted all results according to vehicle subsystem. The search results, however, were sent to Penn

State as a text file that could not be read into Excel and maintain the existing formatting because

it was not constant throughout the document (Figure 4.7).

Figure 4.7. Nashville Data - Original Format.

The files were read into excel in text delimited format. The files were manually manipulated

to arrange the mileage and failure description in the appropriate manner. The failures were then

categorized as major or minor for the duration of the available data.

4.2.7 Long Beach Data

Long Beach Transit Authority of Long Beach, California was able to query their maintenance

software and export the required information to Excel (Figure 4.8). They were able to provide

date, mileage, and failure descriptions for three buses. The original data was arranged to be

compatible with the Penn State template that was perviously developed, and categorized as

major or minor.
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Figure 4.8. Long Beach Data - Original Format.

4.2.8 Abingdon Data

Harford County Transportation Services of Abingdon, Maryland was not able to provide an

electronic or physical copy of their maintenance data for the required bus model. The transit

administrator made the invitation for an on site visit during November of 2007, which was re-

spectfully accepted. The agency maintained numerous folders containing the work orders for each

of their buses. The format of the work orders was very similar to the Greeley data (Figure 4.6).

The work orders were manually entered into the Penn State database by locating the mileage

and failure description on the document; the failure instances were also categorized as major or

minor.

At this point in the project, all of the received data had been reclassified, and a quantitative

comparison between PTI and transit data was now able to be investigated.



Chapter 5
PTI vs Transit Agency Comparison

This chapter provides an overview of the comparison made between PTI and transit data. The

first section presents an analysis of in-transit data failure trends observed in the received data.

The following section details initial comparisons made between the PTI and in-transit data sets.

5.1 Analysis of In-Transit Data Failure Trends

After the in-transit and PTI data were reclassified into major and minor failures, a comparison

could be investigated. First, the cumulative, cumulative major, and cumulative minor failures of

buses at each individual transit agency were plotted against the same bus operating at the same

transit agency to determine consistency in the relationships.

Consider the Delaware Transit, Space Coast Area Transit, and Manchester transit agencies.

Delaware provided data for three buses of Model X, Cocoa Beach provided data for three buses of

Model Y, and Manchester provided data for three buses of Model Z. By plotting the cumulative

types of failures for each agency, the buses were compared against each other to determine if any

one bus was failing at a greater or lesser rate than the others. This validation was significant

because it confirmed that buses at the same agency generally failed at the same rate, and thus

bus-to-bus variations within an agency would not skew later analysis. In essence, these plots

identified “lemon” buses operating at the agency, and allowed for their exclusion from future

analysis.
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It is evident in Figure 5.4 that each Delaware bus follows the same general failure trend in

cumulative, cumulative major, and cumulative minor designation. The data from Manchester

(Figure 5.3) provides similar results. However, the data from Cocoa Beach (Figure 5.2) shows

that bus number 9409 clearly has a greater failure rate when compared to the other buses at the

agency. This bus was eliminated from any subsequent analysis of the Cocoa Beach data. This

same procedure was conducted on all data obtained from each of the eight participating agencies

in order to eliminate any potential outliers.

(a) Cumulative failures (b) Major failures

(c) Minor failures

Figure 5.1. Delaware Transit Authority.
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(a) Cumulative failures (b) Major failures

(c) Minor failures

Figure 5.2. Space Coast Area Transit.

(a) Cumulative failures (b) Major failures

(c) Minor failures

Figure 5.3. Manchester Transit Authority.
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5.2 Initial Comparison of In-Transit to PTI

Once the failure rates from each agency were verified, the data was compared to PTI-measured

failure rates in the same buses. There were many variables between data sets that could be

compared, particularly the number of failures, mean distance between failures, and the breakdown

of major components. The first comparison made was between the cumulative number of failures.

In order to compare the cumulative number of failures, the appropriate range of transit data

had to be selected to correspond with that of PTI. Recall, PTI testing begins with a production

ready bus model at 0 miles and continues for a duration determined by the useful life of the

bus. Also, recall from Section 3.1.1 that tests performed at PTI are accelerated by a 10 times

acceleration factor [5]. Thus, PTI mileage data was adjusted by a multiple of 10 to account for

the 1/10 compressibility factor for accelerated testing. For instance, the failure data for a bus

tested for 15,000 miles at PTI would be compared with 150,000 miles of transit agency data over

a range beginning as close to zero miles as possible.

To illustrate how this acceleration ratio impacts data analysis, consider the plots comparing

major failures incurred at PTI versus in-transit usage (Figure 5.4).

(a) Unscaled (b) Scaled

Figure 5.4. Delaware Major Failures - Scaled vs Unscaled.

After the PTI data mileage is multiplied by a factor of 10 to account for the acceleration

factor, the trend matches much better in both slope and duration.

Consider again Delaware, Cocoa Beach and Manchester data compared to the respective

models operated at PTI. It is quite unclear from Figure 5.5 whether any relationship exists

between PTI and in-service obtained data. However, one crucial piece of information had been

neglected in preparing these plots: The PTI durability test regimen consists of the bus being
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(a) Delaware vs PTI (b) Cocoa Beach vs PTI

(c) Manchester vs PTI

Figure 5.5. In-Transit vs. PTI Cumulative Failure Comparison.

operated on the durability track to accelerate the life of critical components such as suspension,

chassis, and drivetrain (Section 1.2.2). PTI testing does not account for many usage issues that

would typically cause minor failures to occur during in-transit service.

Minor failures typically occur due to excessive use of non-critical components, moderate aging

(weathering effects), and in-use conditions such as fair-boxes, lifts, windows, etc. PTI’s test

procedures do not test in-use conditions related to these non-critical components, and thus PTI

testing would underestimate the total number of minor failures. For instance, window failures

that would happen in the field would not happen at PTI because the window simply wouldn’t

be opened a representative number of times. Furthermore, fare boxes, which would be used by

every passenger on a transit bus, are not tested at PTI. Other non-critical component failures

commonly found throughout in-service data include:

� Door usage

� Torn seats/ damaged passenger compartment

� Vandalism
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� Bike rack repairs

� etc.

The minor failures occurring during in-service use are not reflected in the PTI data because these

components are unused. If PTI and in-transit data sets are compared directly, the cumulative

number of failures for the in-transit buses would contain many minor failures that would not

be represented in test results from PTI. Thus, cumulative failures and cumulative minor failures

were not considered a variable that could determine a relationship between the two sets.

Major failures, on the other hand, are experienced both on the track and at the agencies. All

of a buses major subsystems are tested at PTI. Similarly, all of the major subsystems of the bus

are utilized during in-transit service, so a comparison of cumulative major failures was the next

logical step. Consider Figure 5.6:

(a) Delaware vs PTI (b) Cocoa Beach vs PTI

(c) Manchester vs PTI

Figure 5.6. In-Transit vs. PTI Major Failure Comparison.

The Delaware major failure comparison matched quite well with PTI. Figure 5.6(a) illustrates

that Delaware tracked well in both rate of failure occurrence and total number of major failures.

However, Cocoa Beach (Figure 5.6(b)) and Manchester (Figure 5.6(c)) did not match as well.

The goodness of fit showcased by the Delaware data (Figure 5.6(a)) actually appeared “too
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good.” One would expect there to be a positive correlation in failure trend, or a similar match

in the number of major failures experienced. However, the trend was nearly identical between

PTI and Delaware, and the number of major failures was almost identical as well. Further,

Manchester and Cocoa Beach failed to produce any strong correlation similar to Delaware. It

was quite obvious that comparing major failures or major failure trends might not provide the

evidence necessary to make any definite conclusions about the two data sets. The next step was

a more thorough examination of the failure rate.



Chapter 6
Examining the Failure Rate

The preliminary results of data set comparisons presented in Chapter 5 requires a more thorough

investigation of the failure rate as a means of discerning a relationship between PTI and transit

agencies. This chapter examines the failure rate on both cumulative and subsystem levels. The

first section looks at three separate methods used to calculate the failure rate of cumulative

failures identified in the transit data including a sliding window algorithm to produce a mov-

ing average approximation to a derivative, a polynomial fit, and a filtered numerical derivative.

Upon plotting the cumulative failure rate, the data exhibited a “resetting bathtub curve” effect,

which would imply multiple component replacements. The following section examines the rela-

tionship between repeated peaks in the cumulative failure rate, and replacement of major vehicle

components. The final section details the reclassification of all data at a subsystem level, and

subsequent development of subsystem failure rate plots to better illustrate effects that major

subsystem replacements had on the cumulative failure rate of the bus.

6.1 Cumulative Failure Rate Analysis

This section describes the methods investigated to calculate the failure rate and the results

obtained from the analysis.
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6.1.1 Calculating the Failure Rate

As described in Section 2.1.1, the failure rate of a system describes the frequency in which failures

occur, e.g. the number of failures per unit time. In this study, the failure rate is defined as the

number of failures per unit distance traveled during testing or service. In essence, the failure rate

of any bus is defined as the derivative with respect to distance of the cumulative failures.

The cumulative failure data consisted of a discrete set of data points, inhibiting the calculation

of the exact derivative. Numerical differentiation deals with this type of data; it is a process by

which approximate derivatives are obtained from a set of discrete data points. The approximate

derivative can be calculated by numerous methods, three of which are considered here:

� The discrete data can be plotted and fit with a polynomial curve. The approximate deriva-

tive can then be calculated by taking the derivative of the function that describes the curve

fit.

� The discrete data can be differentiated by developing a sliding window of fixed interval

width, summing the number of failures in the fixed interval, and repeating this process as

the window is slid throughout the entire range of the data.

� The derivative can be obtained by calculating numerically with the Euler approximate

derivative by calculating the failures per mile throughout the duration of the data.

The sliding window method (Figure 6.1) used intervals of fixed width w, where width was a

fixed unit distance. The width chosen for this study was arbitrarily assigned as 10,000 miles.

The total number of failures in the window, N, were summed. The window was then slid d units

(e.g. 100 miles) and another value of N was calculated and appropriately located at the midpoint

of the window in its new location. The window was repeatedly slid d units until an approximate

derivative of all m miles of data had been calculated. Thus, the failure rate obtained from a

sliding window approximation would be on the order of failures per 10,000 miles.
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Figure 6.1. The Sliding Window Method.

A second method of determining the failure rate involves fitting the cumulative number of

failures versus miles with an nth degree polynomial function, and taking its derivative with

respect to mileage. However, the fit was nothing more than what its name implies: a fit. This

approach does not capture sudden changes in slope that can provide additional insight of the

failure rate; it only approximates the general trend of the data. The sliding window, on the other

hand, captures those local variations in the data because of the method of derivative calculation.

When the two methods are compared for an arbitrary data set (a Delaware bus), the increased

detail of the sliding window approach is clearly evident (Figure 6.2).

The final method of determining the failure rate involves calculating derivative using Euler’s

method. This method gives a failure per mile that is calculated with each failure instance, rather

than a window of 10,000 miles or a polynomial fit. Euler’s method for calculating the derivative

of a set of data is a numeric approximation. The derivative is calculated as:

Failure.Rate(i) =
4Y
4X

=
failures(i+ 1)− failures(i)
miles(i+ 1)−miles(i)

(6.1)

At this point, the derivative is filtered to smooth the curves with a Butterworth filter designed

using Matlab’s “butter” command. The butter command designs an N th order low pass digital

filter, with cutoff frequency ω, where 0 < ω < 1.0, with 1.0 corresponding to half the sampling
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Figure 6.2. Comparison of the Polynomial Fit and Sliding Window Derivative Methods.

rate ([29]). The cutoff frequency employed in this work was arbitrarily chosen as 0.3 after running

the algorithm for various other values with minimal change. Further, the derivative is filtered

again to reduce the effects outliers have on the data by eliminating any derivative value such

that:

[failure.rate(i)−mean(failure.rate)] > standard.deviation(failure.rate) (6.2)

Graphically, the numerical and sliding window failure rates are plotted as Figure 6.3.
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Figure 6.3. Filtered Numerical and Sliding Window Derivative Comparison.

6.1.2 Cumulative Failure Derivatives

After comparing the various measurement methods, it was determined that the sliding window

approach of differentiation was preferred because of the level of precision it reflected. The goal

in calculating the derivative is to compare the failure rates of PTI and transit data to determine

if the PTI buses fail at a rate approximately 10x greater than transit data (due to the ten times

accelerated testing factor).

Recall Section 2.1.1: when the failure rate is plotted versus time (or mileage in this case), it

generally exhibits a bathtub shape, and thus is referred to as the bathtub curve (Figure 2.1). The

bathtub curve graphically illustrates typical trends that occur during the life cycle of a product,

including wear-in, useful life, and wear-out. A vehicle is no exception, as it does not boast an

infinite life. However, a vehicle falls in the category of a repairable system where components

that fail can be replaced to extend the overall useful life of the entire system. Consider the failure

rate plot of Pittsburgh bus number 5002 (Figure 6.4):

Figure 6.4 exhibits what seems to be multiple wear-in/wear-out cycles. The failure rate

appears to increase, peak quite dramatically, and subsequently drops off only to have the trend

repeat itself multiple times. This type of behavior would be exhibited in a repairable system

during its useful life. To verify this phenomena was not unique to this particular bus, the failure
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Figure 6.4. Pittsburgh Bus 5002 - Failure Rate.

rate was plotted for numerous buses. The same results were observed again and again.
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(a) Pittsburgh 5001 (b) Pittsburgh 5003

(c) Pittsburgh 5086 (c) Pittsburgh 5087

(c) Pittsburgh 5091 (c) Pittsburgh 5092

Figure 6.5. Selected Pittsburgh Failure Rate Plots.
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(a) Long Beach 9410 (b) Long Beach 9414

(c) Long Beach 9419 (c) Dover 613

(c) Cocoa Beach 9409 (c) Cocoa Beach 9418

Figure 6.6. Additional Transit Agency Failure Rate Plots.
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The trend of the failure rate to increase, peak, and decrease multiple times was confirmed

to exist in multiple buses from multiple agencies, thus suggesting that these trends are not an

anomaly in the data. The next logical step in this failure rate analysis was to examine the cause

of this failure rate behavior. Theoretically, the wear-in period occurs during the beginning of a

product’s life cycle and is characterized by an (initially) very high failure rate coupled with a

rapid decrease towards the useful life of the product. Following the useful life, the wear-out period

occurs, which is characterized by an initially low failure rate coupled which grows substantially

over a short period of time.

The trends in Figure 6.4, Figure 6.5, and Figure 6.6 exhibit a repeated bathtub curve, with

multiple wear-in/wear-out cycles. Multiple bathtub curves exhibited by a single system reflect

component replacements that contribute to the cumulative failure count of the system. In order

to determine if the repeated peaks are in fact repeated birth/death cycles, the associated mileage

is inspected in the work order data to locate any major component replacements.

6.1.3 Analysis of Failure Rate Peaks

The repeated peaks observed in the failure rate were examined to determine if they corresponded

with any major component replacements. If this relationship is verified, then the peaks may be

considered as repeated bathtub effects, and not an anomaly in the data. Consider Figures 6.7

through 6.14 and the corresponding replacements discovered in the received data. It was quite

clear that many of the peaks in failure rate corresponded with a major component replacement.

The next step in this analysis is to determine how subsystem failure rates match up with the

peaks exhibited in these figures.
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Figure 6.7. Pittsburgh Bus 5001 - Component Replacements.

Table 6.1. Pittsburgh 5001 Component Replacements

Mileage Description
228,594 Replace Generator
283,816 Replace Transmission
313,566 Replace Engine Assembly
339,122 Repair Transmission

Figure 6.8. Pittsburgh Bus 5003 - Component Replacements.

Table 6.2. Pittsburgh 5003 Component Replacements

Mileage Description
250,272 Replace Suspension
281,512 Replace Engine/Turbo
308,200 Replace Generator/Engine Component
347,398 Replace Water Pump
371,246 Replace Air System Controls
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Figure 6.9. Pittsburgh Bus 5086 - Component Replacements.

Table 6.3. Pittsburgh 5086 Component Replacements

Mileage Description
207,145 Replace Shocks
237,316 Replace Differential
240,764 Replace Engine

Figure 6.10. Pittsburgh Bus 5087 - Component Replacements.

Table 6.4. Pittsburgh 5087 Component Replacements

Mileage Description
233,021 Replace Brake Controls
266,638 Replace Generator/Shocks
279,093 Replace Turbo
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Figure 6.11. Long Beach 9410 - Component Replacements.

Table 6.5. Long Beach 9410 Component Replacements

Mileage Description
292,000 Engine Issues (No Description of Action Taken)
309,350 Transmission Won’t Go Into Gear
337,097 No Start (No Description of Action Taken)
361,516 Engine Tune-Up

Figure 6.12. Long Beach 9414 - Component Replacements.

Table 6.6. Long Beach 9414 Component Replacements

Mileage Description
261,718 Repair/Replace Generator
333,658 Replace R/F Leveling Valves
350,320 Multiple Engine Shutdowns (No Description of Action)
355,616 Transmission Slips/Slams (No Description of Action)
382,026 Overheating Engine Repairs (No Description of Action)
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Figure 6.13. Long Beach 9419 - Component Replacements.

Table 6.7. Long Beach 9419 Component Replacements

Mileage Description
384,184 New Transmission
393,328 Rebuild Differential
465,158 No Start (No Description of Action Taken)

Figure 6.14. Delaware Transit 613 - Component Replacements.

Table 6.8. Delaware Transit 613 Component Replacements

Mileage Description
42,260 Replace Engine Assembly
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The figures presented in this section illustrate the notion that peaks in the cumulative failure

rate can be attributed to major component replacement/repairs. There were instances, however,

where peaks existed that could not be attributed to any major repair. Thus, the next step was to

compare the sliding window results with the Euler derivative to determine if some of the peaks

exhibited in the cumulative failure rate actually existed, or if they could be attributed to bad

data.

Plotting the filtered numerical derivative and sliding window derivative on the same plot gave

insight into the validity of the peaks generated by the sliding window approach. The resulting

plots are presented as Figures 6.15 through 6.26.
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Figure 6.15. Long Beach 9414 Filtered Numerical vs Sliding Window Derivatives.

Figure 6.16. Long Beach 9419 Filtered Numerical vs Sliding Window Derivatives.
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Figure 6.17. Pittsburgh 5003 Filtered Numerical vs Sliding Window Derivatives.

Figure 6.18. Pittsburgh 5086 Filtered Numerical vs Sliding Window Derivatives.
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Figure 6.19. Pittsburgh 5087 Filtered Numerical vs Sliding Window Derivatives.

Figure 6.20. Pittsburgh 5092 Filtered Numerical vs Sliding Window Derivatives.
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Figure 6.21. Pittsburgh 5120 Filtered Numerical vs Sliding Window Derivatives.

Figure 6.22. Pittsburgh 5122 Filtered Numerical vs Sliding Window Derivatives.
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Figure 6.23. Pittsburgh 5123 Filtered Numerical vs Sliding Window Derivatives.

Figure 6.24. Pittsburgh 5133 Filtered Numerical vs Sliding Window Derivatives.



68

Figure 6.25. Pittsburgh 5134 Filtered Numerical vs Sliding Window Derivatives.

Figure 6.26. Pittsburgh 5135 Filtered Numerical vs Sliding Window Derivatives.



69

The trends exhibited by the filtered Euler numerical derivatives match well with the trends in

sliding window derivatives. The peaks produced by the sliding window method also match with

peaks in the Euler derivative. Thus, two independent methods of calculating failure rate produce

the same results, meaning the sliding window method is an appropriate method for calculating

failure rate, and the peaks generated by it are not erroneous. The peaks are indeed characteristics

of the failure rate, many of which correspond with major component replacements.

The sliding window validation is particularly favorable for transit operators. For instance, if

a transit operator wanted to determine failure rate of buses at an agency, it would be reasonable

to expect a typical transit operator would be more apt to understand failures per 10,000 miles

verses understanding a numerical derivative. Likewise, it would be difficult for them to relate

to a polynomial fit. From a research standpoint, the polynomial fit technique requires too much

effort to get a good result, including finding such a high order polynomial to approximate the

cumulative failures. The Euler numerical derivative approach also requires a great deal of effort

including developing an appropriate filter, and adjusting for outliers which skew the data.

Now that the sliding window method has been verified as an effective method of calculating

the failure rate, the next step in this analysis is to determine if peaks in the cumulative failure

rate corresponding to major component failures are exhibited on a subsystem level.

6.2 Subsystem Failure Rate Analysis

The next step in this research seeks to involve the following question: If a major component

replacement corresponds with a peak in the cumulative failure rate, as seen in Section 6.1.3, would

the failure rate corresponding to that component’s subsystem also peak at the same mileage?

For example, if an engine replacement corresponds with a peak in the cumulative failure rate,

would the failure rate of engine-only failures exhibit a peak near the same mileage? To produce

plots that might answer this question, all of the in-transit data was reclassified per subsystem.

6.2.1 In-Transit Data Reclassification

Section 4.2 explains the process for initially classifying the in-transit data failures as major or

minor, and how the Excel database was arranged. In order to look at the failure rate of individual
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subsystems, each of the forty-six bus files was sorted into ten separate work sheets as:

� Cumulative: All failures encountered

� Drivetrain: Any component associated with the engine, cooling system, and brakes.

� AC/Heat: Any component associated with air conditioning or heating

� Suspension: Any shocks, leaf or air springs, and/or air system repairs.

� Transmission: Any component associated with the transmission, drive shafts, differentials,

and axles

� Steering: Any component associated with steering

� Frame and Mounting: Any repairs or replacements on the frame or structural mounting

� Wheels and Tires: Any flat tires, bent rims, or replacements

� Controls: Any electrical repairs that are responsible for control of some component

� Not Tested: Any component failure not tested for at PTI including windows, fareboxes,

wheel chair lifts, and horns.

The work sheets retain the original formatting described in Section 4.2, except each sheet

contains repairs for only those described subsystems (Figure 6.27). The multiple work sheets

listed across the bottom of the excel file for this Pittsburgh bus correspond to each of the

individual subsystems mentioned above.
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Figure 6.27. A Sample of the Subsystem Classification Template.

6.2.2 Sliding Window Subsystem Analysis

The sliding window derivative method explained in Section 6.1.1 is applied to the new in-transit

data files to conduct a subsystem level failure rate analysis. The objective of this procedure is

to determine if peaks in the cumulative failure rate are also apparent on a subsystem level.

Consider subsystem level plots corresponding to the cumulative failure rate plots outlined in

Section 6.1.3. Keep in mind that only subsystem failure rates corresponding to known component

failures are plotted to eliminate the clutter that would exist by plotting up to eleven functions

on one figure.

Figure 6.28 illustrates the subsystem level analog to Figure 6.7. The failure rates of systems

directly associated with peaks in the cumulative failure rate are plotted on the same graph.

The generator replacement at mile 228,594 that corresponds with a peak in the cumulative

failure also showed up as a peak in the drivetrain subsystem. Generator failures are categorized

with drivetrain failures because of their close association with the engine. The transmission

replacement at 283,816 miles corresponds to a rise in both drivetrain and transmission failure

rates. The engine replacement at 313,566 miles is also characterized by a rise in the drivetrain

failure rate around this particular mileage. Finally, the transmission repair at 339,122 miles is

characterized by an increase in both drivetrain and transmission subsystem failure rates.
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Figure 6.28. Pittsburgh 5001 Subsystem Failure Rates.

Figure 6.29. Pittsburgh 5003 Subsystem Failure Rates.

Figure 6.29 showed the failure rates corresponding to Pittsburgh bus 5003. The suspension

failure at 250,272 miles is not matched very strongly by the suspension failure rate. However

the drivetrain rate does rise along with suspension, and peaks at about the same time as the

suspension replacement. At 281,512, the engine/turbo replacement is matched exactly with a very

distinct peak in drivetrain failure rate at the same mileage. The generator and engine component

replacements at 308,200 is also characterized by a rise in drivetrain failure rate. The increase and

peak in drivetrain failure rate corresponds with the water pump replacement at 347,398 miles.
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Finally, there is a noticeable correlation between the air system controls replacement and the

suspension failure rate.

The items not tested at PTI were plotted here due to the large spike around 310,000 miles.

The items not tested contributed significantly to the large magnitude in failure rate at this

mileage.

Figure 6.30. Pittsburgh 5086 Subsystem Failure Rates.

Figure 6.30 highlights an increase and peak in the suspension failure rate corresponding to

a replacement of the shocks. The differential replacement at 237,316 miles was characterized

with a very evident spike in both drivetrain and suspension failure rate, highlighting both their

relationship with the differential, but also the interdependence vehicle subsystems have on each

other. Interestingly, the engine replacement did not induce an increase in the drivetrain failure

rate. The rate did, however, remain elevated until the engine was replaced.

Figure 6.31 highlights the drivetrain failure rate since most of the notable failures were all

associated with this subsystem. The increase in drivetrain failure rate at 223,021 miles corre-

sponds to a brake controls replacement. The increase in both drivetrain and suspension failure

rate near 266,638 matches well with the generator and shocks replacements. Finally the turbo

replacement at 279,093 miles is accompanied by a steady failure rate from the drivetrain system

which subsequently decreased after the new turbo was installed.

Figure 6.32 depicts drivetrain, suspension, and transmission subsystem failure rates, and their
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Figure 6.31. Pittsburgh 5087 Subsystem Failure Rates.

Figure 6.32. Long Beach 9410 Subsystem Failure Rates.

relation to the cumulative failure rate. The peak in cumulative failure rate around 292,000 miles

due to engine issues shows up clearly in the drivetrain failure rate. However, the transmission

issues experienced at 309,350 are not depicted well by the transmission failure rate. The bus did

not start at 337,097 miles, which was a culmination of increasing drivetrain failure rates leading up

to that mileage. Both the cumulative and drivetrain failure rates peak at the same time and drop

off significantly after the engine tune-up at 361,516 miles. The last peak in the cumulative failure

rate occurrs at approximately 420,000 miles. The data shows no major component replacements
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near this mileage. However, the transmission failure rate was clearly a contributing factor to this

peak in the cumulative rate. Upon further investigation, the transmission experienced numerous

issues around this time, including not going into gear, not shifting once in gear, and not moving

the bus when in gear. The agency never provided information saying the transmission or any

critical drive-line components were replaced, but one can surmise that some major repair may

have had taken place, and yet was not reported.

Figure 6.33. Long Beach 9414 Subsystem Failure Rates.

Figure 6.33 shows an increase in drivetrain failure rate corresponding with a generator re-

placement at 261,718 miles. There is also an increase in the suspension system failure rate near

333,658 miles, when the front and rear leveling valves were replaced. The drivetrain and trans-

mission failure rates were elevated during the issues these subsystems experienced around 350,000

miles. Finally, after an overhaul at 382,026, the engine and cumulative failure rates decreased

substantially.

Figure 6.34 illustrates an increased transmission failure rate corresponding with a transmission

replacement around 385,000 miles. The rebuild of the differential at 393,328, however, was not

represented by an increase in drivetrain or transmission failure rate. This would be indicative of a

one-time differential failure that required the component be rebuilt, or of scheduled preventative

maintenance on the drive-line. The no start issues near 465,158 miles are also characterized by

an increased drive-train failure rate, which decreased after the issue was resolved.
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Figure 6.34. Long Beach 9419 Subsystem Failure Rates.

Figure 6.35. Dover 613 Subsystem Failure Rates.

Figure 6.35 clearly exhibited an increased drivetrain failure rate corresponding to an engine

replacement at 42,260 miles. The rate rises, peaks, and falls in direct correlation with this

occurrence.



Chapter 7
Conclusions and Future Work

This chapter summarizes the results of this thesis and suggests potential future work.

7.1 Conclusions

Contributions of this thesis are concluded in this section as follows:

� The sliding window moving average approximation to a derivative is a quick and easy

way transit operators can determine the failure rate of a bus without employing advanced

mathematical techniques to calculate a polynomial fit or filtered Euler numerical derivative.

� The failure rate corresponding to complex vehicles exhibits multiple peaks and valleys which

imply repeated bathtub curve effects

� Major component replacements can be identified by analyzing these peaks in the failure

rate

� Subsystem failure rates also exhibit peaks corresponding to major component failures

7.1.1 Bus Testing Program Validation

This thesis presented preliminary research that attempted to correlate reliability data from PTI

and various transit agencies throughout the continental United States. In Section 5.2, plots were
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presented that compared cumulative and cumulative major failures of buses from PTI and transit

agencies. It was determined that major failure count and trend was a more logical choice for

a comparison metric since minor failures represent items not typically tested at PTI, and were

skewing the cumulative failure results. The analysis of the PTI testing program ended here in the

thesis, but continued on through other research efforts. Without going into detail which is outside

the scope of this thesis, the PTI versus transit data comparison was furthered with numerous

advanced statistical modeling and nonlinear trend analysis techniques. The ultimate result was

that no conclusion could be drawn because the data received carried too many internal variations.

At a recent Federal Transit Administration (FTA) project presentation, the FTA expressed their

approval of the testing methods employed in this thesis and in other research on the bus testing

project, and stated that they would like to fund this project into the future so more advanced

research could take place.

7.1.2 Subsystem Analysis

After the major failure comparisons between PTI and transit agencies were complete, the failure

rate was generated with a sliding window approximated derivative. The sliding window exhibited

repeated bathtub curve effects that are typical of repairable systems. The failure rate was

also calculated with a numerical derivative technique coupled with a low pass digital filter to

smooth the results. The numerical derivative was then plotted along with the sliding window

results to compare the two methods and determine if the sliding window gave an appropriate

representation of the derivative. Many of the peaks in failure rate corresponded with major

component replacements or system repairs. Numerous examples were presented which listed

replacements and corresponding mileage. A subsystem level analysis was then conducted which

resulted in many peaks from subsystem derivatives corresponding with peaks in the cumulative

failure rate. This result proved that system failures may be identified on a subsystem level. The

future work presented in the following section explains methods for advancing this research.
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7.2 Future Work

This thesis laid the groundwork for future work in a breadth of complex vehicle system reliability

and test track validation problems. A few of those are summarized in this section.

7.2.1 Weibull Analysis of the Sliding Window Approach

The sliding window approach of analysis presented in this thesis formulated a way for using the

failure rate to identify major component replacements as they occurred during the useful life

of the vehicle. Ideally, an transit manager would like to have a way of predicting these major

break-downs before they occur to minimize downtime and costs of repair. Using the Weibull

probability density function, it may be possible to predict when these peaks in failure rate, and

subsequently the major failures, would occur. The curves could be fit to past data to develop

an algorithm that would identify the peaks within a given mileage variance. The algorithm

could be implemented in a pseudo-realtime environment, where new data could be processed

without plotting the failure rates to determine if major component failures could be predicted,

and ultimately prevented.

7.2.2 Economics of Reliability and Preventative Maintenance

A continuation of Section 7.2.1, this problem would analyze economic implications of determining

when to replace a component based on a Weibull model. The Weibull algorithm would not be

able to predict to the exact mile when the component would fail. It would, however, provide

an estimate with a variance of, say, twenty thousand miles. The question of when to replace

the component (“reset the bathtub curve”) so you gather the maximum utility from the nearly

depleted component, while replacing it before the vehicle experiences unnecessary downtime or

its failure causes additional components to break.

Further, the economic study could delve into determining the break even point of profit versus

outlay over the lifetime of the bus. This research would look to determine not only when the

most efficient time to replace components would be, but would also suggest the optimal time to

retire the bus.



80

7.2.3 Large Agency - Multiple Model Comparison

It was made very clear during the analysis phase of this project that agencies report and categorize

fleet failures differently. The instances used in this research almost certainly originated at the

shop floor level, with maintenance personnel entering work order information into a database.

Some of the agencies had two times as many failures over one hundred thousand miles, which

could be due to route differences, ridership, preventative maintenance schedule, or maintenance

personnel simply neglecting to input data into the system. In order to remedy this issue, data

could be collected from large agencies who could supply data for no less than ten buses of three

different models. The goal here would be to collect as many repeat models from as many different

agencies as possible, so the results obtained would be more complete.

7.2.4 Agency to Agency Comparison

Building on the data set described in Section 7.2.3, an agency to agency comparison could be

made based on replacement and preventative maintenance schedules. For instance, if two agencies

operate the same bus model, but observe different replacement or PM schedules, a researcher

could discern which agency “out-performs” the other based on quantitative measurements such

as failure count and failure rate. This study would, in essence, determine optimal maintenance

scheduling.

7.2.5 In-Vehicle Ride Quality

Another way to compare PTI to transit agencies is to compare in-vehicle ride quality at both.

This potential research would entail traveling to agencies that are willing to provide reliability

data and physically sitting on their buses on various routes with an internal measurement unit

(IMU) and recording dynamic characteristics of the ride. These roll, pitch, yaw, and vibration

measurements could used to determine a “ride quality” and compared to PTI and other agencies.

Thus, if a bus model performs better at Agency A than Agency B, the ride quality would be

another means of discerning why the model performed better, and would help PTI account

for factors occurring during in-transit usage that might not be represented in the present test

regimen.
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7.2.6 Manufacturing Variations

All buses tested at PTI are supposed to be production ready. This research topic would answer

the question: If a model performs well at PTI and receives a good rating and is subsequently put

into production, what metrics can be used to determine that the buses rolling out the factory door

are the same as what was tested at PTI? After speaking with numerous transit operators through

the course of this research, it was made clear that manufacturing variations are quite evident at

agencies who run multiple buses of the same model. The federal government spends millions of

dollars each year subsidizing bus test at PTI, so manufacturers need to be held responsible for

producing what was tested in the first place. By analyzing multiple buses of the same model at

the same agency, a researcher may be able to determine manufacturing variations in the product,

and offer metrics or means of improving production. This research would ensure transit agencies

receive the same quality bus that was tested at PTI, on which their purchasing decision was

based.

7.2.7 Identifying False Positives

This research would investigate the existence of false positives presented as peaks in the failure

rate data. In Chapter 6, peaks in failure rate plots were analyzed to determine any relationships

between peaks and major component replacements or repairs. Some peaks existed, but could

not be attributed to any specific component failure. This research topic would look to present a

methodology to identify these false positives. For example, the plots generated for this research

consist of only nonscheduled work performed on the bus. If a component failed about the same

time as a scheduled preventative maintenance session, the failure would be hidden as a repair

during the PM. Thus, the failure rate would exhibit a peak that could not be attributed to any

failure instance provided as nonscheduled maintenance. By obtaining and plotting the preventa-

tive maintenance work performed on the bus along with the nonscheduled maintenance, all peaks

in the failure rate data could be identified.
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7.2.8 Periodicity in the Failure Rate

Some of the failure rate plots generated for this thesis exhibit what appears to be periodicity

between the peaks. Consider Figure 7.1:

Figure 7.1. Pittsburgh Bus 5003 - Failure Rate.

The peaks in the failure rate for this bus seem to occur approximately every 3,000 miles. This

could be due to many repairs being delayed until the next scheduled maintenance downtime.

Thus, this future work would investigate if maintenance scheduling causes periodicity in the

failure rate. By plotting all work performed on the bus, the researcher could determine if the

frequency of preventative maintenance relates to the frequency of nonscheduled maintenance

instances.

7.2.9 Seasonal Effects

The final future research concept would examine seasonal effects on the failure rate of the bus.

By plotting failure rate as a function of time, a researcher could determine how winter months

affect the performance of a bus model in a northern state, versus the same bus being operated in

a southwestern area. Then, a more robust preventative maintenance schedule could be developed

for agencies and bus models depending on the time of the year, adjusting the schedule when the

bus is more or less prone to failure.



Appendix A
Transit Agency Data

The following is a sample data file (Pittsburgh 5001) that was received from The Port Authority

of Allegheny County in Pittsburgh, Pennsylvania. Due to the large size of the file database, one

file is presented here for illustration purposes. The rest of the files are stored on Dr. Sean N.

Brennan’s file server at the following location:

Publications⇒ Academics⇒ 2008⇒ 2008Y utkoMSThesis

The descriptions of each column are as follows:

� Ma : A major failure is indicated by an integer 1

� Mi : A minor failure is indicated by an integer 1

� Cum : The cumulative count of both major and minor failures

� C Ma : The cumulative count of major failures only

� C Mi : The cumulative count of minor failures only
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Miles Description Ma Mi Cum C Ma C Mi

216210 Misc Items:Horn 1 1 0 1

216526 Bus Engine:Controls:Repair 1 2 1 1

217584 Brakes:Grab 1 3 2 1

220128 Misc Items:Radio/ P.A. System 1 4 2 2

222430 Bus Exterior Body:Frame:Repair 1 5 3 2

225982 Brakes:Slack Brakes 1 6 4 2

226955 Lights:Head Light 1 7 4 3

227479 Transmission:Rough Shift 1 8 5 3

228594 Bus Transmission:Assembly:Replace 1 9 6 3

229310 Suspension:Kneeler 1 10 7 3

229795 REPLACE UPPER RADIATOR HO 1 11 8 3

229795 Body:Driver’s Seat/Belt 1 12 8 4

229795 Brakes:Slack Brakes 1 13 9 4

231665 Lights:Interior 1 14 9 5

231987 Brakes:Slack Brakes 1 15 10 5

232977 Brakes:Slack Brakes 1 16 11 5

233151 Lights:Head Light 1 17 11 6

234291 Heat - A/C:Defrosters 1 18 11 7

234291 Brakes:Pulls Right/Left 1 19 12 7

236321 Lights:4 Way/Turn Signal 1 20 12 8

238826 Air System:Compressor:Repair 1 21 13 8

239455 Engine:Won’t Start 1 22 14 8

239455 Indicators:Generator Light 1 23 14 9

240247 Engine:Won’t Start 1 24 15 9

241100 Bus Wheels and Hubs:Tires:Repair 1 25 15 10

241554 Lights:Head Light 1 26 15 11

244454 Heat - A/C:Too Warm 1 27 15 12

245242 Heat - A/C:Too Warm 1 28 15 13
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Miles Description Ma Mi Cum C Ma C Mi

247629 Lights:Head Light 1 29 15 14

247629 Engine:Lack of Power 1 30 16 14

248597 Suspension:Air Leak 1 31 17 14

248959 Suspension:Air Leak 1 32 18 14

249646 Doors:Won’t Close 1 33 19 14

250911 Brakes:Slack Brakes 1 34 20 14

250911 Lights:Interior 1 35 20 15

252386 Lights:Interior 1 36 20 16

253715 Engine:Won’t Start 1 37 21 16

253824 Brakes:Slack Brakes 1 38 22 16

253824 Doors:Won’t Close 1 39 23 16

254156 Bus HVAC:Aux. Heater:Repair 1 40 23 17

256318 Brakes:ABS System Light 1 41 24 17

256318 Lights:Interior 1 42 24 18

256424 Indicators:Air Pressure 1 43 25 18

256913 Brakes:Slack Brakes 1 44 26 18

258573 Engine:Q.W.R. 1 45 27 18

258573 Brakes:Slack Brakes 1 46 28 18

258573 Heat - A/C:Too Warm Driver 1 47 28 19

260226 Brakes:Slack Brakes 1 48 29 19

260226 Lights:4 Way/Turn Signal 1 49 29 20

260226 Transmission:Retarder Light 1 50 30 20

261302 Brakes:Slack Brakes 1 51 31 20

261900 Lights:Head Light 1 52 31 21

262131 Brakes:Grab 1 53 32 21

262676 Heat - A/C:Too Cool Driver 1 54 32 22

262676 Lights:Interior 1 55 32 23

263422 Windows:Wiper Blades 1 56 32 24



86

Miles Description Ma Mi Cum C Ma C Mi

264226 Bus Air System:Air Dryer:Repair 1 57 32 25

264475 Engine:Leaks 1 58 33 25

266188 Brakes:Grab 1 59 34 25

268654 Bus Wheels and Hubs:Tires:Repair 1 60 34 26

269175 Suspension:Ride Height or Leaning 1 61 35 26

269304 Bus Wheels and Hubs:Tires:Repair 1 62 35 27

269685 Bus Body Frame:Welding:Repair 1 63 36 27

269685 Engine:Q.W.R. 1 64 37 27

269685 Heat - A/C:Too Cool Driver 1 65 37 28

269926 Lights:Head Light 1 66 37 29

270434 Bus Wheels and Hubs:Tires:Repair 1 67 37 30

270461 Bus Wheels and Hubs:Tires:Repair 1 68 37 31

270461 Heat - A/C:Too Cool Interior 1 69 37 32

270461 Heat - A/C:Too Cool Interior 1 70 37 33

270690 Transmission:Retarder Light 1 71 38 33

271156 Heat - A/C:Too Cool Interior 1 72 38 34

271562 Brakes:Slack Brakes 1 73 39 34

272305 Heat - A/C:Too Cool Driver 1 74 39 35

272375 Engine:Leaks 1 75 40 35

273436 Engine:Won’t Start 1 76 41 35

273601 Engine:Won’t Start 1 77 42 35

274099 Brakes:Pulls Right/Left 1 78 43 35

276132 Lights:Brake/Tail 1 79 43 36

276767 Indicators:Air Pressure 1 80 44 36

277244 Doors:Won’t Close 1 81 45 36

278531 Mirrors:Right Outside 1 82 45 37

278531 Suspension:Kneeler 1 83 46 37

280872 Doors:No Interlock 1 84 47 37
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Miles Description Ma Mi Cum C Ma C Mi

280872 Windows:Wiper Blades 1 85 47 38

281944 Bus Wheels and Hubs:Tires:Repair 1 86 47 39

282644 Bus Braking:Drive Lining:Repair 1 87 48 39

282644 Bus Air System:Air Dryer:Repair 1 88 48 40

282644 Bus Wheels and Hubs:Tires:Replace 1 89 48 41

282644 Bus Electrical:Exterior Lights:Repair 1 90 48 42

282757 Heat - A/C:Too Warm Interior 1 91 48 43

283544 Doors:No Interlock 1 92 49 43

283816 Engine:Won’t Start 1 93 50 43

283816 Bus Electrical:Generator 24V:Replace 1 94 51 43

284135 Mirrors:Left Outside 1 95 51 44

284583 RAD FAN SHATTERED//BUS TO 1 96 52 44

284799 Doors:Won’t Close 1 97 53 44

284799 Doors:Won’t Close 1 98 54 44

284799 Heat - A/C:Too Warm Interior 1 99 54 45

285264 Heat - A/C:Too Warm Interior 1 100 54 46

285347 Windows:Cracked Glass 1 101 55 46

285751 Brakes:Slack Brakes 1 102 56 46

285838 Heat - A/C:Too Warm Interior 1 103 56 47

285838 Heat - A/C:Too Warm Interior 1 104 56 48

285838 Heat - A/C:Too Warm Interior 1 105 56 49

285959 Brakes:Air Leak 1 106 57 49

286414 Bus Wheels and Hubs:Tires:Replace 1 107 57 50

286562 Doors:No Interlock 1 108 58 50

286715 Heat - A/C:Too Warm Interior 1 109 58 51

286834 Heat - A/C:Too Warm Interior 1 110 58 52

286834 Heat - A/C:Too Warm Interior 1 111 58 53

287391 Doors:No Interlock 1 112 59 53
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Miles Description Ma Mi Cum C Ma C Mi

288999 Doors:Won’t Close 1 113 60 53

289245 Doors:No Interlock 1 114 61 53

289245 Transmission:Leaks 1 115 62 53

290166 Engine:Leaks 1 116 63 53

290236 Doors:No Interlock 1 117 64 53

290236 Doors:Won’t Close 1 118 65 53

290537 Bus Cooling:Plumbing:Repair 1 119 65 54

290537 Transmission:Misc.-Codes 1 120 66 54

291129 Bus Exterior Body: Hood:Repair 1 121 66 55

292570 Lights:Brake/Tail 1 122 66 56

292795 Lights:4 Way/Turn Signal 1 123 66 57

292795 Lights:Head Light 1 124 66 58

292795 Lights:Interior 1 125 66 59

292795 Farebox:Not Registering 1 126 66 60

292909 Heat - A/C:Too Cool Driver 1 127 66 61

294033 Heat - A/C:Too Cool Interior 1 128 66 62

296789 Bus Engine:Lines:Repair 1 129 67 62

296789 Bus Transmission:Cooler:Repair 1 130 68 62

296789 Bus Electrical:Exterior Lights:Repair 1 131 68 63

296789 6. Bus Exterior Body:Glass:Replace 1 132 69 63

296789 Bus Electrical:Exterior Lights:Repair 1 133 69 64

296789 Bus Exterior Body:Frame:Repair 1 134 70 64

296789 Bus Interior Body:Flooring:Repair 1 135 70 65

298412 Lights:Markers/Clearance 1 136 70 66

299194 Heat - A/C:Too Cool Interior 1 137 70 67

299194 Heat - A/C:Too Cool Interior 1 138 70 68

300002 Bus Air System:Air Compressor:Repair 1 139 71 68

300333 Lights:Head Light 1 140 71 69
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Miles Description Ma Mi Cum C Ma C Mi

302659 Indicators:Check Engine Light 1 141 72 69

302659 Mirrors:Rear View 1 142 72 70

303174 Brakes:Pulls Right/Left 1 143 73 70

303478 Heat - A/C:Too Cool Interior 1 144 73 71

304489 Indicators:Check Engine Light 1 145 74 71

307211 Mirrors:Rear View 1 146 74 72

307999 Heat - A/C:Too Cool Driver 1 147 74 73

310487 Lights:Interior 1 148 74 74

311943 Heat - A/C:Too Cool Driver 1 149 74 75

312205 Doors:Won’t Open 1 150 75 75

313302 Brakes:Slack Brakes 1 151 76 75

313302 Engine:Overheats 1 152 77 75

313452 Heat - A/C:Too Warm Interior 1 153 77 76

313566 Bus Engine:Undefined:Replace 1 154 78 76

314820 Heat - A/C:Too Warm Interior 1 155 78 77

315479 Brakes:Slack Brakes 1 156 79 77

315479 Suspension:Ride Height or Leaning 1 157 80 77

315563 Heat - A/C:Too Warm Interior 1 158 80 78

315563 Bus Wheels and Hubs:Tires:Repair 1 159 80 79

316118 Mirrors:Right Outside 1 160 80 80

316396 Windows:Wiper Blades 1 161 80 81

318126 Doors:Won’t Close 1 162 81 81

319022 Bus Cooling:Fan Belts:Replace 1 163 82 81

319022 Bus Cooling:Fan Belts:Replace 1 164 83 81

319022 Bus Electrical:Ext. Lights:Replace 1 165 83 82

319022 Bus Electrical:Int. Lights:Replace 1 166 83 83

319073 Bus Braking:Controls:Replace 1 167 84 83

319073 Bus Air System:Air Dryer:Rebuild 1 168 85 83
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Miles Description Ma Mi Cum C Ma C Mi

319073 Wheel Well Fender:Repair 1 169 85 84

319073 Air System:Concept Valve:Replace 1 170 86 84

320854 Windows:Cracked Glass 1 171 87 84

320934 Doors:Won’t Close 1 172 88 84

320934 Doors:Won’t Open 1 173 89 84

322673 Lights:4 Way/Turn Signal 1 174 89 85

322673 Indicators:Air Pressure 1 175 90 85

325350 Bus Wheels and Hubs:Tires:Repair 1 176 90 86

325538 Bus Wheels and Hubs:Tires:Repair 1 177 90 87

325538 Lights:Interior 1 178 90 88

326018 Heat - A/C:Too Warm Interior 1 179 90 89

326018 Lights:Brake/Tail 1 180 90 90

326481 Bus Wheels and Hubs:Tires:Repair 1 181 90 91

327143 Windows:Wiper Blades 1 182 90 92

329548 Bus HVAC:Aux. Heater:Repair 1 183 90 93

331740 Doors:No Interlock 1 184 91 93

332823 Heat - A/C:Too Cool Interior 1 185 91 94

334854 Bus Wheels and Hubs:Tires:Repair 1 186 91 95

336546 Bus Cooling:Fan Belts:Replace 1 187 91 96

336546 Bus HVAC:Belts:Replace 1 188 91 97

337373 Doors:No Interlock 1 189 91 98

337373 Suspension:Ride Height or Leaning 1 190 92 98

337916 Lights:Head Light 1 191 92 99

338234 Farebox:Bill Side Jamb 1 192 92 100

338816 Bus Exterior Body:Trim:Replace 1 193 92 101

338816 Bus Body Frame:Tubular Steel:Repair 1 194 93 101

338816 Heat - A/C:Too Cool Interior 1 195 93 102

339122 Bus Exterior Body:Undefined:Replace 1 196 93 103
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339122 Bus Air System:Air Dryer:Rebuild 1 197 94 103

339122 Bus Exterior Body:Undefined:Replace 1 198 94 104

339122 Bus Electrical:Generator 24V:Repair 1 199 95 104

339122 Bus Transmission:Undefined:Repair 1 200 96 104

339122 Bus Electrical:Ext.Lights:Replace 1 201 96 105

339798 Transmission:Slips 1 202 97 105

340076 Brakes:Slack Brakes 1 203 98 105

340076 Transmission:Misc.-Codes 1 204 99 105

340206 Bus Axles:Differential Seal:Replace 1 205 100 105

340258 Heat - A/C:Too Cool Interior 1 206 100 106

340467 Transmission:Rough Shift 1 207 101 106

341493 Heat - A/C:Too Cool Interior 1 208 101 107

343486 Engine:Won’t Start 1 209 102 107

344081 Mirrors:Right Outside 1 210 102 108

344335 Brakes:Parking Brake 1 211 103 108

345468 Heat - A/C:Defrosters 1 212 103 109

345683 Brakes:Slack Brakes 1 213 104 109

345779 Heat - A/C:Too Cool Interior 1 214 104 110

345954 Bus HVAC:Aux. Heater:Repair 1 215 104 111

345954 Bus Wheels and Hubs:Tires:Repair 1 216 104 112

347094 Heat - A/C:Defrosters 1 217 104 113

347354 Bus HVAC:Defroster Motor:Repair 1 218 104 114

347773 Bus Transmission:Undefined:Repair 1 219 105 114

347773 Bus Suspension:Undefined:Repair 1 220 106 114

348007 Heat - A/C:Too Cool Interior 1 221 106 115

348952 Bus Wheels and Hubs:Tires:Repair 1 222 106 116

349486 Lights:4 Way/Turn Signal 1 223 106 117

350340 Engine:Lack of Power 1 224 107 117
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351519 Heat - A/C:Too Warm Interior 1 225 107 118

352041 Bus Engine:Turbo:Replace 1 226 108 118

353329 Doors:Won’t Open 1 227 109 118

354059 Engine:Won’t Start 1 228 110 118

354183 Bus Wheels and Hubs:Tires:Repair 1 229 110 119

354712 Bus Cooling:Plumbing:Replace 1 230 110 120



Appendix B
Matlab Source Code

B.1 The Sliding Window

B.1.1 Sliding Window Main File

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 % The following script runs a sliding window derivative approximation %

3 % function (sliding window.m) to create failure rate plots for obtained %

4 % non−scheduled work preformed on various bus models. The plots describe %

5 % the cumulative and subsystem failure rates as specified by the user. %

6 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

7

8 % The user needs to:

9 % (1) Select a file name from the list below

10 % (2) Input that name into the appropriate lines calling data from select

11 % excel files.

12 % (3) Determine which subsystems are desired to plot

13 % (4) Adjust the plotted axes to only view appropriate range of data

14

15 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

16 % (1) Failure rate script created by Joseph Yutko, 12/13/07, The %

17 % Pennsylvania State University. %



94

18 % %

19 % (2) Sliding window function script created by Kshitij Jerath, 11,27,07, %

20 % The Pennsylvania State Unversity, and modified by Joseph Yutko, %

21 % 12/13/07, The Pennsylvania State University %

22 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

23

24

25 % Choose from the following bus files (names are case sensitive) obtained

26 % from transit agencies:

27

28 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

29 % Pittsburgh, PA (Port Authority of Allegheny Co) − 1994 Neoplan AN 440L %

30 % Pitt 5001 Pitt 5002 Pitt 5003 Pitt 5080 Pitt 5085 %

31 % Pitt 5086 Pitt 5087 Pitt 5091 Pitt 5092 Pitt 5120 %

32 % Pitt 5122 Pitt 5123 Pitt 5133 Pitt 5134 Pitt 5135 %

33 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

34

35 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

36 % Manchester, NH (Manchester Transit Authority) − 1995 Thomas Built Vista %

37 % Manchester 9602 Manchester 9604 Manchester 9606 %

38 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

39

40 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

41 % Long Beach, CA (Long Beach Transit) − 1994 New Flyer D40LF %

42 % LongBeach 9410 LongBeach 9414 Longbeach 9419 %

43 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

44

45 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

46 % Greeley,CO (City of Greeley Transit Services) − 1993 BlueBird QBRE 2903 %

47 % Greeley 939 Greeley 940 Greeley 941 Greeley 942 %

48 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

49

50 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

51 % Dover,DE (Delaware Transit Corp.) − 1996 Champion Contender TB−2242 %

52 % Dover 613 Dover 614 %

53 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

54
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55 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

56 % Cocoa Beach, FL (Space Coast Area Transit) − 1994/5 Thomas Built Vista %

57 % CocoaBeach 9409 CocoaBeach 9418 CocoaBeach 9420 %

58 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

59

60 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

61 % Abingdon, MD (Harford Co. Transportation Services) − 2000 Star Trans. %

62 % Supreme Corp − BSSN25 %

63 % Abingdon 802 Abingdon 804 Abingdon 807 Abingdon 821 %

64 % Abingdon 828 Abingdon 841 %

65 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

66

67 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

68 % Nashville, TN (Metropolitan Transit Authority) − 1993 Neoplan AN440 %

69 % Nashville 161 Nashville 301 Nashville 302 Nashville 303 %

70 % Nashville 304 Nashville 305 Nashville 306 Nashville 307 %

71 % Nashville 308 %

72 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

73

74 clear all;

75 clc;

76

77 [type,sheets] = xlsfinfo('Pitt 5087');

78

79 cumulative=xlsread('Pitt 5087','Cumulative','A4:A1200');

80 drivetrain=xlsread('Pitt 5087','Drivetrain','A4:A500');

81 acheat=xlsread('Pitt 5087','AC HEAT','A4:A500');

82 suspension=xlsread('Pitt 5087','Suspension','A4:A500');

83 trans=xlsread('Pitt 5087','Transmission','A4:A500');

84 steering=xlsread('Pitt 5087','Steering','A4:A500');

85 frame=xlsread('Pitt 5087','Frame and Mounting','A4:A500');

86 wheel=xlsread('Pitt 5087','Wheels and Tires','A4:A500');

87 control=xlsread('Pitt 5087','Controls','A4:A500');

88 notest=xlsread('Pitt 5087','Not Tested','A4:A500');

89

90 [cumulative rate,cumulative miles]=sliding window function(cumulative);

91 [drivetrain rate,drivetrain miles]=sliding window function(drivetrain);
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92 [acheat rate,acheat miles]=sliding window function(acheat);

93 [suspension rate,suspension miles]=sliding window function(suspension);

94 [trans rate,trans miles]=sliding window function(trans);

95 [steering rate,steering miles]=sliding window function(steering);

96 [frame rate,frame miles]=sliding window function(frame);

97 [wheel rate,wheel miles]=sliding window function(wheel);

98 [control rate,control miles]=sliding window function(control);

99 [notest rate,notest miles]=sliding window function(notest);

100

101 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

102 % Plot %

103 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

104

105 figure(1)

106 plot(cumulative miles,cumulative rate,'r');

107 hold on;

108 plot(drivetrain miles,drivetrain rate,'g');

109 plot(acheat miles,acheat rate,'b');

110 plot(suspension miles,suspension rate,'m');

111 plot(trans miles,trans rate,'m');

112 plot(steering miles,steering rate,'k');

113 plot(frame miles,frame rate,'−−r');

114 plot(wheel miles,wheel rate,'−−g');

115 plot(control miles,control rate,'−−b')

116 plot(notest miles,notest rate,'−−c');

117 axis ([225000 335000 0 30]);

118 legend('Cumulative','Drivetrain','Suspension','Transmission','Steering',..

119 ..,'Frame','No Test')

120 legend('Cumulative','Drivetrain','Suspension','No Test')

121 title('Falure Rate Distribution of Pittsburgh 5002');

122 xlabel('Distance (in miles)');

123 ylabel('Failure Rate');



97

B.1.2 Sliding Window Function

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 % %

3 % This script runs with sliding window.m. This script is the %

4 % sliding window derivative approximation. It calculats the %

5 % approximate derivative of a data set by computing the number %

6 % of failures in a window of indicated size, summing them, and %

7 % repeating this process numerous times by sliding the window %

8 % an indicated increment. %

9 % %

10 % Original script written by: Kshitij Jerath %

11 % Modified by: Joseph M. Yutko %

12 % The Pennsylvania State University, 2008 %

13 % %

14 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

15

16 function [C,D]=sliding window function(Bus data)

17

18 win size = 10000;

19 win inc = 100;

20

21 first rdng = Bus data(1);

22 last rdng = Bus data(length(Bus data));

23

24 %Initialization of plot matrices:

25 %C = total number of failures in sliding window interval of size win size

26 %k = counter for counting total number of failures in win size

27 %pos = pointer to failure mile reading data in failure matrix x

28

29 for(i=1:win inc:(last rdng − win size))

30 C(1+(i−1)/win inc)=0;

31 D(1+(i−1)/win inc)=win inc*(1+(i−1)/win inc)+(win size/2);

32 end

33

34 pos=1;
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35

36 for(i=1:win inc:(last rdng − win size))

37 k = 0;

38 for(j=i:1:(win size + i))

39 while(Bus data(pos)==j)

40 k = k+1;

41 pos=pos+1;

42 end

43 end

44

45 pos=1;

46 while(Bus data(pos)<i+win inc)

47 pos=pos+1;

48 end

49

50 C(1+(i−1)/win inc)=k;

51 end

52

53 Z=[];

54 Z1=[];

55

56 for(i=1:1:length(Bus data))

57 Z(i) = i;

58 Z1(i) = i;

59 end
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B.2 Sliding Window vs Polynomial Approximation Deriva-

tive

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 % This script calculates the sliding window derivative and an nth order %

3 % ploynomial fit derivative of the cumulative failure count. %

4 % %

5 % Script witten by: Joseph M. Yutko %

6 % Supplemented by: Kshitij Jerath %

7 % The Pennsylvania State University, 2008 %

8 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

9

10

11 d4 = [141 937 1425 1425 2441 2651 3433 4644 5097

12 6629 6629 7509 9020 9192 9418 9837 10224 10224

13 11224 12257 12490 12490 13739 14100 14374 14686 15497

14 15703 16118 16918 17059 17370 17386 17660 18228 18374

15 18374 18374 18501 18501 19272 19397 19455 19655 20033

16 21852 23940 24726 25646 26272 26413 28094 28094 28514

17 29507 31498 32196 33900 34603 34870 38104 38827 39287

18 39361 40215 40215 40299 40351 40351 40854 40920 41005

19 41184 41184 41572 41572 42142 42260 42630 42630 42852

20 42965 43312 44032 44643 44750 45073 46727 47216 47911

21 48264 51476 54514 54651 62029 62176 62604 64163 64719

22 65564 65564 65865 66358 68262 69870 76392 76392 76672

23 77700 77700 79029 80092 80628 84518 84716 85960 86571

24 87001 87452 87871 88204 88204 88204 88486 88723 91165

25 92510 92891 92891 94517 95889 96204 96566 96922 98110

26 98110 98110 99602 99673 100361 101926 101926 101926 101926

27 104564 104564 104994 105273 106349 106421 106596 107041 107214

28 110885 111418 111418 112046 112046 112046 112046 112046 112812

29 112812 112812];

30

31 Bus data = d4;
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32

33 win size = input('Enter size of sliding window (default = 10000) :');

34 if(length(win size)==0)

35 win size = 10000;

36 end

37

38 win size = 10000;

39

40 win inc = input('\nEnter sliding window increment (default = 100) :');

41 if(length(win inc)==0)

42 win inc = 100;

43 end

44

45 win inc = 100;

46

47 first rdng = Bus data(1);

48 last rdng = Bus data(length(Bus data));

49

50 for(i=1:win inc:(last rdng − win size))

51 C(1+(i−1)/win inc)=0;

52 D(1+(i−1)/win inc)=win inc*(1+(i−1)/win inc)+(win size/2);

53 end

54

55 pos=1;

56

57 for(i=1:win inc:(last rdng − win size))

58 k = 0;

59 for(j=i:1:(win size + i))

60 while(Bus data(pos)==j)

61 k = k+1;

62 pos=pos+1;

63 end

64 end

65

66 pos=1;

67 while(Bus data(pos)<i+win inc)

68 pos=pos+1;
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69 end

70

71 C(1+(i−1)/win inc)=k;

72 end

73

74 Z=[];

75 Z1=[];

76

77 for(i=1:1:length(Bus data))

78 Z(i) = i;

79 Z1(i) = i;

80 end

81

82 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

83 % Plot %

84 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

85

86 %Reference Cumulative failure plot

87 % plotyy(D,C,Bus data,Z); [AX,H1,H2] = plotyy(D,C,Bus data,Z,'plot');

88 % set(H2,'Linestyle','o'); hold on; title('Failure rate and Cumulative

89 % failures versus Distance'); set(H2,'Linestyle','−'); xlabel('Distance (in

90 % miles)'); set(get(AX(1),'Ylabel'),'String','Failure rate (Total

91 % failures/miles)'); set(get(AX(2),'Ylabel'),'String','Cumulative

92 % Failures'); plot(Bus data,Z1,'b:'); legend(H1,'Sliding window failure

93 % rate'); %cancel permanent legend(H2,'Cumulative Failures');

94 % %cancel permanent

95

96 %hold on;

97 p = polyfit(Bus data,Z,6);

98 f = polyval(p,Bus data);

99 %plot(Bus data,Z,'r:');

100

101 hold on;

102 %plot(Bus data,f,'−');

103 q = polyder(p);

104 f1 = win size*polyval(q,Bus data);

105 %[AX,H1,H2] = plotyy(Bus data,f1,Bus data,f); plotyy(D,f1,D,C);
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106 [AX,H1,H2] = plotyy(Bus data,f1,D,C);

107 set(H1,'Linestyle','*');

108 hold on;

109 %title('Comparison of Sliding Window and Polynomial Fit Derivative

110 %Methods');

111 set(H1,'Linestyle','−');

112 xlabel('Distance (in miles)');

113 set(get(AX(1),'Ylabel'),'String','Failure Rate − Fitted Polynomial,. . .

114 . . . Derivative');

115 set(get(AX(2),'Ylabel'),'String','Failure Rate−Sliding Window Derivative');

116 legend(H2,'Sliding Window Derivative'); %cancel permanent

117 legend(H1,'Fitted Polynomial Derivative'); %cancel permanent
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