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ABSTRACT 

Accurate localization is necessary in order to autonomously navigate and control 

a robot. This thesis focuses on the implementation of a robust localization algorithm for 

robot navigation. This algorithm is a modified version of the Monte Carlo Localization 

algorithm. The objectives of this thesis are: to explain the need for accurate localization, 

to explain the original Monte Carlo Localization algorithm, and to present the results of 

the modified version of the Monte Carlo Localization algorithm. 
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Chapter 1 

Introduction 

The main objective of this thesis is to show how to accurately localize and track 

a robot without using dedicated global positioning system (GPS) sensors. This thesis 

focuses on fusing a laser range finder and odometer to implement a modified version of 

the Monte Carlo Localization algorithm on a mobile ground robot. 

 

1.1 Motivation 

Localization is necessary for most robotics applications. When a remote- 

controlled robot navigates out of the operator’s eyesight, the operator must know the 

position of the robot with respect to its environment in order to successfully drive the 

robot. Likewise, most autonomous navigation algorithms operate by setting a goal 

location and setting intermediate goal locations in order for the robot to reach its final 

destination. Without localization, the robot would not be aware of its progress to the 

final goal and therefore could not make intelligent path planning decisions.  

 

This work is motivated by the shortfalls of current localization equipment and 

sensor fusion methods for localization. Due to the complexity of environments that a 

mobile robot will encounter, no single sensor is accurate or dynamic enough to operate 

in all environments. Currently, many methods exist for localizing or tracking mobile 

robots, but few data fusion methods exist to accomplish both tasks in a practical 

manner. Robot localization and tracking are two challenges that can be treated distinctly 

or combined into one problem. Localizing a robot requires global information and 
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typically requires more information about the environment and a more complex 

algorithm. Tracking a robot only requires local information about the robot since its 

initial position is already established. In this case, the change in position and orientation 

have to be estimated. 

 

1.1.1 Motivation for Research Due to Sensor Limitations 

Localization sensors are primarily limited to GPS (Global Positioning System) 

and Inertial Measurement Units (IMUs). In an outdoor environment with full coverage, 

a high end GPS can provide accurate and precise localization and tracking of a mobile 

robot. However, an accurate GPS is an expensive sensor for mid and small sized robots. 

Also, GPS does not provide full coverage in all environments. Obstructions such as 

trees and tall buildings can significantly degrade and even eliminate GPS coverage. 

Likewise, GPS is useless when navigating through any type of structure such as 

buildings or tunnels. In a previous paper by C. Boucher, A. Lahrech, and J. C. Noyer , 

Particle filters have successfully fused odometry from wheel encoders with GPS in 

order to localize a robot when the GPS signal is lost [2]. 

 

IMUs use gyros to detect changes in the pitch, yaw, and roll of the robot. The 

main problem with using IMUs for localization is that the sensor’s localization 

continuously increases with time. As time progresses and the robot travels further from 

its operator or starting position, localization accuracy becomes more important for 

navigation.  
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Another sensor used for localization is a wheel encoder. Wheel encoders count 

the number of revolutions of the wheels. This information can be used to calculate the 

change in displacement and bearing of the robot. Similar to the IMU, wheel encoders 

have errors that continually increase as time progresses. Figure 1.1 shows the odometry 

data collected from wheel encoders along a hallway. In an ideal environment after 

travelling in a straight for 60 m, the robot already has 1 m error in the linear x direction. 

Wheel encoders have more error when the robot is operating in uneven terrain and when 

the robot is turning. When turning, the robot’s track or wheels on one side move 

significantly more than the other side. The odometry error in this situation is highly 

dependent on the sensor and the motion model. Robots with tank treads increase the 

encoders’ error through track slippage.  
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Figure 1.1: Position Plot from Encoder Data 
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1.1.2 Motivation for Research Due to Existing Data Fusion Methods 

Other than Monte Carlo Localization, which is an implementation of a particle 

filter, there are three other main areas of mobile robot localization or tracking: Kalman 

Filters, Markov Localization, and position probability grids. Kalman Filters are ideal for 

tracking mobile robots due the linear nature of the tracking problem [1]. Localizing a 

robot is a non-linear process due to its unknown position, which could be anywhere on a 

map. However, tracking is a linear process since once the robot is localized, only the 

robot’s movement from its current location must be estimated. Different forms of the 

Kalman Filter, such as the Unscented Kalman Filter, can represent non-Gaussian 

distributions; however, other forms of Kalman Filters cannot re-localize the robot’s 

position once the filter believes that it has the proper position [4]. The Original Kalman 

Filter and the Extended Kalman Filter linearize the estimation problem and only 

consider local rather than global information, which prohibits them from relocalizing 

the robot.  

 

Another technique, Markov Localization, is ideal for localization but requires 

large amounts of computations and memory [3].  This computing limitation would force 

the robot to navigate at a slower than maximum speed in order to collect enough sensor 

readings [3]. Slowing down a robot in order to collect more sensor readings is an 

unacceptable compromise in most applications. Many Markov Localization Methods 

require the starting location of the robot to be known, which is impractical and at times 

impossible [5]. In a combat, covered, or previously unmapped environment the exact 

location might not be known or no time may be available to compute the exact location.  
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Position probability grids are another method used to localize and track a mobile 

robot. However, pre-analysis of the map is necessary in order to localize quickly [6]. 

The probability for each sensor reading must be stored for every position on the map 

increasing the amount of storage required to run the algorithm [6]. Since computation 

grows linearly as a function of the number of cells in the grid, another drawback of 

position probability grids is the computation time for large maps [6]. A map’s precision 

is defined by the number of pixels per area. Since precision is a desired localization 

characteristic, a large map is usually necessary and sacrificing precision is often not a 

viable option.  

 

1.2 Outline of Remaining Chapters 

The remainder of this thesis describes the implementation and testing of an improved 

Monte Carlo Localization algorithm for a ground robot. Chapter 2 describes the robot’s 

hardware and software architecture that were used to implement and test the localization 

and tracking method. Chapter 3 describes the Monte Carlo Localization algorithm. 

Chapter 4 describes the results for localizing and tracking the mobile robot indoors and 

outdoors. Finally, Chapter 5 presents the conclusions of this thesis and lists future work 

in this area of research.  

  



6 

 

Chapter 2 
 

Robot Architecture 

The mobile robot used to test the Monte Carlo Localization algorithm is the 

“Tankbot” developed by The Pennsylvania State University’s Intelligent Vehicles and 

Systems Group and modified by the Penn State Robotics Club. The hardware and 

software were designed to be easily configurable for use in research and competition. 

Figure 2.1 shows the exterior view of the robot.  

 

 

Figure 2.1: Exterior View of “Tankbot” 
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2.1 Tankbot Hardware 

The Tankbot’s hardware is divided into three main areas: the power system, the 

control hardware, and the sensors. Figure 2.2 displays a block diagram of the Tankbot’s 

setup required for testing. 
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Figure 2.2: Connectivity Diagram of the Tankbot’s Hardware 
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2.1.1 Power Hardware  

The lower bay of the robot includes the power system, remote control receiver 

and motor controller. Two 12 V, 18 Ah lead acid batteries are connected in series to 

provide 24 V to the motor controller. Similarly, another set of batteries is connected to 

provide 24 V to the sensors and auxiliary hardware. A power distribution box provides 

regulated 24 V, 12 V, and 5 V to the sensors and control equipment.  

 

2.1.2 Control Hardware 

A RoboteQ AX2850 motor controller provides up to 120 A maximum per 

channel to the drive system. The drive system consists of two 350 W motors with a 10:1 

gear reduction. Each motor individually powers its respective side’s track. The robot 

has a wheel base of 0.5 m and a drive wheel circumference of 0.4084 m. A remote 

control receiver allows the robot to operate autonomously and remotely. 

 

2.1.3 Sensor Hardware 

The Tankbot has a wide array of sensors that are used when testing the 

algorithm developed in this thesis. U.S. Digital optical wheel encoders are attached to 

each drive shaft. An Arduino microcontroller records the odometry from the wheel 

encoders. Although the wheel encoders are accurate, track slippage when driving 

straight and especially when turning can negatively affect the accuracy of the sensors.  

 

A SICK LMS-200 Light Detection and Ranging (LIDAR) sensing system 

provides the distance measurements for the Tankbot. The LIDAR has a range of 80 
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meters and operates at an 80 Hz scan rate. The LIDAR has 0.5 degrees resolution for its 

180° coverage area. Data is transferred via an RS-422 connection to a wireless router 

and then to an Ampro PC/104 board.  

 

  In order to test the accuracy of the localization and tracking algorithm, a 

GPS/IMU was used as the sensor. A NovAtel DL4plus OEM4 dual-frequency GPS 

receiver is combined with a Honeywell HG1700 military tactical-grade IMU to provide 

the true outdoor position of the robot. When utilizing the base station, the GPS receives 

position data accurate within two centimeters and bearing data accurate within 0.005 

degrees. The IMU has a drift bias of 10 degrees/hour, an acceleration bias of three milli-

g, and a sampling rate of 600 Hz. The Novatel Span system samples the system at 100 

Hz and relays the data through RS-232 to a wireless router. An Ampro PC/104 Board 

on the robot records and processes the data. 

 

2.2 Tankbot Software 

The Tankbot’s software is designed around the Player/Stage environment [8]. 

This freeware runs on Linux and provides abstraction layers for the robot’s software 

development. In this configuration, sensor code is completely separated from the 

control code. Player/Stage allows developers to easily visualize sensor data and 

simulate sensor data through artificial environments.  

 

In order to collect data to test the implementation of this thesis, Player/Stage was 

used to log and timestamp encoder, LIDAR, and GPS (position and bearing) data. The 
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readings were saved to a text file and converted to MATLAB’s *.mat file extension. 

The remaining steps to process the data and implement the Monte Carlo Localization 

are done offline in MATLAB.  
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Chapter 3 
 

Monte Carlo Localization 

This chapter describes the original Monte Carlo Localization algorithm in detail. 

The algorithm’s implementation and experimental results are also presented.  

 

3.1 Monte Carlo Localization Theory 

The Monte Carlo Localization algorithm from “Monte Carlo Localization for 

Mobile Robots” starts with a static map and N random, evenly weighted particles that 

are randomly distributed throughout the map [1]. Each particle has an X, Y and Θ 

associated with it in order to place it within the two-dimensional map.  

 

Monte Carlo Localization uses a particle filter to implement Sequential 

Importance Sampling [7]. After the initial particle placement, the algorithm loops 

through the following steps. First, th po n es nd Y are calculated by  e sitio timates X a

௣ࢄ                                                          
௞ ൌ ܺ௣

௞ିଵ ൅ ݀ܺ ൅  (3.1)                                       ݓ

where ݀ܺ is the change in the robot’s position according to the wheel encoders and ݓ is 

the Gaussian white noise variance Q. This equation is applied to both the X and Y 

components of the total displacement. Q is equal to the variance associated with the 

wheel encoders. A static model to estimate the change in displacement from the wheel 

encoders is calculated by  

ܦ݀               ൌ ஼ೢሺௗோାௗ௅ሻ
ଶ· ೃ்

                                             (3.2) 
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where ݀ܦ is the total displacement of the robot, ܥ௪ is the circumference of the drive 

wheel, ܴ݀ and ݀ܮ are the change in the encoder readings for the individual encoders, 

and ோܶ is the number of encoder ticks per wheel revolution. The model for the change in 

bearing is given by  

߆݀                  ൌ ሺௗ௅ିௗோሻ
஻ೃ· ೃ்

                           (3.3) 

where ݀߆ is the change in bearing and ܤோ is the width of the robot base. Next, the 

weights for each particle are updated by comparing the robot’s ranging information 

(SONAR or LIDAR scan) with the individual particle’s simulated ranging information 

that is calculated from the map of the environment. Particles’ ranging information that 

more closely matches the robot’s ranging information will receive more weight than 

dissimilar particles. Then, the particles are randomly resampled from the weighted set 

of particles. Resampling allows particles with higher weights to receive more particles 

to search its area. The process of updating the particle’s location and resampling is 

repeated until the robot is localized and can be continued through tracking as well. 

 

3.2 Original Monte Carlo Localization Experiment 

Monte Carlo Localization was first used to localize a robot in an indoor 

environment in 1999 [1]. The robot used a Sound Navigation and Ranging (SONAR) 

system along with odometry. This localization was successfully implemented and tested 

in an office at The University of Bonn, Germany as shown in Figure 3.1. The robot’s 

path throughout the office is displayed by a line in the figure. 
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Figure 3.1: Map of a Lab at the University of Bonn, Germany (Courtesy of “Monte 

Carlo Localization for Mobile Robots”) 

 

For this experiment, 20,000 particles were used to locate the robot within the 

office. Figure 3.2 shows the particles uniformly and randomly distributed throughout 

the map. Figure 3.3 shows the how the particles have gathered into two primary 

locations with a few minor clusters present after the algorithm has been running for 

many iterations. Finally, Figure 3.4 shows all of the particles gathered in one location, 

which is the correct location of the robot.  
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Figure 3.2: Particles Uniformly Distributed Throughout Lab (Courtesy of “Monte Carlo 

Localization for Mobile Robots”) 

 

 

Figure 3.3: Particles Begin to Cluster (Courtesy of “Monte Carlo Localization for 

Mobile Robots”) 
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Figure 3.4: Particles Properly Localize the Robot (Courtesy of “Monte Carlo 

Localization for Mobile Robots”) 

 

Figure 3.3 displays a property that will appear later in this thesis. Since the environment 

consists of uniformly spaced offices, the robot’s position is initially ambiguous due to 

the symmetry of the offices. However, as Figure 3.4 shows, after many more iterations 

through the algorithm, the particles find the robot’s location.  

 

Another experiment was performed to test the ability of the algorithm to track a 

robot once its position is known. For this experiment, a robot was remotely controlled 

throughout the Smithsonian museum [1]. 5000 samples were required to track the robot 

for 75 minutes and 2,200 meters while never losing track of the robot [1]. 
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Chapter 4 

Modified Monte Carlo Localization Implementation 

In this chapter, theory for the version of the Monte Carlo Localization algorithm 

presented in this thesis is detailed. The algorithm was first tested using a simulated 

environment. After the simulation, the algorithm was tested in an outdoor environment. 

 

4.1 Modified Monte Carlo Localization Theory 

For this thesis, the Monte Carlo Localization algorithm is implemented using 

MATLAB and is processed off-line. The algorithm follows the same motion model 

from Eqns. 3.2 and 3.3 in order to update the particles’ location. To compare the robot’s 

LIDAR scan to the simulated scans from each particle, the standard weighting function 

for a a n y str n t n u 9 :  G ussia  probabilit di ibutio  func io  was sed [ ]

௜ݍ        
௞ ିଵexp൫െ0.5 · ܴ௣

ିଵ · ൣሺܺ௔
௞ െ ܺ௣,௜

௞ ሻଶ ൅ ሺ ௔ܻ
௞ െ ௣ܻ,௜

௞ ሻଶ ൅ ሺ߆௔
௞ െ ௞߆ ሻଶ 2.4) ൌ ߟ ௣,௜ ൧൯      (

where ܴ௣ is the measurement of the noise variance on the LIDAR scan, ሺܺ௔
௞ െ ܺ௣,௜

௞ ሻ is 

the difference between the measured X component of the LIDAR scan and the ith 

particle throughout the map, and ߟ is the normalizing factor that is equal to the sum of 

weights ݍ௜
௞. In the original Monte Carlo Localization algorithm the type of comparison 

was not specified. Examples of an actual LIDAR scan and a simulated LIDAR scan 

from the map are displayed in Figures 4.1 and 4.2 below.  
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Figure 4.1: Actual LIDAR Scan (distances in meters) 

 

 

Figure 4.2: Simulated LIDAR Scan (distance in meters) 



18 

 

Eqn. 2.4 is critical to the convergence of the particles and the success of the 

algorithm. The value of ܴ௣, which is the measurement of the noise variance, directly 

affects the distribution of weight throughout all of the particles. A large ܴ௣ stretches the 

Gaussian curve horizontally, which leads to particles receiving similar weights 

regardless of their comparison with the robot’s LIDAR scan. However, a small ܴ௣value 

decreases the width of the Gaussian curve and gives particles with a close match to the 

LIDAR scan large weights while particles that do not have a close match will receive 

low or no weight. This scenario will have detrimental effects at the start of the 

algorithm when none of the particles have correctly identified the location of the robot. 

The particles will have a greater change of converging to a location that is not the 

robot’s location.  

 

Unlike the original Monte Carlo Localization algorithm, the modified version 

does not resample the particles after every iteration. Algorithm 2 from [7] describes the 

process where the particles are resampled after a set number of iterations to remove 

particles with small weights and duplicated particles with large weights. For this 

algorithm the particles were resampled after every 10 sensor readings. This value was 

determined by observing the behavior of the system during simulations. 
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The resampling steps are given below [9]: 

ܿ ൌ cu

           1

msumሺݍ௞ሻ 
           a 1ሻ · ܰିଵ  ݑଵ ൌ r ndሺ

 ݅ ൌ
                      for

 

                                                            െ 1ሻ · ܰିଵ                                (2.6) 
 ݆ ൌ 1: ܰ 
௝ݑ ൌ
w

ଵݑ  ൅ ሺ݆
௝ݑ  ൐ ܿ௜ 

                                                         ݅ ൅ 1 
hile

         ݅ ൌ
                                                        
                                                       ൌ  ܺ௣,௜

௞  
      end
ܺ௣,௝

௞

                                                       end 
 

randሺ1ሻ is a random number uniformly distributed between (0,1) and cumsumሺ) is 

defined by 

                                                               ܿ௜ ൌ ௠ݍ
௞௜

ୀଵ                                            (2.7) ∑௠

The resampling algorithm requires ܱሺܰሻ time where ܰ is the number of 

particles to resample. By not resampling the particles after every iteration, the particles 

are allowed to search for the position of the robot. When the particles are resampled 

early in the process, the particles with a higher weight are not always the correct 

particles, which could leave to an incorrect solution.  

 

One drawback of not resampling after every iteration is that the particles can 

take longer to converge to the right location. While this is a substantial concern, 

allowing the particles to search for a longer period of time provides a more robust 

solution. 
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Finally, the robot’s position and bearing are estimated at every iteration by 

choosing the position and bearing of the “best particle” or the particle with the highest 

weight. Choosing the best particle rather than the mean of the particles will provide a 

more accurate estimate for the position of the robot [9].   

 

4.2 Experimental Results 

The Modified Monte Carlo Localization algorithm was tested in two distinct 

phases. First, the algorithm was developed and tested in a simulated environment. After 

the algorithm worked in simulation, the algorithm was tested in an outdoor environment 

where a ground truth is available to test the algorithm’s accuracy. 

 

4.2.1 Simulation Testing 

Developing the algorithm in a simulated environment rather than a real one 

allowed more focus to be placed on the algorithm rather than external parameters such 

as non-ideal characteristics of sensors and environmental disturbances. The algorithm 

accurately localized a robot in two different environments.  

 

The algorithm was first tested on a model of a hallway in The Pennsylvania 

State University’s Leonhard Building. The simulated map, with randomly distributed 

and evenly weighted particles, shown in Figure 4.3. Figure 4.4 displays the particles 

converging towards the robot and Figure 4.5 shows the particles converged onto the 

robot.  
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Figure 4.3: Leonhard Hallway Map with Initial Particle Positions 
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Figure 4.4: Leonhard Hallway with Converging Particles (1) 

 

 

Figure 4.5: Leonhard Hallway with Converging Particles (2) 
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Figure 4.6: Leonhard Hallway with Converging Particles (3) 

 

 

Figure 4.7: Leonhard Hallway with Robot Localized 
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Although the particles eventually converged onto the robot’s location, the robot 

had to travel 65 m. In the next series of figures (Figures 4.8 to 4.11), an environment 

with more features than long, narrow hallways was used and the algorithm converged 

after 33.5 m, supporting the theory that the more unique of an environment in which the 

robot travels, the more likely the particles will converge onto the robot’s location.  

 

 

Figure 4.8: Detailed Map with Initial Particle Positions 
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Figure 4.9: Detailed Map with Converging Particles (1) 

 

 

Figure 4.9: Detailed Map with Converging Particles (2) 
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Figure 4.10: Detailed Map with Converging Particles (3) 

 

 

Figure 4.11: Detailed Map with Robot Localized 
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All environments will have a faster convergence if a unique area of the map is 

available. The operator or control algorithm can identify an area where the LIDAR 

scans have a wide range of values and continually circle that particular area rather than 

traversing the entire map for localization.  

 

By first programming the algorithm for a simulated environment, the effects of 

the number of particles is apparent. The number of particles has positive and adverse 

effects on the algorithm. The more particles that are used for localization, the more 

likely the particles will converge on the correct location of the robot. However, as stated 

in Section 4.1, resampling has a processing time of ܱሺܰሻ. Therefore, more particles will 

cause a linear increase in the amount of processing required by the robot. Linear growth 

is fast for a real-time algorithm and is a limiting factor for the practical implementation 

of the algorithm. 

 

Another advantage of programming a simulated environment was the ability to 

identify the proper amount of information to consider when comparing LIDAR scans. 

The simulated LIDAR, like real LIDARs, had a 180° coverage area with 0.5° 

increments between scans. The algorithm was first developed using all 361 scans. 

However, after monitoring the particle’s clustering and the speed of convergence onto 

the robot’s location, the number was reduced by an order of magnitude. Using 361 

scans caused all of the particles to have similar weights rather than better particles 

receiving significantly more weight. Limiting the number of scans to compare also 
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reduced the algorithm’s runtime since comparing the robot’s LIDAR scan to the 

particles scans is one of the most processor consuming parts of the algorithm. 

 

4.2.2 Outdoor Testing 

After successful simulation results, the algorithm was tested with data collected 

from the Tankbot. A testing area was established outside of Penn State’s Leonhard 

Building. Figure 4.12 shows the constructed area that consisted of cones, traffic barrels, 

and tables.  

 

 

Figure 4.12: Outdoor Testing Area 
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A map of this area was created using the LIDAR scans collected while testing. Figure 

4.13 shows the map generated from the GPS and LIDAR data. The objects appear larger 

than their actual size due to small amounts of error in the GPS and LIDAR readings. 

Figure 4.14 displays the map which was used to generate the particle’s LIDAR scans. 

The obstacles are located in the locations given from the actual readings however the 

sizes of the obstacles are their measured dimensions. 

 

 

Figure 4.13: Map from GPS and LIDAR Data 

 

 



30 

 

 

 

Figure 4.14: Map of Test Environment 
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Figure 4.15: Path of Robot during Testing 

 

LIDAR, GPS and wheel encoder were collected as the robot drove around the obstacles. 

Figure 4.15 shows the path of the robot. 
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Figure 4.16: Initial Particle Distribution During Outdoor Testing 

 

For the given map, 800 particles and 100 of the 361 LIDAR scans were used. A 

measurement noise value of 5000 was used to control the rate of the particle’s 

convergence. Figure 4.16 shows particles distributed throughout the map. 

 

At the start of the algorithm, every particle has a weight of 0.00125. As the 

algorithm progresses, the particles begin to converge to specific areas as shown in 

Figure 4.17 to Figure 4.19. 
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Figure 4.17: Particles Begin to Converge to Specific Areas (1) 

 

 

Figure 4.18: Particles Begin to Converge to Specific Areas (2) 
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Figure 4.19: Particles Begin to Converge to Specific Areas (3) 

 

After resampling the particles are distributed at the same location as the highly 

weighted particles. This causes fewer particles to appear in the image as seen in Figure 

4.18. Before the robot moves, the particles converge to within 1 m of the robot’s 

location as shown in Figure 4.20. The particles converge quickly because the data was 

collected at a rate of 100 Hz. 
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Figure 4.20: Particles Converge to within 1m of the Robot 

 

 

Figure 4.21: Particles Track the Robot 
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In Figure 4.21, the particles track the location of the robot within 1m.  

 

As previously mentioned the best particle and the average location of the 

particle can be used to approximate the location of the robot. Figure 4.22 and Figure 

4.23 show the localization error for the best particle and average of particles 

respectively.  

 
Figure 4.22: Estimation Error for Average Particle Localization 
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Figure 4.23: Estimation Error for Best Particle Localization 
 
 
 

Figure 4.22 shows that, by using the best particle for localization, the algorithm 

was able to localize the robot with an error of 0.63 m while in Figure 4.23 the average 

location of the particles was able to localize the robot with an error of 0.52 m as well 

since the particles converge to one location. Using the best particle achieved an error of 

less than 1 m after 10 sensor readings while using the average location of the particles 

requires twice as many sensor readings to localize the robot with an error of less than    
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1 m. The constant offset seen in Figure 4.22 is most likely due to ground truth error 

rather than an algorithm error because particles consistently cluster to the northeast of 

the robot.  

 
Although the latitudinal and longitudinal position of the robot are significant, the 

ability to match the bearing of the robot is even more important. According to Schuler’s 

Loop which is shown in Figure 4.24, position has a linear affect for localization error 

while bearing has a quadratic effect [10].  

 

 

Figure 4.24: Schuler Loop (Courtesy Of Carnegie Mellon University) 

 

Figure 4.25 shows the plot of best particle’s bearing error and Figure 4.26 shows a plot 

of the average particles’ bearing error. 
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Figure 4.25: Bearing Error for Average Particle Localization 
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Figure 4.26: Bearing Error for Best Particle Localization 
 
 

The best particle and the mean of the particles had similar bearing error ranging 

from 0° to 40° while typically remaining between 0° and 15°. The 150° increase in 

bearing error is caused by an instantly bad GPS signal for the robot’s location and not 

an abrupt change in the algorithm’s estimated bearing error.  
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Figures 4.23 through 4.26 show the particles tracking the robot for 12 m. At this 

point, the robot moves to the right of the obstacles and the LIDAR scans of the robot 

cannot be compared to the particle’s simulated LIDAR scan. As a result, the algorithm 

loses track of the robot.  
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Chapter 5 

Conclusions 

The goal of this thesis was to investigate the use of sensor fusion to accurately 

localize a robot. A modified Monte Carlo Localization algorithm was proposed as a 

means to fuse LIDAR and odometry provided by wheel encoders for localization. By 

modifying the resampling section of the Monte Carlo Localization algorithm, the 

algorithm consistently converged to the robot’s position. The algorithm’s effectiveness 

was verified through two distinct simulated environments.  

 

This thesis detailed the effect of key parameters associated with the Monte Carlo 

Localization Algorithm, the ܴ௣ value for scan comparisons, the number of LIDAR 

scans to consider, as well as the significance of the environment’s features. Finally, this 

thesis explained the use of Monte Carlo Localization in environments were a GPS 

signal is not available. A map, odometry and ranging sensors can be fused to provide 

accurate localization.  

 

5.1 Future Research 

Research in the area of robot localization is an important study and many new 

areas are available for research. First, numerous areas exist to improve the speed of the 

algorithm proposed in this thesis in order for it to operate in real-time. Generating each 

particle’s simulated LIDAR scan consumes the most time and can be improved. Second, 

instead of using wheel encoders to provide odometry, LIDAR scan matching can be 

implemented to provide more accurate odometry and eliminate an extra sensor.  
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Finally, this algorithm can be fused with a GPS and provide localization when the GPS 

system fails to provide accurate information.   
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APPENDIX 
 

Modified Monte Carlo Localization Code (Simulation) 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% TwoDParticleFilter.m 
% Requires map image to be in the directory 
% 
% Author: Zachary Correll 
%         Using Monte Carlo Methods for Robot Localization 
%         Pennsylvania State University 
%         04/16/09 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% initialize variables 
clear; close all; clc; 
  
map = 'leonhardHallway.jpg'; 
robotXPos = 16; 
robotYPos = 200; 
robotTheta = -90; 
numOfParticles = 500; 
robotSize=10; 
robotForwardMaxVel=2; 
robotLateralMaxVel=0; 
robotThetaMaxVel=4; 
R = 5*10^4; 
numOfLIDARScans = 361; 
goalreached_flag=0; 
  
goalXpos=16; 
goalYpos=300; 
  
% Read image and convert RGB image to binary image 
globalMap = imread(map); 
  
% convert map to binary grayscale 
grayGlobalMap = rgb2gray(globalMap); 
% figure() 
% imagesc(globalMap); %show map 
BINGlobalMap = grayGlobalMap<200; 
  
[numOfRows,numOfCols] = size(grayGlobalMap); 
  
% create list of valid positions for the given map 
filledGlobalMap = imfill(BINGlobalMap,'holes'); 
se = strel('disk',4); 
erodedGlobalMap = imerode(filledGlobalMap,se); 
[validYValues,validXValues] = find(erodedGlobalMap==1); 
numOfValidPixels = length(validYValues); 
  
%% create initial random particles 
% create uniformly distributed random positions (x,y) 
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particlesIndex =  floor(rand(numOfParticles,1)*numOfValidPixels)+1; 
particlePosition(:,1) = validXValues(particlesIndex); 
particlePosition(:,2) = validYValues(particlesIndex); 
  
% create uniformly distributed random orientations 
particlePosition(:,3) = floor(rand(numOfParticles,1)*360)+1; 
  
find_points=find(particlePosition(:,3)>180); 
particlePosition(:,3)=particlePosition(:,3)-180; 
  
INI_position= particlePosition; 
  
particle_valid=zeros(numOfParticles,1); 
particle_postwt=zeros(numOfParticles,1); 
max_particle_wt_thre=1; 
odomStep =1; 
iterationCount=0; 
  
%% infinite loop to continually move the particles to the correct 
location 
while (1) 
    % generate the movement of the robot 
    validPosition=0; 
    while (validPosition==0) 
         
        [THETA,RHO] = cart2pol(goalXpos-robotXPos,-(goalYpos-
robotYPos)); 
        THETA=THETA*180/pi; 
        if (abs(THETA-robotTheta)<10) 
            if (RHO > 10  )
                rand1=2; 
                rand2=2*(THETA-robotTheta)/10; 
            else 
                rand1=0; 
                rand2=0; 
                goalreached_flag=1; 
            end 
        else 
            if (RHO > 10  )
                rand1=0; 
                rand2=2*sign((THETA-robotTheta)); 
            else 
                rand1=0; 
                rand2=0; 
                goalreached_flag=1; 
            end 
        end 
         
        holdXPos=robotXPos; 
        holdYPos=robotYPos; 
        holdTheta=robotTheta; 
         
        step_size=1; 
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        for count1=1:step_size 
            
delPos(1,1)=(robotForwardMaxVel*rand1*cosd(holdTheta))/step_size; 
            delPos(1,2)=-
(robotForwardMaxVel*rand1*sind(holdTheta))/step_size; 
            delPos(1,3)=robotThetaMaxVel*rand2/step_size; 
            holdXPos=holdXPos+delPos(1,1); 
            holdYPos=holdYPos+delPos(1,2); 
            holdTheta=holdTheta+delPos(1,3); 
        end 
         
        if(erodedGlobalMap(round(holdYPos),round(holdXPos))==1) 
            validPosition=1; 
            robotXPos=holdXPos; 
            robotYPos=holdYPos; 
            robotTheta=holdTheta; 
        end 
    end 
     
    %% shift the particles according to the odometry 
    for counti=1:numOfParticles 
        validParticle = 0; 
        while (validParticle ==0) 
            delhold1 
=(robotForwardMaxVel*rand1*cosd(particlePosition(counti,3)))- 
(robotLateralMaxVel*rand2*sind(particlePosition(counti,3))); 
            delhold2 =-
(robotForwardMaxVel*rand1*sind(particlePosition(counti,3)))- 
(robotLateralMaxVel*rand2*cosd(particlePosition(counti,3))); 
             
            particlePositionHold1 
=particlePosition(counti,1)+round((0.25)*randn(1,1)+delhold1); 
            particlePositionHold2 
=particlePosition(counti,2)+round((0.25)*randn(1,1)+delhold2); 
            particlePositionHold3 
=particlePosition(counti,3)+round((1)*randn(1,1)+delPos(1,3)); 
             
             
            % check is particle is on the map 
            if 
(erodedGlobalMap(round(particlePositionHold2+1),round(particlePosition
Hold1+1))==1)%%%%% 
                particlePosition(counti,1)=particlePositionHold1; 
                particlePosition(counti,2)=particlePositionHold2; 
                particlePosition(counti,3)=particlePositionHold3; 
                if (particlePositionHold3<-180) 
                    particlePositionHold3=particlePositionHold3+360; 
                elseif (particlePositionHold3>180) 
                    particlePositionHold3=particlePositionHold3-360; 
                end 
                particle_valid(counti)=1; 
                validParticle = 1; 
            else 
                particlePosition(counti,1)= INI_position(counti,1); 
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                particlePosition(counti,2)= INI_position(counti,2); 
                particlePosition(counti,3)= INI_position(counti,3); 
                particle_valid(counti)=1; 
                validParticle = 1; 
            end 
             
        end 
    end 
     
    robotXHold=[robotXPos,robotXPos-
robotSize*cosd(robotTheta+30),robotXPos-robotSize*cosd(robotTheta-
30)]; 
    
robotYHold=[robotYPos,robotYPos+robotSize*sind(robotTheta+30),robotYPo
s+robotSize*sind(robotTheta-30)]; 
    if (iterationCount==0) 
        figure(); 
        h1=imagesc(globalMap); 
        hold on 
        % plot the current position of the robot (black arrow) 
        h2=patch(robotXHold,robotYHold,[0,0,0]); 
        % plot particle position (small red dot) 
        
h3_red=plot(particlePosition(find(particle_postwt<max_particle_wt_thre
),1),particlePosition(find(particle_postwt<max_particle_wt_thre),2),'r
.'); 
        h3_green=plot(0,0,'g.'); 
        h4_goal=plot(goalXpos,goalYpos,'bo'); 
    else 
        set(h2,'XData',robotXHold,'YData',robotYHold); 
    end 
     
    iterationCount=iterationCount+1; 
     
    if (mod(iterationCount,10)==1) 
         
        robotLidarDistance = 
showLidarScan(BINGlobalMap,robotXPos,robotYPos,robotTheta,numOfLIDARSc
ans); 
         
        %% calculate the particle's lidar scans 
        particleLidarDistance = zeros(numOfParticles,numOfLIDARScans); 
        for particleCounter = 1:numOfParticles 
            if (particle_valid(particleCounter)) 
                particleLidarDistance(particleCounter,:) = 
showLidarScan(BINGlobalMap,particlePosition(particleCounter,1)... 
                    
,particlePosition(particleCounter,2),particlePosition(particleCounter,
3),numOfLIDARScans); 
            else 
                particleLidarDistance(particleCounter,:)=0; 
            end 
        end 
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        %% compare the particle's lidar scan with the current lidar 
scan and save the weight 
        robotLidarDistance = 
ones(numOfParticles,1)*robotLidarDistance; 
        lidarDifference = (particleLidarDistance - 
robotLidarDistance); 
        sumOfLidarDifferenceSquared = sum(lidarDifference.^2,2); 
        particleWeightNum = (exp((-
1/(2*R))*sumOfLidarDifferenceSquared)); 
        particleWeightNum(find(particle_valid==0))=0; 
        particleWeight = 
particleWeightNum./(sum(sum(particleWeightNum))); 
         
         
        %% resample according to the weight of the particle 
        particleCummWeight=zeros(numOfParticles,1); 
        particleCummWeight(1)=particleWeight(1); 
        for counti=2:numOfParticles 
            particleCummWeight(counti)=particleCummWeight(counti-
1)+particleWeight(counti); 
        end 
        particleCummWeight=particleCummWeight/particleCummWeight(end); 
         
        newParticlePosition=zeros(numOfParticles,3); 
         
        for counti=1:numOfParticles 
            q=rand(1,1); 
            if ~isempty(find(particleCummWeight<q,1,'last')) 
                q1=find(particleCummWeight<q,1,'last')+1; 
            else 
                q1=1; 
            end 
            newParticlePosition(counti,:)=particlePosition(q1,:); 
            particle_postwt(counti)=particleWeight(counti); 
        end 
        particlePosition=newParticlePosition; 
         
    end 
     
    max_particle_wt_thre=0.99* max(particle_postwt); 
    %% plot robot and particle position 
    
set(h3_red,'XData',particlePosition(find(particle_postwt<max_particle_
wt_thre),1),... 
        
'YData',particlePosition(find(particle_postwt<max_particle_wt_thre),2)
); 
    
set(h3_green,'XData',particlePosition(find(particle_postwt>max_particl
e_wt_thre),1),... 
        
'YData',particlePosition(find(particle_postwt>max_particle_wt_thre),2)
); 
    drawnow; 
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    if (goalreached_flag==1) 
        [x1,y1] = ginput(1); 
        x1=round(x1); 
        y1=round(y1); 
        if (erodedGlobalMap(y1,x1)==1) 
            goalXpos=x1; 
            goalYpos=y1; 
            goalreached_flag=0; 
            set(h4_goal,'XData',goalXpos,'YData',goalYpos); 
        else 
            break; 
         end
    end 
    pause(0.01) 
end 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% showLidarScan.m 
% Requires map image to be in the directory 
% 
% Author: Zachary Correll 
%         Using Monte Carlo Methods for Robot Localization 
%         Pennsylvania State University 
%         04/16/09 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
function objectLidarDistance = 
showLidarScan(BINGlobalMap,xPos,yPos,theta,numOfLIDARScans) 
% map is the paint file xPos, yPos and theta are the input parameters 
in 
% pixels of the desired location 
% returns the lidar scan distances from 0 to 180 degrees in .5 
increments 
  
%% initialize the variables 
[numOfRows,numOfCols] = size(BINGlobalMap); 
% create variables to hold the obstacle coordinates 
lidarScanX = zeros(1,numOfLIDARScans); 
lidarScanY = zeros(1,numOfLIDARScans); 
foundObstacle = zeros(1,numOfLIDARScans); % flag variable in order to 
stop the radial search 
objectLidarDistance = 930*ones(1,numOfLIDARScans); 
  
%% find the lidar scan given given a (x,y,theta) 
for index=0:numOfLIDARScans-1 
    distance = 0; 
    xPrime = xPos; 
    yPrime = yPos; 
  
    % while an object is not found and the distance has not surpassed 
the 
    % lidar's max distance 
    while((foundObstacle(index+1)==0) && (sqrt(((xPos - xPrime).^2) + 
(yPos - yPrime).^2)<930)) % for current map 930 is 80m in pixels. 4 
pixels = 1 ft 
  
        distance = distance+0.95; %grow the radial search 
  
        % the rounding off must be done only at the end , to keep the 
whole 
        % thing as accurate as possible 
        xPrime = floor(xPos + (distance*cos((theta-
90+(floor(361*(index/numOfLIDARScans))/2))*(pi/180)))); 
        yPrime = floor(yPos - (distance*sin((theta-
90+(floor(361*(index/numOfLIDARScans))/2))*(pi/180)))); 
        % check if the lidar search is within the bounds of the matrix 
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        if(xPrime>numOfCols || xPrime<=0 || yPrime>numOfRows || 
yPrime<=0) 
            break; 
        else 
            % if object is found, raise the flag and store the object 
            % coordinates 
            if(BINGlobalMap(yPrime,xPrime)==1) 
                foundObstacle(index+1) = 1; 
                lidarScanX((numOfLIDARScans - index)) = 
distance*cos((floor(361*(index/numOfLIDARScans))/2)*pi/180); % change 
                lidarScanY((numOfLIDARScans - index)) = 
distance*sin((floor(361*(index/numOfLIDARScans))/2)*pi/180); 
                objectLidarDistance(1,index+1) = distance; 
            end 
        end 
    end 
end 
%plot the lidar scan and current particle 
%     figure() 
%     
plot(objectLidarDistance.*cosd(0:0.5:180),objectLidarDistance.*sind(0:
0.5:180),'.'); 
%     %plot(-lidarScanX(1,:).*.0762,lidarScanY(1,:).*.0762,'.'); 
%     axis([-100 100 0 1000]) 
%     %axis([-20 20 0 40]) 
%     title('Lidar view from given (x,y,theta) position'); 
%% 
return 
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Modified Monte Carlo Localization Code (Outdoor) 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% TwoDParticleFilterOutdoor.m 
% Requires map image to be in the directory 
% 
% Author: Zachary Correll 
%         Using Monte Carlo Methods for Robot Localization 
%         Pennsylvania State University 
%         04/16/09 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%% initialize variables 
clear; close all; clc; 
load('inputData.mat'  )
inputData(:,1:7)=[]; 
%profile on; 
map = 'largeObs.bmp'; 
numOfParticles = 800; 
robotSize=20; 
R = 5*10^3; 
  
%% decide the number of lidar scans you want to compare 
numOfLidarScans = 100; 
% calculate indices of robot's lidar scans to compare 
for num = 1:numOfLidarScans 
    lidarIndex(num) = floor(361/numOfLidarScans)*num; 
end 
  
%% input data the collected data 
numOfReadings = numel(inputData); 
robotXPos = inputData(379,:)'; 
robotYPos = inputData(378,:)'; 
robotTheta = inputData(380,:)'; 
delPosX = inputData(375,:)';   
delPosY = inputData(374,:)'; 
delPosTheta = inputData(376,:)'; 
robotLidarScan = inputData(2:362,:)'; 
  
%% process image 
% Read image and convert RGB image to binary image 
globalMap = imread(map); 
  
% convert map to binary grayscale 
grayGlobalMap = globalMap; 
% grayGlobalMap = rgb2gray(globalMap); 
BINGlobalMap = grayGlobalMap>100; 
[numOfRows,numOfCols] = size(grayGlobalMap); 
% create list of valid positions for the given map 
  
[validYValues,validXValues] = find(BINGlobalMap==1); 
numOfValidPixels = length(validYValues); 
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%% create initial random particles 
% create uniformly distributed random positions (x,y) 
particlesIndex =  floor(rand(numOfParticles,1)*numOfValidPixels)+1; 
particlePosition(:,1) = validXValues(particlesIndex); 
particlePosition(:,2) = validYValues(particlesIndex); 
% create uniformly distributed random orientations 
particlePosition(:,3) = floor(rand(numOfParticles,1)*360)+1; 
  
  
  
findPoints=find(particlePosition(:,3)>180); 
particlePosition(:,3)=particlePosition(:,3)-180; 
  
initialPosition= particlePosition; % save initial particle position 
for case when particles leave the map 
  
particle_valid=zeros(numOfParticles,1); 
particlePostWeight=zeros(numOfParticles,1); 
maxParticleWeightThresh=1; 
iterationCount=0; 
  
%% loop to continually move the particles to the correct location 
for index=1:1:numOfReadings 
    %% shift the particles according to the odometry 
    for counti=1:numOfParticles 
        validParticle = 0; 
        while (validParticle ==0) 
  
            delhold1 
=(inputData(375,index)*cosd(particlePosition(counti,3))); 
            delhold2 =-
(inputData(375,index)*sind(particlePosition(counti,3))); 
  
  
            particlePositionHoldX 
=particlePosition(counti,1)+round(delhold1); 
            particlePositionHoldY 
=particlePosition(counti,2)+round(delhold2); 
            particlePositionHoldTheta =particlePosition(counti,3)+ 
1*randn(1,1)+round(inputData(376,index)); 
  
            % check is particle is on the map 
            particleFlag =0; 
            yValueCheck = find(validYValues==particlePositionHoldY); 
            for counter =1:1:length(yValueCheck) 
                
if(validXValues(yValueCheck(counter,1))==particlePositionHoldX) 
                    particleFlag=1; 
                   ;  break
                end 
            end 
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            if(particleFlag==1) 
                particlePosition(counti,1)=particlePositionHoldX; 
                particlePosition(counti,2)=particlePositionHoldY; 
                particlePosition(counti,3)=particlePositionHoldTheta; 
                if (particlePositionHoldTheta<-180) 
                    
particlePositionHoldTheta=particlePositionHoldTheta+360; 
                elseif (particlePositionHoldTheta>180) 
                    
particlePositionHoldTheta=particlePositionHoldTheta-360; 
                end 
                particle_valid(counti)=1; 
                validParticle = 1; 
            else %if particle is off of the map replace it to its 
initial position 
                particlePosition(counti,1)= initialPosition(counti,1); 
                particlePosition(counti,2)= initialPosition(counti,2); 
                particlePosition(counti,3)= initialPosition(counti,3); 
                particle_valid(counti)=1; 
                validParticle = 1; 
            end 
        end 
    end 
  
    robotXHold=[round(robotXPos(index,1)),... 
        round(robotXPos(index,1))-
robotSize*cosd(round(robotTheta(index,1))+30),... 
        round(robotXPos(index,1))-
robotSize*cosd(round(robotTheta(index,1))-30)]; 
    robotYHold=[round(robotYPos(index,1)),... 
        
round(robotYPos(index,1))+robotSize*sind(round(robotTheta(index,1))+30
),... 
        
round(robotYPos(index,1))+robotSize*sind(round(robotTheta(index,1))-
30)]; 
    if (iterationCount==0) 
        figure(); 
        h1=imagesc(globalMap); 
        colormap(gray); 
        hold on 
        % plot the current position of the robot (black arrow) 
        h2=patch(robotXHold,robotYHold,[0,0,1]); 
        % plot particle position (small red dot) 
        
h3_red=plot(particlePosition(find(particlePostWeight<maxParticleWeight
Thresh),1),particlePosition(find(particlePostWeight<maxParticleWeightT
hresh),2),'r.'); 
        h3_green=plot(0,0,'g.'); 
    else 
        set(h2,'XData',robotXHold,'YData',robotYHold); 
    end 
  
    iterationCount=iterationCount+1; 
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    %% resample the particles every 10 iterations 
    if (mod(iterationCount,10)==9) 
        robotLidarDistance = robotLidarScan(index,lidarIndex); 
        % calculate the particle's lidar scans 
        particleLidarDistance = 
81.91*ones(numOfParticles,numOfLidarScans); 
        for particleCounter=1:numOfParticles 
            if (particle_valid(particleCounter)) 
                particleLidarDistance(particleCounter,:) = 
showLidarScan(BINGlobalMap,particlePosition(particleCounter,1)... 
                    
,particlePosition(particleCounter,2),particlePosition(particleCounter,
3),numOfLidarScans); 
            else 
                particleLidarDistance(particleCounter,:)=0; 
            end 
        end 
  
        %% compare the particle's lidar scan with the current lidar 
scan and save the weight 
  
        robotLidarDistance = 
ones(numOfParticles,1)*robotLidarDistance; 
        lidarDifference = (particleLidarDistance - 
robotLidarDistance); 
        sumOfLidarDifferenceSquared = sum(lidarDifference.^2,2); 
        particleWeightNum = (exp((-
1/(2*R))*sumOfLidarDifferenceSquared)); 
        particleWeightNum(find(particle_valid==0))=0; 
        particleWeight = 
particleWeightNum./(sum(sum(particleWeightNum))); 
  
        %% resample according to the weight of the particle 
        particleCummWeight=zeros(numOfParticles,1); 
        particleCummWeight(1)=particleWeight(1); 
        for counti=2:numOfParticles 
            particleCummWeight(counti)=particleCummWeight(counti-
1)+particleWeight(counti); 
        end 
        particleCummWeight=particleCummWeight/particleCummWeight(end); 
  
        newParticlePosition=zeros(numOfParticles,3); 
  
        for counti=1:numOfParticles 
            q=rand(1,1); 
            if ~isempty(find(particleCummWeight<q,1,'last')) 
                q1=find(particleCummWeight<q,1,'last')+1; 
            else 
                q1=1; 
            end 
            newParticlePosition(counti,:)=particlePosition(q1,:); 
            particlePostWeight(counti)=particleWeight(counti); 
        end 
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        particlePosition=newParticlePosition; 
    end 
    if(iterationCount>9) 
        maxParticleWeightThresh=0.99* max(particlePostWeight); 
        maxWeightIndex = find(particleWeight ==max(particleWeight)); 
        bestParticleWeightError(1,iterationCount-9) = 
sqrt((particlePosition(maxWeightIndex(1),1)-robotXPos(index,1)).^2 ... 
            +(particlePosition(maxWeightIndex(1),2)-
robotYPos(index,1)).^2)/40.7; 
        meanXEstimate = mean(particlePosition(:,1)); 
        meanYEstimate = mean(particlePosition(:,2)); 
        meanParticleWeightError(1,iterationCount-9) = 
sqrt((meanXEstimate-robotXPos(index,1)).^2 ... 
            +(meanYEstimate-robotYPos(index,1)).^2 )/40.7; 
%         
set(h4_blue,'XData',particlePosition(maxWeightIndex,1),'YData',particl
ePosition(maxWeightIndex,2)); 
%         set(h5_yellow,'XData',meanXEstimate,'YData',meanYEstimate); 
        drawnow; 
  
    end 
    %% plot particle position 
    
set(h3_red,'XData',particlePosition(find(particlePostWeight<maxParticl
eWeightThresh),1),... 
        
'YData',particlePosition(find(particlePostWeight<maxParticleWeightThre
sh),2)); 
    
set(h3_green,'XData',particlePosition(find(particlePostWeight>maxParti
cleWeightThresh),1),... 
        
'YData',particlePosition(find(particlePostWeight>maxParticleWeightThre
sh),2)); 
    drawnow; 
    pause(0.01) 
end 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% showLidarScan.m 
% Requires map image to be in the directory 
% 
% Author: Zachary Correll 
%         Using Monte Carlo Methods for Robot Localization 
%         Pennsylvania State University 
%         04/16/09 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
function objectLidarDistance = 
showLidarScan(BINGlobalMap,xPos,yPos,theta,numOfLIDARScans) 
% map is the paint file xPos, yPos and theta are the input parameters 
in 
% pixels of the desired location 
% returns the lidar scan distances from 0 to 180 degrees in .5 
increments 
  
%% initialize the variables 
[numOfRows,numOfCols] = size(BINGlobalMap); 
% create variables to hold the obstacle coordinates 
lidarScanX = zeros(1,numOfLIDARScans); 
lidarScanY = zeros(1,numOfLIDARScans); 
foundObstacle = zeros(1,numOfLIDARScans); % flag variable in order to 
stop the radial search 
objectLidarDistance = 81.91*ones(1,numOfLIDARScans); 
  
%% find the lidar scan given given a (x,y,theta) 
for index=0:numOfLIDARScans-1 
    distance = 0; 
    xPrime = xPos; 
    yPrime = yPos; 
  
    % while an object is not found and the distance has not surpassed 
the 
    % lidar's max distance 
    while((foundObstacle(index+1)==0) && (sqrt(((xPos - xPrime).^2) + 
(yPos - yPrime).^2)<1000)) % the max distance from one corner of the 
map to the other 
        distance = distance+0.95; %grow the radial search 
  
        xPrime = floor(xPos + (distance*cos((theta-
90+(floor(361*(index/numOfLIDARScans))/2))*(pi/180)))); 
        yPrime = floor(yPos - (distance*sin((theta-
90+(floor(361*(index/numOfLIDARScans))/2))*(pi/180)))); 
        % check if the lidar search is within the bounds of the matrix 
        if(xPrime>numOfCols || xPrime<=0 || yPrime>numOfRows || 
yPrime<=0) 
            %%if (filledGlobalMap(yPrime,xPrime)==0) 
            break; 
        else 
            % if object is found, raise the flag and store the object 
            % coordinates 
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            if(BINGlobalMap(yPrime,xPrime)==0) 
                foundObstacle(index+1) = 1; 
                lidarScanX((numOfLIDARScans - index)) = 
distance*cos((floor(361*(index/numOfLIDARScans))/2)*pi/180); 
                lidarScanY((numOfLIDARScans - index)) = 
distance*sin((floor(361*(index/numOfLIDARScans))/2)*pi/180); 
                objectLidarDistance(1,index+1) = distance./40.7; % 
convert back to meters for comparison 
            end 
        end 
    end 
end 
%plot the lidar scan and current particle 
%     figure() 
%     
plot(objectLidarDistance.*cosd(0:0.5:180),objectLidarDistance.*sind(0:
0.5:180),'.'); 
%     %plot(-lidarScanX(1,:).*.0762,lidarScanY(1,:).*.0762,'.'); 
%     axis([-100 100 0 1000]) 
%     %axis([-20 20 0 40]) 
%     title('Lidar view from given (x,y,theta) position'); 
%% 
return 
 

 
  



60 

 

 
Academic Vita 

 
 
Name:  Zachary Correll 
 
Education:  The Pennsylvania State University 
 The Schreyer Honors College  
 Bachelor of Science in Electrical Engineering, May 2009  

Interdisciplinary Honors in Electrical Engineering and 
Mechanical Engineering  
 

Thesis Title: Using Monte Carlo Methods for Robot Localization 
 
Thesis Supervisors: Dr. Sean Brennan, Assistant Professor of Mechanical and 

Nuclear Engineering 
 
 Dr. Karl Reichard, Assistant Professor of Acoustics 
 Research Associate, Applied Research Laboratory 
 
Awards: Boeing Scholarship (2007 - 2009) 

Robert W Gocher Memorial Scholarship (2006 - 2009) 
 Kruest Electrical Engineering Scholarship (2007, 2008) 

Lee Hai-Sup Electrical Engineering Scholarship (2008, 2009) 
 Lockheed Martin Lockheed Corporate Scholarship (2007, 2008)  

William and Ethel Madden Honors Scholarship (2007-2009)  
 Shuman and Elizabeth Moore Scholarship (2007 - 2009) 
 President’s Freshman Award 



 

 

 


