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Abstract

This dissertation describes the development of vehicle state estimation methods using
low-cost sensors, their implementation, and comparison with highly accurate vehicle
state estimators available today. This research was motivated by the problem of navi-
gating a vehicle on a highway, where it is desirable to closely measure the vehicle’s state
(absolute position and orientation, rotation rates etc.) to achieve electronic stability
control, collision avoidance, driver alert systems for lane departure and ultimately au-
tonomous navigation. The focus in this thesis is to develop low-cost methods for vehicle
localization. Low-cost Commercial Off-the-Shelf (COTS) sensor systems have been used
to this effect.

A framework is developed to combine measurements from Global Positioning System
(GPS) and Inertial Measurement Unit (IMU). Performance of a low-cost GPS receiver
operating in autonomous mode integrated with a MEMS based low-cost IMU is investi-
gated. The error sources in GPS and INS systems are characterized to choose suitable
stochastic models for the error sources and to identify parameters for these models. Ve-
hicle velocity vector is used to improve the yaw angle estimate under low yaw angle
observability conditions.

To obtain an independent direct measurement of the vehicle orientation, a novel
method based on terrain-aided vision is developed. This method is based on matching
images captured from an on-vehicle camera to a rendered representation of the sur-
rounding terrain obtained from an on-board map database. United States Geographical
Survey Digital Elevation Maps (DEMs) were used to create a 3D topology map of the
geography surrounding the vehicle. The horizon lines seen in the captured video from
the vehicle are compared to the horizon lines obtained from the rendered geography,
allowing absolute comparisons between rendered and actual scene in roll, pitch and yaw.

Work on terrain-aided vision based orientation estimation has been extended to use
near field features like road signs and road markers. Near field features allow the measure-
ment of vehicle position in addition to vehicle orientation. A map-aided vision algorithm
is presented which registers features in the rendered images with features in real images
using gradient-based minimization of sum of squared intensities. To improve the con-
vergence properties as well as convergence time of the vision algorithm, an IMU is used
to predict the location and possible variability of features in the rendered representation
defining a Region-Of-Interest (ROI).
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A Kalman filter framework is used to fuse the measurements from an IMU and
each of the position and orientation estimation methods mentioned above. Numerical
simulations are done in each case to verify the correctness of the formulation. Finally,
experiments are performed at the Pennsylvania Transportation Institute (PTI) test track
facility to test the performance of each method against a highly accurate GPS/IMU
system.
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Chapter1

Introduction

This thesis describes the development of vehicle state estimation methods, their imple-

mentation and comparison with exemplary vehicle state estimators found in literature.

This research was motivated by the problem of navigating a vehicle on a highway, where

it is desirable to measure the vehicle’s absolute position and orientation closely. The

position measurement is desirable to achieve collision avoidance, driver alert systems for

lane departure, and ultimately autonomous navigation. The orientation and orientation

rates are useful to detect vehicle instability. The key states affecting stability - and hence

safety - are roll angle and sideslip. Both of these states require the measurement of very

small orientation angles.

Different localization sensors have their own strengths and weaknesses. Depending

on the conditions of use, the measurements given by these sensors vary in quality e.g.

availability of satellites for GPS and visibility conditions for vision based sensors. As

a result, there is a need to integrate various vehicle localization sensors to get better

performance in state estimation. Some of the goals of this thesis are as follows.

• To develop vehicle state estimation methods using various localization sensors in-



2

cluding Global Positioning System (GPS), Inertial Measurement Unit (IMU) and

vision. A 3-D representation of the features in the environment surrounding the

vehicle is also used to help in vehicle state estimation.

• To develop efficient algorithms for these estimation methods.

• To experimentally validate the estimates against high accuracy vehicle state esti-

mators currently available.

1.1 Motivation

Vehicle state estimation is an important area of vehicle dynamics which finds applications

in vehicle chassis stability control, autonomous navigation and fault detection [91, 6, 31,

99]. Vehicle stability control requires accurate estimates of vehicle states (e.g. sideslip,

yaw rate, roll rate, roll angle etc.) at high update rates so that appropriate control action

can be taken at an early stage of instability. Autonomous navigation requires estimates of

vehicle position and attitude with respect to a fixed coordinate system. Vehicle position

and attitude determination methods face challenges in dealing with high-degrees of sensor

uncertainty, in the interpretation of terrain and environment observations and to make

optimal localization estimates from ambiguous sensor data. Finally fault detection and

isolation requires redundancy in the vehicle state estimation. The use of model-based

estimators is necessary to achieve analytical redundancy, whereas hardware redundancy

can be achieved by using multiple sensors to measure the same state.

Various sensors available for vehicle state estimation include inertial sensors, odo-

metric sensors, Global Positioning System (GPS), vision and terrain sensors. If the
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driver’s inputs are measured, the vehicle model can also serve as an additional source

of state estimates. Each of these sensors have their advantages and disadvantages. If

the information from each of these sensors is combined using an estimator based on a

particular criteria (e.g. minimum least squares error), better estimates of vehicle states

can be obtained. When there are redundant or distributed sensors, measurements from

these sensors can be fused together to give an optimal estimate of vehicle states. In ad-

dition, redundant information can be used by an algorithm to achieve safe and graceful

degradation of performance when there are temporary or permanent errors in some of

the vehicle sensors.

GPS Satellites

Road FeaturesRoad Signs

Road Markers

Horizon

Road Signs

Figure 1.1. Vehicle Localization Along a Highway

This dissertation describes the development of localization techniques for a vehi-

cle going along a highway using measurements from low-cost MEMS IMU, GPS and

a monocular camera along with a map of visual features along the highway e.g. road
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features such as road-markers, road-signs etc. and terrain features e.g. the horizon as

shown in figure 1.1.

1.2 Localization Methods

Vehicle state estimation techniques in unstructured outdoor environments can be broadly

classified as shown in Figure 1.2. The figure shows the advantages and disadvantages of

each sensor type as well as the most popular sensors of that type.

Expectation Maps

Good:

Absolute

Bad:
Data Intensive 
     Storage/Retrieval
Data Accuracy

Examples:

Terrain Maps
Road Markers

Inertial Sensors

Good:
High Data Rate
Situation Independent

Bad:
Drift

Examples:

Rate Gyros
Accelerometers

Good:

Bad:

Examples:

External References

Absolute

Limited Availability
Low Bandwidth

GPS
Vision
Sonar
Radar

Figure 1.2. Vehicle State Estimation Methods

A brief description of each of these along with the advantages and disadvantages of

using these sensors follows.
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1.2.1 Inertial Sensors

Inertial sensors are commonly used in vehicle localization and vehicle stability control

applications [9, 13, 61, 84]. These are passive sensors which do not rely on any external

information to provide vehicle body rates. These sensors provide high data rates needed

for vehicle stability control and autonomous navigation applications and are indepen-

dent of outside vehicle situations. However, these inertial sensors do not directly detect

position and orientation, but rather estimate these from rate information integrated over

time. Because all signals have error, integration of any signal introduces drifts that grow

unless external measurements of position and orientation, or assumptions about vehicle

behavior, are applied.

1.2.2 Global Positioning System

GPS has become an indispensable aid in outdoor vehicle localization over the past few

years. After “Selective Availability” was discontinued in 2000, a single GPS receiver

became able to give a position accuracy of around 10m (rms) or better [77]. Methods

have been devised to augment the standard GPS receiver to achieve greater accuracy

e.g. supplying the receiver with differential corrections from a base station (Differential

GPS) or by using Carrier-Phase Enhancement of GPS (real-time kinematic GPS (RTK)).

Accuracies of 0.5m (Differential GPS) and 2cm (Real-Time Kinematic GPS) can be

achieved using these methods. Update rates of 10-20 Hz can be obtained by using

advanced GPS receivers. However, GPS systems can fail in locations where vehicles

commonly drive, namely urban canyons, actual canyons, or forested road areas due to

loss of line-of-sight to the satellites or due to multi-path errors.
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1.2.3 Terrain-Aided Localization Sensors

If a pre-stored database of the terrain features is available, observed terrain features

can be compared with the features in the stored database to localize the vehicle. This

technique is called terrain-aided localization [71].

Among sensors needed to observe terrain features, vision systems are an excellent

choice. The most obvious benefit is that visibility of key features within the surrounding

scene can be assumed as a precondition for driving. Vision sensors readily identify

features that impose stark geometric constraints on a world model, for example horizons,

road edges and markers, buildings, etc. and many of these features are intentionally

placed for driving localization, e.g. lane markers. Vision sensors have improved in

terms of quality and data rate of the video stream and are more affordable today than

ever before. Development in the field of computer vision has recently made tremendous

improvements in faster image processing techniques and efficient algorithms. These

improvements, when combined with the readily available processing power of modern

computers, can now allow more information to be extracted from the vision stream at

much higher rates compared to what was possible before. Finally, vision systems are

finding increasing use in many production vehicles for lane detection or backup visibility

assistance.

Terrain feature information and the technology needed to manage it is more available

today than ever before. In the past decade, detailed terrain data has become publicly

available in the form of Digital Elevation Models (DEM), topographical maps and 3D

models of the cities, for example see the works of [30, 40] and those available from the
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USGS website [20]. Edwards et al. [18] describe the generation of a high resolution, high

accuracy, experimental digital terrain analysis data of a 12 km2 test site for autonomous

ground vehicle navigation. Technology for storing and retrieving such information is

also undergoing revolutionary advances, motivated especially by portable and/or in-

vehicle navigation aids, advanced 3D gaming, and high-speed retrieval and visualization

of map databases e.g. Google Earth, Microsoft’s Virtual Earth, TerraServer, NASA’s

WorldWind, etc.

Laser range finders have also been used extensively for robot localization in struc-

tured indoor environments where the map of the environment is supplied to the robot

[108, 23, 68]. In outdoor environments, laser range finders find application in road

feature detection (markers, lane, edge etc.), and obstacle detection and avoidance for

autonomous navigation purposes [97, 55, 110]. The extracted road features along with

a stored database of road features can be used for vehicle localization [57]. With the

advancement of technology, laser range finders have reduced in size, consume less power,

have high bandwidth, give better accuracy, and a longer range. This trend combined

with the ability of modern day computers to process the large amount of data from range

sensors in real-time, make these sensors an attractive choice as terrain sensors.

The downside of terrain sensors is that they assume that an accurate representation

of the surrounding terrain is available. The accuracy of the terrain representation has a

direct bearing on the estimates obtained by terrain aided localization. Also the visibility

of terrain features is a requirement. Obstacles or occlusions in the path of these sensors

can cause the estimator to lose track of vehicle location and orientation if redundant

sensors are not available.
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1.3 Sensor Fusion

Each localization sensor by itself suffers severe shortcomings, but when two or more

sensors are used in coordination, outstanding results can be obtained [72]. For example,

GPS when integrated with inertial sensors compensates for the slow data rate of the

GPS (20 Hz), resulting in an excellent state estimator. Not only does GPS provide an

accurate initial estimate for inertial estimation, but also corrects the inertial estimate

periodically to remove the integration error and error due to gyro misalignment and

biases [39],[96].

Commercial systems combining GPS/DGPS with tactical grade IMUs are widely

available today [26, 104]. Tactical-grade IMUs have gyroscopes with bias of the order

of 1 deg
hour and accelerometers with bias of the order of 1 mg. Gyros of this quality can

sense the earth’s rotation rate which makes the initial alignment of INS possible. In

case of a GPS outage, the INS-only localization estimate can navigate the vehicle for

short periods of time of the order of minutes although the error increases over time [26].

Position accuracy of 2 m for single-point GPS and 1 cm for Real-time Kinematic GPS

and orientation accuracy of the order of 0.01 degrees have been reported [26]. The cost

of a typical tactical-grade IMU is $10,000-$20,000 which makes them unsuitable for use

in commercial vehicle applications.

There are different architectures to fuse GPS and INS measurements based on the

amount of information sharing between GPS and IMU estimator loops. Loose coupling is

the simplest of these architectures where navigation solution is generated independently

by the GPS and the INS. These independent navigation solutions are subsequently com-
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bined to generate a filtered GPS/inertial solution. Kalman filters integrating the GPS

and INS at the measurement level (pseudorange and Doppler measurements) have been

recently shown to result in significant performance improvements [44, 56] in environ-

ments where the satellite visibility is low e.g. urban canyons. Another approach using

ultra-tight coupling between the GPS and the INS, where the inertial measurements are

used to help the GPS tracking loops, has anti-jamming capability and is robust against

high dynamic motion [12, 82, 52, 54].

As observed by [46, 87, 38], for a navigation system with a low-grade IMU and an

single antenna GPS system, the time-invariant error dynamics model of the INS has

seven unobservable modes; attitude, IMU to GPS antenna lever arm, and component

of the gyro bias in the direction of the specific force. As the gyro bias is unobservable,

the error in the yaw angle estimate can increase with time in the absence of vehicle

accelerations. All the above mentioned unobservable modes can be made observable by

maneuvering the vehicle through a series of accelerations and rotations.

Because observability is an issue in a navigation system using a low-grade IMU and a

single antenna GPS system, techniques to directly measure roll, pitch and yaw angles of

the vehicle have been developed using GPS measurements [65, 42, 7]. Differential Carrier

Phase (DCP) measurements from multiple GPS antennas can be used to calculate the

baseline vectors between antennas, which in turn are used to calculate the roll, pitch

and yaw angles of the vehicle. Sub-degree accuracy in measuring roll, pitch and yaw

have been reported in literature using this technique [65, 42]. This technique is very

useful in providing high accuracy measurements of roll, pitch, and yaw, and hence it

makes all the states of the navigation system observable under any static or dynamic
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condition. On the other hand, it suffers from the same disadvantages as GPS, that of

the requirement of the line of sight to at least four satellites, accuracy dependence on

satellite geometry, multi-path errors as well as susceptibility to jamming [109]. Also,

commercial Attitude and Heading Reference Systems (AHRS) based on multiple GPS

antennas and receivers are quite expensive: the approximate cost of a Novatel AHRS is

around $20,000 to $30,000.

Another common two-sensor integration method uses terrain sensors combined with

inertial sensors [89, 31, 45]. Examples of terrain sensors include vision sensors, laser

range finders, radars, sonar and infrared sensors. Vision and inertial sensors naturally

complement each other. In addition to providing redundancy, each of these sensors

can be used to resolve the uncertainties arising from using the other sensor alone. For

instance, image measurements giving absolute position and orientation can nullify the

error that accumulates when integrating inertial readings, and thus this can be used to

detect misalignment and estimate biases in inertial sensors. On the other hand, inertial

data can resolve the uncertainty in motion estimated by camera, for example one that

sees a degenerate scene such as one containing very few features. Laser range sensors or

radar can also be combined with inertial sensors in a similar way.

Most localization algorithms have a structure as shown in Figure 1.3. Measurements

from inertial sensors are integrated to get estimates of position, velocity and attitude of

the vehicle. These estimates are also supplied to an estimation algorithm, which also

takes measurements from a set of external sensors as input. The estimation algorithm

generates a set of corrections and feeds them back to the inertial sensors. The output of

the inertial sensors is thus adjusted to reflect information obtained from external sensors



11

thus achieving sensor fusion.

Inertial

Sensors

Estimation

Algorithm

External

Sensor

Measurements

Location and

Attitude Estimates

Sensor

Corrections

Figure 1.3. Structure of Localization Algorithms

Kalman Filtering is a popular method used in sensor fusion applications because its

formulation makes it easily adaptable for sensor fusion. The Kalman filter combines the

sensor measurements in such a fashion as to give an optimal estimate in the least squares

sense. This combination brings out the advantages of all the sensors.

1.4 Outline of the Remaining Chapters

The remaining chapters of this dissertation are organized as follows:

Chapter 2: Related Work gives a brief review of methods of vehicle state estimation

as well as methods used for sensor fusion in vehicle state estimation.

Chapter 3: Vehicle Localization Using GPS and IMU describes the basics of

GPS and INS systems and develops a framework to fuse the measurements from these

systems.

Chapter 4: Orientation Estimation Using Vision and Inertial Sensors describes
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a novel method for estimating vehicle roll, pitch and yaw using machine vision and inertial

sensors employing a rendered representation of the surrounding terrain.

Chapter 5: Position and Orientation Estimation Using Near-Field Features

extends the work done in chapter 4 to include near-field features for estimating vehicle

position in addition to vehicle orientation.

Chapter 6: Conclusions summarize the results of this thesis and discusses possible

future research directions.



Chapter2

Literature Review

In this chapter, the literature on vehicle localization using GPS and map-aided vision

is presented. Algorithms commonly used for sensor fusion are also listed with a brief

discussion of their strengths and weaknesses.

2.1 GPS/INS

GPS has revolutionized outdoor localization in many different domains. GPS-aided In-

ertial Navigation Systems (INS) are widely used in commercial and military applications

[50, 112, 25, 11]. They also find application in autonomous land vehicle systems to

increase the integrity of their navigation systems [90, 101, 96, 22].

To harness the benefits of GPS/IMU combinations in commercial vehicles, much at-

tention has been focussed in the last decade on improving the performance of Micro

Electro-Mechanical Systems (MEMS) based automotive-grade IMUs with cost ranging

from $100 to $1000. Noise levels of automotive-grade IMUs are very high which degrades

the performance of GPS/IMU combinations. Along with the effort of the MEMS commu-
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nity to develop technologies which better the performance of gyros and accelerometers,

a lot of research has been done to find better algorithms to fuse GPS and IMU mea-

surements. For example, inertial sensor errors have been characterized using stochastic

methods [1, 48, 79]. Inertial sensor error states are modeled and estimated along with

position, velocity and orientation states of the vehicle which results in better state esti-

mates as well as less error accumulation during GPS outages [32, 78].

Much work in the recent past has focussed on integrating MEMS based IMUs with

accurate GPS systems (DGPS,RTK). For example, Salychev et al. [93] use Ashtech’s

GG24 GPS/GLONASS DGPS system with MotionPakTM IMU (cost ≈ $8000) to assess

the feasibility of the system for navigational purposes. Mathur et al. [74] also do a

similar feasibility study using the same set of IMU and DGPS. Novatel corporation has

developed a MEMS IMU based navigation system using BAE sytems SiIMU01 IMU and

Novatel OEM4-G2 GPS receiver running in RTK mode which is described in [24]. Cross-

bow MEMS IMU (AHRS-DMU-HDX) has been used with carrier phase DGPS (Ashtech

Z-XII) for a marine application by Hide et al. in [44]. This IMU costs around $4000.

Brown et al. and Godha et al. [10, 36] use MEMS based Crista IMU (cost ≈ $2000)

along with Novatel OEM4 DGPS system for vehicle navigation. All the above men-

tioned studies, although providing promising results, use an IMU which is prohibitively

expensive (cost $2000 upwards) for automotive applications. Also, these studies assume

that corrections from a base station are available for implementing DGPS. Although

Wide Area Augmentation System (WAAS) corrections are widely available throughout

U.S., the accuracy achieved using WAAS corrections is much lower than RTK or DGPS

corrections [77].
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GPS/IMU combinations have been used in vehicle dynamics studies where the aim

is to study the variation with time of vehicle rotation rates, orientation, lateral velocity

and side slip [6, 91]. Bevly [6] presents a method to measure transient changes in vehicle

sideslip, roll and pitch angles using an automotive grade IMU and inexpensive single

antenna GPS receiver. Simplifications have been made to INS mechanization equations

and assumptions about the frequency content of the signals being estimated are used.

Experimental results have been presented, although no measure of accuracy of the pre-

sented techniques has been given e.g. by comparison with a navigation-grade IMU. Ryu

et al. [91] use a two antenna GPS receiver to estimate planar vehicle states, e.g. lateral

velocity and yaw rate, corrected for vehicle roll and road grade. Parameters related

to vehicle roll dynamics have also been estimated using GPS and INS measurements.

As the vehicle roll and yaw are directly measured using a two antenna GPS system,

simplifications similar to [6] have been used in the INS mechanization.

From the above discussion, it follows that the performance of a low-cost GPS receiver

operating in autonomous mode along with a low-cost MEMS IMU needs to be investi-

gated. This dissertation seeks to achieve good localization performance using low-cost

GPS/IMU combinations by accurately characterizing the error sources present in these

sensors. In addition to providing a measure of the performance of low-cost GPS/IMU

combinations, this investigation builds a platform for the fusion of vision and inertial

measurements used later in this dissertation.
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2.2 Map-Aided Localization Using Vision

There is also a large body of research fusing vision and map data for vehicle or robot

localization. With the public availability of United States Geographical Survey data,

other approaches have used databases of stored DTMs and DEMs to aid in vehicle

localization [105, 62, 89, 31, 45]. For example, Talluri and Aggarwal [105] take different

views of the horizon and use them to search the underlying map for possible robot

locations. Several of these horizon views are used to constrain the possible robot locations

to a small area. They show robot localization results on simulated data based on a DEM.

As another example, in Lerner et al. [62] the pose of the camera at two consecutive frames

is derived using a DTM and the corresponding features in two frames. Each hypothesized

pose of the camera gives an estimate of the depth of the features that are visible. The

authors present a ray-tracing algorithm for finding the best pose of the camera at two

frames which leads to displacement of the features as close as possible to the given two

frames. Although novel, this algorithm is computationally expensive and results are

presented for only position and yaw estimates. No experimental results are shown for

roll, pitch and height. Rodriguez and Aggarwal [89] present a map-based algorithm for

passive aircraft navigation system. Stereo analysis is performed on successive images

to recover an elevation map which is matched to the reference digital map of the 3-D

terrain to determine the position and heading of the aircraft. In Furst and Dickmanns

[31], vision data is used along with a model of key landmarks (e.g. runway, buildings etc.

around the airport) to aid in the positioning of the aircraft. GPS and inertial sensors

are coordinated with vision to improve position and orientation estimates in aircraft
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navigation.

In many applications, knowledge of surrounding terrain is not known a-priori, so the

goal is to build a map of the environment while simultaneously localizing the vehicle

within the map, a process called Simultaneous Localization and Mapping (SLAM) [29,

14, 41]. Hoffman [45] present a SLAM based technique where semi-sparse terrain maps

are generated and matched to get a vision-based state estimate. This estimate is then

fused with wheel odometry using a Kalman filter to further improve the state estimate.

Because the algorithm iteratively minimizes the total distance between point clouds at

two frames, it is computationally quite expensive. Further, the accuracy of the system

is limited because its a SLAM-based technique and there is no absolute terrain model

available.

Terrain-matching localization similar to the work in this dissertation has been studied

in the area of underwater vehicle localization, where x, y position and yaw orientation

of the underwater vehicle are estimated by using a reference map. This reference map

is either a map generated using multi-beam echo sounder as in the work of Lucido et al.

[67], or from a DEM as in the work of Strauss et al. [99]. Lucido et al. [67] use a matching

algorithm which locates the local depth map within the a priori larger map to determine

absolute position and orientation of the underwater vehicle. They use high curvature

points in reference and local maps to match the two depth profiles. The algorithm they

present assumes that pitch and roll angles are known to sufficient precision. Strauss

et al. [99] also make that assumption while matching underwater terrain profiles using

sonar and a DEM. Vision has been used by Marks et al. [73] to determine the position

of an underwater vehicle. Texture correlation and distance to a planar surface, obtained
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using a sonar proximity sensor, have been used to find position offsets with respect to

a reference image. Visual mosaics of areas of ocean floor are generated by Richmond et

al. [88] using vision and inertial sensors. In the work by Zhang et al. [116], a proof-

of-concept simulation study is presented, where x,y position and yaw orientation of an

underwater autonomous vehicle is estimated by fusing simulated measurements from

inertial sensors and terrain matching.

It is possible to localize a vehicle without a database by fusing inertial and vision

sensors, and there still remains a large body of research in this area [115, 86, 100,

49, 15]. Strelow and Singh [100] give an excellent review of vehicle state estimation

from image and inertial measurements. Two algorithms (one batch and one recursive)

are presented to combine vision and inertial measurements. The algorithms estimate 6

degree of freedom vehicle position, gyro and accelerometer biases and the gravity vector

with respect to the world coordinate system. Sparse scene structure is also estimated

where there is a provision to add/remove image features as they become visible/invisible

from the image sequence. But both batch and recursive methods are susceptible to gross

feature tracking errors despite the fusion of both image and inertial sensors. None of the

sensors used gives an absolute estimate, so a drift in the resulting estimate is possible

over time.

Langelaan et al. [60, 58, 59] present a Unscented Kalman filter (UKF) based state es-

timator for a UAV flying through a cluttered environment (dense forest) using monocular

camera and inertial measurements. A proof-of-concept study is given for the autonomous

navigation of the UAV through a forest while estimating the position, orientation and

velocity of the UAV as well as positions of landmarks in the environment. An exper-
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imental study with a ground vehicle is also presented to prove the performance of the

estimator. The results from this study, although promising, will accumulate correlated

errors over large distances due to drift like most of the SLAM applications.

A method is presented in [34] which constrains the inertial sensor drift by tracking

unknown features in the environment using a camera during GPS outages. A tightly

coupled GPS/INS configuration is used to take advantage of low satellite visibility. A

corner detector is used to extract features from images and a joint compatibility data

association algorithm using Mahalanobis distance between the features is used for data

association between successive image frames. Although the algorithm is shown to suc-

cessfully contain the inertial sensor drift, the accuracy of the vision/inertial system in

the absence of GPS updates is not addressed in this work.

Measurements from GPS, an odometer, a steer angle sensor and a camera along with

a map of the environment are used by [57] to estimate the position and yaw angle of the

vehicle in Kalman filter framework. Vehicle roll and pitch angles are not estimated in

this work. Road markers are used as features and the algorithm uses a nearest neighbor

criteria for object correspondence between real and virtual images. As a result, although

good position accuracy is obtained, orientation estimates are not very accurate. Position

and velocity vector from GPS is used in [16], lateral distance from a mapped lane and

measurements from an IMU to improve lateral position estimation during GPS outages.

Vehicle lateral position is the only information extracted using vision measurements in

this algorithm.

Surveyed road marking information (lane lines, crosswalks, turn arrows etc.) along

with the stop-lines are captured using a camera and used as measurements in a particle
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filter for vehicle localization in sparse GPS environments in [76]. Position estimation

accuracy is shown to improve appreciably in an urban setting both with GPS and during

GPS outages. The information used by the vision algorithm is the presence or absence of

stop lines or lane markings and marking styles. Orientation information is not extracted

using vision by this algorithm. Although this algorithm is useful in extracting global

position information, the position accuracy achieved is of the order of 3 to 4 meters.

Geographically referenced aerial or satellite images are used to build a global feature

map by [83]. Lane markings are used as features in the work presented which are

extracted using canny edge detector and their centroid is marked as the respective feature

location. The feature matching problem is treated like a standard point pattern matching

problem and iterative closest point method is used to get the solution. Three variables

of vehicle horizontal position and attitude are estimated. The use of lane markings as

point features results in loss of information. Also, the effect of number of visible lane

markers on the accuracy of the algorithm has not been addressed.

A method to fit parameterized three-dimensional models to images is presented in

[63]. Curves are extracted using edge extraction techniques and perpendicular distance

between the curves is minimized using gradient based methods to solve for viewpoint and

model parameters. The problem with this technique is that edge extraction methods are

computationally expensive and edge correspondence problem is not directly addressed.

As described in the preceding paragraphs, existing methods of map-aided localization

are computationally expensive or have drift issues due to lack of an absolute reference.

Therefore, the work done in this dissertation seeks to develop efficient algorithms using

low-cost vision and inertial sensors along with a map of terrain features (e.g. horizons)
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and roadside features (e.g. road signs, road markers and buildings etc.) for vehicle

localization.

2.3 Sensor Fusion

Luo et al. [70] give a tutorial on multi-sensor integration and fusion, where he lists

weighted average, Kalman filter and Bayesian estimation as the methods for signal level

data fusion. A weighted average method takes the weighted average of the information

and uses this as a fused value. A Kalman filter is preferred over weighted average filter

because, while being nearly equal in processing requirements, the Kalman filter gives

out fused estimates that are optimal in a statistical sense. Bayesian estimation using

consensus sensors looks for sensors that are likely to be in error and eliminates them

from consideration in sensor fusion. The information from each sensor is expressed as a

probability density function and a Bayesian estimator is used to maximize the likelihood

of the “consensus sensors” to achieve sensor fusion.

Possible problems with creating a general methodology for multi-sensor integration

and fusion are mentioned in the survey paper by Luo et al. [69]. The first requirement

for sensor fusion is that the data from all the sensors should be time synchronized. This

is called data alignment. The data should not only be time synchronized, it has to refer

to the same features in the environment for sensor fusion to be possible. The problem of

determining that each sensor is referring to the same features in the environment is called

“Registration”. For example, in an environment mapping application with a laser range

finder and a CCD camera, texture mapping the camera data to a 3D model obtained
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from range data is a problem of registration. Another problem mentioned in this paper

is sensor noise modeling. Sensor noise is usually assumed to be white (not correlated

in space and time), Gaussian and independent to make the the analysis mathematically

tractable. Correlated noise can be modeled by a shaping filter which takes white noise as

input. Gaussian-ness assumption can only be justified if the noise is caused by a number

of independent error sources, which is a result of central limit theorem. If the errors do

not originate from within the system, the independence assumption is usually valid.

Among all the methods for sensor fusion for localization, Kalman filters are the most

widely used [33]. When the system dynamics and observation models are linear, the

Kalman filter can be used to compute the minimum mean squared estimate (MMSE).

These filters approximate process and measurement noise by unimodal Gaussian dis-

tributions. Despite these strong assumptions, the Kalman filter has been applied with

great success to many estimation problems, e.g. Watanabe [111] describes a location

estimator based on the fusion of DGPS measurements with optical gyro and wheel speed

sensors using a standard Kalman filter. A multi-model adaptive estimator based on

Kalman filtering is presented in [106]. The main advantage of Kalman filters is their

computational efficiency although that comes at the cost of restricted representational

power since the Kalman filters can only represent unimodal distributions. The Gaussian

assumption on the noise distributions also leads to errors in estimation. Hence, the use

of Kalman filters is best when the process and measurement noise variance is not too

high.

Variations of Kalman filters have been sought to increase its applicability to systems

with nonlinear dynamics and measurement equations. The best known algorithm for this



23

purpose is extended Kalman filter (EKF) [2]. This filter is based on linearizing the process

and measurement model at the operating point using Taylor series expansion. Although

successfully implemented for many applications [103, 3], there are many drawbacks of

this filter [53]. If the time steps are not sufficiently small, the linearization can produce

highly unstable filter performance. For highly non-linear systems, problems may arise

even with small time steps. In this case, higher order EKF may have to be used. The

calculation of Jacobian matrices used in the linearization by Taylor series expansion can

be non-trivial and lead to implementation difficulties. Also, small time steps imply that

computation cost involved is high, because the Jacobian matrices and predictions of state

and covariance need to be calculated at each time step.

A new filter called the Unscented Kalman filter (UKF) was introduced in [53], which

is based on the premise that “With a fixed number of parameters it should be easier to

approximate a Gaussian distribution than it is to approximate an arbitrary nonlinear

function”. The prior distribution is approximated using the minimum set of points that

capture the first three moments of the prior distribution. This filter produces estimates

of state and covariance which are provably more accurate than the EKF but without

the need of calculating Jacobian matrices. Simulation and experimental studies have

shown this filter to be give very good results in highly nonlinear estimation problems

[60, 58, 59]. The limitation of UKF is that it does not apply to general non-Gaussian

distributions.

Sequential Monte Carlo methods (particle filters (PFs)) allow for complete represen-

tation of posterior distribution of states, so that all the statistical estimates like mean,

modes, variance and kurtosis can be calculated, enabling them to handle any nonlin-
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earities or distributions [37, 102]. However, the number of particles required are very

large when the the dimension of the state vector is high and performance depends on

the choice of the function used to propagate the samples. So, particle filters don’t lend

themselves very well for real-time implementation for systems with a large number of

states.



Chapter3

Vehicle Localization Using GPS and

IMU

This chapter discusses the fundamentals of GPS and IMU integration focussing on low-

cost Commercial Off-the-Shelf (COTS) systems available in the market today. As dis-

cussed in chapter 2, previous investigations on GPS/INS integration have not focussed

on the integration of low-cost COTS GPS and INS. Specifically, integration of a low-cost

GPS receiver (cost ≈ $100) operating in autonomous mode with a MEMS based low-

cost IMU (cost ≈ $100) is considered in this work. The error sources in GPS and INS

systems are characterized to choose suitable stochastic models for the error sources and

to identify parameters for these models. A Kalman filter framework is developed which

estimates 6-DOF vehicle position along with the estimation of error sources in the IMU.

As the position of the vehicle is directly observable, the performance of the system is

assessed by the ability of the system to estimate vehicle orientation.

This chapter is organized as follows: The coordinate systems used in this chapter
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are defined in section 3.1. Section 3.2 gives an overview of the GPS system. Errors

in the GPS position and velocity measurements are characterized in section 3.3. An

overview of the INS system is given in section 3.4 followed by its error characterization

in section 3.5. A Kalman filter framework to fuse measurements from GPS and INS

systems is presented in section 3.6. Numerical simulations are done in section 3.7 to

verify the correctness of the Kalman filter. Experimental results are presented in section

3.8 where the in-field performance of the low-cost GPS/IMU combination is compared

to measurements obtained from a high accuracy GPS/IMU system using experiments

done at the PTI test track. Finally, conclusions are drawn in section 3.9 along with the

drawbacks and possible improvements of this work. A nomenclature for this chapter is

listed at the end of the chapter.

3.1 Coordinate Reference Frames

Central to the process of navigation is the definition of a number of cartesian co-ordinate

reference frames. For ease of computation and mathematical transformations, each of

these frames is an orthogonal, right-handed co-ordinate frame. The co-ordinate frames

typically used in GPS and inertial navigation systems are shown in figure 3.1 and de-

scribed below [107].

The inertial frame (i-frame) has its origin at the center of the Earth and axes OXi,

OYi, OZi which are non-rotating with respect to the fixed stars. Ozi axis is coin-

cident with the Earth’s polar axis.

The Earth frame (e-frame or Earth-centered, Earth-fixed (ECEF) frame) has its ori-
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gin at the center of the earth and axes OXECEF , OYECEF , OZECEF which are

fixed with respect to the Earth. OECEF axis is coincident with the Earth’s polar

axis and hence the axis OZi of the inertial frame. The intersection of the plane of

Greenwich meridian with the Earth’s equatorial plane defines the axis OXECEF .

The e-frame rotates with respect to the i-frame at a rate Ω (The Earth rotation

rate ≈ 15deg/hr) about Ozi axis.

The navigation frame (n-frame) is a local geographic frame with origin at the origin

of the navigation system (GPS or INS, point P in figure 3.1), and axes aligned with

local north, east and local vertical down directions which are shown as N, E and

D axes in figure 3.1 respectively.

Local Level System (LLS) or east-north-up system (ENU-frame) is exactly the

same as the navigation frame but with the axes switched. The X-axis points the

local east, the Y-axis points the local north and the Z-axis points vertically upwards

in this co-ordinate frame.

The body frame (b-frame) has its origin at the center of gravity of the vehicle and axes

pointing towards roll, pitch and yaw axes of the vehicle. This coordinate frame is

completely local to the vehicle and is shown in figure 3.2.

3.2 Global Positioning System

GPS is one of the many Global Navigation Satellite Systems (GNSS) which is fully

operational [77]. GPS uses satellites as external references to trilaterate the position of
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XECEF

ZECEF

YECEF

Conventional Terrestrial PoleΩ
Greenwich
meridian

OXi

Yi

Zi

E
N

D
P

λ

φ

Local Level System ,
Navigation Frame

Ωt

Equatorial plane

U
Inertial Frame

Earth Frame

(non-rotating)

Figure 3.1. Coordinate frames of reference

Figure 3.2. The Body Frame

the vehicle. The distance measurements from the user to the satellite are based on the

transit time of the signal from the satellite to the user and are biased by a common

amount. These distance measurements are called pseudoranges. Pseudoranges from at

least four satellites are needed to estimate the user position.

GPS was developed by the U.S. Department of Defence (DoD) to offer the U.S.

military accurate and globally available estimates of position, velocity and time. Civil

users were also given access to GPS but were only provided with a limited accuracy
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(x,y,z)
b

ρ(1)

(x(k), y(k), z(k))

ρ(k)

ρ(K)

(ρ(k)) : Pseudoranges (measurements)

(x(k), y(k), z(k)) : Satellite Positions (known)

(ρ(k)) =
√

√

√

√(x(k) − x)2 + (y(k) − y)2 + (z(k) − z)2 − b

k = 1, 2, . . . , K
If K ≥ 4, solve for the user position (x,y,z)
and the receiver clock bias tb=

b
c

where c denotes the velocity of light

Figure 3.3. Principle of satellite navigation

consistent with national security considerations. GPS offers two kinds of service:

• Standard Positioning Service (SPS) for civilian use.

• Precise Positioning Service (PPS) for military and DoD authorized use.

PPS provides more accurate position estimates, and is encrypted to avoid spoofing.

Each GPS satellite transmits signals at two radio frequencies referred to as Link 1 (L1:

fL1 = 1575.42MHz) and Link 2 (L2: fL2 = 1227.60MHz), in the L-band, which cov-

ers frequencies between 1 GHz and 2 GHz. Each GPS signal consists of the following

components:

• RF sinusoidal carrier signal with frequency fL1 and fL2

• Binary codes called pseudo-random noise (PRN) codes are modulated on the carrier

signals. These codes are used to measure the range from the user to the satellites
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precisely. Codes associated with SPS are called coarse/acquisition codes (C/A-

codes) and the codes for PPS are named precision codes (P(Y)-codes) and are

encrypted. A unique C/A-code on L1 and unique P(Y)-codes on L1 and L2 are

transmitted by each satellite.

• Navigation data containing satellite position and velocity (ephemeris), clock bias

parameters and an almanac giving reduced precision ephemeris data on all satellites

in the constellation.

For a low-cost receiver operating in autonomous mode, only L1 frequency C/A-

code measurements are available. Also, the user usually doesn’t have access to the raw

measurements. The receiver directly outputs a least-squares solution to the user along

with a measure of loss of accuracy due to the satellite geometry. The loss of accuracy

due to satellite geometry is termed Dilution of Precision (DOP). The receiver generally

outputs the Position Dilution Of Precision (PDOP), Horizontal Dilution Of Precision

(HDOP) and Vertical Dilution Of Precision (VDOP) values. PDOP can be termed as a

scaling factor which has to be multiplied by the estimated range error to the satellite to

estimate the RMS 3D error in vehicle position. HDOP denotes the scaling factor for the

horizontal error. Scaling factor for the vertical error is denoted by VDOP. Although these

scale factor values are useful in giving an idea of overall vehicle position error assuming

a roughly constant user range error, individual errors in east and north directions as

well as covariances between these errors are not output by common low-cost receivers.

But, the receiver does output enough information to calculate the satellite geometry

matrix (defined later), which characterizes errors in east, north and vertical directions
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individually as well as their covariances. An analysis of positioning error is therefore

presented to be able to calculate the geometry matrix.

3.2.1 Position Estimation using Pseudoranges

A brief overview of position estimation using pseudoranges is given here. A linear model

for position estimation is described along with characterization of errors of this linear

model. Notation follows [77] where a detailed treatment of the topic can be found.

At GPS time t, the pseudorange measurement from the kth satellite can be modeled

as

ρ(k)(t) = r(k)(t, t− τ) + c[δtu(t)− δt(k)(t− τ)] + I(k)(t) + T (k)(t) + ε(k)ρ (t) (3.1)

where k = 1, 2, . . . ,K. are the number of satellites in view. τ is the time it takes for the

signal to travel from the satellite to the user GPS receiver. The pseudorange ρ(k)(t) is

determined from the measured apparent transit time as:

ρ(k)(t) = c [tu(t)− ts(t− τ)] (3.2)

where c is the speed of light. r(k)(t, t − τ) is the true distance between the satellite

antenna at the signal transmission time (t − τ) and the receiver antenna at the signal

reception time t. δtu(t) and δt(k) are the receiver and satellite clock offsets, relative to a

accurately maintained time reference called GPS Time (GPST). I(k)(t) and T (k)(t) are

the ionospheric and tropospheric propagation delays, respectively. Modeling errors, e.g.

orbital prediction error and satellite clock estimation error, and un-modeled errors, e.g.
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multi-path are accounted for by the term ε
(k)
ρ (t).

Ionospheric and tropospheric delays can be modeled and corrected for to a large

extent, but are not always implemented in low-cost GPS receivers. The satellite clock

offset estimate δt(k) is transmitted in the navigation data from the satellite and can be

compensated for. Let ρ
(k)
c denote the pseudorange obtained after accounting for the

satellite clock offset and ε̃
(k)
ρ (t) be the residual error created by including the ionospheric

and tropospheric errors in ε
(k)
ρ (t). Under these assumptions, the modified pseudorange

equation can be written as:

ρ(k)
c (t) = r(k)(t, t− τ) + cδtu(t) + ε̃(k)ρ (t) (3.3)

The standard deviation of
˜
ε
(k)
ρ (t) can range from 6 to 10 m for a single frequency receiver

operating in autonomous mode. Let xu = (xu, yu, zu) be the position of the user at the

time of signal measurement and xs
(k) = (x

(k)
s , y

(k)
s , z

(k)
s ), for k = 1, 2, . . . ,K, be the

position of the K satellites visible to the receiver at the time of signal transmission in

the ECEF frame. The geometric range from the user to the satellite is:

r(k) =

√

(x
(k)
s − xu)2 + (y

(k)
s − yu)2 + (z

(k)
s − zu)2 =‖ xs

(k) − xu ‖ (3.4)

Using equation 3.4, equation 3.3 can be re-written as:

ρ(k)
c =‖ xs

(k) − xu ‖ +b(t) + ε̃(k)ρ (3.5)

where b(t) has replaced the receiver clock bias term cδtu. Pseudorange measurement
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from each visible satellite can be used to form a non-linear equation of the form 3.5.

Each of these equations has four unknowns: Three components of the user position

in the vector xu and range bias due to the receiver clock error, b(t). This implies

that concurrent pseudorange measurements from at least four satellites are required to

estimate the user’s instantaneous position.

If range measurements fromK visible satellites are available, a system ofK non-linear

equations of the type 3.5 can be solved by using the Newton-Raphson method. In this

method, the non-linear equations are linearized about an approximated user position,

and solved iteratively. Let xu0 = (xu0 , yu0 , zu0) and b0 be the initial estimates of user

position in the e-frame and receiver clock bias, respectively. As seen in equation 3.5, the

corrected pseudorange measurement from satellite k is denoted by ρ
(k)
c . The estimate of

the user position and receiver clock bias also gives an approximation of the pseudorange

to the satellite, given by:

ρ
(k)
0 =‖ xs

(k) − xu0 ‖ +b0 (3.6)

Next, denote the true user position and true clock bias as xu = xu0 + δxu and

b = b0 + δb, where δxu and δb are the errors in the initial estimates of user position

and receiver clock bias, respectively. In the following, a system of linear equations is

developed with δxu and δb as unknowns.

δρ(k) = ρ(k)
c − ρ(k)

0 (3.7)
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=
(

‖ xs
(k) − xu ‖ +b

)

−
(

‖ xs
(k) − xu0 ‖ +b0

)

+ ε̃(k)ρ

=‖ xs
(k) − xu0 − δxu ‖ − ‖ xs

(k) − xu0 ‖ +(b− b0) + ε̃(k)ρ (3.8)

≈ − (xs
(k) − xu0)

‖ xs
(k) − xu0 ‖

· δxu + δb+ ε̃(k)ρ (3.9)

= −1(k)(xs
(k),xu0) · δxu + δb+ ε̃(k)ρ (3.10)

Here, 1(k)(xs
(k),xu0) is the estimated line-of-sight unit vector from the initial estimate

of the user position to satellite k, and a · b denotes the dot product of vectors a and b.

Use has been made of Taylor series expansion in going from equation 3.8 to 3.9. For K

visible satellites, a system of K linear equations of the form 3.10 can be written as:

δρ =















δρ(1)

δρ(2)

...

δρ(K)















=















(−1(1)(xs
(1),xu0))

T 1

(−1(2)(xs
(2),xu0))

T 1

...

(−1(K)(xs
(K),xu0))

T 1















︸ ︷︷ ︸

G







δxu

δb







+ ε̃ρ (3.11)

Here G is a (K × 4) matrix characterizing the satellite geometry for the user location

and is termed the geometry matrix.

For the case of K = 4, four equations can be solved for four unknowns directly giving:







δxu

δb







= G−1δρ (3.12)

Here δρ is calculated using equation 3.7. For K > 4, the pseudo-inverse method from

linear algebra can be used to give least-squares solution for the corrections to the initial
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estimates as:







δx̂u

δb̂







= (GTG)
−1
GTδρ (3.13)

Using the corrections from the equation above, improved estimates of the unknowns

can be calculated as:

x̂u = xu0 + δx̂u

b̂ = b0 + δb̂ (3.14)

The measurement equations can be linearized about the new estimates of unknowns

and process iterated until the change in the estimates is within a certain tolerance.

Analysis of this subsection shows the relation between user position error and user range

error to the satellites. This relation is given by equation 3.13. In the next section, this

relation is used to derive the user position error covariance in terms of user-satellite range

error covariance.

3.2.2 Positioning Error

If we assume the error in the pseudoranges from different satellites as zero-mean, un-

correlated, and having the same variance, the model for measurement error in equation

3.11 becomes:
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E(ε̃ρ) = 0

Cov(ε̃ρ) = E(ε̃ρε̃
T
ρ ) = σ2

UREI (3.15)

where E() and Cov() denote the mean and covariance of the variable within the paren-

theses and σURE denotes the standard deviation of the user range error (URE) for all

the satellites.

Let the error in the user’s position be ∆xu = x̂u − xu and ∆b = b̂ − b, where xu

and b represent the true user position and error due to receiver bias, respectively and

let x̂u and b̂ represent the corresponding estimates. As per our assumption that the

pseudorange measurements are zero mean, the position and clock bias errors are also

zero mean.

E(∆xu) = E(x̂u − xu) = 0

E(∆b) = E(b̂− b) = 0 (3.16)

Using equation 3.15, the covariance of the position and clock bias errors can be

written as [77]:

Cov







δx̂u

δb̂







= σ2
URE

(
GTG

)−1

︸ ︷︷ ︸

H

(3.17)
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Equations for covariance of the errors 3.17 are in ECEF coordinate frame, and are

difficult to imagine relative to a local frame. So, equation 3.17 will be converted to the

ENU frame to derive errors along the east, north and up directions.

6
long

6
lat

P

East

North
Up

X

Z

Figure 3.4. ENU frame in relation to ECEF frame

Figure 3.4 shows the relationship between ENU and ECEF coordinate frames. Defin-

ing ∆XuL
= (∆xuE ,∆yuN ,∆zuU ) as the error vector in the ENU frame, the position

error vector ∆xu in the ECEF frame can be expressed in the ENU frame as [77]:

∆XuL = RL∆xu (3.18)

where RL is given by:

RL =











− sin(∠long) cos(∠long) 0

− sin(∠lat) cos(∠long) − sin(∠lat) sin(∠long) cos(∠lat)

cos(∠lat) cos(∠long) cos(∠lat) sin(∠long) sin(∠lat)











(3.19)
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Here ∠lat and ∠long are the latitude and longitude at the user’s position. Writing the

errors in the ENU frame in terms of errors in the ECEF frame:







∆xuL

δb







=







RL 0

0 1













∆xu

δb







= R̃L







∆xu

δb







(3.20)

The covariance matrix in the ENU frame becomes:

Cov







∆xuL

δb







= R̃LCov







∆xu

δb






R̃T
L

= σ2
URER̃L(GTG)−1R̃T

L

= σ2
URE(R̃LG

T

︸ ︷︷ ︸

G̃T

GR̃T
L

︸ ︷︷ ︸

G̃

)−1

= σ2
URE

[

G̃T G̃
]−1

(3.21)

The coordinates of the kth satellite with respect to the vehicle in the ECEF-frame

are xs
(k) − xu. In the ENU-frame, these coordinates become:

x(k)
sL
− xuL = RL.(xs

(k) − xu)




(x
(k)
sL
− xuL

)

(y
(k)
sL

− yuL
)

(z
(k)
sL

− zuL
)



 =





− sin(∠long)(x
(k)
s − xu) + cos(∠long)(y

(k)
s − yu)

− sin(∠lat) cos(∠long)(x
(k)
s − xu)− sin(∠lat) sin(∠long)(y

(k)
s − yu) + cos(∠lat)(z

(k)
s − zu)

cos(φ) cos(∠long)(x
(k)
s − xu) + cos(∠lat) sin(∠long)(y

(k)
s − yu) + sin(∠lat)(z

(k)
s − zu)





(3.22)
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Using equations 3.11, 3.19, 3.21, and 3.22, G̃ can be written as:

G̃ =















− (x
(1)
sL
−xuL)

‖xs
(1)−xu‖

− (y
(1)
sL
−yuL)

‖xs
(1)−xu‖

− (z
(1)
sL
−zuL)

‖xs
(1)−xu‖

1

− (x
(2)
sL
−xuL)

‖xs
(2)−xu‖

− (y
(2)
sL
−yuL)

‖xs
(2)−xu‖

− (z
(2)
sL
−zuL)

‖xs
(2)−xu‖

1

...
...

...
...

− (x
(k)
sL
−xuL)

‖xs
(k)−xu‖

− (y
(k)
sL
−yuL)

‖xs
(k)−xu‖

− (z
(k)
sL
−zuL)

‖xs
(k)−xu‖

1















(3.23)

Noting from equation 3.22, that RL is a rotation matrix and hence is orthonormal,

which implies that the distances are preserved:

‖ xs
(k) − xu ‖=‖ x(k)

sL
− xuL ‖ (3.24)

Using the above equation, equation 3.23 can be re-written as:

G̃ =
















− (x
(1)
sL
−xuL)

‖x
(1)
sL
−xuL‖

− (y
(1)
sL
−yuL)

‖x
(1)
sL
−xuL‖

− (z
(1)
sL
−zuL)

‖x
(1)
sL
−xuL‖

1

− (x
(2)
sL
−xuL)

‖x
(2)
sL
−xuL‖

− (y
(2)
sL
−yuL)

‖x
(2)
sL
−xuL‖

− (z
(2)
sL
−zuL)

‖x
(2)
sL
−xuL‖

1

...
...

...
...

− (x
(k)
sL
−xuL)

‖x
(k)
sL
−xuL‖

− (y
(k)
sL
−yuL)

‖x
(k)
sL
−xuL‖

− (z
(k)
sL
−zuL)

‖x
(k)
sL
−xuL‖

1
















(3.25)

Closely examining terms in equation 3.25 and figure 3.5, the geometry matrix G̃ can

be written in terms of elevation and azimuth angles of the visible satellites as:
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Up (ZL)

East (XL)

North (YL)

az

ζ

(x(k)
sL

, y(k)
sL

, z(k)
sL

)

(xuL
, yuL

, zuL
)

sin(az) =
(x(k)

sL
−xuL

)
√

(x
(k)
sL
−xuL

)2+(y
(k)
sL
−yuL

)2

cos(el) = sin(ζ) =

√

(x
(k)
sL
−xuL

)2+(y
(k)
sL
−yuL

)2

√

(x
(k)
sL
−xuL

)2+(y
(k)
sL
−yuL

)2+(z
(k)
sL
−zuL

)2

Azimuth 6 → az
Zenith 6 → ζ
Elevation 6 → el = 90◦ − ζ

cos(az) =
(y(k)

sL
−yuL

)
√

(x
(k)
sL
−xuL

)2+(y
(k)
sL
−yuL

)2

sin(el) = cos(ζ) =
(z(k)

sL
−zuL

)
√

(x
(k)
sL
−xuL

)2+(y
(k)
sL
−yuL

)2+(z
(k)
sL
−zuL

)2

el

Figure 3.5. Zenith, azimuth and elevation angles defined in LLS

G̃ =















− cos el(1) sin az(1) − cos el(1) cos az(1) − sin el(1) 1

− cos el(2) sin az(2) − cos el(2) cos az(2) − sin el(2) 1

...
...

...
...

− cos el(k) sin az(k) − cos el(k) cos az(k) − sin el(k) 1















(3.26)

Denoting (G̃T G̃)−1 by H̃, equation 3.21 becomes

Cov







∆xuL

δb







= σ2
UREH̃ (3.27)

Equation 3.27 describes the covariance in the user position in terms of the variance

in user-satellite range and a matrix H̃. The matrix H̃ provides a measure of the effect

of satellite geometry on the user position error. The loss of position accuracy due to

satellite geometry is termed Dilution Of Precision (DOP) [77]. The lower the DOP, the

better the position accuracy. Even cheap GPS receivers provide elevation and azimuth

data of visible satellites and thus the matrix H̃ can be computed. Matrix H̃, along with
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a measure of user-satellite range error can then be used to estimate the covariance of

user position error.

3.2.3 Velocity Estimation

Changes in the observed frequency of the satellite signal can give information about the

relative motion between the satellite and the user. User velocity can also be estimated

from the relative motion as the satellite velocity can be computed from information in

the GPS sentences. The Doppler shift or the range rate is biased by the receiver clock

bias rate and therefore called pseudorange rate. The following analysis in the ECEF-

frame shows that user’s velocity estimation based on pseudorange rates is identical in

structure to the user’s position estimation using pseudoranges. Differentiating equation

3.1, a model for pseudorange rates is obtained as (the reference to time (t) has been

dropped for brevity) [77]:

ρ̇(k) = ṙ(k) + (ḃ(t)− ḃ(k)(t)) + İ(k) + Ṫ (k) + ε
(k)
ρ̇ (3.28)

where ρ̇(k) denotes the pseudorange rate which can be obtained from carrier phase mea-

surements. The change in delays due to ionosphere and troposphere is very small over

short times and hence can be neglected. The changes in the satellite clock bias ḃ(k)

are negligible also. ε
(k)
ρ̇ denotes the effect of modeling errors as well as un-modeled er-

rors. The true range rate ṙ(k) can be written as a projection of relative velocity on the

line-of-sight vector to the satellite as:
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ṙ(k) = (vs
(k) − vu) · 1(k)(xs

(k),xu0) (3.29)

where vs
(k) is the satellite velocity vector, and vu is the user’s velocity being estimated.

The line-of-sight vector to the satellite, denoted by 1(k)(xs
(k),xu0), is calculated using

the calculated satellite position and an estimate of user’s position. Assuming that the

position of the vehicle has already been calculated from pseudoranges, the dependence

of 1(k) on (xs
(k),xu0) will be dropped from now on. Thus, equation 3.28 can be modified

as:

ρ̇(k) = (vs
(k) − vu) · 1(k) + ḃ+ ε

(k)
ρ̇ (3.30)

As the satellite velocity vector is known from the navigation message from the satel-

lite, separating the known and unknown variables in the above equations gives:

(ρ̇(k) − vs
(k))

︸ ︷︷ ︸

˙̃ρ(k)

= −vu · 1(k) + ḃ+ ε
(k)
ρ̇ (3.31)

For pseudorange rate measurements from K satellites, the system of equations can

be represented in matrix form as:

˙̃ρ(k) =















(−1(1))T 1

(−1(2))T 1

...

(−1(K))T 1















︸ ︷︷ ︸

G







vu

ḃ







+ ε̃ρ̇ (3.32)

which is of the same form as the linearized system of pseudorange equations used to
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estimate the user’s position in equation 3.11. With the assumption of unbiased, un-

correlated pseudorange rate errors with equal variance equal to σv, a similar analysis

can be used to characterize the errors in velocity estimation. The final expressions for

mean and covariance of errors are given below.

E(∆vuL) = E(v̂uL − vuL) = 0

E(∆̇b) = E(
ˆ̇
b− ḃ) = 0 (3.33)

Cov







∆vuL

∆̇b







= σ2
vH̃ (3.34)

Equation 3.34 gives the relation between the covariance of user velocity error and with

pseudorange rate error variance through the DOP matrix H̃. As mentioned with position

error estimation covariance analysis, the matrix H̃ can be calculated using information

from low-cost GPS receivers. This matrix, along with a measure of user pseudorange

rate error, can be used to calculate vehicle velocity error covariance. Vehicle position

and velocity errors are experimentally characterized in the next section for static and

dynamic conditions to get estimates of the standard deviations of pseudorange range

errors (σURE) and pseudorange rate errors (σv).

3.3 Characterization of GPS Position and Velocity Errors

A typical low-cost GPS receiver operating in autonomous mode has errors in position

and velocity estimates due to a number of modeling errors as well as un-modeled effects.
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In this section, these errors are characterized first in the static case, where the GPS

receiver is placed at a accurately surveyed location and errors in position estimation can

be directly calculated. Next, the position and velocity errors are characterized for the

dynamic case, where the vehicle is driving at highway speeds and also while undergoing

quick dynamic maneuvers.

3.3.1 Static Errors

A low cost GPS receiver module EB-85A, manufactured by ETEK Navigation Inc., with

an update rate of 5Hz was used in this study. To characterize the GPS static positioning

errors, the GPS receiver was placed at a location used for a GPS base station. The base

station location was calibrated to an accuracy of within 5 cm [17]. Data was collected

from the GPS receiver for one and a half hours. The dilution of precision (DOP) was

also calculated using equation 3.27 and plotted alongside the positioning errors in the

East, North and Up directions. Figures 3.6 through 3.8 show the positioning errors,

error distributions and DOP values in East, North and Height directions. The time in

these plots is expressed in Coordinated Universal Time (UTC), which is a time standard

based on international atomic time and is output in GPS sentences.
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Figure 3.6. Static GPS position error in the East direction
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Figure 3.7. Static GPS position error in the North direction
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Figure 3.8. Static GPS position error in height

Figure 3.9 shows the satellites which were visible during the collection of the static

data along with the sky-view showing the elevation and azimuth of the satellites. The

DOP is dependent on the number of visible satellites and the elevation and azimuth of

the visible satellites as given by equation 3.27. It can be clearly seen from these figures

that changes in the orientation and visibility of the satellites had a direct impact on

the DOP, which in turn affects the positioning errors. Looking carefully at figures 3.6

through 3.8 and using equation 3.27, the value of the user range error σURE is chosen to

be equal to 5m. This value agrees with the errors and DOP values in all three directions.

3.3.2 Dynamic Errors

Dynamic positioning tests were carried out to evaluate the effect of motion of the vehicle

on positioning errors. This was achieved by putting two GPS receivers, the low-cost re-
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Figure 3.9. Sky-view of satellites during the collection of static data

ceiver and a Novatel DL4-Plus receiver operating in Real-Time-Kinematic (RTK) mode,

side by side and comparing the position and velocity solutions while moving the vehicle

around the Pennsylvania Transportation Institute test track facility doing quick dynamic

maneuvers. The accuracy of the RTK solution is of the order of 2cm in position and

5cm/s in velocity and is taken as the truth value in both cases.

Figures 3.10 through 3.12 show the position in East, North and vertical directions

along with the errors, error distributions and dilution of precision. It was seen in the

static error analysis that the positioning errors depend on the DOP value over time.

DOP values change slowly over time as the GPS satellites move through the sky and can

have large changes when satellites come into view or are lost from view. The duration

of the dynamic tests shown in the figures is approximately 2 minutes and the DOP

values in the horizontal direction do not change appreciably during that interval. It can

be seen clearly from the figures that the errors start to vary as soon as the position

starts to change. It is also seen that although the errors vary, they remain well within

the error ellipsoids defined by the user range error (σURE) and DOP values as given

by equation 3.27. The errors are auto-correlated with a short correlation time. It is
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possible to model these errors as a Gauss-Markov process, but in the absence of another

independent position measurement, these errors are not observable. So, these errors are

assumed to be Gaussian in the present work and will be the source of errors in the final

estimates.
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Figure 3.10. Dynamic GPS position error in the East direction

Figure 3.12 shows the variation of height error. Error in height is large relative to

the horizontal position errors in this run because of the high DOP value. This can be

specifically seen at between UTC time 67700 seconds and 67800 seconds, where there is

a spike in the DOP value from 2.6 to 3.8 (approx.) and the error in height corresponding

to this interval increases to around 12 meters. This spike in the DOP value occurs due

to the temporary loss of GPS satellites as can be seen in figure 3.13. This temporary

loss can be attributed to blocking of the line of sight to the satellites during vehicle

motion around the test track due to tree lines and small buildings blocking satellites at
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Figure 3.11. Dynamic GPS position error in the North direction

low elevation. Figure 3.13 also shows the sky-view of the satellites during the dynamic

test, to give an idea of satellite geometry. As discussed before, the satellite geometry

does not change appreciably during the small duration of this test.

Figures 3.14 and 3.15 show the variation of velocity, velocity errors and error dis-

tributions in North and East directions. Low-cost receivers do not output the vertical

velocity values. Velocity errors are also time correlated, but will be assumed to be Gaus-

sian. The standard deviation (σv in equation 3.33) of this Gaussian is chosen to be equal

to 50cm/s using the error distributions.

Figure 3.16, which is a zoom in of figures 3.14 and 3.15 when the vehicle just starts to

move around UTC time 6.77E4, shows the inability of the GPS to detect low velocities.

As shown in the figure, the GPS only starts outputting the velocity solution when the
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Figure 3.12. Dynamic GPS position error in height
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Figure 3.13. Sky-view of satellites during the collection of dynamic data

velocity reaches 1.5 m/s to 2 m/s. When starting from a stop under normal acceleration

for day-to-day vehicles (1 to 3 m/s2), it results in a delay of 1 to 2 seconds before the

velocity solution from the GPS becomes useful. The velocity value of the GPS solution

needs to be monitored and only used when velocity reaches a value above 2 m/s. This
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Figure 3.14. Dynamic GPS velocity error in the East direction
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Figure 3.15. Dynamic GPS velocity error in the North direction

is important as it shows that use of a low-cost GPS alone is a very poor solution for

low-speed mobile robots.
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Figure 3.16. Inability of GPS to detect low velocities

3.4 Inertial Navigation System

Inertial navigation system (INS) is a self-contained system which uses the laws of classi-

cal Newtonian mechanics to determine the position of the vehicle starting from a known
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initial position and orientation. The position of the vehicle can be obtained by integrat-

ing the vehicle acceleration to obtain velocity and then integrating the velocity to obtain

position. For calculating position in this fashion, it is necessary to keep track of the

direction in which the accelerometers are pointing. Rotational motion of the vehicle can

be sensed with respect to the inertial frame using gyroscopes. Gyroscopes give the rota-

tion rates of the vehicle about the vehicle roll, pitch and yaw axes. By integrating these

angular rates in a systematic manner, the orientation of the vehicle can be determined

with respect to a given initial orientation. An INS usually contains three accelerometers

and three gyroscopes with their sensitive axes orthogonal to each other along the roll,

pitch, and yaw axes of the vehicle [9, 13, 107].

Signals from inertial sensors are inherently noisy and so integration over time results

in error accumulation. In addition to these integration errors, localization using an INS

is complicated by the fact that estimation of position is coupled with the estimation of

orientation. Orientation angles are used to resolve the accelerations in the chosen frame

of reference. A bias on a gyroscopic measurement gives rise to an error in orientation

which increases linearly with time, which in turn gives rise to an error in position which

increases as the cube of time. Bias on accelerometers gives rise to position errors which

vary as square of time. For this reason, accuracy and noise characteristics of the inertial

sensors, gyroscopes in particular, have a large impact on the navigation accuracy of the

INS.

Most low-cost GPS receivers only provide the horizontal component of the vehicle

velocity which is in the n-frame or ENU frame. Measurements from the IMU can also

be quickly resolved from body frame to local geographic navigation frame (n-frame) or
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ENU frame. Hence, the n-frame has been used as the frame of reference in this thesis.

3.4.1 Mechanization Equations

Inertial sensors measure the accelerations and angular velocities in the vehicle body

frame (b-frame). In order to calculate the vehicle position in the n-frame, it is necessary

to first resolve the accelerations along the n-frame axes. The transformation from the

n-frame to b-frame can be achieved by three successive rotations about different axes.

Following the SAE convention for orientation definition [92], the rotation sequence will

be:

• rotation about reference z-axis through an angle ψ C1 =









cos(ψ) sin(ψ) 0

− sin(ψ) cos(ψ) 0

0 0 1









• rotation about new y-axis through an angle θ C2 =









cos(θ) 0 − sin(θ)

0 1 0

sin(θ) 0 cos(θ)









• rotation about new x-axis through an angle φ C3 =









1 0 0

0 cos(φ) sin(φ)

0 − sin(φ) cos(φ)









Following this convention, a transformation from navigation to body axes can be written

as:

Cb
n = C3C2C1 (3.35)

The inverse transformation from body to reference axes is the transpose of the matrix

above (using the ortho-normality of the rotation matrix) and can be written as:

Cn
b = CT

1C
T
2C

T
3
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=











c11 c12 c13

c21 c22 c23

c31 c32 c33











=





cos(θ) cos(ψ) − cos(φ) sin(ψ) + sin(φ) sin(θ) cos(ψ) sin(φ) sin(ψ) + cos(φ) sin(θ) cos(ψ)

cos(θ) sin(ψ) cos(φ) cos(ψ) + sin(φ) sin(θ) sin(ψ) − sin(φ) cos(ψ) + cos(φ) sin(θ) sin(ψ)

− sin(θ) sin(φ) cos(θ) cos(φ) cos(θ)



 (3.36)

The rotational velocities in the body frame can be used to find the rate of change of

Euler angles over time using the following equations [9, 13, 107]:

φ̇ = (ωy sin(φ) + ωz cos(φ)) tan(θ) + ωx

θ̇ = ωy cos(φ)− ωz sin(φ)

ψ̇ = (ωy sin(φ) + ωz cos(φ)) sec(θ) (3.37)

where ωx, ωy, and ωz are the rotational velocities of the vehicle with respect to the

navigation frame expressed in the body frame and are represented in the vector form as

ωbnb. The rotation rates given by the gyroscopes are with respect to the inertial frame

represented by the vector ωbib. The rotation rate of the vehicle body frame with respect

to the navigation frame, ωbnb, can be calculated as:

ωbnb = ωbib −Cb
nω

n
in (3.38)
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where ωnin is the turn rate of the navigation frame with respect to the inertial frame

expressed in navigation frame. Vector ωnin can be computed as follows [13]:

ωnin =











Ω cos(λ) + vE
R0+h

− vn
R0+h

−Ω sin(λ)− vE tan(λ)
R0+h











(3.39)

Here Ω is the turn rate of the Earth, λ is the longitude at the vehicle position, vN and

vE are the velocities of the vehicle in the north and east direction, R0 is the radius of

the Earth and h the height of the vehicle above the mean-sea level. In equation 3.38,

transformation Cb
n is applied to convert this rotation rate vector in the body frame to be

consistent throughout the equation. The magnitude of ωnin is small as Ω ≈ 0.00417deg/s

and the term vE
R0+h

is also small as the velocity of ground vehicles is negligible compared

to the radius of the Earth (≈6378.1km). The magnitude of error sources in low-cost

IMUs (characterized later) is far too high to be able to sense ωnin. Thus while doing

analysis for low-cost IMU’s, this term is usually neglected in equation 3.38.

The navigation equation expressing the velocity of the vehicle with respect to Earth

can be written as [13, 9]:

v̇ne = fn − (2ωnie + ωnen)× vne + gnl (3.40)

ṗne = vne (3.41)
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where vne is the velocity of the vehicle with respect to the Earth expressed in the navi-

gation frame. In component from, it can be expressed as:

vne =

[

vn ve vD

]T

(3.42)

fn is the vector representing accelerations undergone by the vehicle f b resolved into the

navigation frame:

fn =

[

fn fe fD

]T

= Cn
b f
b (3.43)

ωnie represents the Earth rotation rate expressed in the navigation frame.

ωnie =

[

Ω cos(λ) 0 −Ω sin(λ)

]T

(3.44)

ωnen, commonly referred to as transport rate [13], is the rotation rate of the navigation

frame with respect to the ECEF-frame.

ωnen =

[

vE
R0+h − vn

R0+h −vE tan(λ)
R0+h

]T

(3.45)

In equation 3.40, gnl is the local gravity vector, which is the sum of Earth’s gravita-

tional attraction vector and centripetal acceleration vector caused by Earth’s rotation.

gnl = g − ωie × ωie ×R (3.46)
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In the component form, the navigation equations can be written as follows:

v̇N = fN − 2ΩvE sin(λ) +
vNvD − v2

E tan(λ)

R0 + h
+ ξg (3.47)

v̇E = fE + 2Ω(vN sin(λ) + vD cos(λ)) +
vE

R0 + h
(vD + vN tan(λ)) − ηg (3.48)

v̇D = fD − 2ΩvE cos(λ)− v2
E + v2

N

R0 + h
+ g (3.49)

˙xN = vN (3.50)

ẋE = vE (3.51)

˙xD = vD (3.52)

Here,(xN , xE, xD) are the coordinates of the vehicle in the navigation frame, and ξ

and η are the angular deflections from the local vertical in the direction of the local

gravity vector because of gravity anomalies. This variation has a maximum magnitude

of approximately 30 arc seconds over the surface of the Earth, but will be neglected in

further analysis.

3.4.2 Navigation Error Equations

In this section, the growth of errors in the attitude, velocity and position of the vehicle

with time is described. This error growth model is useful for fusing the inertial mea-

surements with an aiding sensor, e.g. GPS. Proper fusion of the error model with an

aiding sensor keeps these errors small, thus allowing for the use of less computationally

expensive fusion algorithms (e.g. a Kalman filter). This error model is widely used in

navigation community [9, 13, 107], so only the equations in the final form are presented
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herein.

Let Ψ = [δα δβ δγ]T be the vector of misalignment angles between true orientation

and estimated orientation of the vehicle. If the estimated orientation matrix is denoted

by C̃n
b it can be written in terms of the true orientation matrix Cn

b as:

C̃n
b = [I−Υ]Cn

b (3.53)

where I is a 3x3 identity matrix and Υ is given as:

Υ =











0 −δγ δβ

δγ 0 −δα

−δβ δα 0











(3.54)

The differential equation describing the rate of change of the misalignment angles is

[13, 107]:

Ψ̇ ≈ −ωnin ×Ψ+ δωnin −Cn
b δω

b
ib (3.55)

ωnin is the error in the estimation of the vector defined by equation 3.39. δωbib is the error

in the rotation rates provided by the IMU.

The error equation for velocity can be expressed as [13, 107]:

δv̇ = −ΥCn
b f
b +Cn

b δf
b − (2ωnie + ωnen)× δv − (2δωnie + δωnen)× v − δg (3.56)

Here, δv = [δvN δvE δvD] is the vector of velocity estimation errors. δωnie and δωnen are

the estimation errors in the vectors defined by equation 3.44 and 3.45, respectively. δg is



58

the error in the knowledge of the gravity vector. Errors due to the coriolis terms as well

as the error in the gravity model are small and will be ignored henceforth. Eliminating

these terms in the above equation gives:

δv̇ = −ΥCn
b f
b +Cn

b δf
b (3.57)

Error in the vehicle position, δp, is a function of the errors in the vehicle velocity

and can be written as:

δṗ = δv (3.58)

3.5 Characterization of INS Errors

The MEMS sensors used in this study are low-accuracy sensors with signal errors which

include wide-band noise, bias, scale factor and misalignment errors. In this section, sig-

nals from these low-accuracy sensors are first compared with signals from a tactical grade

IMU. This analysis helps in determining the dominant error components. A model is

chosen to represent the sensor outputs in terms of the true outputs and error states. Al-

lan variance analysis and autocorrelation techniques are then used to find the coefficients

for these error models.

3.5.1 Comparison of Low-Cost IMU with a Tactical Grade IMU

Signals from the low-cost IMU are compared to the tactical grade IMU mainly to deter-

mine the presence of scale factor errors and run-to-run bias instability. The specifications

for the tactical grade IMU (HG1700-AG17) [81] used for comparison are given in table
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3.1. As can be confirmed from the table, the values of the scale factor for both ac-

celerometers and gyroscopes are negligible. The run-to-run stability of ring laser gyros

is of the order of 0.002◦h−1/2 [95] and can be ignored for comparison purposes. As the

scale factors of HG1700-AG17 tactical grade IMU are negligible, the magnitude of scale

factor errors for the MEMS IMU sensors can be determined by comparison of the signals,

especially at high amplitudes. Run-to-run bias instability can also be characterized the

same way by keeping the low-cost IMU stationary and turning the IMU on and off at

intervals of 15-20 minutes and noting the variation of the bias.

Table 3.1. Performance Specifications for HG1700-AG17 IMU

Properties Values

Gyro Input Range + 1000 degrees/s
Gyro Rate Bias 10 degree/hr
Gyro Rate Scale Factor 150ppm
Angular Random Walk 0.5 degrees/rt hr
Accelerometer Range + 50 g
Accelerometer Linearity 500 ppm
Accelerometer Scale Factor 300 ppm
Accelerometer bias 3mg

Figure 3.17 shows the comparison data from a low-cost accelerometer (MMA7260Q)

from Freescale Semiconductor with a high grade accelerometer used in HG1700 tactical

grade IMU. As can be seen from the figure, the two signals closely follow each other and

scale factor errors are not apparent even at high magnitudes of the signal. It can be

safely deduced from this figure that the accelerometers used in this study do not exhibit

significant scale factors. The MEMS accelerometers were turned on and off at regular

intervals of 15 minutes and variance in the bias was found to be approximately 0.5 m/s2.

Figure 3.18 shows a similar comparison between the low-cost gyroscope ADXRS150

from Analog Devices with the tactical grade gyroscope used in HG1700 IMU. A careful
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Figure 3.17. Comparison of MEMS accelerometer with high grade accelerometer

look at the figure show the presence of scale factor error. The gyro signal compensated

for the scale factor (≈ 0.19)is also plotted in the figure and matches very well with the

signal from the tactical grade IMU. Run-to-run bias variance for the gyro was found to

be approximately 1 deg/sec.
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3.5.2 IMU Error Characterization

The Allan variance method [1, 80] was used to characterize IMU error sources. The

Allan variance, when plotted on a log-log plot against the correlation time, has different

slopes for different error sources, thereby leading to easy identification of an error model.

Following the development in [1, 80], the model for the Allan variance, σA(τ), can be

expressed as a function of correlation time, τ , as:

σA(τ) =
2∑

n=−2

Anτ
n/2 (3.59)

where the coefficients An are obtained by curve fitting on the Allan variance plot in the

least mean square sense. 1-σ measure of quantization noise (Q), angle random walk (N),

and bias instability (B) can be given by the following expressions:

Q =

(
π ∗ 106

180 ∗ 3600 ∗
√

3

)

A−2(µrad)

N =

(
A−1

60

)

(deg/hr) (3.60)

B = (0.6648)A0(deg)

where Allan variance has units of deg/hr and τ has units of seconds.

Figures 3.5.2 and 3.20 show the Allan variance plots for ring laser and MEMS gy-

ros respectively. The plots are shown along with the curve fit, which yields values for

parameters of interest B, N, and Q. The performance difference between the ring laser

gyros and MEMS gyros can be clearly seen from the values of these parameters.

Figures 3.21 and 3.22 show the Allan variance plots for HG1700 and MEMS ac-
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provided by a gyroscope can be expressed in terms of the true rotation rate as:

ω̃ = (1 + Sω)ω + bω + ηω (3.61)

Here Sω is the scale factor error, bω is a term representing the low frequency bias, and ηω

is the white noise. Similarly, the acceleration measurement (f̃ b) from the accelerometer

is a function of the true acceleration as:

f̃ b = (1 + Sf )f
b + bfb + ηf (3.62)

The wide-band (white) noise η in both noise models is assumed to be normally

distributed with zero mean and a variance as given by equation 3.63. Various sets of

static data from IMU sensors were plotted as histograms to observe the distribution of

noise and are shown in figures 3.27 and 3.28 for HG1700 and MEMS IMU’s respectively.

It can seen clearly that the noise roughly follows a normal distribution. The variance of

this wide-band noise can be characterized using the angle random walk noise coefficient

N.

E[η2] = N2 (3.63)

The low frequency bias b is modeled as an exponentially correlated random variable

given by the following differential equation [33]:

ḃ = − 1

Tc
b+ ηb (3.64)
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Here σ2
0 as shown in figures 3.24 and 3.26 is the mean square value of the variable.

Scale factor errors are are also modeled as a exponentially correlated random variable

with very long correlation time [36]. The correlation time Tsc is taken as 20000 seconds

and the mean square value σ2
sc is taken as 1e-4.

Ṡ = − 1

Tcsc
S + ηsc (3.66)

E[η2
sc] = 2

σ2
S

Tcsc
(3.67)

3.5.4 Mechanization Equations Revisited

Using the gyro and accelerometer model developed in the last subsection given by equa-

tions 3.61 and 3.62, true angular velocities and accelerations needed for mechanization

equations 3.37 and 3.40 can be expressed in terms of raw signals from the IMU and IMU

error sources. IMU error sources are estimated by fusing IMU and GPS information in a

Kalman filter and are used to correct the raw angular velocities and linear acceleration

data from IMU sensors for use in mechanization equations. From equation 3.61, the true

angular velocity can be written as:

ω =
(ω̃ − bω)

(1 + Sω)
(3.68)

Similarly, the true acceleration can be expressed as:

f b =
(f̃ b − bfb)
(1 + Sf )

(3.69)
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The specific force in navigation frame fn needed for equation 3.40 can be computed

using equation 3.43.

3.5.5 Navigation Error Equations Revisited

The navigation error equations have to be modified to accommodate IMU error sources.

In this section, the navigation error equations are extended to include the errors in IMU

sensor bias and scale factor estimates.

From equation 3.61, the error in rotation rate error estimate can be expressed as:

δωbib = δ(ω̃ − ω)

= ωδSω + δbω + ηω (3.70)

Similarly, using equation 3.62, the error in acceleration error estimate can be written

as:

δf b = δ(f̃ b − f b)

= f bδSf + δbf + ηf (3.71)

Substituting the error expressions from equation 3.70 into the orientation error equa-

tion 3.55 and neglecting terms ωnin and δωnin as their magnitude is small compared to the

noise present in the system, an updated equation for the misalignment angles is obtained.

Ψ̇ ≈ −Cn
b (ωδSω + δbω + ηω) (3.72)
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On similar lines, equation 3.71 is substituted into equation 3.57 to give an updated

equation for velocity errors.

δv̇ = −ΥCnb f b +Cn
b (f

bδSf + δbf + ηf ) (3.73)

In the previous sections, GPS and INS systems have been described along with a

characterization of errors in these systems. A Kalman filter framework is developed

in the next section which fuses the measurements from these two systems to obtain a

optimal estimate of the vehicle position in the least-squares sense.

3.6 GPS INS Integration

A Kalman filter framework is now presented that fuses the information from GPS and

the INS. Vehicle orientation, velocity, position, gyro biases, accelerometer biases, gyro

scale factors and accelerometer scale factors are chosen as states to be estimated. At each

time step, the mechanization equations 3.37 and 3.40 are used to advance the estimates

of the states using the current best estimate of errors in these states. The Kalman filter

algorithm only works on the errors in the filter states. In the prediction step, the errors in

the states are predicted using the governing differential equations modeling the states till

the time the next GPS measurement update is available. These equations are presented

shortly. The difference between the GPS measurements and the predicted value of those

measurements is used as a measurement for the correction step of the Kalman filter.
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3.6.1 State Update Equations

At each time step, the state of the system is updated using mechanization equations

(3.37,3.40) with corrected IMU measurements (equations 3.68, 3.69) and the IMU error

state differential equations (3.64,3.66). These equations are given below in the component

form for all of the states.

The orientation Euler angles are updated using equation 3.37 which is reproduced

below for easy reference.

φ̇ = (ωy sin(φ) + ωz cos(φ)) tan(θ) + ωx

θ̇ = ωy cos(φ)− ωz sin(φ)

ψ̇ = (ωy sin(φ) + ωz cos(φ)) sec(θ) (3.74)

where the angular velocities ωx, ωy, ωz are calculated using equation 3.68.

The velocity and position are updated using equation 3.40. Terms ωnie and ωnen are

neglected as they are small compared to noise present in the measurements of the low-

cost IMU used in this study. After neglecting these terms, the equation can be written

in the component form as:

v̇N = fN (3.75)

v̇E = fE (3.76)

v̇D = fD + g (3.77)

ẋN = vN (3.78)
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ẋE = vE (3.79)

ẋD = vD (3.80)

Here the specific forces are calculated using equation 3.43 reproduced here.

[

fn fe fD

]T

= Cn
b

[

fx fy fz

]T

(3.81)

where fx, fy, fz are calculated using equation 3.69.

The gyroscope and accelerometer biases are updated using equation 3.64, reproduced

here.

ḃω = − 1

Tcωbω
(3.82)

ḃf = − 1

Tcf
bf (3.83)

where bω and bf are the biases in gyroscopes and accelerometers respectively.

The gyroscope and accelerometer scale factors are updated using equation 3.66:

Ṡω = − 1

Tscω
Sω (3.84)

Ṡf = − 1

Tscf
Sf (3.85)

3.6.2 State Space Model

The state space model for errors in the 21 states being estimated is presented here. The

errors in orientation and velocity states are given by equations 3.72 and 3.73. Errors in
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position are given by equation 3.58. Errors in biases and scale factors are derived by

using the δ operator on both sides of equations 3.64 and 3.66, and can be expressed as:

δḃω = − 1

Tcω
δbω + ηbω (3.86)

δḃf = − 1

Tcf
δbf + ηbf (3.87)

δṠω = − 1

Tscω
δSω + ηscω (3.88)

δṠf = − 1

Tscf
δSf + ηscf (3.89)

Using the equations given above, the state space model of the error states can be

written as:
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δṠω

δṠf
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where Ξ is given by the following equation:

Ξ =
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(3.92)

The process noise spectral density is given by the following equation:

Q(t) =
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0 0 0
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(3.93)

The parameter values for this model have been identified using the characterization
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done earlier in this chapter, and are given in the table 3.2 for easy reference.

Table 3.2. Parameter values for MEMS IMU
Parameter Value Parameter Value

σωx 5.47 deg/hr−1/2 Tcfy 1259 s

σωy 6.02 deg/hr−1/2 σ0bfz
0.0039 m/s2

σωz 6.12 deg/hr−1/2 Tcfz 823 s

σfx 0.28 m/s/hr−1/2 σscωx 0.01

σfy 0.25 m/s/hr−1/2 Tcscωx 20000 s

σfz 0.27 m/s/hr−1/2 σscωy 0.01

σ0bωx
167.06 deg/hr Tcscωy 20000 s

Tcωx 1105 s σscωz 0.01
σ0bωy

116.70 deg/hr Tcscωz 20000 s

Tcωy 995 s σscfx 0.01

σ0bωz
110.22 deg/hr Tcscfx

20000 s

Tcωz 779 s σscfy 0.01

σ0bfx
0.0205 m/s2 Tcscfy

20000 s

Tcfx 1343 s σscfz 0.01

σ0bfy
0.009 m/s2 Tcscfz

20000 s

3.6.3 Measurement Model

GPS velocity and position measurements are used in the corrector step of the Kalman

filter. Low-cost GPS receivers only provide horizontal components of the vehicle velocity.

Therefore, only the horizontal components of the velocity along with 3D position of the

vehicle are used as measurements.

Denoting the measurements from the GPS by zGPS, the measurement vector can be

written in component form as:

zGPS =

[

vNGPS vEGPS pNGPS pEGPS pDGPS

]T

(3.94)

where vNGPS , vEGPS are the North and East component of the vehicle velocity and
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pNGPS , pEGPS , pDGPS are the North, East and Down coordinates of the vehicle position.

An estimate of these measurements are available from the state update step using

mechanization equations denoted by zIMU:

zIMU =

[

vNIMU
vEIMU

pNIMU
pEIMU

pDIMU

]T

(3.95)

where each term denotes the corresponding estimates of GPS measurements by the

IMU mechanization equations. At each measurement update, these measurements are

compared to get the measurement differences denoted by δz:
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(3.96)

These measurement differences can be expressed in terms of velocity and position

error states of the system as:

δz =







02×3 −I2×2 02×1 03×3 03×12

03×3 −03×2 03×1 −I3×3 03×12






δx = Hδx+ ηmeas (3.97)

where ηmeas = [ηGPSvN ηGPSvE ηGPSpN ηGPSpE ηGPSpD ] is the measurement noise with
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variance vector σGPS
2 given by equations 3.27 and 3.34 and can be written as:

σGPS
2 =
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(3.98)

where notion H̃i×j refers to the element in ith row and jth column of matrix H̃ defined

in equation 3.27.

The value of the measurement noise variance vector were characterized in the GPS

error characterization and the values are given in table 3.3. Matrix H̃ is calculated using

data from GPS at each measurement instant using equations 3.21, 3.23 and 3.27.

Table 3.3. Parameter values for GPS Measurement Errors
Parameter Value

σv 0.5 m/s
σURE 5 m

3.6.4 The Kalman Filter

A discrete Kalman filter has been used to fuse the GPS and IMU measurements. The

state space model of the system given by equation 3.90 has the form:

δ̇x = Fδx+Gw (3.99)

As the data acquisition and processing happens inside the computer in the digital
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domain, this equation is converted into the discrete form as [27]:

δxk+1 = Φkδxk + Γkwk (3.100)

where Φk is the state transition matrix given by:

Φk = eFT = I+ FT +
F2T 2

2!
+ . . . (3.101)

and Γk is given by:

Γk = GT +
FGT

2
+ · · · (3.102)

where T is the sampling time interval and I is an identity matrix.

The discrete form of the process noise covariance is calculated using the process noise

spectral density given by equation 3.93 as:

Qk =

∫ T

0
Φ(τ)GQ(τ)GTΦT(τ)dτ (3.103)

For small sampling interval T, the process noise covariance given by equation 3.103 can

be approximated as [27]:

Qk = Γk

Q

T
ΓT

k (3.104)

The discrete form of the measurement equation 4.4 is given by:

δzk = Hkδxk + ηmeas (3.105)
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where Hk = H. The process noise variance is denoted by Rk and is given by:

Rk = σGPS
2 (3.106)

where σGPS
2 is given by equation 3.98.

In the prediction step, the error state and corresponding covariance estimate is ex-

trapolated using the following equations [33]:

δx̂k(−) = Φk−1δx̂k−1(+) (3.107)

Pk(−) = Φk−1Pk−1(+)ΦT
k−1 +Qk−1 (3.108)

where (−) notation denotes the predicted state estimates and (+) notation denotes the

corrected state estimates for the Kalman filter.

As the sample rate of IMU (200 Hz), is much higher than the rate at which GPS

provides position and velocity information (5 Hz), the predictor step is repeated until

the next GPS measurement is available.

In the corrector step, the GPS measurements are used to correct the IMU only error

estimates. This is accomplished by forming innovations given by equation 3.96, which

are compared with the predicted innovations using estimates from the prediction step

[33].

δx̂k(+) = δx̂k(−) +Kk [δzk −Hkδx̂k(−)] (3.109)
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Pk(+) = [I−KkHk]Pk(−) (3.110)

Kk = Pk(−)HT
k

[
HkPk(−)HT

k +Rk

]−1
(3.111)

3.6.5 Initial Conditions

Orientation estimates are needed for initial IMU alignment. Averaged accelerometer

measurements are used to calculate the initial roll and pitch angles as follows [9, 13]:

φ0 = − sin−1

(

f̄ by
g

)

(3.112)

θ0 = − sin−1

(

f̄ bx
g

)

(3.113)

where f̄ bx and f̄ by are the averaged measurements from x and y axis accelerometers respec-

tively and g is the gravity constant. Initial alignment for yaw was achieved by driving

the vehicle in straight line and using the averaged vehicle velocity vector angle as the

initial yaw angle of the vehicle. The vehicle is stationary at the beginning of the ex-

periment and the position is known from GPS measurements. Run-to-run bias variance

characterized in section 3.5 was used in setting the initial variance on gyroscope and

accelerometer bias state estimates in the Kalman filter.

3.6.6 State Correction

After each corrector step of the error state Kalman filter, the state of the system obtained

after state update step in subsection 3.6.1 is corrected using the estimates from the error

state Kalman filter. For orientation, a corrected body to navigation frame transformation



80

is calculated using equation 3.53:

Cb
n = (I−Υ)−1

C̃b
n (3.114)

=

















a11 a12 a13

a21 a22 a23

a31 a32 a33

















(3.115)

Using equation 3.36, the corrected Euler angles for vehicle orientation are calculated as:

φ(corr) = arctan
a23

a33
(3.116)

θ(corr) = − arcsin a13

ψ(corr) = arctan
a12

a11

Velocity and position states are corrected as follows:

vne (corr) = vne − δv (3.117)

pne (corr) = pne − δp (3.118)

Bias and scale factor states are corrected using the following equation:

b(corr) = b+ δb (3.119)

S(corr) = S+ δS (3.120)

Results from numerical simulations using this Kalman filter are presented in the next
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section.

3.7 Numerical Simulations

To verify the correctness and performance of the Kalman filter presented above against

known truth values, numerical simulations have been performed for a hypothetical vehicle

trajectory. Accelerometer and gyroscope data are extracted from the trajectory and then

errors are added to this data according to the IMU models given by equations 3.61 and

3.62. The performance criterion is chosen to be the ability of the filter to estimate vehicle

orientation and IMU biases and scale factors.

The simulated trajectory of the vehicle is shown in figure 3.29. It consists of circular

turns in opposite directions to provide sufficient excitation for all the IMU error sources

to be observable. The velocity of the vehicle is also shown in the figure.
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Figure 3.29. Hypothetical trajectory and velocity of the vehicle

Figure 3.30 shows the errors in roll, pitch and yaw angles of the vehicle and the

corresponding 1σ error bound estimated by the Kalman filter. It can be seen from the

figure that the true errors are well within the bound estimated by the filter. The yaw

error plot shows that the true error as well as the estimated error of the yaw angle is

high around simulation time 75 seconds and 200 seconds. Taking a look at the vehicle
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trajectory reveals that the vehicle is traveling straight during those times at constant

speed. As the yaw angle is not observable without longitudinal or lateral acceleration

[46], error accumulates in the yaw angle estimate while the vehicle is driving straight.

As soon as the vehicle starts taking turns, resulting in lateral acceleration, the yaw angle

again becomes observable and true and estimated values of yaw error reduce quickly.
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Figure 3.30. Comparison of true errors and estimated 1σ bounds

Figure 3.31 shows the bias estimates of the Kalman filter along with the true values

for those biases for gyroscopes and accelerometers. It can be inferred from the figure

that the bias estimates converge to the true values for all but z-axis accelerometer. The

reason for the z-axis discrepancy is discussed in the next paragraph.

Figure 3.32 shows the scale factor estimation performance of the Kalman filter. It

can be seen from the figure that the scale factor values converge to the true values except

for the z-axis accelerometer. As the simulated vehicle trajectory did not have sufficient

excitation in the z-direction, the scale factor and bias estimates for the z-axis accelerom-

eter were not observable individually. The combination however was observable as can

be seen by the fact that the error due to the scale factor estimation error (calculated by

multiplying the value of z-axis acceleration (approx. 9.8 m/s2) with the error in scale

factor estimation as shown in figure 3.32) is equal and opposite to the error due to bias
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Figure 3.31. Bias estimation performance

estimation error.
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3.7.1 Yaw Aiding Using GPS Horizontal Velocity Direction

As observed from figure 3.30, vehicle yaw angle is not observable without sufficient lon-

gitudinal or lateral acceleration. Low magnitudes of longitudinal and lateral velocities

imply that the vehicle is traveling at slowly varying speeds along a trajectory with low

radius of curvature. Under these situations, the velocity angle is a very good approx-

imation of the vehicle yaw angle [35] and the loss of observability in yaw angle is not

a severe limitation assuming that the vehicle yaw angle corresponds to the direction of

travel.

Specifically, the direction of horizontal GPS velocity can be calculated as:

vGPS∠ = arctan(
vEGPS
vNGPS

) (3.121)

Let δvNGPS and δvEGPS be the errors in the North and East GPS velocity. Also,

let vGPS∠̃ be the velocity direction calculated using GPS velocities with errors. The

expression of heading error δvGPS∠ can be derived as follows:

δvGPS∠ = vGPS∠̃− vGPS∠ (3.122)

= arctan

(

vEGPS + δvEGPS
vNGPS + δvNGPS

)

− arctan

(

vEGPS
vNGPS

)

≈ arctan

(

δvEGPSvNGPS − δvNGPSvEGPS
v2
NGPS

+ v2
EGPS

)

≈ δvGPS
vGPS

(3.123)

Here δvGPS is the error in GPS velocity and vGPS =
√

v2
NGPS

+ v2
EGPS

is the hor-
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izontal GPS velocity. Using this equation, the standard deviation of the GPS velocity

vector can be calculated as:

σvGPS∠ ≈
σvGPS
vGPS

(3.124)

When the vehicle is undergoing horizontal acceleration, the yaw angle is observable.

So, a term incorporating the magnitude of horizontal vehicle acceleration has been added

to the standard deviation of velocity direction to reduce the effect of yaw aiding when

the vehicle is undergoing quick dynamic maneuvers or hard accelerations. A constant

of multiplication is applied to the term in equation 3.124 to increase the uncertainty for

low GPS velocities (under 3m/s). The changed form of 3.124 can be written as:

σvGPS∠ ≈ K1
σvGPS
vGPS

+K2

√

f2
n + f2

e (3.125)

where fn and fe are accelerations in the North and East directions. The values of K1

and K2 were chosen to be 0.07 and 0.1. The chosen value of K1 gives an uncertainty (1σ)

value of approximately 0.5 degrees using equation 3.125 assuming zero acceleration at a

vehicle speed of 3m/s. The chosen value of K2 adds an uncertainty (1σ) of approximately

6 degrees for every 1 m/s2 horizontal acceleration of the vehicle.
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For yaw aiding, the measurement model becomes:
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The above equation can be written in terms of error state model as:

δz =


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δx = Hδx+ ηmeas (3.127)

The measurement noise covariance matrix can be modified as:

σGPS
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(3.128)

Figure 3.33 shows the performance of the Kalman filter with yaw aiding using hori-
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zontal GPS velocity direction. It can be clearly seen from the yaw angle estimate that

the yaw angle errors have been considerably reduced compared to figure 3.30 where no

yaw aiding was used. Vehicle yaw is well estimated even when the vehicle is traveling on

approximately straight line paths with constant velocity.
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Figure 3.33. Comparison of true errors and estimated 1σ bounds with yaw aiding

In the next section, experimental data collected at the PTI using a Nissan Altima SE

sedan instrumented with EB-85 low-cost GPS receiver and a MEMS IMU is processed

using the Kalman filter and results compared with the Novatel SPAN system, a high-

performance GPS/IMU system.

3.8 Experimental Results

Experiments were conducted at the Pennsylvania Transportation Institute’s test track

facility where data from the MEMS IMU as well as the low-cost GPS receiver were

collected and time stamped using a Digital Signal Processor (DSP) setup. The common

time stamp from the DSP makes sure that the data is aligned in time. This data was

then processed off-line using the Kalman filter presented above and results compared

with a high-performance GPS/IMU system placed side by side.

Data was collected at a sample rate of 200 Hz from the MEMS IMU and at 5 Hz
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from the low-cost GPS receiver. Results from two test runs for several minutes of data

are presented below.
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Figure 3.34. Trajectory of the vehicle at the test track: Run 1

Figure 3.34 shows the vehicle trajectory during the course of the experiment. Figure

3.35 shows the comparison of the vehicle orientation between the low-cost and high-

performance GPS/IMU systems. It can be seen from the figure that there are large

variations of the order of 8 degrees in roll angle, and the low-cost GPS/IMU system is

able to track the roll angle profile very well. The variations in pitch angle are relatively

small and are of the order of 1 to 2 degrees. Although the pitch angle estimates from

the low-cost GPS/IMU system follow the general trend of the pitch angle, the errors in

pitch angle as seen in figure 3.36 are of the order of 0.5 to 1 degrees. The yaw angle

estimates track the large variations in yaw angle very well except the regions where

the vehicle is moving straight and the errors and error estimates tend to grow. This un-
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observability in the yaw angle while moving straight with low accelerations was discussed

in the numerical simulations section and is improved by yaw-aiding as shown later in

this section.

Figure 3.36 shows the errors in the orientation angle estimates from the low-cost

GPS/IMU system when the estimates from the high-performance GPS/IMU system are

taken as the truth value. This assumption is valid as the error estimates from the high-

performance GPS/IMU system are of the order of 0.01 degrees and are negligible as

compared to the error estimates from the low-cost GPS/IMU system which are of the

order of 1 to 2 degrees. The figure also shows the 1σ value of error estimates from

the low-cost GPS/IMU system. As shown in the figure, the standard deviation for roll,

pitch and yaw errors are 0.681 degrees, 0.465 degrees and 3.459 degrees respectively. By

comparing the yaw estimates in figure 3.35 and yaw errors in figure 3.36, it can be seen

that the yaw error as well as the error estimate tends to increase when the vehicle is

driving straight.
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Figure 3.35. Comparison of true and estimated orientation angles: Run 1

Figures 3.37 and 3.38 show the comparison of estimated and true velocity and velocity

errors. Again, the measurements from the high-performance GPS/IMU system are taken

as truth values. It can be seen from the figures that the North and East velocities are
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Figure 3.36. Comparison of true and estimated errors in orientation: Run 1

estimated with an accuracy of 0.3m/s and the vertical velocity is estimated with an

accuracy of 1m/s approximately. It should be noted that the vertical velocity is not

output by the GPS, and is an estimate resulting from the coupling of GPS and IMU

systems just like the orientation angles. The 3σ error bound estimated by the Kalman

filter is well above the actual error values and is approximately 1m/s for North and East

velocities and approximately 2m/s for vertical velocity.
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Figure 3.37. Comparison of true and estimated velocity: Run 1
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Figure 3.38. Comparison of true and estimated errors in velocity: Run 1



91

Figures 3.39 and 3.40 show the comparison of estimated and true position and posi-

tion errors. It can be seen from the figures that the North, East and vertical positions

can be calculated with an accuracy of 5m approximately. Figure 3.40 shows that the

true position error exceeds the 3σ estimated error over some time intervals. This error is

believed to be the result of the assumption that the GPS position and velocity errors are

not auto-correlated. It was pointed out in section 3.3.2 that the errors in GPS position

and velocity solution are auto-correlated and modeling them as white noise will lead to

errors.
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Figure 3.39. Comparison of true and estimated position: Run 1
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Figure 3.40. Comparison of true and estimated errors in position: Run 1

Figures 3.41 and 3.42 show the gyroscope and accelerometer bias and scale factor

estimates which tend to converge to steady state values after about 100 seconds of the

start of the experiment. The z-axis accelerometer shows a slight increase in value over

time and is coupled with the scale factor estimate which shows a similar increase. The
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un-observability of z-axis accelerometer bias and scale factor individually was discussed

in the numerical simulations section and is observed in experiments too.
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Figure 3.41. Gyroscope and accelerometer bias estimates: Run 1

7850 7900 7950 8000 8050
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

UTC Time (s)

F
a

c
to

r

x−axis Gyro Scale Factor

7850 7900 7950 8000 8050
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

UTC Time (s)

F
a

c
to

r

y−axis Gyro Scale Factor

7850 7900 7950 8000 8050
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

UTC Time (s)

F
a

c
to

r

z−axis Gyro Scale Factor

7850 7900 7950 8000 8050
−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

UTC Time (s)

F
a

c
to

r

x−axis Accelerometer Scale Factor

7850 7900 7950 8000 8050
−0.1

−0.05

0

0.05

0.1

0.15

UTC Time (s)

F
a

c
to

r

y−axis Accelerometer Scale Factor

7850 7900 7950 8000 8050
−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

UTC Time (s)

F
a

c
to

r

x−axis Accelerometer Bias

Figure 3.42. Gyroscope and accelerometer scale factor estimates: Run 1

As was discussed in the numerical simulations section, vehicle velocity direction can

be used to improve the yaw angle estimates when the vehicle is undergoing low lateral



93

and longitudinal accelerations. Yaw aiding was implemented and the results are shown in

figures 3.43 and 3.44. As observed from figures, while the roll and pitch angle estimates

do not change appreciably, the yaw angle estimates while the vehicle is driving straight

are improved considerably. The figures are drawn to the same scale as figures 3.35 and

3.36 for purposes of comparison. The standard deviation of the yaw angle error has been

reduced to 1.297 degrees.
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Figure 3.43. Comparison of true and estimated orientation angles with yaw aiding: Run 1
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Figure 3.44. Comparison of true and estimated errors in orientation with yaw aiding: Run 1

Figures 3.45 shows the vehicle trajectory during another experiment and figures 3.46

through 3.55 show the results for this run. The improvement in yaw angle estimates

for trajectories with low longitudinal and lateral accelerations is shown in figure 3.56.

This figure shows a zoomed in view of yaw angle estimates in figures 3.46 and 3.54 on a

stretch of vehicle trajectory when the vehicle is going straight. The improvement in the

yaw angle estimates can be clearly seen in the figure.
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Figure 3.45. Trajectory of the vehicle at the test track: Run 2
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Figure 3.46. Comparison of true and estimated orientation angles: Run 2
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Figure 3.47. Comparison of true and estimated errors in orientation: Run 2
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Figure 3.48. Comparison of true and estimated velocity: Run 2
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Figure 3.49. Comparison of true and estimated errors in velocity: Run 2
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Figure 3.50. Comparison of true and estimated position: Run 2
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Figure 3.51. Comparison of true and estimated errors in position: Run 2

3.9 Conclusions

This chapter has demonstrated the use of a low-cost MEMS IMU and GPS receiver

for vehicle localization. Angular velocity and acceleration data from the MEMS IMU
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Figure 3.52. Gyroscope and accelerometer bias estimates: Run 2
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Figure 3.53. Gyroscope and accelerometer scale factor estimates: Run 2

is fused with horizontal velocity and 3D position information from the low-cost GPS

receiver using a Kalman filter to estimate vehicle position, orientation and IMU error

states. The velocity and position errors of a low-cost GPS receiver are characterized by

comparing the measurements from the low-cost GPS receiver with measurements from
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Figure 3.54. Comparison of true and estimated orientation angles with yaw aiding: Run 2
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Figure 3.55. Comparison of true and estimated errors in orientation with yaw aiding: Run 2
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Figure 3.56. Comparison of Yaw angle estimates with and without yaw aiding: Run 2

a high-performance GPS/IMU system. The IMU errors are characterized by using Al-

lan variance and auto-correlation techniques. As the vehicle velocity and position are

directly observable, the performance criterion is chosen to be the ability of the Kalman

filter to estimate vehicle orientation and IMU biases and scale factors. It was shown

by conducting experiments at the Pennsylvania Transportation Institute test track that

low-cost GPS/IMU Kalman filter can estimate the roll and pitch angles with 1σ error

bound of approximately 1 degree and yaw angle with 1σ error bound of approximately
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3.5 degrees. The yaw angle estimate was shown to be improved by using velocity direc-

tion as yaw angle measurement. This yaw aiding significantly improves the yaw angle

estimates for portions of driving where the vehicle is undergoing low longitudinal and

lateral accelerations e.g. straight-line driving. It was shown during experiments that the

yaw angle estimate with yaw aiding has a 1σ error bound of approximately 2 degrees.

The work in this chapter shows that the accuracy of vehicle position and orientation

estimates is limited by the accuracy of gyroscopes as well as the GPS position, velocity

information. The position and orientation estimates can be improved significantly if di-

rect measurements of vehicle orientation are available. As the GPS position and velocity

estimates have errors of the order of 5 to 10 meters and 0.1 to 0.5 m/s respectively,

performance can be improved markedly if better and independent measurement of vehi-

cle position or velocity can be obtained. Independent measurement of vehicle position

and orientation can also provide redundancy during GPS outages. One such method

of generating independent orientation measurements is using terrain-aided orientation

measurement using vision, and this method is discussed in the next chapter.

Notation

i-frame The inertial reference frame, p. 26

ECEF (e-frame)The Earth Centered Earth Fixed reference frame, p. 26

n-frame The navigation reference frame, p. 26

ENU East-North-Up reference frame or Local Level System (LLS), p. 26

b-frame Vehicle body reference frame, p. 26

ρ(k)(t) Pseudorange measurement from the kth satellite, p. 31
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c Speed of light, p. 31

τ Time of travel of signal from GPS satellites to user GPS receiver, p. 31

δtu(t) User clock offset from GPS Time, p. 31

δt(k) Satellite clock offset from GPS Time, p. 31

I(k)(t) Ionospheric propagation delay for the GPS signal, p. 31

T (k)(t) Tropospheric propagation delay for the GPS signal, p. 31

ε
(k)
ρ (t) Modeling error in the pseudorange measurement equation 3.1, p. 31

ρ
(k)
c (t) Pseudorange measurement for the kth satellite after correcting for satellite

clock offset, p. 32

ε̃
(k)
ρ (t) Modeling error in the pseudorange measurement equation 3.3 after including

tropospheric and ionospheric errors in modeling error, p. 32

r(k) Geometric range from user to the satellite, p. 32

b(t) = cδtu Pseudorange error due to receiver clock bias error, p. 32

xu = (xu, yu, zu) Position of the satellite receiver in the ECEF frame, p. 32

xs
(k) = (x

(k)
s , y

(k)
s , z

(k)
s ) Position of the kth visible satellite in the ECEF frame, p. 32

ρ
(k)
0 Pseudorange estimate using an estimate of user position xu0 and receiver clock

bias b0, p. 33

xu0 Initial estimate of the GPS receiver position, p. 33

b0 Initial estimate of the receiver clock bias, p. 33

xu True position of the GPS receiver, p. 34

b True GPS receiver clock bias, p. 34

δxu Error in the initial estimate of user position by GPS, p. 34

δb Error in the initial estimate of receiver clock bias, p. 34

1(k) = 1(k)(xs
(k),xu0) The estimated line-of-sight unit vector from the initial esti-

mate of the receiver position to satellite k, p. 34

δρ(K) Difference between measured and estimated pseudorange for the kth satellite,
p. 34

G̃ GPS satellite geometry matrix, p. 34

x̂u GPS position estimate, p. 35
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b̂ GPS receiver clock bias estimate, p. 35

σURE Standard deviation of user range error, p. 36

∆xu Error in the GPS position estimate in the ECEF frame, p. 36

∆b Error in the receiver clock bias estimate, p. 36

H̃ Matrix depending entirely on GPS satellite geometry and having an effect on
user position and velocity error covariances, p. 36

∠long Longitude at GPS receiver position, p. 37

∠lat Latitude at the GPS receiver position, p. 37

RL Transformation from ECEF frame to ENU frame, p. 37

R̃L Augmented RL matrix to include identity transformation from the GPS re-
ceiver clock bias term, p. 38

x
(k)
sL Position of the kth satellite in ENU frame, p. 38

xuL Position of the GPS receiver in ENU frame, p. 38

el Elevation of visible GPS satellites, p. 40

az Azimuth of visible GPS satellites, p. 40

ζ Zenith of visible GPS satellites, p. 40

ρ̇(k) Rate of change of pseudorange to the kth satellite, p. 41

ḃ(k)(t) Rate of change of pseudorange error due to kth satellite clock bias, p. 41

ḃ(t) Rate of change of pseudorange error due to receiver clock bias, p. 41

ε
(k)
ρ̇ Pseudorange rate errors due to modeling errors as well as un-modeled errors,

p. 41

ṙ(k) True range rate for the kth satellite, p. 42

vs
(k) Velocity vector for the kth satellite, p. 42

vu GPS receiver velocity, p. 42

∆vuL GPS velocity error in ENU frame, p. 43

∆̇b Rate of change of receiver clock bias estimation error, p. 43

σv Standard deviation of user range rate error, p. 43

φ, θ, ψ Euler angles determining vehicle orientation, p. 53
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ωbnb = (ωx ωy ωz)
T Vector representing the rotational velocity of the vehicle with

respect to the navigation frame expressed in the body frame, p. 53

ωbib Vector representing the rotational velocity of the vehicle with respect to the
inertial frame expressed in the body frame, p. 53

ωbin Vector representing the rotational velocity of the navigation frame with respect
to the inertial frame expressed in the body frame, p. 53

vne Vector representing the velocity of the vehicle with respect to Earth in the
navigation frame. p. 54

fn Accelerations experienced by the vehicle resolved into the navigation frame.
p. 54

f b Accelerations experienced by the vehicle in the body frame p. 54

Cn
b Transformation from the body frame to the navigation frame. p. 54

gnl Local gravity vector at the vehicle location p. 55

g Average gravitational acceleration in the vertical direction at the surface of
the Earth. p. 55

pn = (xN xE xD)T Vector representing vehicle position in the navigation frame.
p. 54

vne = (vN vE vD)T Vector representing the velocity of the vehicle with respect to
Earth in the navigation frame. p. 54

ω̃ Raw measurement from the gyroscope, p. 65

Sω Gyro scale factor, p. 65

bω Gyro bias, p. 65

ηω Gyro noise, p. 65

f̃ b Raw measurement from the accelerometer, p. 65

Sf Accelerometer scale factor, p. 65

bfb Accelerometer bias, p. 65

ηf Accelerometer noise, p. 65

Tcω Time constant for gyroscope first order Gauss-Markov bias model, p. 71

Tcf Time constant for accelerometer first order Gauss-Markov bias model, p. 71

Tscω Time constant for gyroscope scale factor model, p. 71

Tscf Time constant for accelerometer scale factor model, p. 71
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Ψ = (δα δβ δγ)T Vector of misalignment angles between true orientation and
estimated orientation of the vehicle, p. 57

δv = (δvN δvE δvD)T Vector of velocity error states in North, East and Down
directions, p. 58

δp = (δpN δpE δpD)T Vector of position error states in North, East and Down
directions, p. 58

δbω = [δbωx δbωy δbωz ]
T The vector of errors in gyroscope bias estimates in the

body frame, p. 72

δbf = [δbfx δbfy δbfz ]
T Vector of errors in accelerometer bias estimates in the body

frame, p. 72

δSω = [δSωx δSωy δSωz ]
T Vector of errors in gyroscope scale factor estimates in the

body frame, p. 72

δSf = [δSfx δSfy δSfz ]
T Vector of errors in accelerometer scale factor estimates in

the body frame, p. 72

δx = (Ψ δv δp δbω δbf δbf δSω δSf )
T Vector of error states to be estimated

using the Kalman filter, p. 72

Υ Matrix of misalignment angles between true and estimated orientation of the
vehicle, p. 69

δωbib vector denoting the error in the rotation rates given by the IMU, p. 57

σ0 Standard deviation of the Gauss Markov process, p. 64

Tc Time constant of the Gauss Markov process, p. 64

B Bias instability coefficient for IMU sensors, p. 61

N Angle random walk coefficient for IMU sensors, p. 61

Q Quantization constant for IMU sensors, p. 61

ωb =





ωx 0 0
0 ωy 0
0 0 ωz



 The matrix of corrected gyroscopes measurements calcu-

lated using equation 3.68, p. 72

fb





fx 0 0
0 fy 0
0 0 fz



 Matrix of corrected accelerometer measurements calculated

using equation 3.69, p. 72

Tcω






1
Tcωx

0 0

0 1
Tcωy

0

0 0 1
Tcωz




 Matrix of correlation times for gyroscope biases, p. 72
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Tcf
=







1
Tcfx

0 0

0 1
Tcfy

0

0 0 1
Tcfz







Matrix of correlation times for accelerometer biases,

p. 72

Tcscω
=







1
Tcscωx

0 0

0 1
Tcscωy

0

0 0 1
Tcscωz







Matrix of correlation times for gyroscope scale

factors, p. 72

Tcscf
=







1
Tcscfx

0 0

0 1
Tcscfy

0

0 0 1
Tcscfz







Matrix of correlation times for accelerometer

scale factors, p. 72

ηω = [ηωx ηωy ηωz ]
T Gyroscope noise vector, p. 72

σ2
ω = [σ2

ωx σ
2
ωy σ

2
ωz ] Gyroscope noise variance vector, p. 73

ηf = [ηfx ηfy ηfz ]
T Accelerometer noise vector, p. 72

σ2
f =






σ2
fx

0 0

0 σ2
fy

0

0 0 σ2
fz




 Accelerometer noise variance vector, p. 73

ηbω = [ηbωx ηbωy ηbωz ]
T Gyroscope bias noise vector, p. 72

σ2
bω

=






σ2
bωx

0 0

0 σ2
bωy

0

0 0 σ2
bωz




 Gyroscope bias noise variance vector, p. 73

ηbf
= [ηbfx ηbfy ηbfz ]

T Accelerometer bias noise vector, p. 72

σ2
bf

=






σ2
bfx

0 0

0 σ2
bfy

0

0 0 σ2
bfz




 Accelerometer bias noise variance vector, p. 73

ηscω = [ηscωx ηscωy ηscωz ]
T Gyroscope scale factor noise vector, p. 72

σ2
scω

=






σ2
scωx

0 0

0 σ2
scωy

0

0 0 σ2
scωz




 Gyroscope scale factor noise variance vector, p.

73

ηscf
= [ηscfx ηscfy ηscfz ]

T Accelerometer scale factor noise vector, p. 72
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σ2
scf

=






σ2
scfx

0 0

0 σ2
scfy

0

0 0 σ2
scfz




 Accelerometer scale factor noise variance vector,

p. 73

zGPS = [vNGPS vEGPS pNGPS pEGPS pDGPS ]T Measurements from the GPS. North
and East velocity and North, East and Down coordinates of the vehicle posi-
tion, p. 74

zIMU = [vNIMU
vEIMU

pNIMU
pEIMU

pDIMU
]T Estimate of the GPS measurements

from the IMU measurements, p. 75

δz = −[δvN δvE δpN δpE δpD]T Measurement vector for the Kalman filter, p. 75

ηmeas = [ηGPSvN ηGPSvE ηGPSpN ηGPSpE ηGPSpD ] GPS measurement noise vector,
p. 108

σGPS
2 GPS measurement noise covariance, p. 76

Φk State transition matrix, p. 77

T Sampling time of the IMU (5 ms), p. 77

Qk Process noise covariance for the Kalman filter. p. 77

Rk Measurement noise covariance for the Kalman filter. p. 78

δx̂k(−) Error state predicted estimates of the Kalman filter. p. 128

δx̂k(+) Error state corrected estimates of the Kalman filter. p. 78



Chapter4

Orientation Estimation Using Vision

and Inertial Sensors

The work presented in this chapter is an extension of terrain-aided localization meth-

ods applied to vehicle localization during low-speed driving. As discussed in chapter 3,

orientation estimates can be greatly improved if independent measurements of vehicle

orientation angles are available. A method using terrain-aided orientation estimation us-

ing vision is presented in this chapter using positions provided by the GPS. As discussed

in chapter 2, previous algorithms for terrain aided localization are computationally ex-

pensive or have drift issues due to lack of an absolute reference. The method presented

in this chapter resolves those issues by using efficient curve matching techniques and an

absolute terrain reference model such that the orientation estimate of orientation from

rate gyros is improved by fusing measurements obtained by matching horizon features.

Because the rendered image is generated by using an absolute reference, a DEM, this

estimate of vehicle orientation is an absolute estimate, which places an upper bound on
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the covariance of the error in the orientation estimate.

This chapter is organized as follows. Section 4.1 uses a perspective camera model to

develop formulae to estimate the camera movement if the correspondence between image

features are known. Section 4.2 details the method to generate the 3D representation

of the environment. In Section 4.3, an IMU measurement model is developed and IMU

error sources are characterized. Section 4.4 describes image alignment algorithms that

are used to recover the error in the estimated camera position. A kinematic Kalman

filter is developed using vision and inertial measurements in Section 4.5. Results from

numerical simulations are presented in Section 4.6 that verify the performance of the

Kalman filter. Experimental performance results are given comparing state estimates to

the results obtained by using GPS/IMU Kalman filter in Section 4.7. Conclusions are

drawn in the end along with a discussion of limitations and possible improvements of

this work.

4.1 Obtaining Orientation Deviations from Pixel Corre-

spondences in Two Images in Space

This section develops formulae to estimate deviations in vehicle orientation if the corre-

spondence between features in real and rendered images is known. The transformations

presented here are similar to, but simpler than, the work by [47]. One can look at this

problem as trying to find the translation and rotation of the camera which is necessary

to transform the view as seen in a rendered image to the one seen in the real image.

This situation is again equivalent to assuming that the camera is stationary and apply-
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ing a rotation and translation to the world points to emulate the camera motion. In

this analysis, the world and camera coordinate systems are assumed to be right hand

rectangular coordinate systems. It is also assumed that the world points have already

been converted into the camera coordinate system.

More formally, if a point p1 = (x1,y1,z1) in one image corresponds to a point p2 =

(x2,y2,z2) in another image, the following relation between p1 and p2 applies:











x2

y2

z2






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


= R


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

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

+ t (4.1)

=
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
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
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+
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






tx
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









where R represents rotation and t represents translation. The rotation matrix R can

be specified in a number of equivalent ways, but we will follow a method used in vehicle

dynamics [92], where R is specified as three successive rotations around z, y and x-axis

(yaw, pitch and roll) by angles ψ, θ and φ respectively. So, as presented earlier, R can

be written as the product of three separate rotations:

R =





1 0 0

0 cos(φ) sin(φ)

0 − sin(φ) cos(φ)









cos(θ) 0 − sin(θ)

0 1 0

sin(θ) 0 cos(θ)









cos(ψ) sin(ψ) 0

− sin(ψ) cos(ψ) 0

0 0 1



 (4.2)
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Simplifying the above equation:

R =





cos(θ) cos(ψ) cos(θ) sin(ψ) − sin(θ)

− sin(ψ) cos(φ) + sin(φ) sin(θ) cos(ψ) cos(φ) cos(ψ) + sin(φ) sin(θ) sin(ψ) sin(φ) cos(θ)

sin(φ) sin(ψ) + sin(θ) cos(φ) cos(ψ) − sin(φ) cos(ψ) + sin(θ) sin(ψ) cos(φ) cos(φ) cos(θ)



 (4.3)

To present the measurement method mathematically, let (φ0, θ0, ψ0) be the initial

estimate of the vehicle orientation and let (dφ, dθ, dψ) be the orientation deviations es-

timated using curve matching techniques between the two different images. Then the

measurement model can be written as:

R(φm, θm, ψm) = R(dφ, dθ, dψ)R(φ0, θ0, ψ0) (4.4)

Where (φm, θm, ψm) denote the measured vehicle orientation.

The goal of this mathematical analysis is to obtain a method to estimate the deviation

in orientation (dφ, dθ, dψ) of the vehicle at each measurement time step using real and

rendered images and known feature correspondences. It can be safely assumed that

these angular deviations are small (frame rate ≈ 30fps). With this assumption, the

approximations cos(dφ) ≈ 1, cos(dθ) ≈ 1, cos(dψ) ≈ 1, sin(dφ) ≈ dφ, sin(dθ) ≈ dθ and

sin(dψ) ≈ dψ can be made such that, one obtains


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



(4.5)

Using the perspective projection model of a camera shown in Fig. 4.1, the image

coordinates (u1, v1) of the point p1(x1,y1,z1) are given by
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Figure 4.1. Perspective Projection Model

u1 = λ
x1

z1
, v = λ

y1

z1
(4.6)

where λ is the focal length. Using the same model, the image coordinates (u2, v2) of

the point p2(x2,y2,z2) are given by

u2 = λ
x2

z2
, v2 = λ

y2

z2
(4.7)

Using values of x2, y2 and z2 from equation (4.5), u2 and v2 can be written as:

u2 = λ
x1 + dψy1 − dθz1 + tx
dθx1 − dφy1 + z1 + tz

(4.8)

v2 = λ
−dψx1 + y1 + dφz1 + ty
dθx1 − dφy1 + z1 + tz

Equations 4.8 are valid for the general case, for any features observed at any distance.

However, in this work we are using distant horizons (far off mountains) as image features.
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This choice is made because such features almost never change, and since the distances

are large, it is an easier problem to solve and therefore more amenable to real-time state

estimation. Also, as the contrast is usually very good between the surrounding sky and

the horizon, this boundary is relatively easy to detect. To simplify equations 4.8 for the

special case we are considering, we divide the numerator and denominator by z1 and use

equation (4.6):

u2 = λ
u1 + dψv1 − dθλ+ λ txz1
dθu1 − dφv1 + λ+ λ tzz1

(4.9)

v2 = λ
−dψu1 + v1 + dφλ+ λ

ty
z1

dθu1 − dφv1 + λ+ λ tzz1

Because horizon features are assumed to be very distant compared to the translational

distance of the camera, we can safely assume that tx
z1
≈ 0,

ty
z1
≈ 0 and tz

z1
≈ 0. Even if

images are acquired and processed at a very low frame rate of 10 frames per second (fps),

the distance moved by the vehicle at highway speeds, 29 m/s (60 mph), per frame will

be 2.9 meters per sampling interval, which is small compared to a feature a few thousand

meters away, for example. With this assumption, the above equation reduces to

u2 = λ
u1 + dψv1 − dθλ
dθu1 − dφv1 + λ

(4.10)

v2 = λ
−dψu1 + v1 + dφλ

dθu1 − dφv1 + λ
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A simplified estimation formula can be obtained by dividing the above two equations,

u2

v2
=

u1 + dψv1 − dθλ
−dψu1 + v1 + dφλ

(4.11)

Rearranging and grouping terms associated with the camera orientation parameters

(dφ, dθ, dψ), we obtain

[

λu2 λv2 −u2u1 − v2v1
]


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







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= v2u1 − u2v1 (4.12)

We can combine N such equations into a matrix equation (4.13).

Aθ = B (4.13)

where

θ =











dφ

dθ

dψ











A =















λu2 λv2 −u2u1 − v2v1

λu4 λv4 −u4u3 − v4v3
...

...
...

λu2N λv2N −u2Nu2N−1 − v2Nv2N−1














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B =
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This matrix equation is a system of linear equation with more equations than unknowns,

e.g. an over-determined system which can be solved using the pseudo-inverse method

to get a least squares error estimate. The equation (4.13) can be solved using weighted

least squares as

θ = (A′WA)−1A′WB (4.14)

where

W = diag (w1, w2, · · · , wi, · · · , wN )

W is a diagonal matrix containing weights for each of the individual equations of the

form 4.12 and is a measure of accuracy of pixel correspondence.

If we assume perfect knowledge of point correspondences, (A′WA) will lose rank

under either of the following conditions. The proof has been given in the appendix.

• v2N = a× u2N where a is a scalar

• u2Nu2N−1 = −v2Nv2N−1

To confirm that the large-distance assumptions central to the above formulation are
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valid, a numerical test case was conducted. First, a grid of 2500 points forming a square

(1000m x 1000m) was created. Images were generated using a perspective projection

model by placing a camera at a distance of 2000m from the plane containing all the

points. The camera was rotated through several sets of small rotation angles and images

were generated. Normally distributed pixel noise with zero mean and variance of 5 pixels

was added to the generated images. Equation (4.14) was used to estimate the roll, pitch

and yaw angles from image coordinates. As shown in Fig. 4.2, the estimated roll, pitch

and yaw angles agree very well with the actual roll, pitch and yaw of the camera for small

rotation angles. As the formulation given by equation 4.14 is obtained after linearization

based on small angle assumptions, the covariance matrix (A′A)−1 gives estimates of error

covariance which are much lower than the actual error. Therefore, the covariance matrix

(A′A)−1 cannot be used to provide bounds on error in angular deviations (dφ, dθ, dψ).
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Figure 4.2. Error in roll, pitch and yaw estimation as a function of rotation angle
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4.2 Terrain Representation and Rendering

To experimentally validate the vision-inertial Kalman filter, a 3-D representation of the

terrain around the test-site is required. All data used in the experiments described

shortly were collected at the Pennsylvania Transportation Institute (PTI) Test track.

A representation of the terrain around the test-track was generated using the National

Elevation Dataset (NED) [20]. The NED provides data in a seamless form, e.g. the

gaps in Universal Transverse Mercator (UTM) zones have been filled using interpolation

techniques with a consistent datum, elevation unit and projection. The NED has a

maximum resolution of one arc-second (approximately 30 meters) for the contiguous

United States. The NED is generated from Digital Elevation Models by the USGS

and updated regularly to provide seamless elevation data. Digital Elevation Models

are generated either by interpolating Digital Line Graphs contours or from electronic

imaging sensor systems. NED is based on a bare earth model, i.e the elevation data does

not take into account the height of any vegetation on the ground [20]. A more current

form of elevation data which takes into account the height of the vegetation is given

by Shuttle Radar Topography Mission (SRTM) elevation dataset [98]. Care has been

taken to account for the fact that NED dataset uses NAD83 as a datum whereas SRTM

dataset uses WGS84 as a datum. Although the difference between the two datums is

negligible over North America, WGS84 has been used as a datum to calculate the UTM

coordinates in this study.

Image rendering is achieved using a perspective projection model of a camera. The

coordinates of all the points of the surface terrain model are transformed into the camera
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Figure 4.3. 3D Model of Area Around PTI Test Track (Colormap shows Height)

coordinate system using the roll, pitch and yaw estimates. The subset of points which

are visible within the rendered image is constrained to be the same as the camera field of

view. Internal parameters of the real camera were determined using the four-step camera

calibration procedure as given by [43]. These points are then projected onto the image

plane using the camera parameters to generate a 720x480 pixel rendered image. As an

example, Fig. 4.4 shows a rendered image along with the extracted horizon feature. As

of present, the 3-D representation is a surface terrain model with only height information

taken from SRTM.

Rendered image with horizon feature
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Figure 4.4. Image rendered using perspective projection model

Fig. 4.5 shows the comparison of horizon lines generated using NED and SRTM
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elevation datasets as viewed from the same location at the PTI test track. As can be

seen clearly, the two horizon lines almost overlap each other, mostly because the height of

the tree lines (one of the sources of DTM errors) is small relative to the terrain features.

Although the experimental results presented in this work are not affected by the choice

of elevation dataset, SRTM elevation dataset should be used in case the height of the

tree lines is large or an abrupt start or end of the tree lines introduces new features in

the horizon profiles e.g. cut lines due to tree harvesting. All results presented in this

paper are derived using the SRTM elevation dataset.
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Figure 4.5. Comparison of horizon lines from NED and SRTM datasets

4.2.1 Horizon Line Extraction and Rendering

Horizon line extraction is a well studied problem [114],[5], and common methods use

image enhancement, followed by edge detection and determination of uniformity of cer-

tain properties like pixel intensity, color or texture in the regions defined by the detected

edges. As horizon extraction techniques are not the focus of this work, it has been as-

sumed that a clear view of the sky is available and there is a good contrast between sky

and horizon features allowing simple extraction methods. The algorithm used in this
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study seeks to find the horizon by searching down each pixel column of the image for an

intensity change. In this study, a threshold value of 180 gray-scale units was used. The

edge so extracted is smoothed using a second-order butterworth low-pass spatial filter

to remove pixel noise.

4.2.2 Rendering

Rendering can be achieved using different rendering engines, e.g. Virtools or graphics

libraries like OpenGL. High frame rate rendering has been demonstrated on present day

gaming engines. A review of real-time terrain rendering techniques can be found in [21].

In the present study, points from the USGS DEM grid are projected using the camera

perspective projection model and highest points along each column are used to form the

virtual horizon feature as shown in Fig. 4.4.

4.3 The IMU Measurement Model

This work presented in this chapter focuses primarily on estimation of a vehicle’s orien-

tation, and the key component in the IMU for estimating angular positions is the gyro.

The error sources observed in gyros and other rate sensors have well-known models: gyro

noise is frequently modeled as having a wide band component and a bias drift component

[6, 32, 11, 90].

Equation 4.15 gives gyro output rgyro in terms of true vehicle rotation rate r, a bias

term bgyro and a wide-band noise term (white noise) (wgyro). We are assuming that

errors due to cross-coupling, sensor scale factor and sensor misalignment are negligible.
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rgyro = r + bgyro + wgyro (4.15)

ḃω = nbω

E[n2
bω ] = σ2

b

E[w2
gyro] = σ2

gyro

(4.16)

The bias drift was modeled as a random walk driven by white noise nbω . The wide-

band noise wgyro is assumed to be normally distributed with zero mean and variance

denoted by σ2
gyro. The noise variances were characterized using Allan variance analysis.

4.4 Orientation Estimates using Vision: Horizon Matching

To complement measurements from inertial sensors, orientation measurements are also

obtained by comparing real and rendered images. As shown in section 4.1, we can

estimate the deviations in roll, pitch and yaw of the vehicle by comparing real and

rendered images if we know the feature correspondences in the two images. To obtain

feature correspondences, the horizon curves extracted from the real and rendered images

are matched. Curve matching techniques have been used extensively for image/map

correspondence [105, 19, 28, 89]. Refinements have also been studied that address map-

specific features; for example a curve matching algorithm is described in [113, 94] which

is based on matching high curvature points along the curve length. Representing the
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curves by characteristic strings of high curvature points essentially assigns them shape

signatures which are translation and rotation invariant. These shape signatures are then

compared to match the curves or to find the longest matching sub-curve between the

two curves. A study of horizon matching using curvature points as shape signatures

was carried out and it was found that, although the method works well while matching

either rendered curves to rendered curves or real curves to real curves for small camera

orientation changes, the method lacks robustness when matching real curves to rendered

curves. This is due to noisy features like tree lines or mountain irregularities which are

visible in real images but not captured accurately in rendered images.

To match rendered horizon curves with real horizon curves, a technique was used that

we hereafter call Random SAmple Grid Search (RSAGS). Like RANSAC methods which

motivate this approach, this method simplifies the iterative curve-matching procedure

by avoiding the use of the entire rendered horizon-line data set. Instead, only a very

small random subset of the horizon-line data is used to generate an estimate of camera

orientation deviations for curve matching.

For the RSAGS implementation in this study, four points are selected uniformly and

randomly from the rendered curve. A transformation given by equation 4.17 is applied to

these points for a grid of parameters (tu, tv, α) around each curve position. In equation

4.17, tu denotes translation of in u-direction, tv denotes translation in v-direction and

α denotes rotation of the curve in the plane of the image. W and H denote the width

and height of the image in pixels respectively. (u, v) denote the image coordinates of the

random points and (ut, vt) denote the image coordinates of the random points after the

transformation. This transformation signifies a Euclidian transformation, which rotates
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the image pixels by α about the image center and then translates them by tu and tv in

image u and v coordinate directions respectively.
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(4.17)

For each point on the parameter grid (tu, tv, α), the sum of squared vertical distance

is calculated between the transformed points and the points on the real curve having

the same u-coordinate. In Fig. 4.6, d1, d2, d3 and d4 denote these vertical distances.

The set of parameters which minimizes the sum of squared vertical distances (d2
1 + d2

2 +

d2
3 + d2

4) is taken as the best-fit parameter set. Using this set of best-fit parameters,

the transformation given by equation 4.17 is applied to all the points in the rendered

curve, and from all points, a sum of squared vertical distances from the real curve is

calculated (denoted as SSV Di). To be robust against the noise in image data, this

entire process is repeated on several sets of four random points. The transformation

giving the minimum sum of squared vertical distance SSV Dmin is thereafter assumed to

be the best estimate of match parameter set (tubest , tvbest , αbest). This estimate provides

the pixel correspondences in the two curves, and from this correspondence, equation 4.14

is used to find the estimates of roll, pitch and yaw. The inverse of the squared vertical

distance has been used as the weight entry for each pixel in the weighting matrix W in

equation 4.14.
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Figure 4.6. Curve Matching Using RSAGS

The size of the parameter grid to be searched for RSAGS is determined by the rate at

which images are taken. The higher the frame rate, the smaller total motion of the image

from frame to frame, and thus the smaller the grid size that has to be searched. The

resolution of the grid determines the accuracy of pixel correspondence. In this study, a

frame rate of 30 frames per second and a grid resolution of 1 pixel for tu and tv and 0.1

degrees for α was used. A grid size of 10 pixels for tu and tv and 2 degrees for α was

found to be sufficient for all vehicle tests.

To confirm the validity of the RSAGS curve-fitting method, a numerical study was

first conducted by comparing two rendered horizon curves. To create the two curves,

we started with one horizon and moved the camera by small angles to generate another

horizon by a camera perspective projection model as given by Fig. 4.1. Hence, the true

deviation of the camera orientation was known. The RSAGS algorithm was used to find

the best-fit translation and rotation that matches these two horizon curves, and Fig.

4.7 shows the matching results. Here (φt, θt, ψt) = (1, 0.5, -0.5) denote the true camera

motion parameters in roll, pitch and yaw directions, and (φm, θm, ψm) = (1.0001, 0.4754,

-0.4816) denote the estimated camera motion parameters in degrees. There is a good
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agreement between true and estimated camera motion parameters. For comparison, the

figure also shows the matched horizon curve generated using estimated camera motion

parameters.
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Figure 4.7. Matching Rendered Horizons Using RSAGS

As the next validation step, a real image of a horizon was captured from a stationary

vehicle at the PSU Pennsylvania Transportation Institute Test Track using standard

contrast threshold techniques to find the horizon boundary between sky/land. This

horizon was compared to a rendered horizon curve obtained by using the local DEM and

the vehicle’s measured DGPS position and IMU orientation. Fig. 4.8 shows the RSAGS

results. Because no truth value of camera orientation deviation in real and rendered

environment is available, deviations in camera orientation (φd, θd, ψd) are estimated by

using RSAGS. These deviations give an estimate of error in camera orientation predicted

by using IMU alone. To show a comparison of the match between rendered and measured

horizon, the matched horizon curve generated by the renderer after moving the camera

through the estimated deviations is also shown.

The horizon-only match does little justice to the quality of agreement between the

real and rendered scene. To illustrate more fully, Fig. 4.9 shows an overlay of real and
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rendered 3-D images showing matching of the horizon feature from test-track images.

Comparison of Real and Rendered Horizons

Real Camera Virtual Camera

Overlay

Figure 4.9. An overlay of Rendered and Real Images

4.5 Fusing Vision Measurements with Inertial Data

After obtaining vehicle orientation measurements from inertial and vision sensors, a

kinematic extended Kalman filter is used to fuse this data by using vision measurements

to correct inertial integration errors as well as to estimate biases in inertial sensors.

Use of a kinematic estimator, as opposed to dynamic estimator, eliminates the need for
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recalibration when using a different vehicle (assuming the same inertial platform), as

well as avoids the difficulty of wheel ground interactions.

Figure 4.10. SAE Coordinate System for Vehicle

Fig. 4.10 shows the SAE vehicle coordinate system used to derive the estimator

model. The notation used hereafter is as follows: The states of the system are vehicle

orientation (φ, θ, ψ) and gyro biases (bp, bq, br). Vision measurements are denoted by

(φv, θv, ψv). The relationship between Euler angles and vehicle body rates (uφ, uθ, uψ) is

given by [9, 13]:

φ̇ = (uφ − bp) + sinφ tan θ(uθ − bq) + cosφ tan θ(uψ − br) (4.18)

θ̇ = cosφ(uθ − bq)− sinφ(uψ − br)

ψ̇ = sinφ sec θ(uθ − bq) + cosφ sec θ(uψ − br)

Gyro biases are modeled as random walks

ḃω = nbω (4.19)
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E(n2
bω ) = σ2

b

where ḃω =

[

bp bq br

]

. Defining x as the vector of states to be estimated

x =

[

φ θ ψ bp bq br

]T

(4.20)

From equations 4.18 and 4.19, the process model can be written as

ẋ = f(x, u) + wc (4.21)

Here wc is the process noise with covariance given by

E(w2
c ) = Qc =





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Qgyro 0

0 Qbias







(4.22)

where Qgyro and Qbias are given by
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(4.23)
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Here σgyro is the gyro wide-band noise and σb is the noise due to bias instability as given
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by equation 4.15.

The measurement model can be written as
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+ vn (4.24)

or more succinctly as

zk = Hkxk + vn (4.25)

vn in equation 4.24 is the measurement noise introduced due to the curve matching

algorithm, which is limited by the grid resolution.

The measurements φv, θv and ψv are derived using equation 4.4 as follows.

R(φv, θv, ψv) = R(dφ, dθ, dψ)R(φ0, θ0, ψ0) =
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(4.26)

From equations 4.26 and 4.3, we have

φv = arctan
a23

a33
(4.27)
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θv = − arcsin a13

ψv = arctan
a12

a11

Assuming that the horizon features being matched are much larger than the grid

spacing, the quality of match is indicated by the final sum of vertical deviations for the

whole horizon curve. Using rφ, rθ and rψ to denote the grid resolutions in roll, pitch and

yaw directions respectively and Sv to denote the final sum of squared vertical distances,

the measurement covariance can be approximated as

E(v2
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(4.28)

Here kφ, kθ and kψ are scaling constants, which are determined through implemen-

tation tests. The purpose of including Sv in the variance estimate is to recognize the

uncertainty introduced by the image-matching process. Recognizing that this is an ad-

hoc solution, formal techniques to bound measurement error as a function of feature

error are being sought.

The covariance of the measurement noise can be written as

Rk = E(v2
n) (4.29)

A discrete extended Kalman filter is used to fuse vision and IMU measurements. In

the prediction step, nonlinear equations of motion 4.18 are used as follows.
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x̂k(−) = x̂k−1 + f(xk−1, uk)Ts (4.30)

Pk(−) = FkPk−1(+)F Tk +Qk

Here Fk is the discretized jacobian matrix of f(x, u) with respect to the state vector

x, Qk represents the discrete process noise matrix and Ts denotes the sampling time

interval. Qk is given by

Qk =
WkQcW

T
k

Ts
(4.31)

where Wk is given by

Wk =
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(4.32)

here Gk is the discretized jacobian matrix of f(x, u) with respect to the input vector [uφ

uθ uψ].

An important requirement for the Kalman filter to work is that the image and inertial

data should be aligned in time. Because the inertial data is sampled much more quickly

than image data, there are measurement cases where the vision measurement is not

available. At these times, equation 4.30 is repeatedly used to predict the state of the

system by using xk(+) = xk(−) and Pk(+) = Pk(−) for the next iteration. When a

vision measurement is available, a measurement update step is applied to the states as
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given by:

Kk = Pk(−)HT
k

[
HkPk(−)HT

k +Rk
]−1

(4.33)

x̂k(+) = x̂k(−) +Kk [zk −Hkx̂k(−)]

Pk(+) = [I −KkHk]Pk(−)

Results from numerical simulations are presented in the next section to verify the

performance of the Kalman filter.

4.6 Numerical Simulations

Numerical simulations were carried out to evaluate the performance of the Kalman filter

developed in the previous section under ideal conditions. Profiles of vehicle roll, pitch and

yaw angles similar to those that might be measured on a vehicle were generated and used

as truth values. Gyro models given by equation 4.15 were used to simulate angular rates

measured by the gyros. Two rendered images were generated, one using the predicted

roll, pitch and yaw and the other using the true roll, pitch and yaw angles. Horizon

lines were extracted using thresholding and then compared to find angular deviations

which were used as measurements. Fig. 4.11 shows the comparison of true and estimated

roll, pitch and yaw angles. The estimated and true angles overlap each other with no

discernable difference.

Kalman filter estimates of gyro biases are shown in Fig 4.12. This figure shows that

the estimated bias values converge to the true bias values used in the gyro models to

generate the true angular rates.
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Figure 4.11. Comparison of Estimated and True Orientation Angles
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Figure 4.12. Gyro Bias Estimates

Fig. 4.13 shows the comparison of estimated and true error in roll, pitch and yaw an-

gles. The steady state values of estimated errors reach a steady state value of around 0.04

degrees for roll, pitch and yaw. The estimated error curves in these figures shows the 1σ

value of error estimated by the Kalman filter. Actual values of errors are also plotted with

values of mean and standard deviation of error specified on each plot. As can be seen from

the figures, the Kalman filter estimates of 1σ error (=(0.039, 0.041, 0.039) degrees) match

very well with the standard deviation of actual error values (=(0.0229,0.0184,0.0272) de-

grees) for roll, pitch and yaw respectively.

In the next section, this Kalman filter is implemented using experimental data col-

lected at the Pennsylvania Transportation Institute’s test track facility on a Mercury

Tracer station wagon vehicle instrumented with the IMU described previously and a

windshield-mounted camcorder.
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Figure 4.13. Comparison of Estimated and Actual Orientation Errors

4.7 Experimental Results

Experiments were conducted where gyro data from the IMU as well as the video of

horizon features recorded from an on-vehicle camera were used off-line in a Kalman filter

to predict roll, pitch and yaw angles. Fig. 4.14 shows the trajectory of the vehicle in

an overhead picture of the PTI test track. Fig. 4.15 shows the real pictures from the

camera at the start and end of the trajectory. The camera has a resolution of 720x480

and a 30 degree field of view.

Overhead View of Trajectory at PTI Test Track

Start Point

End Point

PTI Test Track

Figure 4.14. Overhead view of the PTI Test Track

Orientation information from the GPS/IMU system was also recorded as a reference.

The sample rates for IMU and vision were 100 Hz and 30 Hz respectively, which is much
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Real Image at the Start Point Real Image at the End Point

Figure 4.15. View from the real camera at the start and end of the trajectory

larger than the typical chassis dynamics of a vehicle (2Hz or less). Several test runs were

conducted and the estimated orientation angles from the vision/inertial estimator were

compared with the estimates from the GPS/IMU system. Figs. 4.16 through 4.18 show

the comparison of estimates. These figures also show the deviations between the two

estimates and the error estimates from the two estimators. Bias estimates obtained from

the vision/inertial Kalman filter are also plotted. It can be generally seen in the test runs

that there is a good agreement between the estimates of roll, pitch and yaw angles. All

deviations follow a Gaussian distribution. For example, in Fig. 4.16, the roll deviation

has a mean of -0.104 and a 2σ value of 0.496. The pitch and yaw deviations have a

mean of -0.00766 degrees and -0.0821 degrees and a 2σ value of 0.258 degrees and 0.797

degrees respectively. It can also be seen from the Fig. 4.16 that the standard deviation

of estimated error is much lower for GPS/IMU system in roll and pitch directions. We

have found that the measurement resolution of RSAGS method, chosen to be 0.1 degrees

(grid resolution), is the factor most limiting the error. However the standard deviation

of estimated error in the yaw direction is of the same order for the vision/IMU system

as in the defense-grade GPS/IMU system.

There is a small but clear discrepancy when comparing the estimates from the vi-
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sion/inertial and GPS/IMU systems. The estimation error (2σ) is approximately 0.08

degrees for the vision/inertial Kalman filter, which overestimates performance compared

to the experimentally measured 2σ comparison bound of approximately 0.5 degrees be-

tween vision/inertial and GPS/IMU orientation estimates. One hypothesis to explain

this discrepancy is that there is an error in the orientation estimates because of individ-

ual movement of the camera and GPS antenna mounts as well as relative motion due to

their different locations on the vehicle. Both of these instruments, although rigidly and

carefully mounted on the car, will have some movement of their own with respect to the

vehicle during vehicle motion. This is due to flexing of the vehicle’s frame and the small

vibration in the cantilever type mounts for the camera and GPS antenna. The error due

to this vibration cannot be assumed to be white noise to add to the measurement noise

as it will strongly depend on the road profile and accelerations of the vehicle. We believe

that even if we assume that the estimates from the GPS/INS system are perfect, this

movement can lead to a discrepancy of 0.5 degrees (2sigma) which is observed in the

results. This estimate is based on the discussion of frame motion with chassis testing

experts as well as the observed image vibration during the vehicle motion.

Results from three runs of the experiment are shown in Figs. 4.16 through 4.18.

These tests were done at different speeds to verify that the algorithm gives estimation

behavior seemingly independent of the dynamics of the vehicle.

4.7.1 Effect of Position on Orientation Estimates

Position errors were introduced in the renderer to analyze their effect on orientation

estimate. A error model similar to an accelerometer with bias and random noise was
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Figure 4.16. Experimental run1: Speed = 10mph

added to the exact position estimate given by the DGPS system. The position error was

set to zero every 16 seconds to mimic landmark identification at regular intervals. The

interval of 16 seconds was chosen to limit the error growth to within 15m in each direction

after assuming typical values for accelerometer bias and noise values. A trajectory of the

vehicle position during the experiment is shown in Fig. 4.19. Fig. 4.20 shows the position

error in east, north and up directions. Finally, Fig. 4.21 shows the orientation estimation
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Figure 4.17. Experimental run2: Speed = 10mph

results for the first run after an error having the above mentioned characteristics was

added to the position. As can be seen by comparison to Fig. 4.16, an error of the order

of 10 to 15 m in each direction has little effect on the orientation estimation results. 2σ

values for roll, pitch and yaw in this case are 0.499, 0.257 and 0.796 degrees respectively

in this run.
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Figure 4.18. Experimental run3: Speed = 30mph

4.8 Conclusions

This chapter has demonstrated the use of horizon lines detected by a camera and DEM

data stored a priori to measure vehicle roll, pitch and yaw angles. The horizon lines seen

in the captured video are compared to the horizon lines generated from the rendered

geography using curve matching techniques to generate the deviations of vehicle roll,

pitch and yaw angles in real and rendered environments. A kinematic extended Kalman
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filter implemented using inertial and vision data was used to provide estimates of roll,

pitch and yaw of the vehicle. Comparison of these estimates with measurements from a

high quality GPS/IMU system shows close agreement in roll, pitch and yaw angles. The

vision/inertial Kalman filter implemented in this paper can estimate roll, pitch and yaw

angle estimates with a deviation of 2σ bound of 0.496 degrees, 0.258 degrees and 0.797

degrees respectively, when compared to the GPS/IMU system.

The investigations of this chapter suggest several future research topics that might
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Figure 4.21. Experimental run1 with Position Error: Speed = 10mph

further improve this image-based localization method. Algorithms need to be developed

which take into account the observability of roll, pitch and yaw angles from the image

features. Image features, e.g. horizon contours, may lack sufficient information to resolve

orientation (e.g. a Kansas flat-horizon phenomenon), particularly for yaw angle sensing.

Also, the algorithm formulation can be modified such that roll and pitch measurements

can be estimated even if yaw cannot be recovered.
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The next stage of this work seeks to use road signs and markers for localization. This

will allow estimation of local position and velocity states of a vehicle, and may addition-

ally ease the requirement central to this work of visibility and sufficient variability of the

horizon for matching.
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Appendix

Rewriting equation 4.13 for convenience

Aθ = B (4.34)

where

θ =











dφ

dθ

dψ











A =















λu2 λv2 −u2u1 − v2v1

λu4 λv4 −u4u3 − v4v3
...

...
...

λu2N λv2N −u2Nu2N−1 − v2Nv2N−1















B =
























v2u1 − u2v1

v4u3 − u4v3

...

v2Nu2N−1 − u2Nv2N−1
























The solution is
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θ = (A′WA)−1A′WB (4.35)

where

W = diag

(
1

s21
,

1

s22
, · · · , 1

s2i
, · · · , 1

s2N

)

(A′WA) will be invertible if it has a full rank. As the rank of product of matrices is

less than or equal to the constituent matrices, (A′WA) will have a full rank if A has a

full column rank.

The first two columns of A consist of terms λu2N and λv2N . If v2N = au2N , the

column rank of A is clearly less than 3 and hence the first condition.

If v2N 6= au2N , the third column of A, i.e. −u2Nu2N−1 − v2Nv2N−1, will be a

linear combination of the first two columns if they are multiplied by
−u2N−1

λ and
−v2N−1

λ

respectively and then added. But these two multipliers are different for each row of the

matrix A assuming equation 4.34 uses distinct pixels. Hence the third column cannot

be a linear combination of the first two columns except for the case when u2Nu2N−1 =

−v2Nv2N−1, i.e. the third column of A is identically zero. Hence the second condition.



Chapter5

Position and Orientation Estimation

Using Near Field Features

This chapter extends the work done in chapter 4 to use near field features like road

signs and road markers for vehicle localization. Near field features are more visible than

far-off features like mountains and can be used to estimate vehicle position in addition to

orientation. Near field features also help to improve observability of vehicle orientation

which was seen as a limitation of the work done in chapter 4.

The grid based RSAGS algorithm used in chapter 4 for registering real and rendered

horizon features was efficient for orientation estimation as the horizon features usually

have a simple geometry and are easily extracted given their contrast with the sky. Also,

as the orientation angles were the only three variables to be measured, the grid-based

RSAGS algorithm was computationally feasible while providing the benefit of finding the

global minima. Unfortunately, near field features like road signs, buildings etc., have a

more complex geometry which is relatively difficult to extract. Three additional variables
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of vehicle position are coupled with the variables of vehicle orientation. For example,

yaw angle is coupled with lateral position of the vehicle and pitch angle with vertical

position. The number of coupled variables to be estimated makes grid based algorithm

like RSAGS unsuitable for this problem. Therefore, computationally efficient Newton

based techniques have been used in this chapter for registering real and rendered images.

Technology is available today to create photo-realistic 3D models of cities, for example

see the works of [30, 40]. Mobile mapping systems have been used to extract road

features and create 3D road models [51, 75]. These models can be used to render images

of the environment surrounding the vehicle through a virtual camera. A method for

vehicle state estimation is proposed in this chapter which is based on registering a real

image from a camera on-board the vehicle and a rendered image generated using the

virtual camera. It is envisioned that after registering the real and virtual images, the

virtual images can be displayed on a screen or part of the wind shield to provide vehicle

navigation directions.

A gradient-based technique called Lucas-Kanade [66] and its extensions [4] have been

widely used for image alignment. The goal of the Lucas-Kanade algorithm is to align

a template image to a given image using a parameterized warp function. The sum of

squared differences between the image intensities is used as the error function. Although

the warp function can be arbitrarily complex, alignment of real and virtual cameras is

neither feasible without a map of the imaged environment nor is usually the goal.

A Region-Of-Interest (ROI) based vision algorithm is proposed in this chapter which

registers a rendered representation of the environmental features e.g. road signs and

road markers to corresponding features in image frames coming from a real camera to
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determine the position and orientation of a vehicle. The Lucas-Kanade algorithm for-

mulation [4] is extended to pose vehicle position and orientation parameters as variables

using the camera perspective projection model. The algorithm registers features in the

rendered images with features in real images using a gradient-based minimization of

sum of squared intensities. To improve the convergence properties as well as the conver-

gence time of the vision algorithm, an IMU is used to predict the location and possible

variability of features in the rendered representation defining a ROI.

The vision algorithm used in this work is computationally efficient as it is based on

fast Newton-based gradient minimization of an error function and works on well defined

ROIs around the features in the environment instead of the whole image. The use of

the IMU gives a very good initial estimate for the gradient minimization, making image

pyramids, which are commonly used to get a good initial estimate [66], unnecessary.

Measurements from the IMU are fused with those from the vision algorithm using a

Kalman filter. Features in the rendered representation provide an absolute reference for

the vision algorithm, which enables the estimation of IMU errors using the Kalman filter.

Numerical simulations show that the Kalman filter fusing the inertial measurements and

vision measurements is successfully able to localize the vehicle as well as estimate inertial

errors. Finally, results are presented from experimental test runs done at the Pennsyl-

vania Transportation Institute test track, which show that the presented technique can

estimate the position of vehicle to an accuracy of approximately 25cm and orientation

of the vehicle to a sub-degree accuracy.

This chapter is organized as follows. Section 5.1 details the vision algorithm using

pre-mapped features in the environment to estimate the position and orientation of



145

the vehicle. Numerical simulations verifying the correctness of the vision algorithm are

presented in section 5.2. Section 5.3 describes the technique used to generate the map

used in this work as well as software used to render the map. The IMU measurement

model is presented in section 5.4. An error state kinematic Kalman filter is presented in

section 5.5 which fuses the measurements from the IMU and the position and orientation

measurements from the vision algorithm. An efficient technique to implement the vision

algorithm described in section 5.1 is presented in section 5.6 with the use of an IMU.

Numerical Simulations are done in section 5.7 to verify the performance of the Kalman

filter. The determination of image acquisition time delay via experiments is shown in

section 5.8. Results from experiments performed at the Pennsylvania Transportation

Institute test track facility are presented in section 5.9 with comparisons with a high-

performance GPS/IMU system. Finally, conclusions are drawn in section 5.10. A list of

symbols for this chapter can be found in the end.

5.1 Position and Orientation Estimation Using Image In-

tensities

Given an image generated from an estimated viewpoint of the virtual camera and a

real image from the camera on-board vehicle, the goal of this section is to develop an

algorithm to register the two images in order to refine the viewpoint estimate.

Assuming that the real and rendered environments are registered initially, consider a

motion composed of a small change in orientation as well as position. The rendered image

is denoted by Iren and Ireal denotes the the real video image after motion. This motion
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causes the 3D point pj = (Xj ,Yj ,Zj) with image coordinate (uj , vj) in the rendered

image to move to p′j = (X ′j ,Y
′
j ,Z

′
j) and show up in the real image with image coordinates

(u′j , v
′
j). The shift in the u and v directions for this point in the image domain is denoted

by (δuj , δvj). So, the error for pixel (uj , vj) is given by:

ej = Iren(uj , vj)− Ireal(uj + δuj , vj + δvj) (5.1)

For small δuj and δvj , error ej can be rewritten as:

ej ≈ Ireal(uj , vj) + δujIu(uj, vj) + δvjIv(uj , vj)− Iren(uj , vj) (5.2)

where Iu and Iv are the gradients of the real image in u and v directions.

If the orientation change is denoted by Euler angles φ, θ, ψ, the rotation matrix

representing the coordinate transformation due to rotation is:

R = (Cn
b )
T =





cos(θ) cos(ψ) cos(θ) sin(ψ) − sin(θ)

− sin(ψ) cos(φ) + sin(φ) sin(θ) cos(ψ) cos(φ) cos(ψ) + sin(φ) sin(θ) sin(ψ) sin(φ) cos(θ)

sin(φ) sin(ψ) + sin(θ) cos(φ) cos(ψ) − sin(φ) cos(ψ) + sin(θ) sin(ψ) cos(φ) cos(φ) cos(θ)





(5.3)

Here Cn
b represents a transformation from body to navigation co-ordinate system. After

a change in orientation and position, the following relation between pj and p′j applies:











X ′j

Y ′j

Z ′j











= R











Xj

Yj

Zj











+ t (5.4)
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= R











Xj

Yj

Zj











+











tx

ty

tz











where t represents translation matrix consisting of translation in x, y and z directions.

Assuming that the rotations in the orientation matrix R are small, a small angle ap-

proximation can be made and equation 5.4 reduces to:











X ′j

Y ′j

Z ′j











=











1 ψ −θ

−ψ 1 φ

θ −φ 1





















Xj

Yj

Zj











+











tx

ty

tz











(5.5)

pi
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ui = λxi

zi

zi

vi = λyi

zi

Cz

Figure 5.1. Perspective Projection Model

Using the perspective projection model of a camera shown in Fig. 5.1, the image

coordinates (uj , vj) of the point pj=(Xj ,Yj ,Zj) are given by:

uj = λ
Xj

Zj
, vj = λ

Yj
Zj

(5.6)
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where λ is the focal length. Using the same model, the image coordinates (u′j , v
′
j) of the

point p′j(X
′
j ,Y

′
j ,Z

′
j) are given by:

u′j = λ
X ′j
Z ′j
, v′j = λ

Y ′j
Z ′j

(5.7)

Using values of X ′j , Y
′
j and Z ′j from equation (5.5), u′j and v′j can be written as:

u′j = λ
Xj + ψYj − θZj + tx
θXj − φYj + Zj + tz

(5.8)

v′j = λ
−ψXj + Yj + φZj + ty
θXj − φYj + Zj + tz

Using equations 5.8 and 5.6, the shift in the image coordinates (δuj , δvj) can be

written as:

δuj = u′j − uj = λ

[
Xj + ψYj − θZj + tx
Zj + θXj − φYj + tz

− Xj

Zj

]

(5.9)

= λ

[

XjYjφ− (X2
j + Z2

j )θ + YjZjψ + Zjtx −Xjtz

Zj(Zj + θXj − φYj + tz)

]

δvj = v′j − vj = λ

[
Yj − ψXj + φZj + ty
Zj + θXj − φYj + tz

− Yj
Zj

]

(5.10)

= λ

[

(Y 2
j + Z2

j )φ−XjYjθ −XjZjψ + Zjty − Yjtz
Zj(Zj + θXj − φYj + tz)

]

The denominator of the above equation can be simplified by observing that the z-

coordinate of the point pj is much greater than any of the motion vector components φ,
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θ, ψ, tx, ty, and tz. Simplifying the above equations:

δuj = λ

[

XjYjφ− (X2
j + Z2

j )θ + YjZjψ + Zjtx −Xjtz

Z2
j

]

(5.11)

δvj = λ

[

(Y 2
j + Z2

j )φ−XjYjθ −XjZjψ + Zjty − Yjtz
Z2
j

]

(5.12)

Substituting 5.11 into 5.2:

ej = (Ireal(uj, vj)− Iren(uj , vj)) + λ
XjYjIu(uj , vj) + (Y 2

j + Z2

j )Iv(uj, vj)

Z2

j

φ

− λ
(X2

j + Z2

j )Iu(uj , vj) +XjYjIv(uj, vj)

Z2

j

θ (5.13)

− λXjZjIv(uj , vj)− YjZjIu(uj , vj)

Z2

j

ψ

+ λ
Iu(uj, vj)

Zj

tx + λ
Iv(uj , vj)

Zj

ty − λ
XjIu(uj , vj) + YjIv(uj, vj)

Z2

j

tz (5.14)

The above equation can be converted into matrix form and written into the following

compact form:

ej = (Ireal(uj, vj)− Iren(uj , vj)) +Wz (5.15)

where z is the vector of unknowns given by:

z = [φ θ ψ tx ty tz]
T (5.16)
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and W is given by:

W T =
























λ
XjYjIu(uj ,vj)+(Y 2

j +Z2
j )Iv(uj ,vj)

Z2
j

−λ (X2
j+Z2

j )Iu(uj ,vj)+XjYjIv(uj ,vj)

Z2
j

−λXjZjIv(uj ,vj)−YjZjIu(uj ,vj)

Z2
j

λ
Iu(uj ,vj)

Zj

λ
Iv(uj ,vj)

Zj

−λXjIu(uj ,vj)+YjIv(uj ,vj)

Z2
j
























The above equation can also be written in terms of image coordinates, (uj , vj), as:

W T =
























ujvjIx(xj ,yj)+(v2j+λ
2)Iy(xj ,yj)

λ

− (u2
j+λ

2)Ix(xj ,yj)+ujvjIy(xj ,yj)

λ

−ujIy(xj , yj) + vjIx(xj , yj)

λ
Ix(xj ,yj)

Zj

λ
Iy(xj ,yj)

Zj

−ujIx(xj ,yj)+vjIy(xj ,yj)
Zj
























5.1.1 Objective Function

The goal of the objective function is to minimize the sum of squared difference between

the rendered and real image in a predefined window w.

E =
∑

w

[Ireal − Iren]2 (5.17)

=
∑

w

e2j
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=
∑

w

[(Ireal(uj , vj)− Iren(uj , vj)) +Wz]2 (5.18)

To find the minimum of the objective function, we take its derivative and set that

equal to zero.

dE

dz
= 0 =

∑

w

W T (Ireal − Iren) +
∑

w

W TWz (5.19)

Rearranging the terms in the above equations gives a system of linear equations given

by:

∑

w

(W TW )z =
∑

w

W T (Iren − Ireal) (5.20)

The above equation can be solved iteratively using Gauss-Newton method [85] to

calculate the current absolute position and orientation of the vehicle.

5.1.2 Measurement Covariance of the Vision algorithm

The covariance of the motion estimates from equation 5.20 is given by:

Rcam = (
∑

w

(W TW ))−1 (5.21)

As this covariance estimate is based on linearization using small angle approxima-

tions, it gives conservative estimates of the measurement covariances. Other sources of

error in measurement is the map error from which the rendered image is generated and

error in camera parameters. For this reason, the covariance estimates given by equation

5.21 are scaled by a factor K to get an estimate of the true covariance. The modified
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covariance equation is given by:

Rcam = K(
∑

w

(W TW ))−1 (5.22)

While doing numerical simulations, map as well as camera parameters are known

exactly. The value of K for numerical simulation was chosen to be 10 by comparing the

actual errors to the estimated errors. Errors for the real experiments were generated by

comparing the vision algorithm measurements with a high-accuracy GPS/IMU system.

By comparing these errors with the estimated errors, the value of K was chosen to be

5E5. This high value of K can be explained on account of map errors, camera calibration

error sources, and a really sparse feature set used for the experiments.

Equation 5.22 represents the measurement covariance Rcam in the camera coordinate

frame. A vector Xcam in the camera coordinate system can be transformed to vehicle

body coordinate system using the following transformation.

XB =











0 0 1

−1 0 0

0 −1 0











Xcam = Cb
camXcam (5.23)

Where Cb
cam denotes the transformation from camera to body coordinate system and

XB represents the vector in vehicle body coordinate frame.

The following equation transforms the the covariance Rcam from the camera coordi-
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nate system to body coordinate system.

RB = Cb
camRcam(Cb

cam)T (5.24)

where RB denotes the covariance in vehicle body coordinate system.

To express the measurement covariance in navigation coordinates, position covariance

and orientation-position cross-covariance needs to be transformed into the navigation

coordinates. The Euler angle representation of orientation is the same in navigation and

vehicle body coordinate frames and hence the orientation covariance is invariant under

this transformation. To this effect, the measurement covariance matrix Rcam can be split

into orientation and position components as shown in the following equation.

Rcam =







RΘΘ RΘXcam

RXcamΘ RXcamXcam







(5.25)

=







RΘΘ RΘXB (Cb
cam)T

(Cb
cam)RXBΘ (Cb

cam)RXBXB (Cb
cam)T







(5.26)

where RΘΘ represents the orientation covariance, RΘXB represents the orientation-

position cross-covariance, RXBΘ = (RΘXB )T and RXBXB represents the position covari-

ance. Observing the relation XN = Cn
bXB between position vector XN in navigation

frame and position vector XB in the body frame, the measurement covariance in the

navigation frame can be written as:
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Rnav =







RΘΘ RΘXB (Cn
b )
T

(Cn
b )RXBΘ (Cn

b )RXBXB (Cn
b )
T







(5.27)

Thus, the measurement covariance Rnav in the navigation frame can be written in

terms of the measurement covariance in camera frame Rcam using equations 5.27 and

5.24. Numerical simulations are done in the next section to test the performance of the

vision algorithm.

5.2 Vision Algorithm Simulations

To validate the vision algorithm described in section 5.1, numerical simulations are done

where a video of a hypothetical vehicle trajectory through the map as described in section

5.3 is generated using a virtual camera onboard the vehicle. This video is assumed to

have been generated by the real camera, and the algorithm described in section 5.1 is used

to estimate the hypothetical vehicle trajectory starting from the known initial location.

Figures 5.2 and 5.3 show comparison of true and estimated orientation and position, the

corresponding true and estimated errors as well as distribution of true orientation and

position estimation errors.

The estimated variance in estimates is calculated using equation 5.22, where the

value of K was chosen to be 10 although it is a conservative estimate for this simulated

environment and over-predicts the error bounds for the orientation angles and position

estimates. A careful look at the figures 5.2 and 5.3 reveals that the maximum orientation

angle estimation error is 0.05 degrees approximately and maximum position estimation

error is 5cm approximately The figures also show the distribution of true error for ori-
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Figure 5.2. Orientation Estimates Using Vision Algorithm

entation angles and position variables and it can be clearly seen from the figures that

in each case this distribution is approximately Gaussian. This shows that the vision

algorithm does not inherently bias the estimates one way or the other.

5.3 Map Generation and Rendering

The map for simulations was created using 3D Studio Max software from Autodesk. A

roadway was modeled along with light poles and trees on the roadside. The 3D model was

exported into .3DS format and rendered using the Open Graphics Library (OpenGL).

An image of the map created using 3DS Max software is shown in figure 5.4.
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Figure 5.3. Position Estimates Using Vision Algorithm

For real experiments on the PTI test track, road markers and road signs were chosen

as features. The road markers were created by gluing a reflective tape to the ground.

The road markers were made 1m long with 3m distance between them to simulate the

standard highway lane marker stripe, which has a size to distance ratio of 1:3.

Road signs were created using styrofoam in the shape of a stop sign. The maximum

horizontal and vertical length of the road sign was chosen as 30 inches and is comparable

to the size of an actual stop sign found on city roads. The coordinates of the lane

markers and road signs were measured using a GPS/IMU system operating in RTK

mode (position accuracy ≈ 2cm) and input into OpenGL as quadrilaterals to be rendered.
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Map generated using 3D−Studio Max

Figure 5.4. A snapshot of the image taken using 3D Studio Max

Figure 5.5 shows an image of the map created for real experiments at the PTI test track.

For image registration, the internal parameters of the real and virtual camera need to be

the same. Internal parameters of the real camera were determined using the four-step

camera calibration procedure as given by [43]. The camera has a resolution of 720× 480

and 42◦ field of view.

5.4 Incorporation of an IMU and IMU Modeling

To improve the convergence properties as well as convergence time of the vision algo-

rithm, an IMU is used to predict the location and possible variability of features in the

rendered representation. Under fast dynamic conditions, features in two adjacent camera

frames can have large displacements leading to little or no overlap of features in real and

rendered images. This can in turn lead to poor convergence properties. Additionally,



158

Image Generated Using the Map

Road Signs

Road Markers

Figure 5.5. Image Generated Using the Map at PTI Test Track

the closer the features are in the real and rendered images, the less the number of iter-

ations required for the vision algorithm to converge. As gyroscopes and accelerometers

are excellent sensors to capture fast dynamic conditions, incorporation of an IMU with a

high sampling rate can be used to predict the location of features in the rendered image;

thereby greatly improving the convergence properties and convergence time of the vision

algorithm.

To fuse the IMU measurements with those of the vision algorithm, a kinematic

Kalman filter has been used. Raw IMU measurements contain errors due to sensor

misalignment, scale factor, biases and noise [6, 32, 11, 90]. The presence of these errors

degrades the performance of the Kalman filter. But, it is possible to model the IMU

errors and estimate these in addition to the vehicle position and orientation states [6, 32].

Gyro errors are frequently modeled as having a wide band component and a bias drift
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component [6, 32, 11, 90].

Equation 5.28 gives gyro output ω̃ in terms of true vehicle rotation rate ω, a bias

term bω, and a wide-band noise term (white noise) (ηω). We are assuming that errors

due to cross-coupling, sensor scale factor, and sensor misalignment are negligible.

ω̃ = ω + bω + ηω (5.28)

ḃω = ηbω (5.29)

E[η2
bω ] = σ2

bω

E[η2
ω] = σ2

gyro

The bias drift was modeled as a random walk driven by white noise ηbω . The wide-

band noise ηgyro is assumed to be normally distributed with zero mean and variance

denoted by σ2
gyro. The noise variances were characterized using Allan variance analysis

[1].

Equation 5.30 gives the accelerometer output facc in terms of true vehicle acceleration

f , accelerometer bias bacc and a Gaussian white noise term ηf . Again, the errors due to

cross-coupling, sensor scale factor and misalignment are assumed to be negligible.

facc = f + bacc + ηf (5.30)

ḃf = ηbf (5.31)

E[η2
bf

] = σ2
bf

E[η2
f ] = σ2

acc
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A white noise term ηbacc drives the bias drift bf modeled as a random walk process.

The wide-band noise ηf is assumed to be normally distributed with zero mean and

variance denoted by σ2
acc. The accelerometer error sources were also characterized using

Allan variance analysis.

The IMU model developed in this section will be used in the kinematic Kalman filter

developed in the next section to fuse the IMU and vision algorithm measurements.

5.5 Kalman Filter

A Kalman filter framework [33] has been used to fuse the measurements from the

IMU and the vision algorithm. Vehicle orientation, velocity, position, gyroscope and

accelerometer biases are the 15 chosen states to be estimated. At each time step, mecha-

nization equations presented below are used to advance the estimates of the states using

the current best estimate of these states. The Kalman filter algorithm only works on the

errors in the filter states. In the prediction step, the errors in the states are predicted

using the governing differential equations modeling the states until the next vision al-

gorithm measurement update is available. The difference between the vision algorithm

measurements and the predicted value of those measurements is used as a measurement

for the correction step of Kalman filter. The initial location of the vehicle is assumed to

be known for this work.

5.5.1 State Update

At each time step, the state of the system is updated using the equations given below in

the component form for all of the states.
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The orientation Euler angles are updated as [9, 107]:

φ̇ = (ωy sin(φ) + ωz cos(φ)) tan(θ) + ωx

θ̇ = ωy cos(φ)− ωz sin(φ)

ψ̇ = (ωy sin(φ) + ωz cos(φ)) sec(θ) (5.32)

Using the gyroscope model given by equation 5.28, the angular velocities ωx, ωy, ωz

are calculated using the following equation:

ω = (ω̃ − bω) (5.33)

Where ω̃ denotes the raw measurements obtained from x, y and z axis gyroscopes and

bω denotes the corresponding estimated biases.

The velocity and position are updated as:

v̇N = fN (5.34)

v̇E = fE (5.35)

v̇D = fD + g (5.36)

ẋN = vN (5.37)

ẋE = vE (5.38)

ẋD = vD (5.39)
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Here the specific forces are given by:

[

fn fe fD

]T

= Cn
b

[

fx fy fz

]T

(5.40)

Using the accelerometer model given by equation 5.30, fx, fy, fz are calculated using

the following equation:

f b = (f̃ b − bfb) (5.41)

Where f̃ b denotes the raw measurements obtained from x, y and z axis accelerometers

and bfb denotes the corresponding estimated biases.

Gyroscope and accelerometer biases are updated as:

ḃω = 0 (5.42)

ḃf = 0 (5.43)

where bω and bf are the biases in gyroscopes and accelerometers respectively.

5.5.2 Navigation Error Equations

If Ψ = [δα δβ δγ]T be the vector of misalignment angles between true orientation

and estimated orientation of the vehicle, then the differential equation governing Ψ is

given by [9, 107]:

Ψ̇ ≈ −Cn
b δω

b
ib (5.44)

where the rotation rates given by the gyroscopes are represented by the vector ωbib and

δωbib is the error in the rotation rates provided by the IMU.Cn
b represents the transforma-
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tion from navigation frame to body reference frame. Using equation 5.33 to substitute for

the δωbib term, the differential equation describing the rate of change of the misalignment

angles becomes:

Ψ̇ ≈ −Cn
b (δbω + ηω) (5.45)

The error equation for velocity can be expressed as [9, 107]:

δv̇ = −ΥCn
b f
b +Cn

b δf
b − δg (5.46)

δṗ = δv (5.47)

where δv = [δvN vE δvD] is the vector of velocity estimation errors. δf b represents

the error in the specific forces measurements provided by the IMU. Υ is a matrix of

orientation angle errors given by the following equation.

Υ =











0 −δγ δβ

δγ 0 −δα

−δβ δα 0











(5.48)

On similar lines, equation 5.41 is used to substitute term δf b in equation 5.46 to give:

δv̇ = −ΥCnb f b +Cn
b (δbf + ηf ) (5.49)

Errors in biases are derived by using the δ operator on both sides of equations 5.29
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and 5.31 and can be written as:

δḃω = ηbω (5.50)

δḃf = ηbf (5.51)

Using the equations given above, the state space model of the error states can be

written as:



















Ψ̇

δv̇

δṗ

δḃω

δḃf



















︸ ︷︷ ︸

δẋ

=



















0 0 0 −Cnb 0

Ξ 0 0 0 0

0 I 0 0 0

0 0 0 0 0

0 0 0 0 0



















︸ ︷︷ ︸

F



















Ψ

δv

δp

δbω

δbf



















︸ ︷︷ ︸

δx

(5.52)

+



















−Cnb 0 0 0

0 Cnb 0 0

0 0 0 0

0 0 I 0

0 0 0 I



















︸ ︷︷ ︸

G















ηω

ηf

ηbω

ηbf















︸ ︷︷ ︸

w

(5.53)
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Ξ is given by the following equation:

Ξ =











0 −fD fE

fD 0 −fN

−fE fN 0











(5.54)

The process noise spectral density is given by the following equation:

Q(t) =















σ2
ω 0 0 0

0 σ2
f 0 0

0 0 σ2
bω

0

0 0 0 σ2
bf















(5.55)

The parameter values for this model have been identified using Allan variance and

auto-correlation techniques and are given in the table 5.1.

Table 5.1. Parameter values for MEMS IMU
Parameter Value

σωx 5.47 deg/hr−1/2

σωy 6.02 deg/hr−1/2

σωz 6.12 deg/hr−1/2

σfx 0.28 m/s/hr−1/2

σfy 0.25 m/s/hr−1/2

σfz 0.27 m/s/hr−1/2

σbωx 7.1 deg/hr
σbωy 5.23 deg/hr

σbωz 5.58 deg/hr
σbfx 7.9E-4 m/s2

σbfy 3.58E-4 m/s2

σbfz 1.9E-4 m/s2
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5.5.3 Measurement Model

Position and orientation measurements from the vision algorithm described in section

5.1 are used in the corrector step of the Kalman filter. The solution of equation 5.20

is used as a measurement vector. Denoting the measurement vector by zv, it can be

written in component form as:

zv =

[

φv θv ψv pNv pEv pDv

]T

(5.56)

where φv, θv, ψv are the roll, pitch and yaw Euler angles of the vehicle orientation and

pNv , pEv , pDv are the North, East and Down coordinates of the vehicle position obtained

from the vision algorithm.

Estimate of these measurements are available from the state update step using mech-

anization equations denoted by zIMU:

zIMU =

[

φIMU θIMU ψIMU pNIMU
pEIMU

pDIMU

]T

(5.57)

where each term denotes the corresponding estimates of vision algorithm measurements

by the IMU mechanization equations.

At each measurement update, these measurements are compared to get the measure-

ment differences denoted by δz:



167

δz =
























φIMU − φv

θIMU − θv

ψIMU − ψv

pNv − pNIMU

pEv − pEIMU

pDv − pDIMU
























=
























−δφ

−δθ

−δψ

−δpN

−δpE

−δpD
























(5.58)

These measurement differences can be expressed in terms of orientation and position

error states of the system as:

δz =







−I3×3 03×3 03×3 03×6

03×3 03×3 −I3×3 03×6






δx = Hδx+ ηmeas (5.59)

where ηmeas = [ηvisφ ηvisθ ηvisψ ηvispN ηvispE ηvispD ] is the measurement noise with

variance vector σvis
2 given by equation 5.27 and can be written as:

σvis
2 = Rnav (5.60)

5.5.4 Discrete Kalman Filter Equations

A discrete Kalman filter has been used to fuse the GPS and IMU measurements. The

state space model of the system given by equation 5.52 has the form:

δ̇x = Fδx+Gw (5.61)
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As the data acquisition and processing happens inside the computer in the digital

domain, this equation is converted into the discrete form as [27]

δxk+1 = Φkδxk + Γkwk (5.62)

where Φk is the state transition matrix given by

Φk = eFT = I+ FT +
F2T 2

2!
+ . . . (5.63)

and Γk is given by:

Γk = GT +
FGT

2
+ · · · (5.64)

where T is the sampling time interval and I is an identity matrix.

The discrete form of the process noise covariance is calculated using the process noise

spectral density given by equation 5.55 as:

Qk =

∫ T

0
Φ(τ)GQ(τ)GTΦT(τ)dτ (5.65)

For small sampling interval T, the process noise covariance given by equation 5.65

can be approximated as [27]:

Qk = Γk

Q

T
ΓT

k (5.66)

The discrete form of the measurement equation 5.59 is given by:

δzk = Hkδxk + ηmeas (5.67)
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where Hk = H. The process noise variance is denoted by Rk and is given by:

Rk = σvis
2 (5.68)

where σGPS
2 is given by equation 5.60.

In the prediction step, the error state and corresponding covariance estimate is ex-

trapolated using the following equations [33]:

δx̂k(−) = Φk−1δx̂k−1(+) (5.69)

Pk(−) = Φk−1Pk−1(+)ΦT
k−1 +Qk−1 (5.70)

As the sample rate of IMU (200 Hz), is much higher than the rate at which vision

algorithm provides position and orientation information (30 Hz), the predictor step is

repeated until the next vision algorithm measurement is available.

In the corrector step, the vision algorithm measurements are used to form innova-

tions given by equation 5.58, which are compared with the predicted innovations using

estimates from the prediction step [33].

δx̂k(+) = δx̂k(−) +Kk [δzk −Hkδx̂k(−)] (5.71)

Pk(+) = [I−KkHk]Pk(−) (5.72)

Kk = Pk(−)HT
k

[
HkPk(−)HT

k +Rk

]−1
(5.73)
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5.5.5 State Correction

After each corrector step of the error state Kalman filter, the state of the system ob-

tained after state update step in subsection 5.5.1 is corrected using the estimates from

the error state Kalman filter. For orientation, the corrected body to navigation frame

transformation is calculated using the following equation:

Cb
n = (I−Υ)−1

C̃b
n (5.74)

=











a11 a12 a13

a21 a22 a23

a31 a32 a33











(5.75)

Using equation 5.3, the corrected Euler angles for vehicle orientation are calculated as:

φ(corr) = arctan
a23

a33
(5.76)

θ(corr) = − arcsin a13

ψ(corr) = arctan
a12

a11

Velocity and position states are corrected as follows:

vne (corr) = vne − δv (5.77)

pne (corr) = pne − δp (5.78)
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Bias states are corrected using the following equation:

b(corr) = b+ δb (5.79)

Data fusion using IMU and vision allows for an efficient implementation of the vision

algorithm presented in section 5.1 which is presented in the next section.

5.6 Efficient implementation of the Vision Algorithm Us-

ing the Kalman Filter

The number of computations required the vision algorithm described in section 5.1 de-

pends on the total number of pixels of the image included in the pre-defined window w

for the solution of equation 5.20. As a map of the environment is available, assuming

the position and orientation of the vehicle is known initially, the estimated location of

the vehicle and its possible variability at a time in future (time of acquisition of the next

vision frame) can be predicted using the prediction step of the Kalman filter. The solu-

tion of equation 5.32 gives the predicted orientation and solution of equation 5.34 gives

the predicted position of the vehicle. The possible variability of the vehicle location can

be calculated from the covariance matrix calculated in the predictor step of the Kalman

filter given by equation 5.70.

This information of predicted vehicle location and its possible variability can be

translated to predicted locations of the features around the vehicle and their possible

variability in the image domain defining a Region Of Interest (ROI) around each of the
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feature. These ROIs can be used as the pre-defined windows for the solution of equation

5.20 in the vision algorithm. Depending on the number of features in the vehicle vicinity,

the identification of ROIs reduces the number of computations required to compute the

vision algorithm solution.

Equation 5.11 describes the change in the horizontal and vertical image coordinates

when a point p in 3D space undergoes motion defined by vector [φ θ ψ tx ty tz]
T in

camera coordinates. Representing this equation in terms of image coordinates:

δu = −uv
λ
φ+

(u2 + λ2)

λ
θ − vψ +

λ

Z
tx −

u

Z
tz

= c1φ+ c2θ + c3ψ + c4tx + c5tz (5.80)

δv = −(v2 + λ2)

λ
φ+

uv

λ
θ + uψ +

λ

Z
ty −

v

Z
tz

= d1φ+ d2θ + d3ψ + d4ty + d5tz (5.81)

Here δu and δv represent the shift in u and v coordinates due to the motion vector.

The possible variability of the vehicle position and orientation can be derived from the

corresponding states of the covariance matrix given by equation 5.70. As the shift δu

and δv can be expressed as a linear combination of vehicle motion vector states, as given

by equations 5.80 and 5.81, whose co-variance can be derived from the corresponding

states in equation 5.70, the variance of a pixel (u, v) along u and v axes in the image
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domain can be expressed as:

Rδuδu =


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(5.82)

Rδvδv =
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(5.83)

where Rδuδu and Rδvδv denote the variance of the pixel (u, v) in the image domain.

Rφφ denotes the variance of vehicle roll, Rφθ denotes the covariance of vehicle roll and

pitch variables and so on. The values of vehicle orientation covariances can be directly

read from the corresponding states in equation 5.70; whereas values of vehicle position

covariances as well as orientation-position cross-covariances need to be transformed from

the navigation coordinate frame in equation 5.70 to camera coordinate frame. This

transformation is done on similar lines as done in section 5.25 as follows.

Using equation 5.25, the predicted covariance in the navigation frame can be written
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in terms of predicted covariance in the vehicle body coordinate frame as follows:

Rnav(−) =







RΘΘ(−) RΘXB (−)(Cn
b )
T

(Cn
b )RXBΘ(−) (Cn

b )RXBXB (−)(Cn
b )
T







(5.84)

Using the above equation, the different components of the vehicle covariance matrix in

the vehicle body coordinate frame can be derived as:

RΘXB (−) = RΘXN (−)(Cn
b ) = RXBΘ(−) (5.85)

RXBXB (−) = (Cn
b )
TRXNXN (−)(Cn

b ) (5.86)

Following the same notation as in equation 5.25, RΘΘ(−) represents the predicted ori-

entation covariance, RΘXB represents the predicted orientation-position cross-covariance,

RXBΘ = (RΘXB )T and RXBXB represents the predicted position covariance. The covari-

ance in body coordinate frame can be transformed to covariance in camera coordinate

frame using equation 5.24. The following equation shows the predicted covariance ma-

trix in equation 5.70 broken up into the position and orientation covariance matrices

described above.

Pk(−) =















RΘΘ(−)3×3 RΘVN (−)3×3 RΘXN (−)3×3 RΘXbias(−)3×6

RVNΘ(−)3×3 RVNVN (−)3×3 RVNXN (−)3×3 RVNXbias(−)3×6

RXNΘ(−)3×3 RXNVN (−)3×3 RXNXN (−)3×3 RXNXbias(−)3×6

RXbiasΘ(−)6×3 RXbiasVN (−)6×3 RXbiasXN (−)6×3 RXbiasXbias(−)6×6















(5.87)
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Where RVNVN represents the covariance of the velocity vector in the navigation frame

and RXbiasXbias represents the covariance of the bias state vector.

Figure 5.6 shows the procedure to determine the ROI using equations 5.82 and 5.83.

The figure shows a feature in the shape of a stop sign along the road. First, a rectangular

window defined by diagonal points (u1, v1) and (u2, v2) completely enclosing the feature

is determined using the map. For each of the corners of this rectangular window, a 1 σ

uncertainty in u and v directions is obtained using equations 5.82 and 5.83 as:

σuuivj =
√

Rδuδu (5.88)

σvuivj =
√

Rδvδv (5.89)

u1, v1 u2, v1

u2, v2u1, v2

u1 − σuu1v1
, v1 + σvu1v1

u2 + σuu2v1
, v1 + σvu2v1

u1 − σuu1v2
, v2 − σvu1v2

u2 + σuu2v2
, v2 − σvu2v2

Figure 5.6. Procedure to determine the Region of Interest

Using these uncertainty values, a set of four new points are derived from the four
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corners of the rectangular window as (u1−σuu1v1
, v1 +σvu1v1

), (u2 +σuu2v1
, v1 +σvu2v1

),

(u1−σuu1v2
, v2−σvu1v2

) and (u2 +σuu2v2
, v2−σvu2v2

). Finally, a rectangle fully enclosing

these four points is chosen as the ROI as shown by the grey rectangle in figure 5.6.

To verify that the Kalman filter developed to fuse IMU and vision measurements is

formulated correctly, numerical simulations are performed and results are presented in

the next section.

5.7 Numerical Simulations Using Kalman Filter

To verify the performance of the Kalman filter against known truth values, numerical

simulations were conducted. IMU data was extracted from a hypothetical vehicle tra-

jectory and known errors were added to this data following the IMU model given by

equations 5.28 and 5.30. The image generated from the true vehicle position was treated

as the real image which was registered with the virtual image using the vision algorithm

presented in section 5.1 to get the position and orientation measurements.

Figure 5.7 shows the comparison of true and estimated roll, pitch and yaw angles

along with the corresponding true errors and estimated 1σ errors. The figure also shows

the true and estimated roll, pitch and yaw gyroscope biases. It can be seen from the

figure that the roll, pitch and yaw angle profiles overlap each other. The true error is

well within the estimated 1σ bound suggesting a conservative selection of factor K in

the measurement covariance equation 5.22. Also, roll, pitch and yaw gyroscope biases

converge to the true values in approximately 10 seconds.

Figure 5.8 shows the comparison of true and estimated vehicle position. The corre-
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Figure 5.7. Orientation Estimates using Vision/IMU

sponding true errors and estimated 1σ errors are also shown in the figure. It can be seen

from the figure that the Kalman filter provides a good estimate of the vehicle position.

Also, the true estimation error is well within the estimated 1σ bound. The estimated

values of x, y and z accelerometer biases converge to the true value in approximately

10-15 seconds.

5.8 Image Acquisition Time Delay Calculation

It is very important that the measurements from IMU and camera be synchronized in

time for the Kalman filter formulation in section 5.5 to give accurate estimation results.
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Figure 5.8. Position Estimates using Vision/IMU

The measurements from the IMU and the camera are time stamped immediately after

acquisition. As the IMU used is an analog sensor and the A/D converter has a conversion

time of the order of micro-seconds, the time stamps associated with IMU measurements

can be considered accurate for the sample time step of 5 milliseconds used in this study.

The time delay associated with image acquisition from the camera is unknown and

needs to be determined. Experimental results showing the determination of this image

acquisition delay are presented in the this section.

The image acquisition delay from the moment of image formation on the image sensor

to its capture and time stamping via DSP needs to be determined for time synchroniza-
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tion between the IMU and the camera measurements. To calculate the time delay, a

LED is toggled at known constant time intervals (1 sec in the experiments) via the DSP.

The camera is focussed on this LED and images are captured over time. The difference

between the known time of LED toggle and the time stamp on the image when this LED

toggle event is captured is the required time delay. The response time of an LED to a

signal from the DSP is of the order of nano-seconds and can be neglected [8].

Figure 5.9 illustrates the strategy used to determine this time delay. Tf denotes the

sample time of image acquisition. In the present setup the frame rate is equal to 1
29.97 s

for NTSC analog video capture. δ1, δ2, δ3 etc. denote the calculated time delay from the

moment of LED toggle to the time when it is captured within an image. In case of no

image acquisition delay, figure 5.9 shows that the calculated time delays δ1, δ2 and δ3 are

periodic. Two cases “Case 1” and “Case 2” are shown for different alignments of LED

toggle period illustrated by the yellow boxes and camera frame capture period illustrated

by the blue boxes. It can be seen from the figure that maximum and minimum time

delays satisfy the following equation.

δmin(no delay) ≥ ǫ, where ǫ≪ Tf

δmax(no delay) < Tf (5.90)

Figure 5.9 also shows the case when there is a image acquisition time delay denoted

by Td. Again, two cases “Case 3” and “Case 4” are shown for different alignments of

LED toggle period and camera frame capture period. The calculated time delays δ1, δ2
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Figure 5.9. Image Acquisition Delay Calculation Strategy

and δ3 are periodic in this case also and satisfy the following equation.

δmin(delay) ≥ Td + ǫ, where ǫ≪ Tf

δmax(delay) < Td + Tf (5.91)

Figure 5.10 shows pictures from the experiment conducted to determine the image

acquisition time delay. The images show the time stamp in the title in milli-seconds. The

LED is toggled at 1 sec integer time intervals. So, the exact time of LED toggle within

the DSP is 1000 ms, 2000 ms, 3000 ms and so on. In figure 5.10, horizontal rows show

the images around LED toggle instants of 6000 ms, 23000 ms, 24000 ms and 28000 ms.
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Time = 5982 ms Time = 6015 ms Time = 6048 ms

Time = 22999 ms Time = 23032 ms Time = 23066 ms

Time = 23967 ms Time = 24000 ms Time = 24033 ms

Time = 27971 ms Time = 28004 ms Time = 28037 ms

Figure 5.10. Experimental Determination of Image Acquisition Delay

Only one LED is considered (although the image contains many) and enclosed within

a white rectangle for illustration. In each row of images in the figure, the right-most

image captures the LED toggle event. So, the difference between the time stamp of the

right-most image in each row and the integer time of LED toggle is the calculated time

delay for each row. Time delay values for the figure 5.10 from top to bottom rows are

48 ms, 66 ms, 33 ms and 37 ms respectively. The measured time delay is periodic and
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a graph of calculated time delay versus LED toggle time is shown in figure 5.11. From

the graph, the image acquisition time delay Td is calculated to be 33 ms approximately.

This image acquisition delay is taken into account while implementing the Kalman filter

to synchronize IMU and camera measurements.
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Figure 5.11. Variation of Measured Time Delay with LED Toggle Time

Experiments are conducted at the PTI test track skid pad area to experimentally

verify the localization technique presented. The results are presented in the next section.

5.9 Experimental Results

Experiments were conducted at PTI test track facility to experimentally verify the vi-

sion algorithm presented in section 5.1 as well as the performance of the Kalman filter

presented in section 5.5. As described in section 5.3, road markers and road signs were

created to serve as features in vehicle environment. Time-stamped data is collected from
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an IMU and a camera at a rate of 5ms and 33.34ms (29.97 Hz frame rate) respectively.

This collected data is processed off-line using the Kalman filter presented in section 5.5 to

generate the estimates of vehicle position and orientation. Image acquisition delay deter-

mined in section 5.8 is compensated in the time stamps of the stored image frame data.

Vehicle position and orientation estimates from a highly accurate GPS/IMU system are

also recorded at the same time for comparison.

Figure 5.12 shows an image along the vehicle path, the corresponding registered

rendered image as well as the overlay of the two images to illustrate the match between

features in real and rendered images.

Figure 5.13 shows the variation of ROI with time as the Kalman filter converges to

an approximately steady state covariance value from a initially high covariance. The

selection of ROI was described in section 5.6 and the ROI windows in figure 5.13 can be

seen to shrink in size with decreasing state co-variance of the Kalman filter. It can also

be seen that, in this particular case, the ROI area is much smaller than the total image

area and thus leads to a very large reduction in the computational effort to compute the

solution using equation 5.20.

Figure 5.14 shows the estimated roll, pitch and yaw profiles of the vehicle trajectory

during the experimental run. The roll, pitch and yaw estimates from the GPS/IMU

system are also plotted for comparison. Although the variation in roll and pitch angles

is very small (1 to 2 degrees), the trends in Vision/IMU estimates match those from the

GPS/IMU system. The yaw angle profiles from the two systems match each other very

closely. The figure also shows the deviation in estimates between the Vision/IMU system

and the GPS/IMU system along with the 3σ estimated error bound of the Vision/IMU
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Real Image

Rendered Image

Overlay

Figure 5.12. Real, Rendered and Overlaid Images



185

Real Image Init ROI

ROI Reducing with Time Steady State ROI

Figure 5.13. Variation of ROI over time

system. It can be seen from the figure that the magnitude of roll, pitch and yaw devia-

tions is less than a degree throughout the duration of the experiment. The Kalman filter

estimates of roll, pitch and yaw gyroscope biases are also plotted in the figure.

The estimated position of the vehicle in navigation co-ordinates is shown in figure

5.15 along with the position estimates from the GPS/IMU system for comparison. The

figure shows that the position estimates from the two systems follow each other very

closely. The deviation between the estimates from the two systems along with the 3σ

estimated error bound of the Vision/IMU system is also shown in the figure. A careful

look at the figure reveals that the magnitude of the North, East and Height deviation is

less than 25 cm throughout the duration of the experiment. Between times 68 seconds

and 72 seconds, the actual error exceeds the estimated error for East position estimates

by about 10cm. The cause of this discrepancy is attributed to map errors, camera
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Figure 5.14. Orientation Estimates using Vision/IMU: Run1

calibration errors as well as the sparse feature set used in experiments. Vision/IMU

Kalman filter estimates of accelerometer biases are also shown in the figure.

Figures 5.16 and 5.17 show the results for another run of the experiment with similar

interpretations.

5.10 Conclusions

This chapter has demonstrated the use of near field features such as road markers and

road signs to estimate vehicle position as well as orientation. ROI windows are selected

using the map, current location and uncertainty in the current location of the vehicle
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Figure 5.15. Position Estimates using Vision/IMU: Run1

and a Gauss-Newton method is applied to minimize the sum of squared image intensities

between real and rendered images within the ROI. An error state kinematic Kalman filter

using IMU measurements in the predictor step and vision algorithm measurements in the

corrector step was used to provide estimates of position and orientation of the vehicle.

Comparison of these estimates with measurements from a high quality GPS/IMU system

shows close agreement. The Vision/IMU Kalman filter implemented in this paper can

estimate the vehicle orientation to sub-degree accuracy and the vehicle position with an

accuracy of 25cm approximately.
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Figure 5.16. Orientation Estimates using Vision/IMU: Run2

Notation

pj = (Xj , Yj , Zj) 3D point in space in camera coordinates, p. 146

(uj , vj) Image coordinates of point pj , p. 147

p′j = (X ′j , Y
′
j , Z

′
j) 3D coordinates of the point pj in camera coordinates after

the camera undergoes motion [φ θ ψ tx ty tz], p. 146

(u′j , v
′
j) Image coordinates of point p′j , p. 148

(δuj , δvj) Change in image coordinates when 3D point pj moves to 3D point p′j in
camera coordinates, p. 148

R Rotation matrix representing coordinate transformation when camera ro-
tates by φ, θ, ψ Euler angles, p. 146

λ Focal length of the camera, p. 147
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Figure 5.17. Position Estimates using Vision/IMU: Run2

Iren(uj , vj) Intensity of pixel (uj , vj) in the rendered image, p. 146

Ireal(uj , vj) Intensity of pixel (uj , vj) in the real image, p. 146

ej Difference in intensity for pixel (uj , vj) between real and rendered images,
p. 146

z = [φ θ ψ tx ty tz]
T Vector denoting camera motion, p. 149

Rcam Measurement covariance of the vision algorithm, p. 152

Xcam Vector in camera frame, p. 152

XB Vector in vehicle body frame, p. 152

Cb
cam Transformation to convert from camera frame to body frame, p. 152

RΘΘ Covariance of the camera orientation, p. 153

RΘXcam Cross-covariance of camera position and orientation in camera coordinate
frame, p. 153
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RXcamXcam Covariance of camera position in camera coordinate frame, p. 153

RΘXB Cross-covariance of camera position and orientation in vehicle body coor-
dinate frame, p. 153

RXBXB Covariance of camera position in vehicle body coordinate frame, p. 153

Rnav Measurement covariance of vision algorithm in the navigation frame, p. 154

ω̃ Raw measurement from the gyroscope, p. 159

ω True rotation rate of the vehicle, p. 159

bω Gyro bias, p. 159

ηω Gyro noise, p. 159

f̃ b Raw measurement from the accelerometer, p. 159

f b True acceleration acting on the vehicle in the body frame, p. 159

bfb Accelerometer bias, p. 159

ηf Accelerometer noise, p. 159

ωbib Vector representing the rotational velocity of the vehicle with respect to
the inertial frame expressed in the body frame, p. 161

ωbin Vector representing the rotational velocity of the navigation frame with
respect to the inertial frame expressed in the body frame, p. 161

vne Vector representing the velocity of the vehicle with respect to Earth in the
navigation frame. p. 161

fn Accelerations experienced by the vehicle resolved into the navigation frame.
p. 161

f b Accelerations experienced by the vehicle in the body frame p. 161

Cn
b Transformation from the body frame to the navigation frame. p. 162

φ, θ, ψ Euler angles determining vehicle orientation p. 161

g Average gravitational acceleration in the vertical direction at the surface
of the Earth. p. 161

pn = (xN xE xD)T Vector representing vehicle position in the navigation
frame. p. 161

vne = (vN vE vD)T Vector representing the velocity of the vehicle with respect
to Earth in the navigation frame. p. 161
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Ψ = (δα δβ δγ)T Vector of misalignment angles between true orientation and
estimated orientation of the vehicle. p. 162

δv = (δvN δvE δvD)T Vector of velocity error states in North, East and Down
directions. p. 163

δp = (δpN δpE δpD)T Vector of position error states in North, East and Down
directions. p. 163

δbω = [δbωx δbωy δbωz ]
T The vector of errors in gyroscope bias estimates in the

body frame, p. 164

δbf = [δbfx δbfy δbfz ]
T Vector of errors in accelerometer bias estimates in the

body frame, p. 164

δx = (Ψ δv δp δbω δbf )
T Vector of error states to be estimated using the

Kalman filter, p. 164

Υ Matrix of misalignment angles between true and estimated orientation of
the vehicle. p. 163

δωbib vector denoting the error in the rotation rates given by the IMU. p. 162

ωb =





ωx 0 0
0 ωy 0
0 0 ωz



 The matrix of corrected gyroscopes measurements cal-

culated using equation 5.33

fb





fx 0 0
0 fy 0
0 0 fz



 Matrix of corrected accelerometer measurements calcu-

lated using equation 5.41.

ηω = [ηωx ηωy ηωz ]
T Gyroscope noise vector, p. 164

σ2
ω =





σ2
ωx 0 0
0 σ2

ωy 0

0 0 σ2
ωz



 Gyroscope noise variance Matrix, p. 165

ηf = [ηfx ηfy ηfz ]
T Accelerometer noise vector, p. 164

σ2
f =






σ2
fx

0 0

0 σ2
fy

0

0 0 σ2
fz




 Accelerometer noise variance vector, p. 165

ηbω = [ηbωx ηbωy ηbωz ]
T Gyroscope bias noise vector, p. 164

σ2
bω

=






σ2
bωx

0 0

0 σ2
bωy

0

0 0 σ2
bωz




 Gyroscope bias noise variance vector, p. 165
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ηbf
= [ηbfx ηbfy ηbfz ]

T Accelerometer bias noise vector, p. 164

σ2
bf

=






σ2
bfx

0 0

0 σ2
bfy

0

0 0 σ2
bfz




 Accelerometer bias noise variance vector, p. 165

zv = [φv θv ψv pNv pEv pDv ]
T Measurements from the vision algorithm. 6DOF

vehicle location, p. 166

zIMU = [φIMU θIMU ψIMU pNIMU
pEIMU

pDIMU
]T Estimate of the vision algo-

rithm measurements from the IMU measurements, p. 166

δz = −[δφ δθ δψ δpN δpE δpD]T Difference between vision algorithm mea-
surements and the estimate of these measurements from the IMU measure-
ments, p. 167

ηmeas = [ηvisφ ηvisθ ηvisψ ηvispN ηvispE ηvispD ] Vision algorithm measurement
noise vector, p. 167

σvis
2 Vision algorithm measurement noise covariance. p. 167

Φk State transition matrix, p. 168

T Sampling time of the IMU (5 ms), p. 168

Qk Process noise covariance for the Kalman filter. p. 168

Rk Measurement noise covariance for the Kalman filter. p. 169

δx̂k(−) Error state predicted estimates of the Kalman filter. p. 169

δx̂k(+) Error state corrected estimates of the Kalman filter. p. 169

Rδuδu Variance in the u-coordinate of the pixel (u, v) in the image domain derived
from the variance of the solution of the Kalman filter, p. 173

Rδvδv Variance in the v-coordinate of the pixel (u, v) in the image domain derived
from the variance of the solution of the Kalman filter, p. 173

Rnav(−) Predicted covariance in the navigation frame, p. 174

Pk(−) Covariance of the Kalman filter after the predictor step, p. 174
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Conclusions

Accurate vehicle localization is a requirement for driver assistance systems and au-

tonomous navigation to enhance the safety and throughput of advanced highway systems.

The availability, accuracy and reliability of the sensors used for vehicle localization varies

depending on the sensor requirements (e.g. line of sight to satellites for GPS and vis-

ibility for vision sensors) as well as the sensitivity of the sensor to external conditions

(e.g. RF jamming for GPS and weather/lighting conditions for vision sensors). This

dissertation focussed on vehicle localization using an Inertial Measurement Unit (IMU),

GPS and a monocular camera along with a map of the environment. Emphasis has

been placed on using low-cost sensors available in the market today to investigate the

feasibility of using these technologies in commercial automobiles.

The sensors used in this dissertation complement each other to enhance the accuracy

of vehicle localization in addition to having different failure modes to increase the robust-

ness of the system. For example, GPS provides the initial position required to initialize

the IMU and periodically corrects the IMU solution to estimate the accelerometer and
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gyroscope biases whereas the IMU provides a fast data rate thus compensating for the

slow data rate of the GPS. Similarly, vision sensors along with a map of the environ-

ment provide periodic corrections to the IMU solution whereas the IMU helps the vision

algorithm by predicting the location and possible variability of the features in the map.

GPS provides the 3DOF position and horizontal velocity of the vehicle. This dis-

sertation has investigated the feasibility of using a low-cost Commercial Off-The-Shelf

(COTS) Micro Electro Mechanical Systems (MEMS) IMU along with a low-cost COTS

GPS receiver to estimate the vehicle orientation in addition to the 3DOF position pro-

vided by the GPS. GPS and IMU error sources are characterized by comparing the

measurements from low-cost GPS and IMU to measurements from a highly accurate

GPS/IMU system and first order Gauss-Markov models are chosen to model these error

sources. It was found that the GPS velocity measurements are not accurate for speeds

below 5mph. The comparison of error sources between the low-cost IMU and a tactical

grade IMU shows the magnitude of difference between the various error sources. A error

state Kalman filter framework is then developed to estimate vehicle orientation, velocity,

position, accelerometer and gyroscope biases and scale factors. It was seen that in the

absence of sufficient excitation the bias and scale factor errors are not observable indi-

vidually although the combination of the two may be observable. It was also seen that

vehicle yaw was not observable in the absence of longitudinal and lateral accelerations

of the vehicle, for example during straight line driving. Velocity direction was used to

improve the yaw angle estimates during periods of low longitudinal and lateral acceler-

ations. Numerical simulations were used to verify the correctness of the Kalman filter

formulation. Experiments at the Pennsylvania Transportation Institute (PTI) test track
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facility confirm the feasibility of a low-cost GPS/IMU combination to estimate vehicle

orientation in addition to vehicle position. It was observed that the accuracy of the

GPS/IMU localization estimates is limited by the availability and accuracy of GPS po-

sition and velocity measurements. To this effect, alternative sensors to measure vehicle

position and orientation were sought to improve the accuracy of vehicle localization as

well as add redundancy to the system.

An alternative method to measure vehicle orientation was identified as terrain aided

orientation estimation using vision. A terrain map was generated using National Eleva-

tion Dataset (NED) from the United States Geological Survey (USGS) website. Horizon

curves extracted from virtual images generated by rendering the terrain map were reg-

istered with horizon lines from a real camera to measure the orientation of the vehicle.

The rough position estimate required was obtained from a low-cost GPS. An extended

Kalman filter using rate measurements from an IMU in the prediction step and measure-

ments from the real-virtual horizon registration in the corrector step was used for vehicle

orientation estimation along with the estimation of gyro biases. Numerical simulations

as well as experiments at the PTI test track were used to verify this technique for vehicle

orientation estimation.

The terrain aided orientation estimation method using far field features e.g. horizon

was then extended to use near field features to estimate vehicle position in addition

to orientation. An iterative gradient based method was used to minimize the sum of

squared intensities between the rendered and real images to measure the vehicle location.

A Kalman filter framework was used to fuse the measurements from an IMU and the

vision algorithm. The IMU was used to predict the location of features as well as
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their possible variability in the next frame of the vision stream to define a Region Of

Interest (ROI). The vision algorithm was only implemented on the ROI instead of the

whole image; thus significantly reducing the computational effort required. Numerical

simulations confirmed the validity of the Kalman filter using measurements from the

IMU and the vision algorithm. Features were created in the form road markers and

road signs at the PTI test track, and mapped using a highly accurate GPS/IMU system.

Experiments were conducted to estimate the vehicle location and the estimates were

compared to estimates from a highly accurate GPS/IMU system placed side by side to

the vision/IMU system. The estimates from these two systems show a close match.

6.1 Summary of Contributions

6.1.1 Investigation of Low-Cost GPS/IMU Integration

The performance of a low-cost COTS GPS/IMU combination was investigated. The error

sources present in these systems were characterized and then modeled using stochastic

models. A Kalman filter framework was developed to fuse the measurements from the

GPS and the IMU. The performance of the system was tested by comparison of vehicle

location estimates with estimates from a highly accurate GPS/IMU system. Sub-degree

accuracy was achieved for vehicle roll and pitch estimates. Yaw angle estimation accuracy

of 3.5 degrees was achieved. It was found that the position can be estimated to an

accuracy of 3 to 4 meters.



197

6.1.2 Terrain-Aided Orientation Estimation Using Far Field Features

A technique to measure vehicle orientation using far field terrain features was developed

assuming that a rough estimate of vehicle position is known. USGS Digital Elevation

Maps (DEM) were used to create a terrain map for the vehicle. Far field features were

extracted from rendered images of the terrain as well as the real images from a camera

fixed to the vehicle. Horizon curves were used as the far field features in this study. A grid

based method was used to match these horizon curves to estimate vehicle orientation.

Experiments were carried out to verify the performance of this technique. Sub-degree

accuracy was achieved for orientation angle estimates using this technique.

6.1.3 Position and Orientation Estimation Using Near Field Features

A technique to track vehicle position and orientation was developed using a map of the

near field features. An iterative gradient based method was used to register the ROI in

real and rendered images. A Kalman filter framework was used again to combine the

measurements from an IMU and the vision algorithm. Road markers and road signs were

used as features to emulate a vehicle going along a highway. Numerical simulations as

well as experiments were used to verify the performance of this technique. Sub-degree

orientation accuracy and position accuracy of 25cm was obtained using this technique.

6.2 Recommendations for Future Work

The research in this dissertation suggests several future research directions. Several of

these are listed below.
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6.2.1 Additions/Modifications to the Vision Algorithm

6.2.1.1 Robustness in Vision Algorithm

The vision algorithm can be modified to include color information. The color information

and reflective material properties can be learnt and adjusted over time. A metric to

measure the difference between real and rendered images for each feature is needed. One

such possible metric is normalized sum of squared intensity difference. This metric can

be used to detect the presence of obstacles along a viewing direction. It can also be used

to correct the map for small mapping errors as well as variation of feature locations over

time.

6.2.1.2 Multiple Cameras

Multiple cameras can be used to increase the number of features in view and increase

the accuracy of localization estimates as well as decouple the position and orientation

estimation problems. The only requirement for using multiple cameras is that the relative

position and orientation of the cameras and the IMU be known. A total station, which is

an instrument used in modern surveying, can be used to determine the required relative

position and orientation. For example, for the localization of a vehicle going along a

highway, a down facing camera looking directly at road markers can be used measure

the vehicle position very accurately, whereas a forward facing camera can converge to

the orientation estimates really fast once the position is known accurately.
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6.2.1.3 Performance with a photo-realistic model of the environment

Photo-realistic models of cities have been generated in the past decade. The performance

and robustness of the vision algorithm needs to investigated with such photo-realistic

model.

6.2.1.4 Incorporation of Landmark Identification

The vision algorithm as implemented is essentially a tracking algorithm, which tracks

the vehicle position and orientation starting from a known initial location. To increase

the robustness of the algorithm, landmark identification needs to be incorporated into

the algorithm. Scale Invariant Feature Identification (SIFT) [64] is one such technique

which can be run at a much lower rate in the background of the vision algorithm for

landmark identification.

6.2.2 GPS/IMU/Vision-Map Integration

Low-cost GPS can be used to provide rough estimates of position to the vision algorithm

to make it more robust. Stochastic methods can be used to model errors in the GPS

measurements and vision algorithm measurements can be used to correct the GPS mea-

surements providing estimates of GPS measurement errors. Integration of IMU, Vision

and GPS can provide better estimates of vehicle location along with adding redundancy

to the system providing fault detection capabilities.
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6.2.3 Vehicle Model to include vehicle dynamics

If the driver inputs are measured, a vehicle model can be used to estimate some of the

vehicle states. These estimates can be used to aid other localization sensors, e.g. the

vision algorithm used in this research. Additionally, online parameter estimation can be

done using localization estimates from other sensors to refine the parameter estimates of

the vehicle model.

6.2.4 Fault Detection

Measurements from multiple sensors allow the implementation of a fault detection and

diagnosis strategy. Redundant information can be used by an algorithm to achieve safe

and graceful degradation of performance when there are temporary or permanent errors

in some of the vehicle sensors.
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