

THE PENNSYLVANIA STATE UNIVERSITY

SCHREYER HONORS COLLEGE

DEPARTMENT OF MECHANICAL AND NUCLEAR ENGINEERING

DESIGN AND PROTOTYPING OF A ROBOTIC RESEARCH VEHICLE TO

INVESTIGATE AND VERIFY THE CALCULATED EFFECT OF COMBINED

LOCOMOTION AND SERPENTINE GAIT

TREVOR J. OWEN

Spring 2009

A thesis

submitted in partial fulfillment

of the requirements

for a baccalaureate degree

in Mechanical Engineering

with honors in Mechanical Engineering

Reviewed and approved* by the following:

Sean N. Brennan

Assistant Professor of Mechanical Engineering

Thesis Supervisor

Matthew M. Mench

Associate Professor of Mechanical Engineering

Director, Fuel Cell Dynamics and Diagnostics Laboratory

Honors Adviser

* Signatures are on file in the Schreyer Honors College

We approve the thesis of Trevor J. Owen:

 Date of Signature

 _____________________________________ ____________

Sean N. Brennan

Assistant Professor of Mechanical Engineering

 Thesis Supervisor

 _____________________________________ ____________

Matthew M. Mench

Associate Professor of Mechanical Engineering

Director, Fuel Cell Dynamics and Diagnostics Laboratory

 Honors Adviser

9-1311-7522

Abstract

 Throughout the last 20 years, a lot of work has been done on the investigation into

serpentine dynamics and developing mathematical models for motion. However, there

has not been as much work testing the dynamic models with hardware. The purpose of

this thesis is to design and prototype a research vehicle to test various models of

serpentine dynamics which include serpentine gait and powered wheel locomotion.

 In designing the robot, selecting the proper hardware was the foundation on which

to build on. For the links, the AX-12 servo was chosen for its networkability to power

both the link angle and wheels. To control the entire robot, the CM-5 controller module

was superior to other options because of its programming library, serial hardware switch,

extended memory, and superior power source. These components combined with a

framing kit comprised the structure of the robot.

 In accordance with the mathematical model, the robot was designed with 6 links

and 5 joints. The programming was structured with a user interface to walk the user

through the experiment including preset variables or user defined variables. During the

experiments, the robot would not be tethered for the duration and then reconnected at the

end for data collection. There are many different modes of motion and feedback

parameters included in the robot which make it very reconfigurable.

 The robot was tested for operation and showed very promising serpentine motion

and feedback operation. It holds a number of advantages over the previous versions as

well as huge potential for further experiments. This robot allows for many different types

of testing utilizing a serpentine gait and configurable powered wheels.

Table of Contents

 Introduction ...Page 1

 Robot Hardware Selection ...Page 2

 The AX-12 Networkable ServoPage 2

 The CM-5 Control ModulePage 4

 Robot Body Design ..Page 8

 Link Design ..Page 8

 Wheel Design ...Page 9

 Robot Program and User Interface Page 11

 Testing the Robot Program and Hardware Page 14

 Train Test .. Page 14

 Serpentine Test .. Page 15

 Conclusions .. Page 17

 Recommendations ... Page 17

 Works Cited .. Page 18

 Appendix ... Page 19

Page | 1

Introduction

 The study of snake dynamics is a relatively new field. Snake motion is fairly

complex and is generally viewed as being an inefficient mode of travel. In the last 20

years, work has been done to calculate mathematical models and dynamics of snake

motion and it is a common practice to model a snake’s motion as a segmented body with

a single axle and two wheels on each segment. However, these theories are seldom tested

with actual hardware. The purpose of this investigation is to create a research vehicle

which can be used to test combinations of snake dynamics that include serpentine gait as

well as powered wheel locomotion.

 This project intends to build on the success of an earlier project by Vipul Mehta

(Mehta, Brennan, & Gandhi, 2008), which created a serpentine robot with free spinning

wheels. However, there were several setbacks with this project that needed to be

redesigned. The robot operated while attached to a tether which it relied on for control

and power. This made it difficult to operate and inconvenient in many situations.

Additionally, the general design, although operable, was cumbersome and fragile. The

joint between links was long and prone to bending. The wheels were too big and heavy.

The components of the links were bulky and needed a multitude of wires strung between

the joints. The redesign of the robot targets most of these areas and adds the ability to

power the robot’s wheels.

Page | 2

Figure 1: AX-12+ (Trossen

Robotics, Dynamixel AX-

12+ Robot Actuator, 2009)

Robot Hardware Selection

The AX-12 Networkable Servo

 The design for the robot depends on the foundation of properly selected servos.

Each link of the robot needed to have a servo to control the link angle, two servos to

power the wheels, feedback hardware such as encoders and current meters, as well as the

ability to power and command the servos. The previous version was made with all these

components separately and with the servos controlled individually through pulse width

modulation. Each link had a wire tether which made for awkward operation. For the

current version, new technology is available which simplifies all these operations.

 The servos chosen for this version of the robot were

AX-12s which are sold by Robotis under their Bioloid

product line (figure 1, figure 2). The design of the AX-12s

is special because each one houses a large amount of

technology that incorporates all the projects goals into a

compact package. The servos each contain an ATMega8

microcontroller (Hylands, 2008) which allows it to operate

independently from the master controller. The servo casing also contains feedback

hardware and can report information and make decisions based on internal conditions.

The servos have high torque for a relatively low weight (16.5 kgf-cm, 55g) (Robotis Co.

L. , Bioloid User's Guide, 2007). In addition, each servo is modular and has several

attachment points which can be used for snake construction, making the servo itself into

Page | 3

the snake link. The compact nature of these servos and their ability to do so much made

them an obvious choice for the project.

 Each servo has a multitude of functions that can be commanded from the

controller. The servo can provide feedback on position, speed, temperature, load, and

input voltage and can be commanded by goal position, speed, torque, compliance, and

operational limits. The servo can make decisions based on this information without

having to interrupt the master controller, allowing for smoother operation. The sheer

amount of features compacted into the servos casing was very useful for this project.

Figure 2: AX-12 Specifications

(Trossen Robotics, Dynamixel AX-

12+ Robot Actuator, 2009)

Page | 4

Figure 3: CM-5 Module. (Trossen

Robotics, Bioloid CM-5 Control

Module, 2009)

The final feature that made this servo the best choice for the project was the ability to

daisy-chain as many as needed together with only a single power source and master

controller. The servos are connected to each other by a 3 wire cable containing power,

ground and data. The data is transmitted via half duplex asynchronous serial

communication which is transmitted to and from the servos. Each data packet contains a

servo identification number as well as instructions which allows the control of all the

servos connected on the same wire. What this meant for the project is that there only had

to be one controller and power source located at the head of the robot and would free up a

lot of wires required to run each servo individually. The ability to control all the servos

from a single local controller and power source gave the robot a huge advantage over the

previous model.

The CM-5 Control Module

Now that the servo choice has been made, A

proper controller had to be chosen operate the robot.

The controller needed to fulfill certain requirements

including running a user interface, calculating the

positions of the servos, serially commanding the

servos, and reading information from the servos. It

also needed sufficient speed to compute all the operations in order to maintain smooth

serpentine motion. Additionally, it needed to be small enough to be integrated into the

robot or have a wireless capability. Other qualities of the controller that were not required

but beneficial were ease of programming, open source code, low cost, and availability.

Page | 5

From these criteria, the choice was narrowed down to running a laptop based controller

wirelessly, an Arduino Duemilanove controller, and a CM-5 controller (figure 3) sold by

Robotis. These three met the requirements, but ultimately the CM-5 was the best solution.

 The CM-5 is an enclosed printed circuit board with an Atmel ATMega128

microcontroller. This board uses the same microcontroller as the Arduino, but with some

key hardware differences that make controlling the servos easier which will be explained

later. The enclosure for the board is a plastic housing with several buttons and LEDs

which are connected to the board’s inputs and outputs. The housing also includes a serial

port for wired communication to a PC and a 3 wire serial bus for communication to the

servos. In addition to the board, the housing also incorporates a 9.6 V rechargeable

battery and has multiple hardware attachment spots on the outer perimeter for attaching

the servos.

 One of the hardware advantages the CM-5 had over the Arduino was the massive

amount of onboard memory. The CM-5 has 128 KB of flash memory, 4 KB of RAM, and

4 KB of EEPROM (Robotis Co. L. , 2007) as compared to the Arduino’s 16 KB of flash

memory, 1 KB of RAM and 512 bytes of EEPROM (Mellis, 2009). Each type of memory

is important for a different purpose. The flash memory is where the board stores the

program used to run it which includes the user interface, the equations for calculation,

and the commands given to the servos. The RAM is a volatile memory which is used to

store variables created during the program and is wiped when the power is disconnected.

The EEPROM memory is used for a multitude of uses but in this case is used for serial

communication and servo information storage. With a greater amount of memory on the

CM-5, more complex programs and longer strings of data are able to be stored.

Page | 6

 The CM-5 also has the capability to operate many servos at the same time. Where

the Arduino would need a custom power supply, the CM-5 has two very large capacitors

built into the board that are able to discharge enough current to run 28 servos

simultaneously (Robotis Co. L. , Bioloid User's Guide, 2007). These capacitors are

charged by the 9.6V 2.3 Ah rechargeable battery with enough charge for more than an

hour of testing.

 Since the controller would have to both

send commands and receive data from the servos,

it was important that the controller selected could

both send and receive serial commands at a fast

rate. As the AX-12 unit operates both on a single

wire, the controller needed to be able to do the

same. Both boards have a serial transmission

port (Tx port) and a serial receiving port (Rx port) but only the CM-5 had a hardware

switch to rapidly switch one on and disable the other (figure 4). The reason this is

important is that a serial communication in both directions on the same wire could

potentially cause a loop between the two ports and overload the board. The Arduino does

not have a hardware switch, but can perform the switch slower via software

programming. Since the servos send a return packet of information immediately

following a command, it is important to be able to switch rapidly between the serial ports

and so the CM-5 was chosen.

 In order to communicate with the AX-12 servos, a specific data packet must be

sent with instructions. This packet includes complex formatting and calculations.

Figure 4: Circuit diagram for CM-5

serial switch. (Robotis Co. L. ,

Dynamixel AX-12 User Manual, 2006)

Page | 7

Through many attempts, the exact way of communicating with the servos was determined

using a MATLAB based program for control as well as the Arduino. However, each

section of the data packet needed to be calculated and precisely sent. In contrast, the CM-

5 was specifically designed to operate the servos and includes open source libraries of

custom commands that can be utilized. This library must be included in the C language

compiler (in this case, WinAVR) that is used to program the board in order to utilize the

commands. The Arduino is also programmed in the C language, however the commands

are designed for the inputs and outputs of the CM-5 including the serial hardware switch.

These included commands make programming the robot much easier and less frustrating.

 Another perk of the CM-5 that is worth mentioning is the wireless capability. The

board includes a space to solder a ZIG-100 wireless communication module which can be

used with the CM-5’s custom library of commands to control the robot wirelessly from a

PC or to allow the robot to communicate with another CM-5. The communication module

uses ZigBee communication which is a simpler version of Bluetooth. While not

incorporated in this robot, the wireless capability of the CM-5 could be a useful addition

for future robot variants.

 Although both the PC and the Arduino were used in learning to control the servos,

the CM-5 was ultimately chosen to control the robot. It incorporates so many features

that were designed to communicate with the AX-12 servos that it became the obvious

choice. Open source compilers, programming language, and command libraries also

make it easy to work with and also allow for users to visit online forums to troubleshoot

hardware and software issues. In addition to fulfilling the hardware and software

requirements for the project, the CM-5 also has a few untapped features such as the

Page | 8

wireless communication feature that make it a promising board for future versions of the

robot. For all these reasons, the CM-5 was chosen as the controller for the serpentine

robot.

Robot Body Design

Link Design

 To accurately fit the mathematical model, the serpentine robot was designed to

have 6 links and 5 joints. This allowed for a direct match to the model without having to

consider extra links. Each link is made up of 2 AX-12s driving the wheels and 1 AX-12

driving the link angle. A considerable amount of framing holds the servos together and

connects them to the following link. Lastly, each servo is wired in a daisy-chain

formation to the next. At the head of the robot is attached the CM-5 unit, which will send

commands down the length of the robot. This caused a problem with the weight

distribution as the mathematical model calls for equal weight on each link and the CM-5

is a significant amount of weight to add to the first servo. This caused the robot to arch in

the middle slightly, decreasing the frictional force on the middle links. The solution to

this was to weight the other links with scrap metal to evenly distribute the weight along

the robot. The robots form matches the mathematical model in shape and degrees of

freedom.

 To further separate the robot from the previous version, this version had servos to

power the wheels and explore a different set of dynamics. However, the robot also had to

be backwards compatible to test free wheels as well. As a result, each wheel was

designed for four different modes. The wheels can be attached firmly to the servos,

Page | 9

allowing for no slip to test high torque applications, or be attached on bushings which

allow for backwards compatible free wheel motion. Also, the wheels were given a set of

ratchets. This allowed for powered or unpowered wheels that could only move in one

direction. The new transformable wheels allow for many different modes of testing,

increasing the possibilities of research for the robot.

Wheel Design

 The design of the wheels to allow for so many

different modes was complicated. Each servo spins a flat

disc which has 4 attachment points on it (figure 5). For

firmly attached wheels, the wheels were simply screwed in

at these 4 points. However, for the other three modes of

motion it became more difficult. Ratchets had to be

designed that could handle free spinning wheels as well as

ratchet wheels. Many different designs were attempted, but

the final design proved to easily accommodate all the modes of motion.

 Ratchets are basically gears with directional teeth and are usually used for high

stress or long life applications. Unfortunately, this means

they are usually made out of metal and very expensive to

make. For the ratchets on the robot, a cheaper solution had

to be found. Nylon gears are relatively inexpensive and are

easily machined to fit a custom purpose and so they were

used as the basis of the ratchet (figure 6). The outward

Figure 5: AX-12 hub.

(Trossen Robotics,

Dynamixel AX-12+ Robot

Actuator, 2009)

Figure 6: Wheel ratchet

Page | 10

pointing gear teeth are not ideal, but for this application they are sufficient. To prepare

each gear for mounting, they needed to have the hub machined off and 4 holes drilled to

match the mounting on the servo. Once this was accomplished, a plastic bushing was

bonded coaxially to the outer surface of the gear to provide a frictionless mount for the

wheel. In addition to the gear, every ratchet needs a pawl which stops the gear from

rotating backwards. This part is usually a solid piece held down by a spring. For this

robot, a springy piece of plastic anchored on the wheel itself was used. The plastic is held

at a near tangential angle to the gear so that it locks when trying to move the wrong

direction. This completes the ratchet and covers the two ratcheted modes of motion. In

addition to this, extra wheels are on hand to replace those with a pawl attached in order to

have free spinning wheels. Each type of wheel is held on the bushing with a washer and

nut on the outside.

 The robot is complete physically (figure 7). It has the exact form to match the

mathematical model and is reconfigurable to test different modes of motion. The

microcontroller and power source allow the robot to run independently and tether-free for

operational convenience. The next step in finishing the design of this robot is to complete

the software side and program the robot to accept multiple profiles of motion.

Figure 7: Completed serpentine robot

Page | 11

Robot Program and User Interface

 The robot is programmed with a certain intuitive program structure of setting up

the experiment, running the experiments, and getting the feedback data. During the set up

and feedback portion of the program, the robot outputs data and user interface

information to the serial port on a laptop. A sample user interface progression can be seen

in figure 8. Most any serial communication program can be used, but this robot was

designed to work with Robot Terminal. In the initial stages of the program, the robot is

programmed for the option of charging the battery. This is a terminal branch of the

program and if chosen will end the simulation to complete the charge over approximately

1 hour for an empty battery. If charging the battery is not chosen, the robot queries the

user with a few options on what simulation to run. There are three preprogrammed

simulations as well as a custom option to enter user defined variables. The three

preprogrammed modes work with all 4 wheel modes and consist of a straight train mode,

a powered wheel serpentine mode, and an unpowered wheel serpentine mode. The forth

mode asks the user for each variable individually. The robot then instructs the user to

disconnect the serial cable while it runs the program and then to reconnect the cable at the

end to retrieve the data.

Figure 8: Sample user interface progression for powered wheels.

Page | 12

Figure 9: Equation of snake motion

(Mehta, Brennan, & Gandhi, 2008)

 The control formula for the motion of the serpentine robot is based on the work of

Vipul Mehta in his paper on serpentine gait (Mehta, Brennan, & Gandhi, 2008). It is

sinusoidal in describing the motion of the first link and adds a phase lag for each

additional link (figure 9). The code written for

the serpentine robot uses this sinusoidal

equation to calculate the goal position of each

link to create a sinusoid profile and continuously sends an updated profile until a

designated end time. This creates the sinusoidal motion needed to propel the robot

forward. The sinusoidal motion is characterized by 4 variables: amplitude, frequency,

time step, and phase lag. As the time step and frequency both have an equal effect on the

sinusoid, the time step is fixed and the frequency is used to change the profile. There are

two things that make this motion of the robot counterintuitive. First is that if the links are

calculated from the first link back to the tail, the time variable must be set as a negative

value. This allows the sinusoidal motion to move down the tail rather than up it. Also, the

amplitude and frequency variables only control the sinusoidal motion of the first link, not

the entire profile. The subsequent links are controlled by the phase lag variable, which

can be set low for a tighter sinusoid or high for a loose sinusoid. The code structure is

seen in figure 10. The centerline for the position of the servo is 512 of the total range of

1023. This means the sinusoidal wave needs to be converted to the specified range.

Page | 13

for (t = 1; t <= trun;)
 {
 for (bID = 1; bID <= 5; bID++)
 {
 pos = (a*sin(w*-t+(bID-1)*b)*200)+512;
 WriteWord(bID, P_GOAL_POSITION_L , pos);
 }
 t += tstep;
 MiliSec(50);
 }

In addition to the commands sent down the servo chain, the CM-5 also reads any

feedback parameter of the AX-12. The speed of communication is so high (1 MB/sec)

that it does not affect the fluidity of motion. This includes the load, position, voltage, or

speed of the servo. The variable measured depends on the parameter being tested. The

CM-5 starts to read feedback information towards the end of the run (for steady state

conditions) and stores the information in an array that is later uploaded to a PC. This

stored data is located in the volatile part of the robot’s memory and is lost once the power

is shut off. Once the user has reconnected and downloaded the stored feedback data, the

experiment is concluded and the program reaches its end.

Figure 10: Code segment for calculating and

commanding servo position.

Page | 14

Testing the Robot Program and Hardware

 In order to verify the operation of the robot and its feedback data, it was tested

under several different modes. These modes were used to verify the robot’s ability to

gather data as well as test its physical abilities. The first mode tested was a straight train

mode to test wheel operation, wheel feedback, and joint hold. In addition to a flat surface,

the train mode was tested on an inclined ramp to test for ratchet holding strength. After

the incline, the snake was tested in its sinusoidal mode with both powered wheels and

unpowered wheels to test for joint feedback and snake motion similar to the previously

created robot. Through these tests, the robot was tested to ensure proper operation and its

capability to test experimental snake dynamics.

Train mode test

 Putting the robot into a straight train mode is as easy as setting the amplitude

variable equal to zero and running the powered wheel simulation. Once the test was

underway, the robot performed as expected. All 12 wheels were turning at the assigned

speed and the joints were holding in a straight line. Upon completion of the test, the robot

was reconnected and the feedback data proved that the controller had successfully

retrieved and stored wheel load and speed. A small portion of the feedback data can be

seen in figure 11.

Page | 15

Dynamixel

ID

Current

Speed

(RPM)

Current

Load

11 51.4 920

12 52.6 1103

13 55.4 992

14 50.8 1135

15 51.8 928

Figure 11: Feedback data from the straight train test.

After the flat surface test, the robot was placed on a 30 degree incline to test ratchet

holding strength. Throughout the test, the ratchets held just fine. As the degree of incline

was increased to 40, the robot began to slip due to loss of friction as well as well as some

ratchet failure. This test was only in the straight line motion however, and a 40 degree

incline is not an easy feat for a robot. However, the wheel grip can be increased with

weight and strength in the ratchets can be increased with more directional teeth.

Unfortunately, ratchets of this type are expensive and were not within the scope of this

project.

Serpentine mode test

 To test the serpentine motion of the robot, it was first placed in unpowered wheel

mode and the ratchet wheels were replaced with the free spinning wheels. This mode was

to test the motion of the serpentine gait as compared to the previous version. Before the

current robot had weighted joints to distribute the weight from the battery pack at the

head, the serpentine motion was present but the mid section slipped back and forth. This

Page | 16

meant that the mid section was not contributing to the forward motion and the front and

back sections were doing all the work. However, after weights were added to equalize the

load, the robot worked very well and equaled if not outperformed the previous version of

the robot.

 After the unpowered wheel testing, the ratchet wheels were reassembled and the

robot was put through the powered wheel serpentine test. This test intended to see if all

the components of the program could work simultaneously. This included commanding

the serpentine profile of the joints, powering the wheels, and receiving feedback from the

joint servos. During the test, the robot ran as smoothly as it did with the unpowered wheel

test, although it was quite a bit louder with all 17 servos operating. A portion of the

feedback can be seen in figure 12. One thing that was noted about this mode is that the

forward motion is dominated by the wheel speed variable and the serpentine gait seems to

increase forward momentum only slightly. However, the test was a success as the

feedback data proved that the robot could perform all operations at the same time.

Dynamixel ID Speed (RPM)
Position (deg

from center)

1 11.6 29.6

2 9.8 15.2

3 10.3 -2.05

4 3.6 -19.4

5 -11.7 -30.5

1 8.5 29.9

2 9.8 21.1

3 9.8 2.6

4 9.36 -14.4

5 -11.7 -31.1

 Figure 12: Feedback data from serpentine test.

Page | 17

Conclusions

The final design for the robot turned out to be better than expected. The speed of

communication from the controller to the servos is so fast that the serpentine motion of

the robot is fluid despite the additional strain of data acquisition. In addition to the link

hardware, the ratcheting wheels turned out very well. With the rolling friction minimized

while still being able to prevent opposing motion, the ratchets perform their job well.

Also, the ability to operate the robot without a tether makes operation of the snake very

convenient and the user interface drastically lowers the learning curve. This robot fulfils

all the requirements needed to test experimental motion as defined by the mathematical

model.

Suggestions for Future Work

 For future versions of this project, several changes could be made that could

improve the performance and capability of the robot. First, the ratchets worked well for

the materials that were available, but could be made better. However, the professionally

made metal ratchets are still too expensive. In the future, the ratchets should be drawn up

on a CAD program and cut out with a water jet or other rapid prototyping machine.

Properly angled teeth on a ratchet would cut down on rolling resistance as well as

increase the holding strength. Making this change would greatly increase the ratchet’s

performance. As for additional capabilities of the robot, the wireless capability of the

CM-5 should be utilized. Not only would the CM-5 be able to broadcast data during the

experiment, but the robot would not need to be attached during any part of the program.

Page | 18

Additionally, when the CM-5 is using the wireless module, it would allow for external

control by using a wireless controller. This, along with changes to the dynamic formula,

would allow the user to steer the robot for additional applications.

Page | 19

Works Cited
Hylands, J. (2008, June 27). AX-12 Page. Retrieved April 15, 2009, from TikiWiki:

http://www.bioloid.info/tiki/tiki-index.php?page=AX-12+page

Mehta, V., Brennan, S., & Gandhi, F. (2008). Experimentally Verified Optimal Serpentine Gait and

Hyperredundancy of a Rigid-Link Snake Robot. IEEE Transactions On Robotics , Vol. 24, No.2.

Mellis, D. A. (2009, March 24). Arduino Duemilanove. Retrieved April 15, 2009, from Arduino:

http://arduino.cc/en/Main/ArduinoBoardDuemilanove

Robotis Co., L. (2007). Bioloid Expert Manual. Bucheon-city, Gyeonggi-do, Republic of Korea:

Robotis Co., LTD.

Robotis Co., L. (2007). Bioloid User's Guide. Bucheon-city, Gyeonggi-do, Republic of Korea:

Robotis Co., LTD.

Robotis Co., L. (2006, 06 14). Dynamixel AX-12 User Manual. Burcheon-city, Gyeonggi-do,

Republic of Korea: Robotis Corporation.

Trossen Robotics, L. (2009). Bioloid CM-5 Control Module. Retrieved April 15, 2009, from Trossen

Robotics: http://www.trossenrobotics.com/bioloid-cm-5-control-module.aspx

Trossen Robotics, L. (2009). Dynamixel AX-12+ Robot Actuator. Retrieved April 15, 2009, from

Trossen Robotics: http://www.trossenrobotics.com/dynamixel-ax-12-robot-actuator.aspx

Page | 20

Appendix 1 – materials, tools, and programs used

Materials Used:

Part name Number

required

CM-5 Control Module 1

AX-12+ Robot Actuator 17

17 Servo Cables 17

BPF-F13/F14 Wheel and Tire Set 24

BPF-WA/BU Washer and Bushing set 17

BPF-F2 Frame 5

BPF-F10 Frame 11

BPF-F3 Frame 31

M3-10 Bolt 17

M3 Nut 12

M2-6 Bolt 160

M2 Nut 140

M2-10 Bolt 48

M3 Washer 15mm OD 12

Tools Used:

Phillips screwdriver

Cutting tool

Milling Machine

Cordless Drill

Plastic Bonder

Threadlocker

Professional Epoxy

Programs Used:

Bioloid libraries and Terminal – Downloadable from www.robotis.com/zbxe/software_en

WinAVR – Downloadable from http://winavr.sourceforge.net/download.html

Page | 21

Appendix 2 – Serpentine Robot Code

#include " libCM-5.h" // allows use of Bioloid Command Library
#include "math.h" // allows use of trig functions

int main(void)
{
 //initialize hardware
 PortInitialize(); //initializes Serial ports
 TimerInitialize(TIMER0, 128, 1); //Interrupt Enable
 SerialInitialize(SERIAL_PORT0,1,RX_INTERRUPT); //485 serial communication to
 Dynamixel Servos
 SerialInitialize(SERIAL_PORT1,DEFAULT_BAUD_RATE,RX_INTERRUPT); //232 serial
 communication to PC
 ChargeInInterruptInitialize(); // initialize ability to charge battery
 sei(); // initialize interrupt

 //defining variables
 int arraytotal, arraypos;
 byte bID, bkey;
 word pos, jspeed, wspeed, cwspeed;
 float a, w, b, t, trun, tstep;

 //User defined values
 a = 0.8;
 w = 0.5;
 b = 0.8;
 jspeed = 100;
 wspeed = 400;
 cwspeed = wspeed +1024; // must add 1024 for counter clockwise spin
 trun = 30;
 tstep = 0.5;

 //user interface message to PC
 TxDString("\r\n Welcome to the Snake Robot Control Program \r\n");

 MiliSec(1000); //pause for 1 second
 LEDOn (BIT_LED_MANA); //turn on manage LED

 TxDString("\r\n Would you like to charge the battery? (Up = yes/Down = no) \r\n");
 bkey = WaitButtonChange(); //wait for user to make button choice
 if (bkey == BIT_SW_UP) //if user selects to charge the battery
 {
 gbBatteryChargeMode = BATTERY_CHARGE_MODE_ING; //starts the battery charge

 TxDString("\r\n Battery Charging... Restart program when finished.");
 while(1){} //infinite loop to charge the battery
 }
 LEDOff (BIT_LED_MANA); //turn off manage LED
 MiliSec(1000);
 LEDOn (BIT_LED_PROG); //turn on program LED
 TxDString("\r\n Select one of the following options (Press directional button):
 \r\n");
 TxDString("\r\n UP: Run winding serpentine program with powered wheels");
 TxDString("\r\n DOWN: Run winding serpentine program with unpowered wheels");
 TxDString("\r\n LEFT: Run straight train program presets");
 TxDString("\r\n RIGHT: Use user defined values\r\n");
 TxDString("\r\n Choice: ");

 bkey = 0;

 //while loop for incorrect button presses
 while (bkey != BIT_SW_UP && bkey != BIT_SW_DN && bkey != BIT_SW_RT && bkey !=
 BIT_SW_LF)
 {

 bkey = WaitButtonChange(); //wait for user choice

 switch (bkey) //switch to determine actions from user's choice
 {
 case BIT_SW_UP:
 TxDString("UP"); // clarifying choice
 a = 0.8; //redefining values

Page | 22

 w = 0.5;
 b = 0.8;
 jspeed = 100;
 wspeed = 1023;
 cwspeed = wspeed +1024;
 trun = 100;
 tstep = 0.5;
 break; // exits switch
 case BIT_SW_DN:
 TxDString("DOWN");
 a = 1;
 w = 0.6;
 b = 1;
 jspeed = 200;
 wspeed = 1;
 cwspeed = wspeed +1024;
 trun = 100;
 tstep = 0.5;
 break;
 case BIT_SW_LF:
 TxDString("LEFT");
 a = 0;
 w = 0.5;
 b = 1;
 jspeed = 200;
 wspeed = 1023;
 cwspeed = wspeed +1024;
 trun =80;
 tstep = 0.5;
 break;
 case BIT_SW_RT:
 TxDString("RIGHT");
 break;
 default: //used to catch incorrect choices
 TxDString("\r Incorrect button pressed. Press another button");
 break;
 }
 }
 LEDOff (BIT_LED_PROG); //turn off program LED
 arraytotal = (trun/tstep)*5*3; //set up total number of data points
 word load[180]; // set up array for data collection
 arraytotal = 0;
 arraypos = 0;

 MiliSec(1000);
 TxDString("\r\n Variables set, remove serial cable and press START to begin
 program.");
 bkey = WaitButtonChange(); //allow user to disconnect and start program
 LEDOn (BIT_LED_PLAY);
 MiliSec(1000);

 TxDString("\r\n variables calculated\r\n");

 for (bID = 6; bID <= 17; bID++) //360 deg spin wheel mode initialize
 {
 if (ReadWord(bID,P_CCW_ANGLE_LIMIT_L)!=0) WriteWord(bID, P_CCW_ANGLE_LIMIT_L,
 0);
 }

 TxDString("\r\nWheels Initialized\r\n");

 for (bID = 6; bID <= 16;) //wheel speed command to left side
 {
 WriteWord(bID, P_GOAL_SPEED_L, wspeed);
 bID += 2;
 }

 TxDString("\r\n left side turn command given\r\n");

 for (bID = 7; bID <= 17;) //wheel speed command to right side
 {
 WriteWord(bID, P_GOAL_SPEED_L, cwspeed);
 bID += 2;
 }

 TxDString("\r\n right side turn command given \r\n");

 for (bID = 1; bID <= 5; bID++) //set speed for joint servos
 {
 WriteWord(bID, P_GOAL_SPEED_L, jspeed);

Page | 23

 }

 for (t = 1; t <= trun;) //run for time duration
 {
 for (bID = 1; bID <= 5; bID++) //command loop for joint servos
 {
 pos = (a * sin(w * -t + (bID - 1) * b) * 200) + 512; //calculate
 position
 WriteWord(bID, P_GOAL_POSITION_L, pos); //issue position command

 if (arraytotal >= ((trun/tstep)*5*3-180)) //IF statement for starting to
 take data
 {
 load[arraypos] = bID; //Identifying data with servo
 load[arraypos +1] = ReadWord (bID, P_PRESENT_SPEED_L); //read value
 from servo
 load[arraypos +2] = ReadWord (bID, P_PRESENT_POSITION_L);
 arraypos += 3;
 }
 arraytotal += 3;
 }
 t += tstep;
 MiliSec(50);
 }

 for (bID = 6; bID <= 17; bID++) //wheel stop command
 {
 WriteWord(bID, P_GOAL_SPEED_L, 0);
 }

 TxDString("\r\n press start to recieve data \r\n"); //incase the user is still
 connected
 MiliSec(1000);
 bkey = WaitButtonChange(); //allow user time to reattach robot for data collection
 TxDString("\r\nbID\t Speed\t Position\r\n"); //set up table for data
 output
 arraytotal = 0;
 while (arraytotal<=179) //loop for outputting the data
 {
 TxDWord10(load[arraytotal]);
 TxDString("\t ");
 TxDWord10(load[arraytotal+1]);
 TxDString("\t ");
 TxDWord10(load[arraytotal+2]);
 TxDString("\r\n");
 arraytotal +=3;
 }

 LEDOff (BIT_LED_PLAY);

 return 0; //end program

}

