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ABSTRACT 
 

This thesis describes the analysis of a potential control mechanism for self-organizing 

systems by studying the specific problem of self-organizing traffic jams. Self-organizing traffic jams 

are known to occur in medium-to-high density traffic flows. Various techniques for modeling traffic 

flow are discussed and their advantages and limitations are considered. The master equation 

approach is selected for developing a model that describes the self-organizing behavior of traffic 

flow at a mesoscopic scale. The master equation approach is further developed to incorporate 

driver (or agent) behavior. Control of the self-organizing system is presented via introduction of 

similar agents with slightly varying interaction properties. The introduction of such agents into a 

self-organizing system is considered to be analogous to the introduction of vehicles with adaptive 

cruise control (ACC) into traffic flow. The behavior for both human-driven and ACC vehicles is 

modeled using the same driver model but with slightly different model parameters. It is found that 

introduction of a small percentage of agents with slightly different interaction behavior has the 

potential to affect the dynamics of the self-organizing system. Specifically, it is found that while 

introduction of ACC vehicles into traffic may enable higher traffic flows, it also results in 

disproportionately higher susceptibility of the traffic flow to congestion. 
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CHAPTER 1 

CHAPTER 1 – INTRODUCTION 

This thesis describes a methodology for analyzing and controlling the dynamics of self-

organizing systems. The methodology is developed by focusing specifically on the problem of 

formation of self-organizing traffic jams in highway traffic. The motivation for the research was 

provided in part by the apparent lack of a general methodology to control the behavior of self-

organizing systems. Further, and with direct practical implications, the research was motivated by 

the lack of a clear mandate on the effect of Adaptive Cruise Control (ACC) technologies on highway 

capacities and flows (Zwaneveld, et al., 1997). 

In the following discussion, human-driven vehicles on a highway are viewed as 

independent, but interacting, agents. ACC vehicles may also be viewed as independent agents, but 

whose interaction effects may differ slightly from those of human-driven vehicles. The introduction 

of ACC vehicles on the highway can then be considered as a factor that may possibly modify the 

dynamics of the system. The thesis builds on this idea and analyzes how the introduction of ACC 

vehicles in highway traffic affects the formation of self-organizing traffic jams. The results may then 

be extended to other self-organizing systems, whose dynamics may be similarly modified by the 

introduction of agents with slightly different interaction effects. 

Some of the goals of this thesis are as follows: 

 To develop a methodology to control the dynamics of self-organizing systems by 

introduction of a small set of agents whose interaction effects are intentionally different 

from the rest of the agent population, 

 To develop the methodology specifically to study the effects of introduction of ACC vehicles 

on the formation of self-organizing traffic jams, 

 To validate the results using computer simulations of the self-organizing traffic jams. 

1.1 Motivation 

 

The concept of self-organization is not new. Descartes referred to the ability of matter to 

arrange itself into various physical entities, such as in planets and stars (Descartes, 1637). The term 

self-organization itself was supposedly coined after World War II by W. Ross Ashby (Ashby, 1947). 
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Though many systems are known to self-organize and exhibit emergent phenomena, the concepts 

and definitions of self-organization and emergence themselves have continued to remain vague. 

Further, little attention has been paid towards developing formal methodologies to control the 

behavior of self-organizing systems. 

On the other hand, adaptive cruise control has been an area of intensive research over the 

past few decades. Active research has been performed by the likes of Herman, Gazis and Potts 

(Gazis, et al., 1959), Greenshields (Greenshields, et al., 1935), and Greenberg (Greenberg, 1959), 

and more recently by Seiler and Hedrick (Seiler, et al., 2004), Darbha (Darbha, et al., 1998), Zhou 

and Peng (Zhou, et al., 2004) and Ioannou (Ioannou, et al., 1993). However, while many studies 

show that ACC may improve highway traffic flows, the jury is still out on whether their impact is 

positive or not.  

The following subsections elaborate on the motivation behind the research into analyzing 

the impact of ACC on self-organizing traffic jams. 

1.1.1  Self-organization and Emergence 

The process of self-organization has been described by Haken as the “spontaneous often 

seemingly purposeful formation of spatial, temporal, spatio-temporal structures or functions in 

systems composed of few or many components” (Haken, 2008). Systems that display the 

phenomenon of self-organization and/or emergence typically consist of multiple interacting 

components or agents. Self-organization has been observed in systems as diverse as ant colonies, 

growth of cities, the nervous system (Johnson, 2001), chemical reactions (Prigogine, 1984), lasers 

(Haken, 2007) , and communication networks (Prehofer, et al., 2005). Figure 1 and Figure 2 show 

the spontaneous structure formation characteristic of emergence in chemical reactions and 

biological entities, respectively. 

By their very definition, self-organizing systems evolve without any external control. 

However, in certain cases, it is desirable that the system evolves towards one state rather than 

another. For example, consider snow on mountains (Birkeland, et al., 2002), or sand in sandpiles 

(Bak, et al., 1988). Both systems tend to self-organize to a critical slope. A tiny perturbation to this 

self-organized critical state is enough to trigger an avalanche, which may lead to physical and 

financial losses. In such a scenario, it is desirable to know the dynamics of the system that enables 

it to reach the critical state, and the parameters that affect the system evolution. Such knowledge 
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may enable one to modify the dynamics to a more favorable outcome that results in fewer 

avalanches. The modifications may be introduced by inclusion of a small percentage of agents with 

slightly different interaction effects. For example, boulders with favorable characteristics, such as 

larger size, may be positioned in favorable positions on unstable mountain slopes to possibly 

reduce the size or frequency of avalanches. 

  

Figure 1: Emergence of concentric waves in a BZ 
reaction-diffusion system (Zhabotinsky, 2007) 

Figure 2: Flocking behavior in starlings over 
Tøndermarsken, Denmark (Hansen, 2006) 

A similar argument may be offered for self-organizing traffic jams. It is known that in 

medium-to-high density traffic conditions, traffic flow self-organizes into clusters (Kerner, et al., 

1993). This phenomenon is also referred to as “stop-and-go” traffic, owing to the formation of 

several clusters of stationary and moving traffic, and as “phantom” traffic jams, because the jam 

forms without any known extenuating circumstances such as accidents or bottlenecks. Once a 

certain critical vehicular density is reached, cluster formation can be initiated by a small 

perturbation, such as a small braking effort applied on a single vehicle. Due to typical human driving 

behavior, the driver in a following vehicle tends to apply a slightly larger braking effort to 

accommodate for the fact that the leading vehicle may be stopping. This results in an even larger 

braking effort by other following vehicles, till a cluster of slow moving or stationary vehicles is 

formed. This process is comparable to the avalanches formed in snow or sandpiles. The formation 

of clusters results in adverse effects on the environment (in terms of excessive emissions), financial 

losses (in terms fuel wastage) and losses in productivity (in terms of lost man hours due to traffic 

jams). If the dynamics of the self-organizing traffic jams are known, it may be possible to modify the 

behavior to enable the traffic to flow at higher densities without cluster formation. As in the 

http://upload.wikimedia.org/wikipedia/commons/9/92/Sort_sol_pdfnet.jpg
http://upload.wikimedia.org/wikipedia/commons/9/92/Sort_sol_pdfnet.jpg
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avalanche example, modifications to the system dynamics may be introduced by inclusion of a 

small set of ACC vehicles with slightly different interaction effects. More importantly, knowledge of 

how traffic dynamics may be modified in presence of ACC vehicles may provide insights to 

designers to devise better ACC algorithms. 

 Apart from these strong arguments outlining the advantages of controlling self-organizing 

behavior in the specific systems mentioned, another reason that motivates this research is the 

relative ubiquity of such systems in the world around us. Wherever we find a population of 

independent, but interacting agents, we may usually find some form of self-organizing behavior 

resulting in emergent phenomena. It is sometimes desirable to be able to manipulate a small 

subset of the agent population to enable the system to self-organize to a certain state. In the near 

future, such form of control may be applied to self-organizing systems such as traffic jams, forest 

fires, avalanches, and chemical reactions. In the not-so-distant future, we may see such control 

being introduced to control the flocking behavior in birds, and the growth of cities. Much further 

into the future, opportunities may arise to use such a methodology in biological projects to control 

seizures in the human brain, and in geo-engineering projects to control earthquakes, or even in 

bulk modeling and influencing societal trends, as made famous in Asimov’s “Foundation” series . 

1.1.2 Traffic jams and Adaptive cruise control 

The US Department of Transportation mentioned in a recent report that “between 1985 

and 2006, vehicle miles traveled increased by nearly 100 percent, while highway lane miles only 

increased 5 percent during the same period” (FHWA, 2008). Another report from the Texas 

Transportation Institute stated that “between 1982 and 2005, the percentage of the major road 

system that is congested grew from 29 percent to 48 percent” (Shrank, et al., 2007). With growing 

vehicular population and reducing opportunities for infrastructure expansion, new avenues for 

improving traffic flow on our highways must be explored.  

Traffic jams and congestion result mainly due the one or more of the following three 

reasons: 

(a) Design issues – The presence of ramps and traffic lights can result in reduction of road 

capacity causing a traffic jam. 

(b) Operational issues – Construction work or accidents can create bottlenecks in traffic 

flow resulting in congestion. 
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(c) Inherent tendencies – The presence of too many vehicles on a highway may cause a 

traffic jam in the case where a tiny perturbation occurs. In other words, by the inherent 

nature of the system, a tiny perturbation beyond critical density may result in a self-

organized traffic jam.  

This thesis focuses on this third cause: the inherent tendencies of the system to self-

organize. 

While research thrust has been maintained towards improving highway capacity and 

reducing congestion, such efforts were, until recently, focused on developing and demonstrating 

the concept of advanced highway systems (AHS). However, with increasing financial constraints, 

and the obvious need for a massive infrastructure overhaul to implement such systems, the focus 

has shifted to intelligent vehicle initiatives (IVI) (Vahidi, et al., 2003). Intelligent vehicle initiatives 

include various driver-assist technologies such as collision avoidance, driver alert systems and 

cruise control, and are primarily developed keeping in mind the needs of individual drivers. These 

technologies have now begun to appear in mainstream vehicle models on our highways. However, 

there is still no clear mandate on how these IVI technologies impact highway capacity (Kesting, et 

al., 2005) (Nagel, et al., 1995). This thesis will attempt to establish a relationship between adaptive 

cruise control laws and their impact on highway capacity and the formation of “phantom” jams. 

1.2 Problem Statement 

 

 The following problem statement summarizes the central theme of this thesis: 

 This project aims to study the interactions between driver algorithms, some representing 

human-driven vehicles, and others representing computer algorithm-driven automated (ACC) 

vehicles. As a goal of the study, it is sought to determine how changes in driver algorithm 

parameters and different mixtures of driver algorithms affect the overall macroscopic behavior of 

traffic flow, especially in medium-to-high-density regimes wherein complex emergent behavior 

such as "phantom" jams is observed. The desired result of the study is to determine if and under 

what conditions a mixture of driver algorithms can achieve traffic flow flows higher than when 

vehicles using only human-driver algorithms populate the road.  
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 From a broader perspective, a framework for a general methodology is sought to analyze 

how the self-organizing behavior of a group of agents can be modified or even controlled. The 

control action may be brought about by introduction of slightly dissimilar agents with interaction 

responses that differ from the rest of the agent population. 

1.3 Outline of Remaining Chapters 

 

The remaining chapters of this thesis are organized as follows: 

 Chapter 2 gives a literature review of existing methodologies for analyzing traffic flow. It 

also discusses the existing state-of-the-art in adaptive cruise control technologies and provides a 

brief overview of how previous traffic modeling approaches handled self-organizing traffic jams. 

 Chapter 3 describes the system under consideration and details the master equation 

approach towards traffic flow modeling.  

 Chapter 4 describes how the master equation approach applied to the given system yields 

a deterministic equation for stochastic dynamics of the self-organizing traffic jam or vehicle cluster. 

The chapter also details the derivation of a set of transition rates for defining the cluster dynamics. 

 Chapter 5 extends the approach of Chapter 4 to a multiple species environment wherein 

the traffic flow consists of human-driven vehicles and ACC vehicles. It also predicts how the 

emergent system behavior is modified by introduction of a set of slightly dissimilar agents. 

 Chapter 6 summarizes the results of this thesis and discusses future directions and how this 

methodology may be applicable to other self-organizing systems. 
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CHAPTER 2 

CHAPTER 2 – LITERATURE REVIEW 

This chapter attempts to provide a survey of the existing literature and an overview of how 

problems in the field of traffic flow have been dealt with in the past. The chapter traces the history 

of vehicular traffic flow research from its beginnings in the early 1930’s to the state-of-the-art 

techniques used today. It also describes the advent of driver assist technologies and how they have 

begun to permeate into mainstream vehicles. Further, literature pertaining to various systems that 

exhibit self-organization and emergence is also reviewed, with special emphasis on self-organizing 

traffic jams. The aim of this chapter is to establish the scope of the problem of traffic flow with a 

mixture of human-driven and ACC vehicles and its application to the evolution of self-organizing 

traffic jams.  

2.1 Fundamental Diagram of Traffic Flow 

 

The field of automotive technology is a vibrant one, and has seen periods of stupendous 

growth. In 1895, only four automobiles had been produced in the United States. By 1901, there 

were 8,000 registered vehicles in the United States, and by 1910 there were over 450,000 (Garber, 

et al., 2009). Since then the industry has seldom looked back. 

In the early years of the growth of the automobile industry, an increase in vehicle 

population was counterbalanced by a corresponding increase in highway mileage. However, it was 

soon realized that highway mileage growth could not keep pace with the growing societal demand 

for automotive transportation. In order to better understand methods for highway design, it was 

necessary to establish a relationship between traffic demand and highway capacity. In 1935, B N 

Greenshields proposed what was perhaps the first traffic flow model. According to his observations 

made using photographic methods, Greenshields postulated that there existed a linear relationship 

between speed and density (Greenshields, et al., 1935): 

         
    

  
  (2.1)  

where,   

 

   = space mean speed, i.e. the average speed of a traffic stream, 

      = free flow speed or maximum permissible speed, 
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Figure 3 depicts the linear relationship obtained by Greenshields. Further, traffic flow (q) is 

defined as the product of space mean speed and density, i.e. 

       (2.2)  

Substituting (2.2) into (2.1), we obtain equation (2.3)  

         
    

  
   (2.3)  

Thus, Greenshields was able to show that a quadratic relationship exists between traffic 

flow and density. Figure 4 depicts this relationship, which, over the years, has come to be known as 

the fundamental diagram of traffic flow (Kuhne, 2008). At zero density, the flow is obviously zero, 

because there are no vehicles on the road. As the density begins to rise, so does the flow, until a 

maximum flow is achieved at a critical density. Up to this point the movement of vehicles is 

relatively free and there is little interaction between the vehicles. Beyond this critical point, the 

vehicle behavior is affected by other vehicles around it. An increase in density results in a decrease 

of vehicle speed and vehicle flow; this continues up to jam density, when traffic comes to a 

standstill.  

   = traffic density (in vehicles per unit distance) 

    = jammed traffic density, i.e. the density at which traffic stops moving 

Figure 3: Observations made by Greenshields using photographic equipment depict the 
linear relationship between speed and density (Greenshields, et al., 1935) 
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The next major advances in traffic flow research came in the 1950’s, when Lighthill, 

Whitham, Greenberg, Herman, Montroll, Pipes and Richards began developing models for traffic 

flow and other phenomena observed on highways. In 1958, R E Chandler, R Herman and E W 

Montroll, who were part of the research staff at General Motors, put forward a theory of traffic 

flow based on car following studies (Chandler, et al., 1958). In their paper, they discussed the 

manner in which individual vehicles follow each other on a highway. They also discussed how 

disturbances propagate through these vehicles within the traffic stream. Along with some other 

publications during the same period (Herman, et al., 1958) (Gazis, et al., 1959), these theories 

established the foundations for stability analysis procedures for traffic flow. 

Harold Greenberg in his 1959 paper titled “An analysis of traffic flow” (Greenberg, 1959), 

put forth a different perspective to the same problem. He analyzed the traffic stream as a 

continuous fluid, and used fluid dynamic principles to derive relations between speed, density and 

flow. Lighthill and Whitham (Lighthill, et al., 1955), analyzed the phenomenon of a ‘hump’, or an 

area of increased density, formed on highways. This was perhaps one of the first attempts at 

analyzing the nature of shock waves observed in traffic flow.  

As the years have progressed, traffic flow modeling techniques have come to be classified 

into a few distinct categories. These modeling techniques and categories are discussed in the next 

section. 

Figure 4: Fundamental diagram of traffic flow (as proposed by Greenshields) 
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2.2 Existing Modeling Techniques 

 

Models for traffic flow can be classified into one of the following three categories, viz. 

microscopic models, macroscopic models or mesoscopic models. In microscopic models, the traffic 

is treated as a system of interacting particles, and the behavior of individual vehicles is explicitly 

defined using ordinary differential equations. In macroscopic models, the traffic is viewed as a 

compressible fluid and its bulk properties are analyzed (Nagatani, 2002). However, traffic flow often 

exhibits phenomena that occur at a scale between those described by either microscopic or 

macroscopic modeling techniques. Emergent traffic jams are an example of such phenomena, 

because fluctuations at a microscopic level (disturbances in speeds of individual vehicles) eventually 

lead to a macroscopic behavior (“phantom traffic jam” or “slinky effect”). In such phenomena, both 

microscopic fluctuations and macroscopic analyses are required to describe the system. Such 

phenomenon can be described using mesoscopic models. In mesoscopic models (‘mesos‘, Greek for 

middle), traffic flow is analyzed using a stochastic description of groups or clusters of vehicles, or 

probability distributions of vehicle densities. A brief overview of each of these modeling techniques 

is given below. 

2.2.1 Microscopic Modeling 

Microscopic models are based on the premise that the response of a driver-vehicle unit is 

dependent on its neighboring vehicles. The velocity of the     vehicle depends on the vehicle 

        vehicle, or the leading vehicle ahead of it (Nagatani, 2002) (Helbing, 2001). Microscopic 

models describing vehicular traffic flow generally fall into two subcategories, viz. car following 

models and cellular automata models. The first microscopic traffic models were proposed by Pipes 

(Pipes, 1953). Later, Newell (Newell, 1961) proposed car-following models with non-linear effects. 

Car-following models are described by equations of motion for the individual vehicles, such as: 

 
        

  
           

(2.4)  

 

where, 

 

      = position of vehicle j at time t, 

   = delay time, 

        =               = headway of vehicle j at time  t 
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 Equation (2.4) models how a driver may adjust his/her vehicle velocity according to the 

vehicle headway. Further, it also shows that there is a time delay between when the driver 

perceives headway (or a change in headway) and when the vehicle velocity is adjusted according to 

the perceived headway. This time delay corresponds to various components including human 

reaction time and actuator response time, and is usually of the order of 1 second (Del Castillo, et 

al., 1994). Several modifications to this simple model are possible, including the following: 

 Obtaining a simplified differential equation model by removing the dependence of position 

   on delay time   (using Taylor’s expansion) (Bando, et al., 1995)  

 Using an Intelligent Driver Model (IDM) that takes into account the relative velocity 

between the two vehicles, to avoid possible collisions (Treiber, et al., 1999) 

While car-following models describe the behavior of individual vehicles very well, they do 

not provide an analytical means to extend this description of behavior to the macroscopic scale. In 

other words, car-following models cannot be used to analyze the behavior of large groups of 

vehicles, such as found in traffic jams. Attempts at such a description are limited to the use of 

numerical simulation of a group of vehicles (Kesting, et al., 2005). Numerical simulations limit the 

possibility of analytically predicting changes in behavior, if certain parameters in the system are 

changed. 

Cellular automata (CA) models are used for traffic flow modeling because often they are 

the simplest models that can describe the phenomena observed in real traffic situations. Cellular 

automata are essentially a class of “spatially and temporally discrete, deterministic mathematical 

systems characterized by local interaction and an inherently parallel form of evolution” (Ilachinski, 

2001). In the present context, a cellular automata model would describe the roadway as a set of 

discrete sites which can exist in a finite number of states, such being occupied by a vehicle or being 

vacant. The state of each of these sites is then updated according to an evolution rule that operates 

in discrete time. The efficiency and speed of cellular automata models can be attributed to the 

following properties, which make them ideal for parallel computing environments (Helbing, 2001): 

(a) Discretization of space into identical cells (lattice sites), 

(b) Finite number of possible states, 

(c) Parallel updates at regular time intervals, and 

           = desired velocity 
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(d) Globally applied update rules, based on short-range interactions with a finite number of 

neighboring sites. 

The earliest traffic flow research using CA models was done by Cremer (Cremer, et al., 

1986), and later by Nagel and Schreckenberg (Nagel, et al., 1992). CA microscopic models for traffic 

flow are less descriptive of vehicle dynamics than their car-following counterparts, but they make 

up in terms of their simplicity and ease of numerical implementation. According to the CA model 

proposed by Nagel and Schreckenberg in (Nagel, et al., 1992), the road is defined as a one-

dimensional array of   sites. Each site may be occupied by at most one vehicle, or it may be empty. 

Further, the vehicles may have integer velocities between   and     . Once the system is initialized 

to a random state, the following steps are performed in parallel on all vehicles: 

(a) Acceleration: If velocity   of a vehicle is less than     , and the distance to the next vehicle 

ahead is greater than    , then the velocity is incremented by  . 

(b) Deceleration: If the distance to the next vehicle ahead is less than  , then velocity is 

reduced to    . 

(c) Randomization: The velocity of a vehicle is reduced to    , with probability  . 

(d) Car motion: Each vehicle is advanced   sites. 

Like the car-following model, several modifications have been proposed to this model, such 

as including a slow-to-start rule for the vehicles to model inertia (Schadschneider, et al., 1997).  

Despite their remarkable simplicity, the very definition of cellular automata implies that the 

behavior of CA models cannot be predicted. Thus, while CA models may mimic the real-life 

behavior of a certain traffic pattern, the only way the same traffic pattern can be analyzed for a 

different set of parameters is by running the CA algorithm again. As with car-following models, this 

type of numerical simulation approach limits the possibility of predicting changes in behavior, if 

certain parameters in the system are changed.  

2.2.2 Macroscopic Modeling 

Macroscopic modeling techniques treat traffic as a one-dimensional compressible fluid. The 

traffic states at position   and time   are defined by the spatial vehicle density        and average 

vehicle velocity        (Nagatani, 2002). The oldest continuum or macroscopic model was 

proposed by Lighthill and Whitham (Lighthill, et al., 1955), and is based on the assumption that in 
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absence of any on- and off-ramps, the number of vehicles on a highway is conserved (Helbing, 

2001). This conservation law leads to a model that describes vehicular flow using the continuity 

equation of fluids: 

 
       

  
 

       

  
   

(2.5)  

where,                     is the traffic flow. Lighthill and Whitham assumed that the traffic 

flow is a function of only the density, as postulated by the fundamental diagram of traffic flow, i.e. 

        (      )            . Substituting this expression for flow into equation (2.5), and 

using it to model traffic flow results in formation of shock-fronts (discontinuities in vehicular 

density) because the velocity of propagation in dense traffic is less than the velocity of propagation 

in free traffic. Whitham (Whitham, 1990) later suggested adding a small diffusion term to the 

Lighthill-Whitham model to avoid the development of shock-fronts, according to:  

          (      )   
       

  
 

(2.6)  

Using the fundamental traffic flow diagram,  (      )                       and 

substituting into equation (2.6) , the Burgers equation is obtained. The Burgers equation describes 

the nonlinear propagation and diffusion in traffic flow. Several modifications to this simple model 

have been proposed by Payne (Payne, 1979), Philips (Philips, 1979) and others (Lee, et al., 1999) 

(Berg, et al., 2000). These models are closely related and can be seen as special cases of the 

following model (Nagatani, 2002): 

 
  

  
 

     

  
   

(2.7)  
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(2.8)  

where  ,   
 , and   are phenomenological constants. The phenomenological function      

represents the desired velocity achieved in steady state. The constant   is the relaxation time to 
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steady state. The desired velocity      corresponds to the optimal velocity, and relaxation time   

corresponds to the delay time in the microscopic model. 

 While macroscopic models provide an excellent description of the macroscopic behavior of 

traffic flow, they are unable to incorporate the dynamics of individual vehicles. When considering a 

system of mixed traffic, such as human-driven and ACC vehicles on the same roadway, the driver 

models and dynamics of individual vehicles play an important role in determining overall behavior. 

Consequently, it is difficult to use these models to analyze the impact of ACC vehicles on 

macroscopic behavior, such as in self-organizing traffic jams.  

2.2.3 Mesoscopic Modeling 

Mesoscopic modeling techniques are based on gas-kinetic models (Prigogine, et al., 1960), 

or aggregation models (Mahnke, et al., 1997).  The kinetic theory treats vehicles as a gas of 

interacting particles (Nagatani, 2002). One of the first gas-kinetic models was proposed by 

Prigogine and Andrews (Prigogine, et al., 1960), and was later improved upon by Paveri-Fontana 

(Paveri-Fontana, 1975). Prigogine and Herman (Prigogine, et al., 1971) (Nagatani, 2002) have 

proposed that traffic flow can be modeled using a velocity distribution function            

considered over an element     . The traffic flow is described by the variation of the velocity 

distribution function over time. Prigogine and Andrews (Prigogine, et al., 1960) postulated that the 

velocity distribution function can change by only one of two processes: 

(a) Relaxation process: A vehicle accelerates to achieve its desired velocity, and 

(b) Collision process: A vehicle is forced to decelerate in order to avoid a collision with a 

preceding vehicle. 

The following equation can then be used to model traffic flow in a Boltzmann-like fashion: 
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 The velocity distribution function determines the probability that a vehicle is present in an 

element    of the road, with a velocity that lies within an element    at time  . Integrating 

         over the length of the road, and over all non-negative velocities, yields the total number 

of vehicles     on the road at a given time  . 

 The first term in the right-hand side of equation (2.9) represents the relaxation of the 

velocity distribution function          to the desired velocity distribution               with the 

relaxation time      in the absence of interactions. The relaxation term further consists of two sub-

processes (Figure 5): 

(a) A vehicle originally inside      accelerates to move out of the element, and 

(b) A slow moving vehicle originally outside      accelerates to enter the element. 

The second-term represents the changes in the velocity distribution of a vehicle due to 

“collisions” or interactions with other vehicles. It too is further represented by two sub-processes 

(Figure 5): 

(a) A vehicle originally inside      leaves the element because it collides with a slower moving 

vehicle, thus reducing it speed, and 

(b) A fast moving vehicle originally outside      enters the element because it collides with 

slow moving vehicles inside the element. 

The aggregation approach (Mahnke, et al., 1997) is loosely developed around the same 

concept as discussed above, and is based on the use of the master equation. The master equation 

describes the time evolution of the probability distribution of the system states. In other words, the 

master equation describes how the probability that a system is in a particular state evolves over 

time (similar to the evolution of the vehicle distribution function) based on the manner in which the 

system transitions between various states (similar to the four sub-processes mentioned above). For 

where, 

 

         = velocity distribution function for each vehicle 

               = desired velocity distribution function 

      = relaxation time 

    = Collision term causing addition of vehicles to element      

    = Collision term causing removal of vehicles from element      

   = Probability of being unable to pass a vehicle 
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example, one may use the master equation to determine how the number of vehicles in a particular 

state (say vehicles in traffic jam) changes with time, based on the transitions a vehicle makes either 

from a jammed state to a free state or vice versa. The master equation approach is described in 

detail in chapters 3 and 4. 

 
Figure 5: Various processes involved in describing the time evolution of the vehicle 

distribution function f(x,v,t) for traffic flow modeling using Boltzmann approach 

2.2.4 Selection of a Traffic Flow Modeling Technique 

 Traffic flow models are expected to accurately describe the flow of traffic across all possible 

scenarios. This function generally encompasses an accurate description of traffic across the entire 

range of observed flow and density values, as well as a reasonable depiction of other phenomena 

observed in traffic such as stop-and-go traffic or self-organized traffic jams. 

 All modeling techniques described in the previous sub-sections perform these functions 

reasonably well with minor modifications. However, they differ in the scale at which these 

problems are addressed. While microscopic modeling techniques work at the scale of individual 

vehicles, macroscopic techniques work on a much larger “bird’s-eye view” scale. However, both the 

microscopic and macroscopic approaches have certain shortcomings. In microscopic techniques, 

the large number of interacting elements requires a large number of descriptive equations, which 

generates complexity problems, both analytically and computationally (Bellomo, et al., 2007). On 

the other hand, macroscopic techniques reduce the computational complexity by dealing with 

quantities that are averaged, at each time, locally in space. However, the macroscopic approach 
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only performs well in high density regimes (congested traffic). Further, it is not feasible to use a 

macroscopic approach for the analysis of a meso-scale effect such as a “phantom” traffic jam, with 

the additional complexity of accounting for multiple driver models (human and ACC). 

 In this situation, mesoscopic techniques provide a practical micro-macro link (Nagatani, 

2002), and the use of the master-equation approach enables a description at a vehicular level that 

can be scaled up to analyze the traffic flow behavior at a macroscopic scale. In other words, the 

mesoscopic approach using the master-equation enables a description of the system at the 

vehicular level, while simultaneously allowing an analysis of the system behavior occurring at the 

macroscopic scale, such as with the formation of self-organizing traffic jams. Since the master 

equation approach includes microscopic description of vehicles to determine their macroscopic 

behavior, it is an ideal tool for analyzing the traffic flow dynamics of a mixture of human-driven and 

ACC vehicles. 

2.3 Adaptive cruise control 

 

The concept of controlling the speed of a vehicle dates back to 1788, when James Watt and 

Matthew Boulton built the first centrifugal governor to control the speed of a steam engine. One of 

the earliest cruise control systems for automobiles was invented by Ralph Teetor in 1945. These 

early automotive cruise control technologies required the driver to manually bring the vehicle to a 

desired speed, after which the cruise control system would maintain the desired speed for the 

driver.  

In modern times, the goal of adaptive cruise control has been primarily to reduce driver 

effort by controlling the speed of the vehicle according to a specific driver model or control law. 

Adaptive cruise control is different from previous cruise control technologies in that it controls the 

vehicle acceleration based on a several variables, the most important ones being the distance to 

the leading vehicle (or headway), the velocity of the following vehicle, and the relative velocity 

between the two vehicles. These variables are determined by the equipment (such as radar- or 

laser-based systems) installed on the vehicle. Radar-based systems usually offer better 

performance in terms of detecting vehicles and obstacles ahead, as compared to laser-based 

systems. However, radar-based systems are also more expensive than their laser counterparts. 
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Adaptive cruise control technologies are now available in numerous mainstream passenger 

vehicles, and are offered by most major automobile brands such as Audi, BMW, Ford, Honda, 

Hyundai, Jaguar, Lexus, , Mercedes-Benz, Nissan, Toyota, Volkswagen and Volvo. 

 

Figure 6: Variables required for adaptive cruise control algorithms 

2.3.1 Adaptive cruise control algorithms 

The process behind driving a vehicle can be defined as consisting of two conflicting tasks:  

(a) Driving at the maximum possible velocity, and  

(b) Avoiding a collision with a preceding vehicle. 

 Under most traffic conditions, human driver effort is geared towards finding a trade-off 

between these two tasks, which results in following a preceding vehicle at a safe distance. The basic 

idea underlying the concept of adaptive cruise control is to reduce the driver effort by taking these 

tasks away from the human and allowing them to be performed by a computer. The computer 

performs these tasks using an adaptive cruise control algorithm that seeks to closely mimic the 

driving abilities of an ideal human driver. Thus, by using adaptive cruise control systems in a vehicle 

the human driver depicted in Figure 7, is replaced by a computer-based controller such as the Pipes 

model depicted in Figure 8 (Ioannou, et al., 1993). 

 

Figure 7: Human driver model 
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Figure 8: Adaptive cruise control (Pipes Model) 

 Typically, an adaptive cruise control algorithm has the general form given by: 

 

Since the basic premise behind developing an adaptive cruise control is to be able to safely 

follow a vehicle ahead, the corresponding algorithms are usually based on car-following models 

discussed in Section 2.2. Some of the prominent works on car following theories are described 

below. These form the foundations of adaptive cruise control algorithms. 

Constant time headway (CTH) policy 

The constant time headway (CTH) policy is a common safe practice suggested to human 

drivers (Zhou, et al., 2004). According to the policy, the following vehicle must always maintain 

constant time headway from the leading vehicle. The time headway is usually recommended to be 

2 seconds. In terms of distance headway or range, this translates to maintaining headway 

proportional to the velocity of the vehicle. The desired distance headway can be calculated as 

follows: 

               (2.10)  

where, 

 

  = Desired acceleration (control effort) 

   = Control gain(s) 

   = Headway between vehicles 

   = Velocity of following vehicle 

     = Relative velocity between vehicles 

          (2.11)  
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A sliding mode controller can be developed based in the above policy (Zhou, et al., 2004). 

Since the desired range is given by equation (2.11), the headway error signal is          , 

where    is the actual headway. The appropriate acceleration (control effort) may then be 

determined as a function of the error signal and the relative velocity. 

General Motors’ Car-following Models 

The research group at General Motors labs in Detroit performed extensive work in trying to 

determine a descriptive car-following model. The GM car-following models use the following 

general form (May, 1990): 

                                    (2.12)  

The difference between the various models proposed by GM’s research labs is in terms of 

the expressions for sensitivity. In all, the GM research group proposed five car-following models, 

with each model providing an improvement over the previous one. The fifth model from GM is the 

most general and has the largest number of parameters. The control law for the fifth model is 

presented here. 

  ̈           
   [ ̇         ] 

[              ]
 ( ̇         ̇    ) (2.13)  

where, 

 

  = Desired distance headway, or simply headway 

    = Minimum distance between vehicles at zero velocity 

   = Constant time headway 

   = Velocity of the following vehicle 

where, 

 

         = Acceleration (or deceleration) of the following vehicle 

             = synonymous to control gain 

         = Relative velocity of the lead and following vehicle 

where, 

 

     = Position of the (n+1)th, or following, vehicle 

    = Position of the nth, or leading vehicle 

    = Dimensionless sensitivity coefficient 

     = Constants 
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As can be seen from equation (2.13), the acceleration of the vehicle is dependent on the 

sensitivity, comprising the vehicle velocity, vehicle headway and constants l and m, and the 

stimulus, comprising the relative velocity between the following and the preceding vehicles. If the 

relative velocity between the vehicles is large, such as when a vehicle is rapidly approaching a 

stationary vehicle, a large deceleration effort is required in order to avoid a collision. Similarly, the 

sensitivity term is adjusted according to the vehicle velocity and headway. If the vehicle is travelling 

at a high velocity or at very small headways, it must decelerate quickly in response to even small 

changes in relative velocity in order to avoid a collision. Thus the velocity of the vehicle is in the 

numerator and the headway is in the denominator of the sensitivity term. Different values of the 

constants l and m have been proposed to match experimental data.  

Intelligent driver model 

The Intelligent Driver Model (IDM) guarantees crash free driving, It maintains the speed of 

the vehicle based on an acceleration control effort that is a continuous function of vehicle velocity, 

the headway, and the velocity difference (approaching rate) to the lead vehicle (Kesting, et al., 

2005): 

     ̇    {  (
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 (
          

  
)
 

} (2.14)  

The control law for the intelligent driver model can be thought of as consisting of two 

terms, viz. the relaxation term and the interaction term. The relaxation term,         ⁄      is 

dominant at low vehicle densities, or large headways. As vehicle velocity    approaches the desired 

velocity   , the acceleration effort approaches zero. The interaction term is a function of the ratio 

of the ‘desired minimum gap’             and the actual headway   , where the desired minimum 

gap is given by: 

                    
   

 √  
 (2.15)  

where, 

 

   = Velocity of the ith vehicle 

    = Desired velocity of the ith vehicle 

    = Headway to the lead vehicle 

            = Desired minimum headway 

where, 

 

   = Minimum distance in congested traffic vehicle 
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The interaction term can be dominant in two scenarios. First, if the relative velocity 

between the following and preceding vehicles is large, or if the velocity of the following vehicle is 

large, the desired minimum headway is also large, resulting in a dominant interaction term and a 

correspondingly large deceleration effort. Second, the interaction term is also dominant if the 

actual headway is small, resulting in a large deceleration contribution in the control law. 

2.3.2 Studies on impact of ACC on traffic flow 

Since the introduction of adaptive cruise control, numerous studies have been conducted 

to ascertain its impact on traffic flow. These studies can be considered to have been conducted in 

three different stages, which progressed as automated vehicle guidance technologies evolved 

(Zwaneveld, et al., 1997). The three stages are: 

(a) Stage 1: Introduction of automated vehicles with ACC in mixed traffic 

(b) Stage 2: Introduction of dedicated lanes for automated vehicles 

(c) Stage 3: Introduction of intelligent infrastructure and communication networks 

Each of these stages attempted to introduce technologies that would help improve traffic 

flow. Analyses for each of the stages comprised of a mixed approach of both simulation studies and 

real traffic data analysis. It may be observed that the infrastructure requirement for each stage was 

higher than that for the previous one.  

Results from the first stage were mixed, with some studies indicating that addition of 

vehicles with adaptive cruise control resulted in decreased flow (van Arem, et al., 1995), whereas 

others indicated an increase in traffic flow (Ludmann, 1995). One of the most prominent studies in 

this stage was the PROMETHEUS program, which suggested that addition of ACC would not degrade 

highway efficiency, while simultaneously improving driver comfort (Morell, et al., 1994).  

Results from the second and third stages, which involved additional infrastructure 

deployments such as dedicated lanes for automated vehicles, and vehicle-to-vehicle and vehicle-to-

roadway communications, indicated a marked improvement in capacity. Many of the studies 

conducted during these stages were initiated by the National Automated Highway Systems 

Consortium (NAHSC) in the United States. Research indicated that formation of platoons or strings 

   = Constant safe time headway 

   = Constant acceleration term 

   = Comfortable braking deceleration 
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of cars (which required inter-vehicle communication) could greatly increase highway capacity 

(Varaiya, 1993). The California PATH program demonstrated the usage of such platoons. Other 

studies also indicated similarly impressive results of increased highway capacities (Kraaslan, et al., 

1991) (Shladover, 1991) (Chien, et al., 1997). 

While recent studies on AHS indicate remarkable improvements in highway capacities, it 

remains a reality that these systems require a massive infrastructure overhaul and investment. 

Bringing such systems into practice would require a paradigm shift by both the industry and the 

average consumer. In the present financial climate, this approach doesn’t seem feasible. Quite  the 

contrary, the adaptive cruise control technologies already being introduced into the market today 

indicate a shift to an approach similar to the one that defined Stage 1. In other words, it is a more 

realistic goal to expect that highways in the near future will be populated with a mix of ACC and 

human-driven vehicles. Further, as previously mentioned, there is no clear mandate on how 

highway capacity is impacted when a mixture of human-driven and ACC vehicles coexist on a 

highway. Thus an urgent need exists to evaluate the effects of such mixed traffic flow on highway 

capacities in order to better design ACC algorithms. Better designed ACC algorithms may help 

improve highway capacity in mixed traffic and may also help avoid highway capacity reduction 

resulting from self-organizing traffic jams. 

2.4 Self-organization and traffic jams 
 

2.4.1 Analysis of self-organizing systems 

As mentioned previously in Section 1.1, several systems, such as cities, traffic and animal 

herds, exhibit self-organizing and emergent behavior. Traditionally, there have been four schools of 

study which have developed the theory of emergent behavior in complex systems (De Wolf, et al., 

2004), viz.  

 Complex adaptive systems theory (furthered by the Santa Fe Institute),  

 Nonlinear dynamical systems theory,  

 Synergetics school (introduced by Herman Haken), and  

 Far-from-equilibrium thermodynamics (influenced greatly by Ilya Prigogine).  

In addition, some critically self organizing systems may be viewed as statistical mechanics 

problems with critical phase transitions. Each of these approaches has its own set of analysis 

techniques. Some common numerical techniques include agent-based modeling and use of cellular 
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automata (both from complex adaptive systems theory). Some common theoretical techniques 

employ limit cycles and attractors (from dynamical systems theory), and equations of time 

evolution of probability density functions of system states such as master- and Fokker-Planck 

equations (from far-from-equilibrium thermodynamics). 

In many such systems it is desirable to control the evolution of the self-organization 

process. However, until recently, most research had been directed towards analyzing the behavior 

of various self-organizing systems, whereas very little effort has been directed towards control or 

manipulation of such systems (Gershenson, 2007). Earlier attempts at modifying the dynamics of 

self-organizing systems have mostly been based on trial-and-error or numerical simulations rather 

than development of an analytical approach. For example, the emergent behavior of human crowds 

in panic situations has been analyzed to identify exit strategies employed by them. Numerical 

simulations and evolutionary algorithm approaches have indicated how to better design exits to 

reduce casualties in such panic situations (Helbing, 2001). Figure 9 and Figure 10 depict the trial-

and-error and evolutionary optimization approaches for designing better exits for panicking human 

crowds. However, no general approach exists to determine how the system behavior can be 

modified to produce predictable results.  

          

Figure 10: Evolutionary algorithms help better design exits for panic 
situations. Images indicate stages in evolution. (Helbing, 2001) 

  

(a) Fewer people can exit a room in 
traditionally designed exits 

(b) More people can exit a room when a 
column is introduced near the exit 

Figure 9: Trial-and-error reveals a counter-intuitive result for improving exit 
strategies for panicking human crowds (Helbing, 2001) 
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2.4.2 Self-organizing traffic jams 

It is apparent that each vehicle on a highway is driven by a driver who operates according 

to his or her own will. In other words, each vehicle on a highway may be considered an 

independent agent, which operates without any influence of other vehicles. However, in medium-

to-high density traffic conditions, these vehicles are closely spaced and can no longer operate 

without the influence of neighboring agents. Under such circumstances, the interactions between 

the vehicles (or agents) result in a collective behavior that cannot be derived from observing the 

behavior of a single agent. This behavior was explained in Section 1.1 and usually takes the form of 

what is known as “slinky waves” or “phantom” traffic jams or “stop-and-go” traffic. In other words, 

the interactions between individual vehicles results in a behavior that emerges when a group of 

vehicles comes together. 

One of the earliest recorded data of the formation of vehicle clusters (used henceforth in 

lieu of “slinky waves”, “phantom” traffic jams or “stop-and-go” traffic) was provided by Treiterer 

using aerial photography techniques over German highways (Treiterer, et al., 1974). Figure 11 

indicates the clustering of vehicles in traffic flow on a German highway. Nagel and Schreckenberg 

were perhaps the first to reproduce the phenomenon using a cellular automata model of traffic 

flow (Nagel, et al., 1992).  Later, Kerner and Konhäuser showed that given an “initially 

homogeneous traffic flow, regions of high density and low average velocity can spontaneously 

appear, if the density of cars in the flow exceeds some critical value” (Kerner, et al., 1993). 

Experimental verification of the spontaneous formation of jams is provided in (Sugiyama, et al., 

2008). 

 

Figure 11: Space-time lines (trajectories) for individual vehicles from aerial photography by 
Treiterer. Reproduced and augmented from Nagel, et al., (1992). 
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The fact that the spontaneous structure formation occurs only beyond a certain critical 

density suggests that vehicle cluster formation in highway traffic may be an example of self-

organized criticality. The process by which a system self-organizes itself into a critical state is known 

as self-organized criticality (SOC). The concept of self-organized criticality was first forwarded by 

Bak, Tang and Wiesenfeld as an explanation of 1/f noise (Bak, et al., 1988). The field of self-

organized criticality is relatively nascent, and there is still no methodology to predict which systems 

will exhibit self-organized criticality and which will not. However, it has been found that self-

organized criticality is usually observed in highly nonlinear, slowly-driven, non-equilibrium systems 

(Jensen, 1998). In absence of a general methodology to determine the conditions necessary for a 

system to exhibit SOC, researchers have been studying individual critically self-organizing systems 

such as sand piles, forest fires, earthquakes and brain activity. It has been found that systems which 

critically self-organize usually possess long-range spatio-temporal correlations and power law 

distributions. 

Nagel and Paczuski have analyzed the emergent behavior of traffic flow using cellular 

automata models, and found power law distributions for survivability of traffic jams (or the 

frequency of traffic jam events versus the time for which they exist) (Nagel, et al., 1995). Figure 12 

indicates the power law distribution for traffic jam survivability P(t). The evolution of traffic jams or 

growth of cluster size has been analyzed using a one-dimensional random walk argument. The 

results indicate that the size of the traffic jam is also related to the time for which it exists according 

to a power law distribution (Paczuski, et al., 1996). Paczuski and Nagel in the same paper have also 

developed a methodology to identify the critical state of the traffic jam using the Fokker-Planck 

equation, which is a continuous form of the master equation. 

As has been previously mentioned, self-organization of vehicles in traffic flow into traffic 

jams can be described as a cluster formation process. Mahnke and Pieret have studied the 

emergence of traffic jams from a nucleation or aggregation perspective (Mahnke, et al., 1997).  In 

their paper, Mahke and Pieret develop a deterministic analysis technique for the stochastic process 

of cluster formation to determine the time evolution of the average cluster size in a traffic jam. 

Their analysis consists of using the master equation to describe the stochastic process of vehicles 

joining or leaving a cluster. The master equation approach forms the basis of the present analysis of 

the impact of ACC vehicles on the formation of self-organizing traffic jams, or aggregation of 

vehicles into vehicle clusters, and has been discussed in Chapter 3. 
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Figure 12: Survivability of emergent traffic jams (or lifetime distribution) P(t) in the outflow 

region: average over more than 65000 clusters (avalanches). (Paczuski, et al., 1996) 

2.5 Summary 

 

In this chapter, various existing methodologies for traffic flow modeling were introduced 

and their pros and cons were discussed. It was found that microscopic modeling techniques rely 

heavily on numerical simulations to describe overall traffic flow behavior, which is undesirable. On 

the other hand, macroscopic modeling techniques are unable to incorporate vehicle dynamics for 

individual vehicles, as required when modeling traffic with a mixture of human-driven and ACC 

vehicles. It was also determined that mesoscopic modeling techniques represent traffic flow at a 

scale between microscopic and macroscopic behavior and hence provide an ideal tool for analyzing 

the mesoscopic scale behavior found in self-organizing traffic jams.  

Further, specific control laws for adaptive cruise control algorithms were discussed. The 

control laws will be used to model individual vehicle dynamics for both human-driven and ACC 

vehicles, with a slight difference in their parameters. The impact that the difference in parameters 

and the proportion of ACC vehicles will have on the cluster formation process characteristic of self-

organizing traffic jams is the primary focus of the remainder of this thesis. The solution to the 

problem will be presented as a proof of concept for future development of methodologies 

concerning control of self-organizing systems. The presented methodology will hopefully provide a 

starting point for developing a framework for control of self-organizing systems. 
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CHAPTER 3 

CHAPTER 3 – THE MASTER EQUATION APPROACH 

This chapter provides a detailed description of the master equation approach for modeling 

traffic flow, as presented by Mahnke and Pieret (Mahnke, et al., 1997). The master equation finds 

widespread use in the modeling of system dynamics in areas of application as diverse as economics 

(Weidlich, et al., 1992), system reliability (Helbing, 1995), photon emissions (Agarwal, 1970) and 

string theory (Verlinde, 1992), to name a few. In general, the master equation provides an ideal 

modeling framework for stochastic processes. A stochastic (or non-deterministic) process is usually 

characterized by a probability distribution function that determines the probability that a system is 

in a certain state at a given time. The evolution of the probability distribution function is 

determined by a set of transition probabilities which describe the probability that the system 

changes from a given state to another. Thus, in order to model the dynamics of a given system, it is 

first necessary to have a clear understanding of the system itself. Specifically, it is necessary to 

know the possible states of the system and the manner in which the system may move from one 

state to another.  

3.1 System description and behavior 

 

The problem at hand consists of a set of vehicles or agents moving on a roadway. One 

would intuitively expect that the system under consideration should be a straight stretch of road 

with vehicles on it. Consider this system (Figure 13) comprising   miles of a single-lane highway, 

with no on- or off-ramps. To describe the system completely one would require two additional 

quantities, viz. the number of vehicles entering the roadway from the left (or inflow,    ) and the 

number of vehicle leaving the roadway on the right (or outflow,     ).  

 

Figure 13: An open system description for traffic flow – straight highway 
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The system described above is an accurate representation of real-life traffic. However, 

though such a system resembles reality, a system without open boundary conditions (no inflows or 

outflows) is much easier to analyze. From a purely thermodynamic point of view, the evolution of 

an isolated system, which has no energy or mass transfer with the environment, is easier to analyze 

as compared to an open system. Thus, in order to ease analysis, the realistic system description is 

traded in for a simplified system description, wherein the system is isolated from the environment. 

The simplified system (Figure 14) consists of a closed ring roadway, with no exit or entry points for 

vehicles. The elimination of the open boundary conditions results is conservation of the number of 

vehicles on the road, which eases analysis. 

 

Figure 14: An isolated system description of traffic flow – closed ring road (a) vehicles in free flow, 
(b) vehicles transitioning from free flow to jammed state, and (c) vehicles in a traffic jam. 

The vehicles shown in the system in Figure 14 can exist in one of two states:  

(a) A vehicle can be moving freely with relatively little interaction with other vehicles, as 

shown in section (a) of the figure, or 

(b) A vehicle can be stuck in a cluster, with a high degree of interaction with other vehicles, as 

shown in section (c) of the figure. 

The evolution of clusters on the roadway is dependent on the manner in which vehicles 

transition from one state to another. The system state can then be defined as the number of 

vehicles present in a particular state at a given time. In view of the fact that a vehicle can only be in 
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one of the two mentioned states, the number of vehicles in either state at a given time can provide 

a complete description of the system state at that instant of time. Since the problem of interest is 

the formation of self-organizing traffic jam, the system state will be considered to be the number of 

vehicles present inside a vehicle cluster at any given time  . For the purposes of simplicity, a system 

with only one cluster will be considered. 

At this point it would bode well to define a ‘cluster’. In general, one may consider a cluster 

to be any group of vehicles with sufficient interactions between them. In other words, if the control 

effort on one vehicle produces an effect on a second vehicle, the two vehicles may be considered as 

belonging to the same cluster. For example, if a vehicle brakes suddenly and causes another vehicle 

somewhere behind it to brake, the two vehicles may be considered as belonging to the same 

cluster. This definition is open to question in various regards, such as “What constitutes ‘sufficient’ 

interaction?”, “What metrics must be used to determine if two vehicles interact with each other?”  

and “Are groups of fast moving vehicles also to be considered as ‘traffic jams’ or ‘clusters’?”. While 

these questions are all relevant in a more general sense, the specific concern of this thesis is the 

formation of self-organizing traffic jams that cause congestion and reduce traffic flow. Thus, for the 

purposes of this thesis, a ‘cluster’ will be considered to be a group of vehicles that is in accordance 

with real-life observations of traffic jams on highways. Thus a group of vehicles is considered to be 

a cluster if: 

(a) Traffic moves very slowly, or is stationary over a segment of the roadway containing 

that group of vehicles, and/or 

(b) The vehicles in the group are very closely spaced, i.e. have very small headways. 

Experimental data indicates that when vehicles come to a stop in a traffic jam on a 

highway, they usually maintain a minimum headway of about 1 m (Mahnke, et al., 1997). Thus, in 

the present analysis, a vehicle is considered to be in a cluster or jam, if its headway to the 

preceding vehicle is approximately 1 m. 

Returning to the problem of system description, the system state has been defined as the 

number of vehicles present in a cluster at a given time. As a next step, a stochastic framework that 

describes how a vehicle cluster grows or diminishes in size is required. In other words, a set of 

equations that describes the evolution of the probability of the system being in a certain state is 

needed. Such a framework that describes the dynamics of evolution of the system is provided by 

the master equation. 
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3.2 The Master equation 
 

The system state under consideration is the number of vehicles,   , present inside a cluster 

at a given time,  . Since the number of vehicles on the road is usually large, it is impossible to 

perform precise calculations of their states, and it is easier to handle the evolution of system states 

as a stochastic process. As has already been mentioned in section 2.4, the master equation 

modeling approach considers cluster aggregation as a stochastic process. In other words, the 

manner in which a cluster changes its size is considered to be random in nature. In order to 

describe this stochastic process, one requires a probability distribution function, say        that 

indicates the probability that the system is in a state    at time   . This section describes the 

derivation of the master equation from the fundamentals of probability theory, using concepts such 

as conditional probability and the Markov process assumption. 

3.2.1 The Markov process assumption 

Prior to discussing the Markov process assumption, the concept of conditional probability 

must be discussed. Consider the discrete case with two events   and   . Let the probability that the 

event     occurs be      , and the probability that the event   occurs be      . Then the joint 

probability        that both events    and   occur is given by: 

                    (3.1)  

where        is the conditional probability that event   occurs given that event   has already 

occurred. Extending this formulation to the continuous case, where a system state may go from 

state    at time   , to state    at time   , we find the corresponding joint probability 

               . This joint probability, which represents the probability that the system was in 

state    at time    and state    at time     is given by: 

                                             (3.2)  

where                   is the conditional probability that the system is in state    at time   , given 

that it was in state    at time   . Now, according to the Markov process assumption the future 

states of a system are dependent only on the current state of the system, and are independent of 

any previous states that the system may have assumed. The Markov process assumption is stated 

mathematically as follows: 
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(3.3)  

This seems to be a reasonable assumption with regards to the evolution of the cluster size. 

For example, consider a cluster    at time    containing    vehicles. Next, consider a cluster    at 

time    containing    vehicles, none of which were present in cluster   . It seems logical to assume 

that any future state of the cluster will be dependent only on the current state          , and not 

on any previous state because the information contained in the previous state is lost as vehicles in 

that state leave the cluster. The Markov assumption as stated above is utilized in the derivation of 

the Chapman-Kolmogorov equation (Doraiswamy, et al., 1987).  

3.2.2 The Chapman-Kolomogorov equations 

Consider a stochastic process that goes through the states        ,         and        , 

where          . The joint probability of being in the given states at the respective times is 

given by: 

                                                                     (3.4)  

The Chapman-Kolmogorov (C-K) equations describe the conditional probabilities for 

transitions through various states. Specifically the C-K equation shown in equation (3.5) describes 

the conditional probability for a process beginning from a state (say state 1,        ) and going to 

another state (say state 3,        ) via transitions through all possible intermediate states (states 

2,       ). The C-K equation is derived from equation (3.4), and the derivation is included in 

Appendix 1. The C-K equation is given by: 

                   ∫                                       (3.5)  

The conditional probability on the left-hand side is also referred to as the transition 

probability, because it denotes the probability of the system transitioning from state    at time    

to state    at time   . In this particular equation, the conditional probability represents a two-step 

transition probability, since the system goes through two steps, viz.       , and        before  

arriving at the final state   . In order to emphasize its use as a transition probability, the 

conditional probability is sometimes denoted mathematically as           , where         . It 

must be noted that this notation is applicable only for stationary Markov processes, where the 

conditional probability is independent of time, and homogeneous Markov processes, for which the 
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conditional probability depends only on the time difference        . In accordance with this 

mathematical notation, the two-step transition probability described by the C-K equation in 

equation (3.5) can be expressed as: 

              ∫                        

                             

(3.6)  

Since, the eventual goal of this development is to determine a set of equations to describe 

the evolution of system dynamics, it is necessary to obtain a differential form of the C-K equation. 

The first step in determining the differential form is to represent the transition probability using a 

Taylor series expansion. The expansion will provide an explicit dependence on time, which will aid 

the development of the differential form of the C-K equation. The differential form of the 

Chapman-Kolmogorov equation is known as the master equation. 

3.2.3 Derivation of the master equation 

The derivation of the master equation from the Chapman-Kolmogorov equation is included 

in this section. From equation (3.6), it is known that the transition probability            is a 

function of the variables       and   . The transition probability can then be expanded using Taylor 

series around time step     , i.e. for      . The expansion is included below in equations (3.7) 

and (3.8), in both mathematical notations, in order to ease understanding: 

 
                  

                            
 

  
                          

(3.7)  

or,                                                             (3.8)  

In equation (3.7)    represents any arbitrarily chosen moment in time. An explanation of 

the terms in the Taylor expansion is in order. There are four terms each in equations (3.7) and (3.8), 

and these have been described below: 

(a)                                 – Term on left hand side: As has been previously 

mentioned, this term refers to the conditional probability that the system is in state 

       , given that it was in state        . In other words, it represents the transition 

probability that a system goes from state    to    in time        . The Taylor expansion is 



 

 
35 

required to express this transition probability explicitly in terms of the time step        

  . An explicit dependence on time will allow for the development of a differential form of 

the C-K equation. 

(b)                                         – First term on right hand side: This term is 

the constant term in the Taylor series expansion. It represents the transition probability of 

a system transitioning from    to   , at     . In other words, the term specifies that 

given that the system is in state    at time   , what is the probability that the system is in 

state    at time    itself. Clearly, since the system cannot exist in two states at the same 

time, this component of the transition probability is given by the Krönecker delta function, 

i.e. 

                           {
                  
                

 (3.9)  

To state the concept more clearly, the first term specifies the probability that the system 

stays in state   , i.e. the system does not transition to another state   . If the system does 

transition to another state, the contribution of this term towards the transition probability 

will be zero. Thus, the first term is a measure of the probability that a transition does not 

occur. In order to satisfy the normalization property of probability (sum of probabilities of 

all outcomes must equal 1) the term is modified as follows: 

 
                                 

             ∫                           
 

  
                

(3.10)  

In the above equation          indicates the transition probability rate at     . The 

transition probability rate describes the manner in which the transition probability changes 

with time. The integral of          over all possible final states    yields the total 

transition probability rate of the system transitioning to a state other than   . 

Consequently, the expression for the probability that the system transitions from state    

to any other state    is given by         . Thus, the probability that the system does not 

transition to a state other than    is given by                 . 
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(c)                                   
 

  
                   – Second term on the 

right hand side: As mentioned above,          or                  represents the 

transition probability rate at     . This term is a measure of rate of change of probability 

and has the units of per unit time. The transition probability rate describes the rate of 

change for the probability that the system transitions from one state to another. 

(d)        – Last term on the right hand side: This term represents higher order terms of   . 

Since    is considered to be small, these higher order terms can be neglected. 

 Thus, the Taylor series expansion presented in equation (3.8) can be re-written as follows: 

                                        (3.11)  

Substituting equation(3.11) into equation (3.6), dividing by    and taking the limit     , 

we obtain the differential form of the Chapman-Kolmogorov equation, or the Master equation : 

  

  
          ∫[                                   ]    (3.12)  

The intermediate steps between equation (3.11) and (3.12) are presented in Appendix 2. 

The form of the Master equation presented in equation (3.12) is rather unwieldy and more intuitive 

form is presented below by removing the redundant indices: 

  

  
       ∫[                            ]     (3.13)  

In this form, the meaning of the master equation becomes apparent. It is clear that the 

master equation describes the rate of change of the probability distribution of a system. The first 

term under the integral sign is the product of two terms: the probability that the system is in a 

certain state   , and the transition probability rate that the system moves from that state into the 

state of interest,  . Similarly the second term is also a product of two terms: the probability that 

the system is currently in the state of interest,  , and the transition probability rate that the system 

moves out of this state to another state   . 

If the states are discrete, then the meaning of the master equation becomes even more 

obvious. The equation transforms into the discrete form of the Master equation: 
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       ∑ [                             ]

    

 (3.14)  

The discrete form of the master equation makes the gain-loss nature of the equation more 

apparent, and is shown in Figure 15. In the context of the problem of cluster formation, given a 

cluster of   vehicles, it represents a measure of the difference between the rate at which the 

system leaves the state   to go to another state   , and the rate at which the system joins the state 

  from another state   , summed over all possible states   . In other words, the master equation 

represents a difference between the inflow of the system into state   and the outflow of the 

system to states   . It may also be observed that the transition probability rates         and 

       , are greater than zero. The rates may also be greater than 1, since they only represent the 

rate at which the probability changes and not probabilities themselves. 

 

Figure 15: Rates of transition between various states describe the 
discrete form of the master equation 

where,         = Transition probability rate of the system transitioning from state    to state   

         = Probability that the system is in state    at time   

         = Transition probability rate of the system transitioning from state   to state     

         = Probability that the system is in state   at time   
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In this section, the master equation and its development was described. The study of the 

steady state is the next most intuitive step. The steady state is of interest because, left to its own, 

the system tends to self-organize itself and eventually reach this state (Nicolis, et al., 1977).  The 

master equation is used to determine the steady state (or stationarity condition) of the system. 

3.3 Stationarity and detailed balance 
 

As mentioned before, the steady state is a result of the self-organization process inside the 

system. For example, after an avalanche has occurred, the system (in this case, the snow particles 

on the mountain slope) tends to self-organize itself back into a steady state (in this case, the critical 

slope). Similarly, it is of interest to observe the steady state that the self-organizing traffic jam or 

vehicle cluster eventually settles into. It must be pointed out here that the steady state must not be 

confused with equilibrium. Agents inside the system may continue to interact and transition 

between various states and the system may continue to operate far-from-equilibrium, even in 

steady state (Nicolis, et al., 1977). The concepts regarding steady state in equilibrium and non-

equilibrium systems, specifically the concept of detailed balance, are discussed in this section. 

3.3.1 Stationarity condition 

The stationarity condition, or the steady state, is defined as the state of the system when 

the rate of change of probability        is zero. The stationary probability distribution,       , 

corresponding to the steady state is then a time-independent distribution, such that: 

 

  
               

Consequently, the stationary master equation is given by: 

 
   ∑ [                             

    

] (3.15)  

The significance of the stationary master equation is that it indicates that, in steady state, 

the sum of all transitions from state   to all other states   , must be balanced by the sum of all 

transitions from all other states    to the state  . Note that the stationarity condition does not 

preclude the existence of a non-equilibrium process. In other words, the fact that the rate of 
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change of probability of a given state is zero does not imply that the system is in equilibrium. The 

stronger condition of detailed balance is discussed next. 

3.3.2 Detailed balance 

The stationarity condition discussed above puts a constraint on the manner in which a 

system may transition between states. The stationarity condition requires only that the sum of 

transitions from one state to all other states be equal to the sum of transitions from all other states 

to the one state. Detailed balance, on the other hand, places a much stronger condition on the 

system. Specifically, the condition of detailed balance states that the rate of transition from a first 

state to a second state must equal the rate of transition from the second state to the first state, for 

every pair of states. In fact, the condition of detailed balance can be used to describe a system in 

equilibrium. Mathematically, for each pair of states   and   : 

 
                                 (3.16)  

At this point, one may observe the difference between the stationarity and detailed 

balance conditions. It is obvious that the detailed balance condition also satisfies the stationarity 

condition. Consider an example of three states of a system; say states A, B and C. Under the 

detailed balance condition, i.e. in equilibrium, the proportion of the system in each of these states 

remains constant. The detailed balance condition is illustrated in Figure 16(a). On the other hand, 

the stationarity condition only requires that the sum of all transitions to and from a state remain 

the same. This weaker condition allows for changing proportions of the system in any given state. A 

stationarity condition that violates detailed balance is illustrated in Figure 16 (b). 

  
(a) Detailed balance holds.  Proportion of states remains 

constant and system is in thermal equilibrium. 
(b) Detailed balance is violated. Constant flux 

of states is observed, even in steady state. 

Figure 16: Difference between stationarity and detailed balance conditions. 
Length of arrows indicates transition rates. 
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 It may seem odd to discuss the condition corresponding to thermal equilibrium when the 

system under consideration is essentially undergoing a non-equilibrium process (spontaneous 

pattern formation). In the yet-developing field of non-equilibrium thermodynamics, it is known 

that, in general, non-equilibrium processes violate the detailed balance condition (Ebeling, et al., 

2005). However, in order to analyze non-equilibrium systems, usually one of two assumptions is 

made; the one of interest here being that the condition of detailed balance holds away from 

equilibrium (Evans, 2005). In the problem at hand, Mahnke suggests that though the probability 

distributions for different vehicle cluster states may initially be indicative of strong non-equilibrium, 

they eventually tend towards a final equilibrium state. Mahnke proposes analyzing the non-

equilibrium behavior as a sequence of (quasi-) equilibrium states. Specifically, it is suggested that 

even “if the initial probability vector        is strongly nonequilibrium, many probabilities        

change rapidly as soon as evolution starts (short-time regime), and then relax more slowly towards 

equilibrium (long-time behavior). The final thermodynamic equilibrium is reached in the limit 

   ” (Mahnke, et al., 2003). Such behavior has been studied by Miller (Miller, et al., 1999). The 

final equilibrium state referred to here is a stable cluster that neither increases nor diminishes in 

size.  

Thus vehicle cluster formation may be analyzed as progressing through a series of 

equilibrium states and we may model the cluster formation as a one-dimensional random walk, 

with the one dimension being the cluster size. Further, it is assumed that a vehicle cluster only 

transitions between the nearest states at every time step, i.e. the system can only transition from 

      in one time step, where   denotes the number of vehicles present in the cluster. 

Further, the cluster size may increase and decrease in the same time step so that the size remains 

unchanged. This would correspond to a transition of the form    . In such a framework, the 

discrete master equation reduces to: 

 

  
                                         [           ]       (3.17)  

where,         =         , corresponding to transition from state   to      

         =         , corresponding to transition from state   to      

       =         , corresponding to transition from state     to    

       =         , corresponding to transition from state     to    
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The system under consideration is a finite system, with         , where   denotes the 

number of vehicles present in a cluster and    denotes the total number of vehicles on the road. 

Thus, in addition to equation (3.17), two boundary conditions are required at the maximum and 

minimum cluster sizes. The boundary conditions are given by: 

  

  
                               

 

  
                                   

(3.18)  

 At this point it is realized that further analysis should be preceded by the determination of 

the expressions for the transition probability rates, viz.                       and      . 

The next chapter (Chapter 4) details how the transition rates for the discrete master equation were 

determined and also mentions the drawbacks of the transition rates employed by Mahnke in 

(Mahnke, et al., 1997). The determination of transition rates is followed up by the steady state 

solution for vehicle cluster dynamics. The steady state analysis serves to achieve the goal of 

determining a relation between vehicle density and average cluster size. Details about the steady 

state analysis and development of the relationship between vehicle density and average cluster size 

are included in chapter 5. 
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CHAPTER 4 

CHAPTER 4 – TRANSITION PROBABILITY RATES 

In the previous chapter the basic framework of the master equation approach was 

discussed and its application to the vehicle cluster formation phenomenon was introduced. In order 

to proceed further with the analysis of cluster dynamics, the transition probability rates need to be 

determined. In this chapter, the transition probability rates used by Mahnke (Mahnke, et al., 1997) 

for analyzing vehicle clusters on a road are discussed, and their limitations are mentioned. An 

alternative approach for determining the transition probability rates is then proposed, and 

expressions for the new rates are calculated. 

4.1 Transition probability rates proposed by Mahnke 
 

The transition probability rates, or simply transition rates, proposed by Mahnke are based 

upon the so-called Optimal Velocity Model (OVM) suggested by Bando (Bando, et al., 1995). This 

section discusses these transition rates and their limitations. 

4.1.1 Optimal Velocity Model 

The Optimal Velocity Model is a recent car-following model proposed by Bando (Bando, et 

al., 1995), and is described by the following equation: 

 
 ̈             ̇   

(4.1)  

As can be seen, the two model parameters that define the control effort on the vehicle are 

the sensitivity of the driver,  , and the optimal velocity function,     . It is evident that the control 

law proposed by this model is independent of the relative velocity between the following and 

where,    = Position of the vehicle 

   =            , headway to the preceding vehicle 

  ̇  = Current velocity of the vehicle 

  ̈  = Control effort, or acceleration 

   = Constant representing driver’s sensitivity 

         = “Optimal velocity” which is a function of headway 
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preceding vehicles. The absence of dependence on relative velocity causes vehicles to crash in 

traffic flow simulations (Nagatani, 2002). The presence of crashes in numerical simulations is a 

cause for concern because it limits the potential use of this control law in ACC vehicles. Further, the 

optimal velocity function is usually chosen to have an elegant mathematical form, and calibration is 

performed using real traffic flow data from highways to fit the function to the data. In other words, 

the function eventually represents an empirical relation fitted specifically to the data for a given 

segment of a highway (Bando, et al., 1995). The calibration required for fitting the model causes a 

loss of generality and reduces the portability of the model across various scenarios. 

The optimal velocity function originally proposed by Bando was: 

 
                       

(4.2)  

A fit for the above optimal velocity function for data obtained from the Chuo motorway, 

Japan is shown in Figure 17. Several limitations of the OVM have already been pointed out, and 

these limitations carry over when the model is used for calculating transition rates. 

 
Figure 17: Velocity vs. headway data from a car-following experiment on the Chuo motorway (Koshi, et al., 

1983), as presented in (Bando, et al., 1995)  

4.1.2 Transition rates proposed by Mahnke 

In (Mahnke, et al., 1997), Mahnke and Pieret have used the sigmoid function described 

below as the optimal velocity function.  
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 (4.3)  

The optimal velocity function can be re-written as follows without any normalizing factors: 

 

        
    

        
     

(4.4)  

The optimal velocity function is used to find the expression for the velocity of a vehicle at 

any point in the closed ring road, based on the headway to the preceding vehicle. The expression 

for velocity is then used to determine the transition rate. Two expressions for the transition 

probability rates are required in order to proceed with the steady state analysis of cluster 

dynamics. These are:  

(a)      , the transition rate of a system joining the state  . In the present context, this 

corresponds to a car in free flow joining a cluster of size   vehicles, i.e. a car entering a 

traffic jam. 

(b)      , the transition rate of a system leaving the state  . In the present context, this 

corresponds to a car leaving a cluster of size   vehicles and entering free flow, i.e. a car 

exiting a traffic jam. 

Transition probability rate for joining a cluster,       

Mahnke has proposed the following expression for the transition probability rate for joining 

a cluster of size  : 

  

      
  

    

    (        )               

               
 

(4.5)  

where,    = Normalized headway,   ⁄ , where   = effective length of vehicle 

   = Interaction distance,      , where   = headway corresponding to        

       = Ratio of optimal velocity (           to maximum free flow velocity     . i.e.  

                 

where,          = Headway in free flow when   vehicles are present in cluster (in meters) 

        = Headway inside cluster (observed data indicates its value ≈ 1 m) 

      = Relaxation time (in seconds) 
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It may be observed that the transition rate has units of (1/s). Further, one may notice that 

the dependence of the transition rate on the cluster size is implicit. The transition rate depends on 

the free flow velocity, which in turn depends on the free headway. It is the free headway that is 

directly dependent on the cluster size. It is known that the total number of vehicles     on the 

closed ring is fixed, as is the headway inside a cluster            . Thus, as the number of 

vehicles present in a cluster increases, there is more space available for the rest of the vehicles on 

the remaining stretch of the road. Consequently, as the cluster size increases, the free headway 

also increases.  

 The above expression for the transition rate may be expressed in a simpler fashion as 

follows, to truly express the idea behind its development: 

        
                

               
          

                 

                 
 (4.6)  

 The above simplification makes apparent the reasoning behind this expression for the 

transition rate. The expression is obtained from simple kinematic relations for time taken for one 

particle to collide with another particle. In other words, the time taken to join a cluster is given by 

the total distance traveled divided by the speed of the vehicle. With reference to Figure 18, the 

cluster joining process is considered as a collision between two particles, particles A and B. The 

time taken for particle A to cover the requisite distance to “collide” with particle B, or come within 

cluster distance          of particle B is given by:  

      
        

     
 

            

            
 

Consequently, the transition probability rate is given by the inverse of the time to join the 

cluster, and is of the same form as shown in equation (4.5): 

      
 

     
 

            

            
 

Thus, the situation of “joining” a cluster in fact refers to “colliding” with the tailing vehicle 

in the cluster. It is evident from the paraphrased equation that the velocity of the vehicle joining 

   = Dimensionless constant =            

where,          = Optimal velocity corresponding to free headway 
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the cluster is assumed to be constant till the vehicle reaches the cluster. However, it is known from 

car-following theory that as vehicles come closer to a preceding vehicle, some form of control 

effort is applied to regulate their motion, i.e. they tend to slow down and adjust for the decreased 

headway.  In fact, this adjustment procedure forms the foundation of adaptive cruise control and 

general human driving behavior. One may observe that the OVM does suggest an adjustment 

procedure in the form of changing the acceleration based on a vehicle’s headway and velocity. In 

fact, the OVM is a statement of the control effort that must be applied to a vehicle in order to 

follow a preceding vehicle at a desired speed. The control effort is proportional to the error signal 

           ̇  .  However, this approach has not been utilized in (Mahnke, et al., 1997), which 

uses a constant “optimal” speed approach instead. Thus, it is obvious that the assumption of 

constant speed used to determine the transition rate, which has been used by Mahnke, does not 

adequately capture car-following behavior. The observation suggests that the corresponding 

transition rates used to model the cluster joining or aggregation process do not represent that 

process accurately. This is an important observation since the aggregation process is central to the 

analysis of vehicle cluster dynamics. 

 
Figure 18: Cluster joining as a collision process. The equivalent particle collision problem assumes that 

particle A maintains a constant velocity till it collides with particle B. 

Transition probability rate for leaving a cluster,       

The transition probability rate for leaving the cluster is defined as a constant by Mahnke. 

This seems to be a reasonable assumption, because when a vehicle is leaving a cluster, there 

usually aren’t any vehicles ahead of it. Even if vehicles are present, they are themselves 

accelerating away from the cluster and do not interact with the vehicle just leaving the cluster. 
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Consequently, the time it takes for a vehicle exiting a traffic jam to return to free flow is 

independent of other vehicles to quite an extent. Thus, the transition probability rate for leaving a 

cluster is given by: 

       
 

    
          (4.7)  

4.1.3 Limitations of transition rates proposed by Mahnke 

The limitations of the transition rates employed by Mahnke and Pieret, and their lack of 

suitability for use in a problem concerning ACC vehicles have been mentioned at various points in 

this sub-section. These limitations are summarized below: 

 Transition rate       is not representative of true traffic behavior: The transition rate for 

joining the cluster has been shown to be derived from an equivalent collision process. The 

collision process is not representative of true driver behavior, human or otherwise. In fact, 

the assumptions upon which the transition rate expression is based suggests that the 

vehicle deceleration is infinite when the headway of the vehicle becomes equal to the 

cluster headway. Clearly this assumption is not valid and a new expression for transition 

rate       must be determined. 

 Inappropriate use of Optimal Velocity Model: The transition rate for joining the cluster is 

based on the inherent assumption that vehicles maintain an optimal velocity in traffic flow. 

The way in which the OVM has been used in determining the transition rate expression, 

does not include the true essence of the model. The OVM does not propose that the 

velocity of vehicles is equal to the “optimal” velocity function at all times, rather it states 

that vehicles try to attain the “optimal” velocity based on their current velocity and 

headway. On the contrary, the study of (Mahnke, et al., 1997) uses the optimal velocity 

function as the ground truth for vehicle velocity, and does not account for the dynamics of 

the control effort. Clearly this is an erroneous use of the model. 

 Limitations of the Optimal Velocity Model: Even if the OVM is used appropriately, it is 

known that the model itself is prone to failure, in the sense that the model’s lack of 

dependence on relative velocity causes vehicles to crash in simulations. Clearly this is 

undesirable. Another car-following model must be utilized to determine the correct 

expression for transition probability rate for joining a cluster. 
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4.2 New transition probability rates 
 

Many limitations of the earlier approach have been discussed in the previous section. In 

this section it is sought to improve upon some of those limitations in order to obtain better 

expressions for transition rates. As a first step, a different car-following model is chosen that is 

known to well represent traffic flow behavior. Next, the car-following model is used to find the time 

taken to join a cluster for a set of typical traffic conditions. This is followed by the determination of 

an expression for transition probability rate that is better representative of true traffic behavior.  

4.2.1 General Motors’ fourth model 

As was mentioned in section 2.3, the research group at General Motors proposed a set of 

five car-following models. The fourth GM model was representative of the car-following behavior 

to a good extent (Brackstone, et al., 1999), without containing added complexity and parameters, 

as in the fifth GM model. The fourth GM model is presented below: 

  ̈           
  [ ̇         ]

[              ]
( ̇       ̇      ) (4.8)  

The GM fourth model represents a second-order nonlinear ordinary differential equation 

(ODE). Assuming that the reaction time delay can be neglected, i.e.     , the ODE can be written 

as: 

 ̈               ̇   
    ̇    ̇   , 

where the dependence of the variables on time is implicit. In the present context,      denotes the 

position of the vehicle entering the cluster, and     denotes the position of the vehicle inside the 

cluster. Since it is assumed that the vehicle inside the cluster is either stationary or moving with a 

slow constant velocity, its velocity  ̇  is assumed to be a constant,   . Thus, the ODE describing the 

motion of a vehicle entering a cluster may be re-written as  ̈               ̇   
  

    ̇     , where    is the “cluster velocity”. When applied to the situation of a vehicle joining a 

cluster, the solution to this differential equation has the potential to yield the time taken to join a 

where, 

 

     = Position of the        , or following, vehicle 

    = Position of the    , or leading vehicle 

   = Sensitivity coefficient, or driver’s sensitivity (dimensionless) 
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cluster. Once the time taken to join the cluster is obtained, it is a simple task to obtain the 

transition rate      .  

However, there is still a bone of contention in the model description. While the constant    

may be determined from observation, or an intuitive sense of traffic jam behavior (     

      , the range of values for the driver sensitivities     aren’t firmly established. In order to 

determine the necessary range, one must consider the scenarios which constrain the values that 

the driver sensitivity may attain. Looking deeper into equation (4.8), one observes that if     

there is no deceleration effort on the part of the driver, even as it approaches a stationary vehicle 

in the cluster. This scenario implies an imminent collision or the requirement of an infinite 

deceleration effort to avoid a collision. The situation is similar to the Mahnke approach, whose 

limitations were discussed in the previous approach. As driver sensitivity     begins to increase, the 

control effort also increases, implying an increasing amount of deceleration applied to the vehicle. 

However, it is obvious that there is a range of deceleration values that is considered acceptable for 

passenger vehicles. According to the AASHTO (American Association of State Highway and 

Transport Officials) standards, the maximum value of acceptable deceleration for passenger 

vehicles is          (Wang, et al.). Collision avoidance studies usually assume the maximum 

possible deceleration values to be        (Seiler, et al., 1998). However, since the problem at hand 

considers normal traffic flow and car-following behavior, and not any exigent circumstances, the 

values from collision avoidance studies will not be used.  Thus, the values of driver sensitivities     

will be limited by a maximum possible deceleration value of         . 

In order to determine the range of possible values of driver sensitivities, one must solve the 

ODE for the GM fourth model for different values of  .  In this manner, one would be able to 

determine the values of   for which the deceleration does not exceed          at any time in the 

cluster joining process. The ODE is solved using the simplest numerical integration scheme, viz. the 

Euler method, for a range of   values (Strogatz, 2000). The time step used in the solution is      

seconds. The typical traffic flow conditions that have been used as the initial conditions in the 

numerical simulation are: 

(a) Free flow velocity,        ̇                           

(b) Free headway,       [                 ]       . The free headway is actually 

the approximate interaction distance at which a following vehicle may begin to brake to 

avoid a collision (Helbing, et al., 1998). 
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(c) Cluster velocity,     ̇                 . A very small value of cluster velocity is 

taken instead of      to avoid irregularities that may be caused in the numerical solution 

when the vehicle entering the cluster reaches very close to     . 

This set of initial conditions completes the requirements for performing the numerical 

solution. The MATLAB code used for the simulation is presented in Appendix 3. The numerical 

solutions are presented here for two cases with       and with       (Figure 19 and Figure 

20). The cluster velocity    is taken to be                 , in order to provide a meaningful 

comparison. The results are discussed below. 

 
(a) Vehicle headway versus time. The vehicle joins the cluster faster for 

lower values of driver sensitivity   

 
(b) Vehicle velocity versus time. The vehicle appears to have a higher mean 

velocity for lower values of driver sensitivity  . 
Figure 19: Vehicle headway and vehicle velocity versus time. Simulations have been performed 

for driver sensitivities       and        
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Effect of driver sensitivity on time to join a cluster 

The impact of driver sensitivity on time to join a cluster is now discussed. Specifically, the 

effect on the deceleration as a vehicle approaches a cluster is observed. Figure 19 describes how 

the headway and velocity vary as a vehicle joins the cluster. For low driver sensitivities, it observed 

that the vehicle maintains a higher velocity throughout the cluster joining process, and as a result 

reaches the cluster faster than when higher driver sensitivities are involved. Specific to the 

simulation, it is observed that for the vehicle which is driven by a driver with sensitivity      , the 

 
(a) Vehicle acceleration versus time. Drivers with low sensitivities apply a 

control effort later than drivers who are sensitive to the situation. 

 
(b) Vehicle speed versus vehicle headway 

Figure 20: Vehicle acceleration versus time and vehicle speed versus vehicle 
headway for driver sensitivity value        and        
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vehicle joins the cluster (reaches cluster headway) in just 6 seconds. On the other hand, a vehicle 

driven by a driver who is aware of the situation (       joins the cluster in 15 seconds. In fact, 

the aware or “alert” driver reaches the cluster headway asymptotically, unlike the “sleepy” driver, 

who reacts slowly and joins the cluster quickly. 

The difference in “alertness” level of the drivers is made evident in Figure 20(a). The 

“sleepy” driver does not decelerate enough initially, and consequently, has to apply an extremely 

large deceleration effort of the order of          later to avoid a collision with the cluster. On the 

other hand, the “alert” driver applies a deceleration effort as soon as he/she detects that a cluster 

is forming ahead. As a result, the largest deceleration effort that the “alert” driver ever applies is 

the one he/she applies initially. It will be shown later in Chapter 5, that low driver sensitivities 

(corresponding to “sleepy” drivers) are indicative of true human driving behavior, based on 

observations from German highways. It is reasonable to expect that human drivers have lower 

sensitivities because humans perform numerous activities simultaneously, and are not solely 

dedicated to the task of driving a vehicle, or following another car. On the other hand, it is also 

reasonable to expect that driver models for computer-based ACC vehicles have high sensitivities 

because they are dedicated to the task of driving alone. Further, the driver sensitivity in an ACC 

vehicle is a controllable quantity, and may be adjusted by the manufacturer.  Further, it is useful to 

utilize the worst-case human drivers (with the lowest permissible driver sensitivities) as a basis for 

deciding the improvement in traffic flow offered by inclusion of ACC vehicles (with higher driver 

sensitivities). In the remainder of this thesis, human drivers are considered to have low driver 

sensitivities, while ACC vehicles are considered to have high driver sensitivities.  

Driver sensitivities under consideration 

The numerical solution for the nonlinear ODE is repeated for various driver sensitivities. 

The plot for the maximum deceleration versus driver sensitivity     is included in Figure 21. The 

maximum deceleration values indicate that values of driver sensitivities in the range [        ] 

form an adequate interval for consideration according to AASHTO standards. 

Thus, the range of sensitivity values for which the GM fourth model is applicable on a 

highway with the typical traffic conditions is [        ]. Next, the expression for time to join a 

cluster is obtained and the effect of sensitivity values on the quantity is identified analytically. 
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Figure 21: Maximum deceleration values indicate the range of permissible driver sensitivities 

4.2.2 Proposed transition rates 

In the previous sub-section the permissible range of driver sensitivities was obtained. In this 

sub-section, the time to join a cluster is obtained as a closed form expression in terms of the driver 

sensitivity and other pertinent variables. The expression for the transition rate       is then 

determined. 

Simplified GM fourth model 

As a first step, the nonlinear ODE that describes the GM fourth model is solved to obtain an 

analytical expression for vehicle headway as a function of time. This step is followed by determining 

the time taken to proceed from free flow (with headway      ) to a clustered state (with headway 

         ). The GM fourth model ODE is first modified to ease analysis by neglecting the 

reaction time, i.e. assuming     . The modified model equation is included below: 

  ̈       
  [ ̇      ]

[              ]
( ̇       ̇      ) (4.9)  

It is further realized that the term,                 in the denominator represents the 

vehicle headway at time  . Since the primary variable of interest is the headway,              

       , the remaining variables in the equation are also expressed in terms of     . Thus, the 

terms in the above equation can be re-written as follows: 

(a)       –             ,  
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(b)  ̇     –  ̇        ̇    . Assuming that the cluster velocity  ̇        is constant, this 

term translates to           ̇   , where       ̇       is the velocity of the vehicle 

joining the cluster. 

(c)  ̈        ̈      ̈   . However,  ̇        is constant, therefore  ̈       and this 

term reduces to  ̈         ̈   . 

Thus, equation (4.9) can now be expressed in terms of the headway to the preceding vehicle, or the 

headway to the cluster. Suppressing the explicit dependence on time, the equation reduces to: 

 
  ̈      ̇       ̇ (4.10)  

The above equation is then solved to determine the time taken for a vehicle to reach a 

certain headway. While solving the differential equation, one also reaches an intermediate result of 

importance, which is the relationship between the headway and the velocity. The relationship is 

presented below and its derivation is included as an intermediate result in Appendix 4. 

        [    ]                  
      (4.11)  

It may be observed that the constant   is dependent on the driver sensitivity  . Specifically, 

as the driver sensitivity increases, the constant   decreases. This inverse relationship indicates that 

given two drivers traveling at the same velocity, the alert driver will tend to maintain a larger 

headway as compared to the “sleepy” driver. This inference provides a glimpse of why alert ACC-

driven vehicles may turn out to be better than “sleepy” drivers. Next, the expression for time taken 

to reach headway   is calculated. 

Time taken to join a cluster 

The solution to the GM fourth model, with the initial condition           , yields the 

following expression for the time taken to reach a particular headway. The intermediate steps 

between equation (4.10) and equation (4.12) are included in Appendix 4. 

where, 

 

     = Vehicle velocity at time   

 
     = Vehicle headway at time   

      = Maximum vehicle velocity 

     = Free headway, or headway at which braking interaction becomes significant 
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 (4.12)  

Since the obtained expression is an infinite series, it is desirable to know the behavior of 

the series. For this reason, the time taken to reach a particular headway is plotted for various 

number of terms included in the calculation of time. In other words, in the first run, the time is 

calculated using only the first term; in the second run, it is calculated using two terms and so on. 

Further, in order to verify the expression, the time obtained from the above expression is plotted 

over the headway versus time plot obtained from the numerical simulation. The plots are included 

as Figure 22. It is evident that as the number of terms used in calculating the time is increased, the 

value from the expression approaches that from the numerical simulation. The MATLAB code for 

calculating the time taken to join the cluster is included in Appendix 5. 

 

Figure 22: Time to join cluster – verification of theoretical expression using numerical 
solution. As number of terms included ( ) increases from 1 to 40, the theoretical 

expression converges quickly to the numerical solution. 

where, 

 

     = Time taken by following vehicle to reach headway   

       = Headway of following vehicle in free flow =     

    = Constant cluster velocity 

   = Driver dependent constant, (           
 ) 
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It may be observed that the expression in equation (4.12) describes a hypergeometric 

series. A hypergeometric series is essentially a power series for which the coefficients of the power 

terms are themselves a rational function of the power index. A general form of the hypergeometric 

series is as follows: 

              
  

 
  

            

      
     (4.13)  

As can be seen the coefficients of the terms are rational functions of the degree of the 

variable term. In the above expression for hypergeometric series, one observes that the numerator 

is a polynomial whose degree is dependent on the power of the variable term. For example the 

coefficient of    is the polynomial                  , which is dependent on the power of 

the variable term    , which is 2. Similarly the denominator is also a polynomial whose degree is 

dependent on the power of the variable term. Thus the coefficients are rational functions of the 

power or degree of the variable terms. In the present context and with reference to equation 

(4.12), the coefficient          is the rational coefficient dependent on the degree   of the 

variable term. The hypergeometric series are usually studied as infinite sums or infinite products, 

and a closed form for the infinite sum may not exist, like it does for an infinite geometric 

progression (Gasper, et al., 2004). Certain hypergeometric series may result in special functions 

such as the Bessel function, whose sum at various parameter values may be well known. For 

example, if    , the solution to the simplified GM fourth model results in a logarithmic series. 

However, in general, a closed form for the infinite sum of a hypergeometric series is extremely hard 

to find.  

In such a scenario, it may seem that the time taken to reach a particular headway, such as 

the cluster headway       , cannot be calculated. However, it may be observed that the series 

shown in equation (4.12) is convergent as long as        
    .1 Since it is known that the series 

is convergent for the said values, it is possible that an approximate total time taken to reach a 

cluster may be obtained. Successively larger number of terms in the infinite hypergeometric series 

may be taken in order to determine the total time taken to join a cluster. 

                                                      
1
 On a related note, the convergence condition may be re-written as      

       
 . The condition 

reveals the critical headway, or the smallest headway the vehicle may reach based on the driver sensitivity. 

The critical headway, is given by                 
   . The vehicle cannot travel to beyond     because 

beyond that point the expression for the time taken to reach a smaller headway is divergent, and it will take 
an infinite amount of time to get to the smaller headway. One may notice that as           . 
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Approximate time taken to join a cluster 

As was mentioned above, it is inconvenient that the total time taken to join a cluster is 

represented by the sum of an infinite series. It is desirable instead to have a simpler expression to 

represent the time taken to join a cluster. In the following analysis, the focus is on obtaining a 

simplified expression to pursue an analytical development of cluster dynamics.   

As a first step in determining the approximate total time taken to join a cluster, the first 

term alone is considered. The first term, say   , is compared against the total time or sum to 

infinity, say   . The first term of the hypergeometric series in equation (4.12) may be written as: 

 

   
     
        

      
 

(4.14)  

Since an exact measure for the total time is unavailable, it is approximated by the sum to   

terms, say   . The number of terms   used to calculate the sum    is found by using successively 

more terms to calculate the required time, till the contribution of the following term falls below a 

specific value (say 3%). For example, if the sum to   terms is calculated to be 100 seconds, and the 

contribution of the         term is less than   seconds, the sum to infinity is approximated by   , 

i.e. the time taken to join a cluster is considered to be 100 seconds. It is hoped that a relationship 

between   and    can be established, so that the approximate time taken to join the cluster can be 

expressed in terms of    alone. Since the framework for calculating the time taken to join the 

cluster with increasing number of terms has already been demonstrated in Figure 22, the same 

setup is used to determine    and    for the range of permissible values of driver sensitivities (  . 

The ratio       will henceforth be referred to as the truncation ratio     . The plot for truncation 

ratio         versus driver sensitivity     is included in Figure 23. 

Observing the scale on the y-axis, it is realized that there is limited variation in the 

truncation ratio. Specifically, the standard deviation of truncation ratio across the range of driver 

sensitivities is 0.038 for typical traffic conditions. Thus, the average truncation ratio may adequately 

represent the ratio       across all   values. The mean truncation ratio value is 1.4, and 

consequently the total time taken to join the cluster may be approximated by: 

     ̅      
 ̅ 

      
(     

        ) 

       ̅                             

(4.15)  
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Figure 23: Plot of truncation ratio versus driver sensitivity 

  Now that an expression for the total time taken to join a cluster has been obtained, one 

can proceed towards calculating an expression for the transition probability rate. 

Transition probability rates,       and       

It has been determined that the total time taken to join a cluster may be estimated as a 

product of a constant truncation ratio and the first term in the hypergeometric series     . It has 

already been demonstrated in section 4.1 that the transition probability rate for joining a cluster 

may be calculated as the inverse of the time taken to join the cluster. In other words, the transition 

probability rate       may be determined using the following expression: 

 

       
 

     
 

 

  
 

 

 ̅    
  

      

 ̅ 
(

 

     
        

) (4.16)  

On the other hand, the transition probability rate for leaving the cluster as proposed by 

Mahnke was found to be reasonable, so the same transition rate is employed in the following 

analysis. Thus, the transition probability rate for leaving a cluster is given by: 

 
       

 

      
 

 

    
 (4.17)  
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In (Mahnke, et al., 1999), the value of time taken to leave a cluster is obtained from the 

velocity of the collective backward motion of a cluster. In other words, the transition probability 

rate of a vehicle leaving the cluster is determined by the collective movement of a cluster, which in 

turn is also dependent on the rate at which vehicles join the cluster. The value for      used is 1.5 

seconds, and is obtained by fitting the optimal velocity model to specific data from German 

highways. On the other hand, in this thesis, the vehicle is considered to be in one of two states. The 

vehicle can either be in free flow, or it can be stuck inside a cluster. For the purposes of this thesis, 

the transition probability rate is considered as the rate at which a vehicle transitions from one of 

these states to the other. Thus, in this thesis, the time taken to leave a cluster is determined by the 

time taken for a vehicle to accelerate from a stationary state inside a cluster to near free flow 

velocity outside a cluster. This time is calculated to be in the range of 5-7 seconds using typical 

traffic conditions. 

In this chapter, the limitations of transition rates proposed by Mahnke and Pieret were 

discussed, and an alternative set of transition rates was proposed. In the next chapter, the steady 

state analysis of the vehicle cluster dynamics is performed, and the newly proposed transition rates 

are employed to determine the steady state vehicle cluster size.  



 

 
60 

CHAPTER 5 

CHAPTER 5 – VEHICLE CLUSTER DYNAMICS 

In the previous chapter the limitations of the transition rates proposed by Mahnke and 

Pieret were discussed, and new transition rates that better described the driver-dependent vehicle 

behavior in traffic flow were proposed. In this chapter, the new expressions for transition rates are 

used to determine the steady state cluster size from vehicle cluster dynamics. 

5.1 Steady state analysis for single species environment 

 

In this section, traffic is considered as consisting of a single species, or a single set of drivers 

with a fixed value of driver sensitivity. The approach followed in this section resembles the one 

presented by Mahnke in (Mahnke, et al., 1997) to an extent, with the difference that new transition 

probability rates are used in the analysis. In the next section, Mahnke’s approach is developed into 

a novel methodology to analyze the impact of multiple species on the formation of self-organizing 

traffic jams. Specifically, the problem of the impact of ACC vehicles on traffic jam dynamics is 

discussed. The present research unveils new insights into the effects on ACC vehicles on the cluster 

formation process. 

In section 3.3 it was mentioned that the cluster formation process may be modeled as a 

one-dimensional random walk. Further, the rate of change of probability of system states was 

described and expressed as a discrete master equation in equation (3.17). In other words, the 

equation provides a description of the manner in which the probability that the vehicle cluster 

contains   vehicles changes with time. The next logical step is to use the probability rate change 

equation to determine the dynamics of the vehicle cluster. This would provide an understanding of 

how traffic jams grow or diminish in size. Specifically, one would like to know how the formation of 

traffic jams is dependent on driver behavior as represented by varying driver sensitivities.  

5.1.1 Free headway from steady state condition 

Since the cluster formation has been considered as a stochastic process, it only make sense 

to study the dynamics of the expected cluster size 〈 〉. In other words, due to the inherent 

randomness of the cluster formation process, it is difficult to determine the exact size of the vehicle 

cluster (or traffic jam) for any single cluster formation process. Instead, it only makes the sense to 

study the size of the traffic jam one expects to observe when a large number of jam forming 
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processes are considered over a long period of time. The expected value 〈 〉 of the cluster size,  , is 

given by: 

 〈 〉  ∑       

 

 (5.1)  

where,        is the probability that the cluster contains   vehicles at time  . Further, it is desirable 

to know how the steady state cluster size varies with system parameters such as the density of 

vehicles on the road. Thus, the quantity of interest is the rate at which the expected cluster size 

varies, and is described as follows: 

  

  
〈 〉  

 

  
∑       

 

 ∑  
       

  
 

 
(5.2)  

The above expression for the dynamics of the expected system state can be augmented by 

the knowledge of the master equation as presented in equation (3.17), and the corresponding 

boundary conditions presented in equation (3.18), to read as follows: 

  

  
〈 〉  ∑  

 

{
                                

 [           ]      
} 

 

Expanding the expression under the summation sign       [   ], using the boundary conditions for 

      as described in equation (3.18), and through some simple algebraic manipulations, the 

above equation reduces to the following form: 

  

  
〈 〉  ∑            

 

             
 

Further, by the definition of the expected value of a function, the above equation reduces to: 

 
 

  
〈 〉  〈     〉  〈     〉 (5.3)  

In the above equation, it is known that the transition probability rate of leaving a cluster, 

     , is defined as a constant       . Thus, the expected value of the function is same as the 

constant value, i.e. 〈     〉        . On the other hand, the expected value of the function 

〈     〉 is not known. Consequently, further analysis is difficult without a simplifying assumption. 

The simplifying assumption comes in the form of the mean field approach which assumes that a 

many-body problem may be replaced with a one-body problem with suitable external field. In the 

present context, the assumption suggests that expected value of the function       across all 
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possible states   may be approximated by the value of the function at the expected state 〈 〉. In 

other words, the mean field approximation suggests that: 

 〈     〉    〈 〉  

Thus, the equation for the dynamics of the expected cluster size reduces to: 

 
 

  
〈 〉    〈 〉  

 

    
 (5.4)  

At steady state, the cluster size remains constant, and the expected cluster size tends 

towards this constant value. Consequently, the rate of change of the steady state cluster size equals 

zero and the rate of change of the expected cluster size tends to zero. Thus from equation (5.4), the 

condition for steady state is obtained as: 

        
 

    
 (5.5)  

Further, substituting the expression for       from equation (4.16), the following 

expression for the free headway when a steady state vehicle cluster size exists on the road is 

obtained: 

 
         {      

    
          

 ̅ 
}

 
   ⁄

 (5.6)  

5.1.2 Free headway from physical constraints 

In the previous subsection, an expression for the free headway was obtained from the 

steady state condition. In this subsection the free headway expression is obtained from physical 

constraints of operating on a fixed length of road. The free headway expression obtained is directly 

dependent on the number of vehicles present in the cluster. Equating the sum of various headways 

and lengths of vehicles to the total length of the road, one obtains the following equation: 

 
                                (5.7)  

where, 

 

  = Total length of road (= 1000 m, in subsequent simulations) 

   = Total number of vehicle on the road 

   = Effective length of a vehicle (= 5 m in simulations) 
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Thus, the expression of free headway as obtained from physical constraints reads as: 

 
         

                  

       
 (5.8)  

5.1.3 Relationship between density and steady state cluster size 

The previous two subsections derived the free headway (headway outside a cluster) using 

two different approaches, one involving the steady state condition, and the other involving physical 

constraints due to fixed road length. These two expressions are now equated to obtain a 

relationship between the density of vehicles on the road and the steady state cluster size. 

Equations (5.6) and (5.8) are used to obtain the following for a steady state condition: 

 

{      
    

          

 ̅ 
}

 
   ⁄

 
      〈 〉            

   〈 〉    
 (5.9)  

After rearrangement and expressing    ⁄  as    (dimensionless density) and 〈 〉  ⁄  as 〈 〉  

(normalized cluster size), the above equation may be expressed as follows to explicitly illustrate the 

relationship between steady state cluster size and vehicle density on the road: 

 

〈 〉  
  (       )  (              )     

(              )
  (5.10)  

where       {      
    

          

 ̅ 
}
 

   ⁄
. Under the simplifying assumption that for large cluster 

sizes      , the above equation reduces to: 

 

〈 〉  
  (       )   

(              )
  (5.11)  

The equation indicates that the relationship between density and steady state vehicle 

cluster size is linear in nature. Further, since the value of the cluster size cannot be less than zero, 

the range of validity of the above equation is restricted to values of    for which 〈 〉  is greater 

   = Total number of vehicles present in cluster 

       = Free headway 

          = Headway inside the cluster (≈ 1 m in simulations) 
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than zero. For values of 〈 〉  less than zero, the steady state cluster size is considered to be zero. At 

this point, one may observe that there is a particular density at which cluster formation is initiated, 

and this density is referred to as the critical density,   
 . In other words, the smallest density at 

which a cluster begins to form is defined as the critical density. The expression for the critical 

density may be obtained by substituting the value of 〈 〉  by zero: 

 
  

  
 

(       )
  

(5.12)  

Figure 24 describes the phase portrait for vehicular density versus the corresponding stable 

cluster size, using typical values for traffic flow conditions (as described in section 4.2) and driver 

sensitivity ( ) = 0.4. The phase portrait also provides an insight as to how the cluster size proceeds 

to the steady state. The arrows indicate the direction of progression to the stable cluster size. For 

example, when the density of the vehicles on the road is less than the critical density, the stable 

cluster size is zero. In such conditions if any vehicle cluster is formed it quickly dissipates and traffic 

flow returns to free flow. On the other hand, for densities above the critical density, the stable 

cluster size is given by the linear relationship presented in equation (5.11). If the existing vehicle 

cluster contains a different number of vehicles, either more or less, it is expected that the cluster 

will either diminish or grow, respectively, to reach the steady state cluster size.  

 
Figure 24: Phase portrait for density versus cluster size for human drivers with  = 0.4. Solid line indicates 

stable cluster size.  

At this point it would be informative to compare the critical density obtained from the 

above analysis with actual critical densities observed in highway data, with the goal to determine if 

the choice of   in the model reasonably agrees with data. It may be observed from Figure 24 that 
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for driver sensitivity ( ) = 0.4, and with typical traffic conditions described in section 4.2, the 

dimensionless critical density is close to 0.1. Further, equations (5.6) and (5.12) indicate that the 

relation between critical density and driver sensitivity is a one-to-one mapping. Thus, it may be 

concluded from Figure 24 that an observed critical density of 0.1 corresponds uniquely to a driver 

sensitivity value of 0.4. Next, Mahnke and Kaupužs (Mahnke, et al., 1999) have presented the 

fundamental diagram of traffic flow in terms of dimensionless density, which has been included as 

Figure 25. The figure includes the data for flow (or flux) versus density obtained for human drivers 

on German highways, and indicates that the dimensionless critical density is indeed close to 0.1. 

This observation indicates that it is justified to use a lower bound driver sensitivity value of 0.4 for 

the worst-case human drivers. 

 

Figure 25: Fundamental diagram indicating the critical density for traffic consisting 
solely of human drivers. Separate dots indicate observed values of flow, or flux.  

[Modified from (Mahnke, et al., 1999), using data from (Kerner, et al., 1993)] 

While the above analysis provides an insight into how the steady state cluster size varies as 

the vehicular density varies, it does not provide a description as to how the introduction of ACC 

vehicles into traffic flow consisting primarily of human-driven vehicles affects the traffic flow. The 

concept of mixed traffic or multiple species is covered in the next section. 

5.2 Steady state analysis for multi-species environment 
 

In the previous section it was observed how the steady state cluster size varies with 

changing vehicular density. However, the issue of a mix of human-driven and ACC vehicles was not 
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addressed. In this section the scenario of having mixed human-driven and ACC vehicles on the road 

is assessed and its impact on formation of self-organizing traffic jams studied. Further, Monte Carlo 

simulations are performed to validate the results obtained from this methodology.  

5.2.1 System description and transition rates 

For the multi-species analysis, i.e. the analysis of mixed traffic with both human-driven and 

ACC vehicles, the same closed ring system is used as presented in Figure 14. The number of vehicles 

on the road is assumed to be large enough so that the proportion of ACC vehicles both inside and 

outside the cluster may be considered to be equal. This assumption is necessary to enable a 

probabilistic development of a multi-species framework. 

Since the system now consists of two types of drivers, their respective behaviors pertaining 

to joining and leaving a cluster must be considered. For purposes of simplicity, it is assumed that 

the rate at which both types of vehicles leave the cluster is the same. This is a reasonable 

assumption because, as mentioned before, the manner in which the vehicles leave the cluster may 

be considered to be independent of their car-following behavior. On the other hand, the manner in 

which they join the cluster is different for different types of drivers because the transition 

probability rate for joining the cluster is dependent on the driver sensitivity. Thus, the following two 

transition probability rates are obtained for human-driven and ACC vehicles using equation (4.16): 

  
     

        

 ̅ 

(
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 ̅ 
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(5.13)  

where the script   indicates that the transition probability rate is for human-driven vehicles and 

the script     indicates that the transition probability rate is for ACC vehicles. Let the percentage 

of ACC vehicles on the road be represented by  . Further, using the assumption that the number of 

vehicles both inside and outside the cluster is large enough, one may infer that the probability that 

the vehicle joining a cluster is an ACC vehicle is given by  . Similarly the probability that the vehicle 

joining the cluster is driven by a human is      . Then the effective transition rates for the multi-

species system may be written as: 

  
              

         
      ;   and     

                (5.14)  
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The effective transition rates may be employed to draw conclusions about the steady state cluster 

size in a multi-species environment. 

5.2.2 Steady state analysis for multi-species system 

Prior to determining the system behavior for a multi-species environment, it would be 

informative to know the behavior when the system is populated with human-driven vehicles alone 

or ACC vehicles alone. In other words, it is desirable to know the variation in critical density as the 

driver sensitivity is varied. With an additional simplifying assumption that the cluster headway 

tends to vanish or is negligible compared to free headway, on may obtain the relationship between 

vehicular density and steady state cluster size for varying driver sensitivities as shown in Figure 26.  

  
Figure 26: Phase portrait for relationship between density and cluster size for different driver sensitivities. 

Solid lines indicate stable cluster sizes. 

As is evident, if the traffic flow consists solely of “sleepy” drivers with low driver 

sensitivities, the cluster formation process is initiated at lower densities. On the other hand, if the 

drivers in the traffic flow are “alert”, as is considered to be the case with ACC vehicles, the cluster 

formation process is initiated at higher densities. Thus, one may conclude that in a comparison of 

traffic scenarios which consist either of human-driven vehicles alone or ACC vehicles alone, the ACC 

vehicles will perform better. Better performance is considered in the sense that the traffic flow will 

be able to proceed to higher densities and consequently higher traffic flows before self-organizing 

traffic jams or vehicle clusters begin to form. 
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 Steady state condition 

The steady state condition for the multi-species system is similar to the condition for the 

single-species system, with the difference that the transition probability rate in the single-species 

system is replaced by an effective transition probability rate for the multi-species system. Thus the 

steady state condition is given by the following equation: 

   
              

         
        

 

    
 (5.15)  

Substituting the expressions for the individual transition probabilities into the above equation and 

performing some algebraic manipulations, one obtains the following equation in terms of the free 

headway: 

      
         

             
           

           (5.16)  

The above equation is a transcendental equation, and in its present form it can only be 

solved either numerically or graphically. However, it is desirable to obtain a closed form solution for 

the free headway in order to continue with the current path of analysis. A closed form solution may 

be obtained if a relation is enforced between    and     . The intent of enforcing such a relation is 

to transform the transcendental equation into an algebraic one. Such a transformation can be 

brought about by a relation that reduces equation (5.16) into a quadratic, cubic, bi-quadratic or 

similar functional form. One such relation that reduces equation (5.16) into a cubic equation and 

thus allows a closed form solution is                                     . It may be 

observed that, once this substitution is made, arbitrary choices of driver sensitivities cannot be 

made in this analysis. This is due to the fact that the choices are restricted by two constraints, viz. 

the maximum acceptable deceleration (as discussed in section 4.2), and the need to obtain a closed 

where, 

 

  =         
                       ̅   

   =         
                     ̅  

   =         
            

                         ̅          
                  

      ̅          
       

CONCLUSION: If traffic flow consists solely of ACC vehicles (with high driver sensitivities), 

self-organizing traffic jams will begin to form at higher densities. In fact, with only ACC 

vehicles on the road the critical density increases by a factor of 3.  
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form solution. A number of values of driver sensitivities (       ) such as (0.35, 0.675), (0.4, 0.7) 

etc. which satisfy the relation                    also lie approximately in the range defined 

by maximum acceptable deceleration. Thus, the relation                   may be used as 

an approximation, together with this restricted set of values, to reduce equation (5.16) into a cubic 

form as follows: 

 (     
      )

 
  (     

      )
 
  (     

      )      (5.17)  

 

whereby a closed form expression for       can be obtained as follows: 

       
 

 
{       

 
 
        

 
  

 
  } (5.18)  

where    {                 √                            }

 

 
 

The expression for       obtained from the steady state condition may then be equated to 

the expression for free headway obtained from physical constraints. The relationship between 

steady state cluster size and vehicular density is obtained in the same manner to be: 

〈 〉  
  (       )   

(              )
 

where       is given by the expression in equation (5.18). It is now of interest to know how the 

addition of ACC vehicles to the traffic affects the tendency of the traffic flow to self-organize into 

jams. Specifically, it is of interest to know the impact of ACC penetration on the critical density, or 

the density at which vehicle clusters first begin to appear. 

5.2.3 Behavior prediction 

Since the quantity of interest is the critical density, the impact of increased ACC penetration 

on the critical density is analyzed. One would like to know if the presence of larger number of ACC 

vehicles on the road results in an increase in critical density, i.e. higher traffic flow before a self-

organized traffic jam begins to restrict flow. There is already an inkling of this happening from the 

analysis in the previous subsection. In this subsection the impact of increased ACC penetration is 

analyzed. 
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It is known that the critical density is a function of the free headway. Further, the solution 

for the free headway,      , obtained in the previous subsection is a function of the percentage of 

ACC vehicles on the road. Thus there exists a relation between the critical density and the 

percentage of ACC vehicles. This relation is plotted in Figure 27. The figure indicates that the critical 

density increases as the proportion of ACC vehicles on the road increases. The driver sensitivity 

values used for the analysis are       , which is the lower bound for the permissible range of 

driver sensitivities, and         , which is obtained from the relation enforced to enable an 

analytical solution to the transcendental equation (5.16). It is understood that the value for      

lies outside the permissible range of driver sensitivities, but one may also observe that the 

maximum deceleration value corresponding to      is only 4 m/s2. Since this deceleration value is 

close to the prescribed AASHTO standards, it is assumed to be permissible for the sake of obtaining 

an analytical solution to the problem at hand. 

 

 
Figure 27: Normalized critical density versus ACC penetration in highway traffic 

The above figure may be interpreted as follows. Consider a traffic system consisting of a 

fixed proportion of ACC vehicles, say 50%. Further, consider the corresponding critical density, 

which from the figure, is approximately 0.15. Now, if the density of vehicles on the road is greater 

than 0.15, i.e. greater than the critical density, self-organized traffic jams will emerge in the system, 

and the system will exist in a congested state. However, if the density of vehicles on the road is less 
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than the critical density, self-organized traffic jams will not emerge and traffic will exist in a free 

flow state. The distinction between these two phases of the system is made by means of the critical 

density line. For a fixed density, as the proportion of ACC vehicles in the traffic system increases, 

the system goes from congested state to free flow, and vice versa. Alternatively, for a fixed 

proportion of ACC vehicles in the system, as the density increases, the system goes from free flow 

to congested state, and vice versa. 

One may observe that the slope of the curve described in Figure 27 increases as the 

percentage of ACC vehicles on the road increases. In the context of analyzing a potential control 

mechanism for the dynamics of self-organizing systems, one may consider the percentage of ACC 

vehicles     as the independent or controllable variable, and the normalized critical density    
   as 

the dependent variable. Then the sensitivity of the dependent variable may be expressed as: 

                    (
   

 

  
)
    

 (5.19)  

The sensitivity describes the effect of a small change in the percentage of ACC vehicles on 

the normalized critical density. Determining the slope of the curve from Figure 27, the sensitivity of 

the normalized critical density to the proportion of ACC vehicles may be obtained. Figure 28 

indicates how the sensitivity of the normalized critical density to ACC penetration varies with ACC 

penetration.  

 
Figure 28: Sensitivity of normalized critical density to the proportion of ACC vehicles on the road. 
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It may be observed that as the proportion of ACC vehicles on the road increases, the 

normalized critical density becomes increasingly sensitive to small changes in the ACC penetration. 

For example, consider section A in Figure 27, which depicts the behavior of a system consisting 

predominantly of only human-driven vehicles. This system is characterized by small values of  . If a 

small percentage, say 5%, of ACC vehicles is added to this system, the critical density at which 

clusters begin to form does not change much. Thus, addition of ACC vehicles to a predominantly 

human-driver system does not produce any significant changes. This behavior corresponds to a low 

sensitivity. The implications of low sensitivity are that the system behavior is independent of any 

small changes made to the vehicle proportions. In other words, the analysis suggests that adding a 

group of “alert” ACC vehicles to the traffic will not improve the traffic flow, and that self-organizing 

traffic jams will continue to form at relatively low densities. 

On the other hand, consider section B in Figure 27, which depicts the behavior of a system 

consisting predominantly of ACC vehicles. This system is characterized by large values of  . If a 

small percentage, say 5%, of human-driven vehicles with low driver sensitivities is added to this 

system, the critical density at which clusters begin to form drops sharply. This suggests that 

addition of a few human-driven vehicles to traffic consisting predominantly of ACC vehicles has the 

potential to suddenly reduce the critical density at which traffic jams form. Thus, if the traffic 

system is operating at a certain density that is just below the critical density for predominantly ACC 

traffic, addition of human-driven vehicles will reduce the critical density. The rapid reduction in 

critical density will cause the formation of self-organizing traffic jams, even though no major 

changes in actual vehicular density have occurred. This behavior corresponds to high sensitivity. 

The implications of high sensitivity are that the system behavior is greatly impacted by small 

changes in vehicle proportions. In other words, the analysis suggests that addition of a group of 

“sleepy” (human) drivers to a predominantly ACC vehicular traffic will result in a sudden reduction 

in critical density and will quickly lead to self-organized traffic jams. Specifically, it can be seen from 

Figure 28 that with typical driving conditions the traffic system is 10 times as sensitive to changes in 

vehicle proportion when it consists of predominantly ACC vehicular traffic than when it consists 

predominantly of human-driven vehicular traffic. 

CONCLUSION: Higher ACC penetration makes the traffic system more sensitive to 

perturbations. In other words, more ACC vehicles on the road leave the traffic flow more 

prone to formation of self-organizing traffic jams. 
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5.3 Monte-Carlo simulations 
 

The entire development up to this point has been analytical in nature. In this section the 

cluster formation is simulated as a one-dimensional random walk. The only inputs to the simulation 

are the transition probability rates,       and      , and none of the simplifying assumptions 

used for analysis in this chapter have been included in the simulations. The removal of assumptions 

from the simulation process ensures that the simulation models the true cluster formation process 

as closely as possible. The simulations can thus be used to validate the analytical development. 

The simulation methodology used for simulating the cluster formation process is known as 

Monte-Carlo method (Robert, 2004). In the present context, the Monte Carlo method simulates the 

cluster formation process a large number of times and determines the expected steady state 

cluster size from the mean cluster size observed in the long term limit. Figure 29 describes the 

schematic for the simulation. The MATLAB code for the Monte Carlo simulation is included in 

Appendix 6.  

  
Figure 29: Schematic for Monte Carlo simulation 
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The schematic indicates that the simulation is first initialized with a set of parameters. 

These parameters include the total number of vehicles on the road, the total length of track, the 

percentage of ACC vehicles on the road, the driver sensitivities for both human-driven and ACC 

vehicles, and other typical traffic conditions. At the next step, the simulation randomly creates a 

cluster of size  . The simulation is then allowed to run for M1 time steps indicative of progression in 

time. As the simulation progresses in time, vehicles may join the cluster or leave the cluster till a 

steady state cluster size is achieved. M1 should be long enough so that the cluster is allowed to 

reach a steady state. After a number of test simulations with varying parameter values, it was 

found that the cluster size generally reached a steady state within 10,000 iterations. Thus, in the 

simulation, M1 has been taken as 10,000 time steps. Once the steady state cluster size is achieved, 

the process is repeated with a new cluster of a randomly chosen size. The complete process is 

repeated M2 times allowing one to obtain an expected cluster size as the mean of all steady state 

cluster sizes obtained from the simulation with the same set of initialization parameters. In the 

simulation, M2 has been taken as 1000 iterations. The results from the simulations are discussed 

next. 

5.3.1 Simulation results 

As a first step in validating the analytical development, one would like to see how the 

simulation fares for the single-species environment. Then, one would like to see the system 

behavior simulated for the multiple-species environment. Simulation results for both environments 

are included below. 

Single-species environment 

For the single-species environment the quantity of interest is the steady state cluster size, 

and its variations with changes in density. The results shown below are for the simulations 

performed with human drivers, i.e. drivers with low sensitivities. The specific simulation shown 

here is for the scenario when the entire road is populated by human-driven vehicles with each 

driver having the sensitivity value     equal to 0.4. The simulation is first presented below in Figure 

30 for a representative set of densities to demonstrate that the simulated behavior of the cluster at 

certain vehicular densities matches the analytically derived behavior. Specifically one notices that 

for the simulation where the dimensionless density is 0.1, no traffic jams are formed and the 
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corresponding analytical solution also yields a cluster size of zero. Similar observations are made for 

simulations with other densities as well. 

 

Figure 30: Monte Carlo simulation for single species environment performed for a small set of densities. Solid 
black lines indicate mean cluster size. 

The Monte Carlo simulation is then performed for all densities and the results are 

presented in Figure 31. It can be seen that the simulation matches the analytical solution quite well. 

The simulation is performed only up to a dimensionless density of about 0.8, because beyond this 

point the calculation of free headway from physical constraints yields incorrect solutions. The 

expression of free headway from equation (5.8) is presented below: 

 
         

                  

       
 

 

It is evident that as      , the numerator becomes smaller, and represents the limit of bumper-

to-bumper traffic. Any further subtractions due to the presence of the cluster headway term, 

             , will cause the free headway to become negative. Thus, the simulation indicates 

that present form of the analysis may not be applicable for extremely high density traffic. However, 

it may also be observed that situations in which the traffic flow reaches extremely high densities 

are not expected to be observed too often, and the analysis remains valid in a majority of cases. 
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Figure 31: Monte Carlo simulation for single species environment describing dependence of cluster size on 
density. Thick dashed line denotes analytical solution. Solid dots indicate the mean steady state cluster sizes 

obtained from the simulation 

Multi-species environment 

In the single-species environment it was shown that the simulation matched the analytical 

solution quite well. This indicates that the critical density for a given driver sensitivity is also 

correctly calculated. In this subsection, the simulation is extended to encompass the multi-species 

case, in order to verify the theoretical development regarding the variation of critical density with 

the proportion of ACC vehicles in the traffic flow. Since the quantity of interest in the multi-species 

case is the critical density, the simulation determines the densities at which cluster formation is 

initiated. The results from the simulation are included in Figure 32 on the following page.  

The red line (with solid dots) in Figure 32 indicates the analytical solution obtained for the 

variation of critical density with changes in ACC penetration. The results from the Monte Carlo 

simulation are included as the mesh in the background. The mesh and the corresponding colormap 

indicate the number of runs out of 1000 that resulted in the formation of a cluster in steady state. 

In other words, the mesh represents the number of instances in the simulation when a self-

organized traffic jam formed with the given input parameter values. The region between pale blue, 

representing absence of cluster formation, and pale red, representing high frequency of cluster 

formation, indicates the phase transition from a free state to congested state of traffic flow. Thus, 

the lower bound of this intermediate region is representative of the critical density at which cluster 
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formation is initiated. It may also be observed that the analytical solution also yields the lower 

bound, or the critical density at which clusters begin to form. As is evident, these simulation results 

appear to agree with the analytical solution. 

 

Figure 32: Monte Carlo simulation for multi-species environment. Colormap indicates the number of runs out 
of 1000 runs (for a given parameter set of density and proportion of ACC vehicles) that resulted in the 

formation of a steady state cluster (or self-organized traffic jam). 
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CHAPTER 6 

CHAPTER 6 – CONCLUSIONS 

The goal of the present study was to develop a methodology to analyze the effects of 

introduction of ACC vehicles on the formation of self-organizing traffic jams. The effect of 

introduction of ACC vehicles into a closed ring road traffic system was analyzed. Another aim of the 

study was to provide a starting point for attaining a more wide-ranging goal of developing a 

methodology for controlling the behavior of self-organizing systems in general. A stochastic master 

equation based approach was considered and adapted to provide a framework for modifying the 

dynamics of self-organizing systems by introduction of similar agents with slightly differing 

interaction properties. This chapter contains a summary of conclusions obtained from the study 

and provides recommendations for future work. 

6.1 Summary of conclusions 

 

The study on the effect of introduction of ACC vehicles on the formation of self-organizing 

traffic jams in highway traffic has yielded the following conclusions: 

 Increased ACC penetration results in higher traffic flows without self-organizing traffic 

jams: The study has shown that as the percentage of ACC vehicles in the traffic system is 

increased the critical density also increases correspondingly. The increase in critical density 

implies that the density at which vehicle clusters begin to appear is increased. This indicates 

that the traffic flow can operate at higher densities and consequently higher flow rates, 

since it is known from the fundamental diagram of traffic flow that, in the free flow regime, 

the flow increases as the density increases. 

 Increased ACC penetration results in the traffic system being more susceptible to 

formation of self-organizing traffic jams: While increased ACC penetration may allow the 

traffic system to operate at increased densities and flows, it comes at a cost. As ACC 

penetration increases, a small percentage of drivers with low sensitivities are enough to 

cause a self-organized traffic jam. In other words, in a predominantly ACC traffic system, 

introduction of a small percentage of human drivers may cause a rapid reduction of critical 

density, resulting in a self-organized traffic jam. 
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 Self-organizing systems may be controlled by introduction of a small percentage of 

similar agents with slightly different interaction effects: As was mentioned in the previous 

bullet, it appears to be possible to control or modify the behavior of self-organizing 

systems. The system behavior control is made possible by introduction of a small set of 

agents that react according to the same set of laws that govern agents already existing in 

the system, but whose interaction effects differ from the existing population. The 

difference in interaction effects causes a change in system behavior. 

6.2 Recommendations for future work 

 

The present study has provided a proof of concept that the dynamics of self-organized 

systems may be modified (and hence controlled) by introduction of a small percentage of agents 

with slightly different interaction effects. Further, the study has applied the concept to a practical 

problem and analyzed the effects of such modifications on the system behavior. Some of the 

possible thrust areas of research to follow up on the present study are discussed below: 

 Experimental validation: The present study has addressed the problem from a theoretical 

viewpoint and justified the analysis using Monte Carlo simulation. As a logical next step, 

experiments should be performed to validate the results from the study. An experiment 

may be performed using actual vehicles with a certain percentage being driven by humans 

and the remaining being driven using ACC algorithms. Alternatively, the experiment may be 

performed using robots with a certain percentage being run by comparable human driver 

models and the remaining being run by ACC algorithms. 

 Analyze traffic flow with additional driver models: The scope of the problem may be 

expanded by including variability in the driver sensitivities, or using altogether different 

models to represent driver behavior. The multi-species approach will then have to be 

expanded to included a large number of species against the two (human and ACC) used in 

the current analysis. 

 Extension to other self-organizing systems: It would be appropriate at this point to note 

that for the system under consideration, the agents in the system have a relatively low 

degree of interaction, with each vehicle interacting only with the next neighbor. Further, 

the system is one-dimensional. These two facts together produce an environment where 

the introduction of similar agents with slightly different interaction behavior does not 
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dramatically alter the self-organizing behavior of the collective traffic system. However, 

self-organizing systems may be high-dimensional with large degree of interactions between 

agents, and introduction of new agents may cause different behavior in the system. Thus, 

the present approach may be applied to other self-organizing systems, such as flocks of 

birds, to observe the range of its applicability. Specifically, it would be interesting to analyze 

how ‘different’ the interaction effects of the agents being added must be to completely 

alter the self-organizing behavior of the system.  

 Development of a rigorous control framework: The present analysis may be used as a 

stepping stone to develop a more rigorous framework for controlling the behavior of a self-

organizing system. Specifically, the number of additional agents added to the system may 

be varied to produce a desired effect. In other words, one may add or remove agents with 

desired properties according to a feedback from an error signal (behavioral or otherwise) to 

guide the system evolution to a desired state. A rigorous framework may be developed 

starting from the master equation and corresponding transition rates. 
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APPENDICES 

Appendix 1: Derivation of the Chapman-Kolmogorov equation 
 

Consider the joint probability distribution for the states        ,         and        , where  

        . The joint probability distribution,                        is given by –  

                                                                     (A1.1) 

Integrating over     , we have –  

 ∫                         ∫                                                 (A1.2) 

Since           is independent of   , it can be taken out of the integral sign on the right 

hand side. Further, the integral on the left hand side represents the integral of joint probability of 

states        ,         and        , over all possible states   . Consequently, the integral reduces 

to the joint probability                  Thus, we have –  

                          ∫                                       (A1.3) 

The joint probability                 can now be expressed as the product of the conditional 

probability                   and            yielding –  

                                     ∫                                       (A1.4) 

which further results in the Chapman-Kolmogorov equation.  

                   ∫                                       (A1.5) 
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Appendix 2: Differential form of the Chapman-Kolmogorov equation 
 

The Chapman-Kolmogorov equation for a two-step transition is (from equation (3.6)): 

              ∫                        (A2.1) 

And the Taylor series expansion of the transition probability yields (from equation (3.11)): 

                  
                      (A2.2 ) 

Substituting equation(3.11) into equation (3.6), we get: 

              ∫[      
                     ]                

or,              ∫                       ∫                          

   ∫                      

 

or,                          ∫                    

   ∫                     
(A2.3) 

Rearranging the terms in equation (A2.3), and dividing be    on both sides, one obtains: 

                        

  
 ∫[                                   ]     (A2.4 ) 

Now, taking the limit       we obtain the differential form of the Chapman-Kolmogorov 

equation, or the Master equation: 

  

  
           ∫[                                   ]     (A2.5 ) 
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Appendix 3: MATLAB code for simulating GM fourth model 
 

%% Contender number 6 - GM fourth model 

  
clear all; 
close all; 

  
k = 0.7;        % k = alpha = driver sensitivity 
hn = 100;       % Free headway 
vn = 25;        % Free velocity 
vref = 2;       % Cluster/target velocity 

  
endTime = 20; 
incrTime = 0.001; % Time step for numerical integration 
t = linspace(0,endTime,endTime/incrTime); 
iden = ones(1,length(t)); 
h(1) = hn; 
v(1) = vn; 

  
i = 1; 
while(i <length(t)) 
    a(i+1) = (k*v(i)/h(i))*(vref - v(i)); % GM fourth model 
    hOld = h(i); 
    vOld = v(i); 
    alphaOld = a(i+1); 
    v(i+1) = vOld + incrTime*alphaOld; 
    h(i+1) = hOld + incrTime*(vref - vOld); 
    i = i+1; 
end 
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Appendix 4: Derivation of expression for time taken to reach headway h 
 

The starting point for the derivation is the simplified form of the GM fourth model as described in 

equation (4.10) 

   ̈      ̇       ̇ (A 4.1) 

The equation may be re-written as: 

  ̈

 ̇
 

   ̇     

 
 (A 4.2) 

Further, one may realize that: 

 ̈

 ̇
 

  ̇   

     
 

  ̇

  
 

Consequently, the simplified form of equation (A 4.2) may be written as: 

   ̇

  
 

   ̇     

 
  

or,   ̇

  ̇     
  

  

 
 (A 4.3) 

Integrating both sides: 

 ∫
 

  ̇     
  ̇   ∫

 

 
    

or,   ( ̇    )                 

or,   ̇          (A 4.4) 

The constant of integration can be calculated from the initial conditions when a vehicle is moving at 

its maximum velocity        in free flow, and first comes within the interaction (or braking) 

distance      . Since  ̇         , equation (A 4.4) yields the value of               
 . 

Thus, equation (A 4.4) can also be used to describe the relationship between vehicle velocity and 

vehicle headway as: 

       [    ]                   
  (A 4.5) 

It may be observed that this relation indicates that the vehicle velocity reaches zero when the 

headway is zero. Typically this is not a desired characteristic, since one would want the velocity to 
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be zero at a certain safe distance. The safe distance may be considered to be the distance at which 

vehicles come to a stop in jammed traffic, i.e. the cluster headway           . Thus the 

relationship between vehicle velocity and vehicle headway can be expressed as: 

       [           ]
                   

  (A 4.6) 

Meanwhile, continuing with equation (A 4.4), the described differential equation can be re-written 

as:  

 
  

  
                

or, 
  

      
    (A 4.7) 

Integrating on both sides with their respective limits: 

 ∫
  

      

 

     

 ∫   
 

 

 (A 4.7) 

Performing the integration, the following expression for time taken to reach a particular headway is 

obtained: 

 

     
 

  
∑ {

 

    
(
  

 
)
 

      
           }

 

   

 (A 4.8) 
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Appendix 5: MATLAB code for calculating time taken to join a cluster 
 

%% For vehicles joining a cluster 
 

a = 0.4;  % Driver sensitivity 
m = 1;  % Number of terms included 
sum = 0; 
hnterm = 0; 
hterm = 0; 

  
vmax = 25; 
hbr = 100; 
vn = 25; 
hn = 100; 
vc = 2; 
k = vmax/(hbr^a); 
vn = k*(hn^a) 
hCritical = hbr*(power((vc/vmax),(1/a))); 

  
h = linspace(hn,1.001*hCritical,2000); 
iden = ones(1,length(h)); 

  
count = 1; 

  
for(i = 1:1:40) 
    while(m<=i) 
        hnterm = hnterm + (hn)*((1/(1 - m*a))*((vc^(m-

1))/((vmax)^m))*((hbr/hn)^(m*a))).*iden;  %For joining a cluster 

         
        hterm = hterm + ((1/(1 - m*a))*((vc^(m-

1))/((vmax)^m))*((hbr*iden./h).^(m*a))).*h;  %For joining a cluster 

         
        sum = (hnterm - hterm); 
        m = m + 1; 
    end 
    t = sum; 

     
    plot(t, h,'r.-', 'MarkerSize', 4); grid on; 
    xlabel('Time (in seconds)'); 
    ylabel('Headway (in metres)'); 
    hold on; 
end 
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Appendix 6: MATLAB code for Monte Carlo simulation 
 

%% Script to simulate formation of self-organizing traffic jams using 

Monte Carlo method 

  
clear all; 
close all; 
clc; 

  
%% Initialize all variables 
L = 5000;               % Length of track 
l = 5;                  % Effective length of car 
vmax = 25;              % Maximum vehicle velocity 
hbr = 100;   % Interaction distance 
tau = 5;   % Relaxation time 
vc = 0.00;   % Cluster velocity 
TR = 1.4;   % Truncation ratio 
d0h = 1; 
d0r = 1; 

  
ah = 0.4;          % human driver sensitivity 
ar = 0.5*(1+ah);        % autonomous vehicle sensitivity 

  
pIND = 1; 
cNIND = 1; 
iterIND = 1; 
maxIter = 1000; 
count = 1; 

  
pStart = 0.05; 
pIncr = 0.1; 
pEnd = pStart; 
cNStart = 0.13; 
cNIncr = 0.01; 
cNEnd = cNStart; 

  

  
clusterSize(1) = 50; 
endTime = 20000; 

  
%% Calculate transition probabilities for different cluster sizes 
kh = vmax/(hbr^ah); 
kr = vmax/(hbr^ar);      

hch = (vc/kh)^(1/ah) + d0h; 
hcr = (vc/kr)^(1/ar) + d0r; 

  
for(p = pStart:pIncr:pEnd) 
    hc = p*hcr + (1-p)*hch; 
    for(cN=cNStart:cNIncr:cNEnd) 
        iter = 1; 
        N = cN*L/l; 
        n = linspace(1,N,N); 
        iden = ones(1,length(n)); 
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        A2h = ((hch.*iden).^(1 - ah)); 
        while(iter<=maxIter) 
            % Time to join a cluster for human driven vehicles 
            hnh = ((L)*iden - l*N.*iden - (n-iden).*hc)./(N*iden - n + 

iden); 
            A1h = hnh.^(1-ah); 
            tPlusH = (1/(kh*(1-ah))).*(A1h - A2h); 

             
            % Time to join a cluster for ACC vehicles 
            hnr = ((L)*iden - l*N.*iden - (n-iden).*hc)./(N*iden - n + 

iden); 
            A1r = hnr.^(1-ar); 
            A2r = ((hcr.*iden).^(1 - ar)); 
            tPlusR = (1/(kr*(1-ar))).*(A1r - A2r); 

             
            wPlus = (1-p)./(TR.*tPlusH) + p./(TR.*tPlusR); 
            wRatio = tau.*wPlus; 

                                   
%% Running the simulation - 1-D random walk for cluster size 
            Rin(endTime) = 0; 
            Rout(endTime) = 0; 
            wPlus(endTime) = 0; 
            wMinus(endTime) = 0; 
            clusterSize(endTime) = 0; 
            clusterSize(1) = round(N*rand(1)); 

             
            for(time=1:1:endTime) 
                if((clusterSize(time) > 0)&&(clusterSize(time) < N)) 
                    Rin(time) = rand(1); 
                    wPlus(time) = wRatio(clusterSize(time))/tau; 
                    Rout(time) = rand(1); 
                    wMinus(time) = 1/tau; 

                     
                    if((Rin(time) < 

wPlus(time))&&(Rout(time)<wMinus(time))) 
                        clusterSize(time+1) = clusterSize(time); 
                    end 
                    if((Rin(time) > 

wPlus(time))&&(Rout(time)<wMinus(time))) 
                        clusterSize(time + 1) = clusterSize(time) - 1; 
                    end 
                    if((Rin(time) < 

wPlus(time))&&(Rout(time)>wMinus(time))) 
                        clusterSize(time + 1) = clusterSize(time) + 1; 
                    end 
                    if((Rin(time) > 

wPlus(time))&&(Rout(time)>wMinus(time))) 
                        clusterSize(time + 1) = clusterSize(time); 
                    end 
                else 
 

                    p0 = 0.01; 
                    Rin(time) = rand(1); 
                    wPlus(time) = p0*N/tau; 
                    if((clusterSize(time) == 0)&&(Rin(time) < 

wPlus(time))) 
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                        clusterSize(time+1) = 1; 
                    else 
                        clusterSize(time+1) = 1; 
                    end 

                     
                    Rout(time) = rand(1); 
                    wMinus(time) = 1/tau; 
                    if((clusterSize(time) == N)&&(Rout(time) < 

wMinus(time))) 
                        clusterSize(time + 1) = N - 1; 
                    else 
                        clusterSize(time + 1) = clusterSize(time); 
                    end 

                     
                end 
            end 

  
            store(pIND,cNIND).cluster(iterIND,:) = clusterSize; 
            store(pIND,cNIND).mean(iterIND) = 

mean(store(pIND,cNIND).cluster(iterIND,endTime - 1000:endTime)); 

             
            clear timeVector 
            timeVector = linspace(1,time+1, time+1); 
 

            meanClusterSize = 

(mean(clusterSize*l/L)).*ones(length(timeVector),1); 
            meanClusterSize2 = (mean(clusterSize*l/L)); 
            MEAN(cNIND,iterIND) = meanClusterSize2; 
 

            figure(3) 
            plot(timeVector, clusterSize*l/L); 
            title(['Total iteration count = ', num2str(count),' p = 

',num2str(p),' cN = ',num2str(cN)]); 
            xlabel('Simulation time'); 
            ylabel('Normalized cluster size'); 
            ylim([0 1]); 
 

            iter = iter + 1; 
            count = count + 1; 
            iterIND = iterIND + 1; 

         
        end 
        store(pIND,cNIND).meanMean = mean(store(pIND,cNIND).mean(:)); 
        meanMean = mean(store(pIND,cNIND).mean(:)); 
        if(meanMean>0.1*N) 
            cN = cNEnd + 1; 
        end 
        cNIND = cNIND + 1; 
        iterIND = 1; 

                 
    end 
    pIND = pIND + 1; 
    cNIND = 1; 
end 
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