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ABSTRACT

Automotive manufacturers are researching forwallisean warning systems (FCWS) to
reduce the occurrence of rear-end collision act&ddietween vehicles. Traditionally these
systems use forward scanning sensor technology asdRADAR or LIDAR to measure the
distance between the equipped vehicle and otheiclestobstacles ahead. The U.S. Army is
using such technology on their ground vehicles ag noticed its performance is sometimes
compromised due to environmental effects (cakindedfris on sensors). This thesis presents the
work of developing a FCWS that instead uses GlBlogition Satellite (GPS) technology and the
available information associated as an alternagipproach for collision avoidance in convoy
situations. This approach however requires a vehilvehicle (V2V) network infrastructure to
share local GPS data among vehicles.

Sponsorship from U.S. Army and Penn State’s ownlidd@Research Laboratory (ARL)
led to the fabrication of three low-cost, embeddagtmototype units that were fielded on three
Army Heavy Expanded Mobility Tactical Trucks (HEM3)Tvehicles navigating through desert
test courses in convoy formation. These experimgmtged the feasibility of such an alternative
collision detection system.

The primary goal of this thesis is to evaluate @asurement errors/uncertainty affects
performance of a GPS-based convoy collision avaidaystem. A simple analytical framework
is presented for merging system sensitivity analgsid measurement input error characterization
results to determine the uncertainty in the outgiite resulting metric is a dimensionless
parameter corresponding to a range in the prolpabiiicollision. To test this approach, field data
were analyzed and applied within the proposed freonie

A secondary focus of this thesis is to addresseaifip concern regarding the feasibility

of GPS-based collision avoidance approach due nweras about GPS accuracy. This thesis
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includes identification of dominant GPS stochastfir sources using Allan Variance analysis.
The research experimentally compares inter-vehidiigance accuracy, which is a core
measurement of the system, between the GPS proggg®dach and the traditional LIDAR-
based approach in an attempt to address accuracgres. As vehicular communication systems
such as vehicle to vehicle (V2V) emerge in the Haturre, a GPS-based FCWS will naturally
provide a lower-cost alternative, or even suppldalesolution to the scanning technologies
currently implemented. This work thus offers an ieliate and substantial opportunity to save
lives. While the target application of the workaissed here was for rear-end collisions such as
might be encountered in military convoy operatidghs, solution could be adopted for the civilian

commercial sector via straightforward applicatidrexisting technology.



Table of Contents

IS o)l o [0 Y PPN Vil
LISt Of TADIES ...t et e iX
ACKNOWIEAGEMENTS .....u i e e e e e e e e e e et e e e eeae e e e seettaaeeaens X
L4 =T o] (=1 gl A 11170 [ o 1o PP 1
IO 1V o 1= L4 [ o U 3
1.2 ThESIS OULING ..ottt e e e e e e e e e eenan e e e e e eeaeas 7
Chapter 2 Collision Warning Systems Overview antV/&yl...............oooveevveiiiiiineeeeeeens 8.
2.1 Collision System FUNamentalS ..........ccceeeerriiiiiiiiiiie e e 8
2.1 Existing Collision Detection SYStEMS....cceeiiiiiiiiecieiice e e 11
2.2 Current Research INItatiVeS ...... ..o e 13
Chapter 3 The Proposed Collision Warning SYSteMLeu .......ceeuvueriiiinieeeeeeeeeeeeeiiinnn 15
3.1 Hardware COMPONENTS .....uuiiiiiiiii e ieeeee e e e et s e e e e ee e e e e e e e e e enna e eeees 16
3.2 Software: Safe/Danger Decision Algorithm .............cccooiiiiiiiiiii e, 18
Chapter 4 System Uncertainty Analysis FramewarK...............ccccoeeiiiiiiiini i eeees 21
4.1 SENSILIVILY ANAIYSIS ..vuunieiiiii i eceee e e e e e e e e e e e e e e e ra e e e eeae 23
4.2 Error Analysis of Friction Coefficient.....c.cc..ooovvviiiiiiiiiii e, 28
4.3 Uncertainty MOAeliNg ......cooviiiiiiiiii e 32
ST [ ] 1 = PP 39
Chapter 5 GPS Drift Characterization Using Allarrigace Analysis............ccccvvveevinnnee 0.4
5.1 Allan VarianCe A REVIEW .......ccciiiiiiiiiie ettt 42
LA o1 ¢ g 1T a1 ST (1] T 47
5.3 Allan Variance Analysis and ReSURS.......ccccoo oo e 50
5.3.1 San Jose FV-M8 GPS Allan Variance AnalySiS.........cccoovvveviiinieeeeinnnnnn 51
5.3.2 ADXL-335 3-Axis Accelerometer Allan Varianémalysis......................... 60
LT U [ 0 = 1 Y PP 65
Chapter 6 Evaluating Inter-Vehicle Distance Measi@gt ................coeeviieeeeeiiiiiineeeeeies 67
6.1 Test Setup and ProCeAUIES ............ccuuiiiiiiiiiiiiiiii e 68
I o (o A g = Y2 PR 70
6.3 Revised Uncertainty ANalYSIiS ..........iieeeeeiiiiiiiiii e e ee s 77
6.4 Measurement LINEAIITY ......cc.uuuiii e e e e e ee s 80
6.5 Measurement HYSIEIESIS . ... iiiiiiitccceeeeee e e e eee e e eenna e e eeaes 84
5.6 SUMIMIAIY ..euiiiiiii it et eemre et e e e e e e e et e e et e ea e et r e e et neeanaeanneeen 87
Chapter 7 CONCIUSIONS .....uuiiii it ettt e e e ee e bbb s e e e e e e 88

A0 R ST 1 = Y PO UPPP 88



7.2 FULUIE WOKK ittt ettt e e e e e e eeeeneees 91
(2] 0] [ToT [ r=T ] 1 |2 PP 95
APPENDIX A San Jose FV-M8 GPS RECEIVEN ...ttt 98
APPENDIX B MATLAB Code: Sensitivity ANAIYSIS ...cccivuvuiiiiiiiiie e neeeeiin e eeeens 100
APPENDIX C MATLAB Code: Allan Variance Analysis f@PS & Accelerometer .......... 103
APPENDIX D MATLAB Code: allan.M .........iiiiiiceeiie e eeeeis e e e e evaneaeeens 108
APPENDIX E MATLAB Code: Calculate NOise Parameters............ccoeevvvveiiniineeeeeeenn. 111
APPENDIX F IEEE 1588 Time SYNCIrONIZAtION ... eeereieeereiiinieereesiiniieseaeineeesennas 112
APPENDIX G Continuous Parallel Process for AcceSingulink Data In MATLAB......... 115

APPENDIX H LIDAR DATA ANAIYSIS ......uuuiiiiiiiiee et eeeee s 119



Vii

LIST OF FIGURES

Figure 1-1: Distribution of Crash Types (1994 data)............cccccevviiiiiiieiiinieeeeieeeeeans 4
Figure 1-2: Breakdown of 2003 U.S. Crash Data @tash TypesS........cccccveevvevvivneene e,
Figure 1-3: Photograph of Rear-End Collision Acaidi@volving Military Equipment....... 6
Figure 2-1: Overview of VORAD VS-400 (From Eatonr@aration) ..........c.ccceeeevevvnnnnenenns 12
Figure 2-2: Mobileye AWS-400 Driver INterface ...........ccoeeiieiiiiiiiiieiiiiee e ee e, 13
Figure 3-1: Concept of GPS-Based Collision AvoidaBgstem.............ccccceeeeeevieinnnnnnn. 16..
Figure 4-1: Analysis Framework for Estimating Cdefice in Warning Parameter ............. 22
Figure 4-2: Simulated RE-3 Test Profile Data cceece..ooovvvvvie i 25
Figure 4-3: Relative Sensitivity Of ParameterSa . ..ccoieeiiiiiiiiieiiiie e eevra e 27
Figure 4-4: Relative Sensitivity of Friction Coeféént and Driver Tuning Parameters ........ 28
Figure 4-5: Skid Event on Rough Road Surface Raledity Data ..............ccccoevvevviennnnnnnn. 30
Figure 4-6: Comparison of Raw, Smoothed, and BEirsier Model Data for Vehicle 1 ....... 31
Figure 4-7: Sigma Uncertainty ANAlYSIS ......ccccceviuiiieeeieii e 36
Figure 4-8: Individual Parameter Error ContribuBon............c.oooooeiiiiiiiiiiiiiii s 36
Figure 4-9: Warning Parameter Uncertainty ReSUlS...........ccoovviiiiiiiiiiiiin e e, 37
Figure 4-10: Uncertainty Analysis Results Compaiéifigct of Error Magnitude ............... 38
Figure 5-1: Non-Overlapping versus Overlapping Samplustration..................ccceeuunn.. 44
Figure 5-2: Typical Allan Deviation plot for a SB8ll ..........ccccvviiiiiiiiiiii e eeeeeea, 45
Figure 5-3: Comparison of Raw Latitude Measuremaotsss Systems ..........cccceeeeeeeenennnnn. 48
Figure 5-4: Comparison of Raw Longitude Measuresiantoss Systems ...........ccoeeeeeeeeee. 48
Figure 5-5: Drift Data Deviation in East-North Reface Frame................ccccceeevviiviinne 50
Figure 5-6: System 9366 Raw Latitude Measurement.............cccoeeveerviniieverenneeeeennn 51
Figure 5-7: System 9366 Latitude Measurement Allamiation Plot.................cccceeeeeeneens 52
Figure 5-8: System 9366 Individual Noise Paramitence................cccevveeeeeeeivnnnnnn. 54
Figure 5-9: Dominant Noise Types at Longer Averggiiimes ..........ccccoveevevvviiieeeennnnnnn 55.
Figure 5-10: Random Walk MOAELl ............ut e 56
Figure 5-11: Comparison of All Allan Variance Redsubr Latitude Measurement.............. 56
Figure 5-12: Comparison of All Allan Variance Reasubr Longitude Measurement .......... 57
Figure 5-13: System 9584 East Deviation Allan DBOMPIOL .............ccceeviiieeiiiiiinienian, 59
Figure 5-14: System 9584 North Deviation Allan Caign Plot...........ccooeveivviiiiinnnnnnnn 59

Figure 5-15: System 9366 Raw Accelerometer Data..........cccoooeevviiiiiiiiiiiiin e, 60



viii
Figure 5-16: System 9366 Acceleration X Allan Dé&eia and Full Error Model Results.... 61
Figure 5-17: Comparison of All Three Systems Acaglen X Allan Variance Results ...... 63
Figure 5-18: Comparison of All Three Systems Acalen Y Allan Variance Results ...... 64
Figure 5-19: Comparison of All Three Systems Acealen Z Allan Variance Results....... 64

Figure 6-1: Test Vehicles and EQUIPMENT ... cccee i eere e 68
Figure 6-2: User Interface of LIDAR Data Acquisiti@oftware..............ccccceeevvevviviinnnmn 69
Figure 6-3: PTI Test Track Aerial Photograph...........ccoieiiiiiiiiiiiicien e, 70
Figure 6-4: Estimates vs. Ground Truth, Lap Proo&du............ccoeeieiiiiiiiiiciiie e 72
Figure 6-5: Absolute Error between Ground Truth BSImates ..........cccooeevvvvevieeennnnnn. 72.
Figure 6-6: Estimates Vs. Ground Truth with Oui&emoved .............c..ocevvveivnennannn, 74..
Figure 6-7: Absolute Error with Outliers Removed.............cccoooviiiiiiiniie e, 74
Figure 6-8: Hybrid Error Distribution and StatistiC............c.cooeeveeiiiiiiiiiicie s eeeeeeeeeens 76
Figure 6-9: Real-Time Error Distribution and SiS. ................ccoovviiiiiiiiiinii e 76
Figure 6-10: Updated Uncertainty Analysis ReSUItS...........ccceeiviviiiiiiiiiiiiiie e, 78
Figure 6-11: Comparison of Case 1 and Case 2 UxingrtAnalysis Results...................... 79
Figure 6-12: Evaluation of Case 3 Uncertainty ABEYReSUItS............cooevviiiiiiiiinennnnee. 79
Figure 6-13: Estimates vs. Ground Truth, ForwardéRee Procedure ...........cccooeeeevvinnnnnn.n. 81
Figure 6-14: Estimate Errors, Subset of ForwardéRey Dataset ...........cccoeevveviiineerinin 82.
Figure 6-15: Estimates vs. Ground Truth ... .o ..eoe e 82
Figure 6-16: Estimate Errors vs. Ground Truth hvehicle Distance ..........ccc.oocvvveeeen.. 83.
Figure 6-17: Error Behavior during Vehicle Approach............c.ccoovviiiiiiiiiiiincceieienn, 84

Figure 6-18: Close Inspection of Delay EffeCt....c..cciiiiiiiii e, 86



LIST OF TABLES

Table 1-1: Predominant Rear-End Crash FactOrS..............uuiiiiiiiiiiiiiiiieee e 5
Table 2-1: Minimum Driving Environment Detectionejifications. ............ccceeeeeveviininennns 9
Table 3-1: SENSOr BOX PaArtS LiSt...........cummeoeeeeeiieeiiiiiiii et eeeeneees 18
Table 4-1: Warning Algorithm Parameters ... v, 22
Table 4-2: RE-3 Forward Collision Test Profile Usétr Sensitivity Analysis

1S3 10 00 F= 4o o SR 24
Table 4-3: CONStaNt ParameEterS........ ..o eeeeeeeeeeeiiiiiae e aaeeeaeeeeeeeeeeaaaaaeaeeeeeeeannees 25
Table 4-4: Estimated Friction Coefficient Results $elect Smooth and Rough Surface

SKid Brake BEVENLS ......ooiiii ettt s 32
Table 4-5: Statistical Results for Friction Coditt Estimates...............ccooeeviviiinieneaee. 32
Table 4-6: “Realistic” UNcertainty ANGIYSIS ..o e oieeeeeiiinieiiiiiinieeeeiiseeeeeiieeaenineees 37
Table 4-7: Quantitative Detection Horizon COmMpPamisO..........cceevueveeiieiiiniieeeeiiiineeeennns 38
Table 5-1: Relation of Allan Variance and Noise 868 [35] ..........c.c.cccevviiieeerennenn..... 46
Table 5-2: Latitude Cross Correlation ReSURS .coo-......oooiiiiiiiiiiii e 49
Table 5-3: Longitude Cross Correlation RESUIS.ccc......covvvvviiiiiiiiii e 49
Table 5-4: System 9366 Latitude Noise ParametemMiades ..............ccccceeeevvevnineeeenns h2.
Table 5-5: Summary of Random Walk Noise Parametekdtitude Measurement............. 55
Table 5-6: Summary of Random Walk Noise Paramétersongitude Measurement......... 57
Table 5-7: Summary of Random Walk Noise ParaméterSast Deviation Estimate.......... 58
Table 5-8: Summary of Random Walk Noise Paramétensorth Deviation Estimate....... 58
Table 5-9: System 9366 Accelerometer Full Error Blddoise Parameter Magnitudes....... 62
Table 5-10: Identified Acceleration X Noise Coeiffiats for All Three Systems................. 65
Table 5-11: Identified Acceleration Y Noise Coeifficts for All Three Systems................. 65
Table 5-12: Identified Acceleration Z Noise Coaffints for All Three Systems ................. 65
Table 6-1: Hysteresis Results for Hybrid System.............cccoiiiiiiiiiiinic e 85

Table 6-2: Hysteresis Results for Real-Time System........cccooeeviiiiiiiiiiiiiiie e, 85



ACKNOWLEDGEMENTS

First | would like to thank Dr. Sean Brennan fooyiding me the opportunity to finish
my masters’ degree. | have learned a lot from ymai thank you for your guidance and support
over this past year. | admire your dedication teisisthe students even at odd hours of the
morning when we are asleep. | also admire yourpsirsuper-human, ability to multi-task and
making sure everybody is satisfied. | greatly resgeu and look to you as an excellent mentor
for the future as | begin working professionallgaan.

I would also like to thank the US Army TACOM artetengineers at Penn State Applied
Research Laboratory for providing the exciting pobjopportunity. The project topic and more
importantly the funding provided me the invalualeportunity to focus on completing my
Masters degree as a full-time student. Thank yaute exciting work and being involved on
such an important technology to increase soldifatyga

Next, | want to acknowledge the friendship andpsupof my fellow research students.
You guys certainly made me feel young again andablthe same time. Special thanks go to
Stephen Chaves for his partnership in working thiisgon project.

Finally, 1 cannot express enough gratitude ance lowy my parents Rajni and Ranjan
Amin. You have been with me through the tougheses these past four years and made sure |
never quit although it seemed to always be theestsiption. | hope to continue to make you

proud of my future efforts.



Chapter 1
INTRODUCTION

In February 2010, the National Transportation §aBoard (NTSB) updated and released a
“most wanted” list for transportation safety systémprovements for aviation, rail, marine, and
highway sectors. Within the highway sector, on¢ghef most wanted items is to “prevent collision by
using enhanced vehicle safety technolody’ Epecifically the objective for this goal statésduce
rear-end collisions through the use of adaptivésereontrol and collision warning systems”. The
NTSB believes that such technology will substalytisdduce accident®]. The U.S. DOT estimates
intelligent vehicle system technologies could preavaever 48% of rear-end, run-off-road, and lane
change crasheS§]|

Several aftermarket collision warning systems (CW8)forward collision warning systems
(FCWS), are already currently available for the gwmrcial trucking industry. Auto manufacturers
are even beginning to include such technology iwanduxury car models. The IIHS has identified
19 vehicles in 2011 offering forward collision warg [4]. These current systems typically rely on
forward scanning sensor technologies such as RaddDAR to scan the area in front of a vehicle.
The U.S. Army is said to be using said technologysome of their ground vehicles but feedback
from users indicates its performance is sometinm®pcomised due to environmental effects,
specifically caking of debris (sand) on sensors.aA®sult of this specific concern the U.S. Army
funded the Penn State Applied Research Laboratoiwestigate alternative approaches to forward
collision warning systems.

This Army-sponsored investigation seeks the devet of a low-cost alternative solution
to overcome performance limitations of the curreaehnology by utilizing GPS technology already
available on-most military ground vehicles. Thitealative solution is different than typical CWS
solutions because it requires information exchabgeveen vehicles within a closed network, or

vehicle-to-vehicle (V2V) infrastructure. The miliyais at the forefront of implementing such
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communication capabilities with its research evaljyuypaving the way for civilian and commercial
vehicles. The Army-funded work led to the fabrioatof three custom prototype hardware units that
were actually demonstrated in three Army Heavy BExieal Mobility Tactical Truck (HEMTT)
vehicles navigating through proving ground desesdt tcourses in convoy formation to prove
feasibility of such an alternative collision detentsystem.

The primary goal of this thesis is to evaluate howasurement errors/uncertainty affects
performance of a GPS-based convoy collision avaidaystem. A simple analytical framework is
presented for merging system sensitivity analysid aneasurement input error characterization
results to determine the uncertainty in the outpbie resulting metric is a dimensionless parameter
corresponding to a range in the probability of isa@h. To test this approach, field data were
analyzed and applied within the proposed framework.

A secondary focus of this thesis is to addresseaifip concern regarding the feasibility of
GPS-based collision avoidance approach due to cam@bout GPS accuracy. This thesis includes
identification of dominant GPS stochastic errorrses using Allan Variance analysis. The research
experimentally compares inter-vehicle distance sy which is a core measurement of the system,
between the GPS proposed approach and the traditidbAR-based approach in an attempt to
address accuracy concerns. As vehicular commuoitatystems such as vehicle to vehicle (V2V)
emerge in the near future, a GPS-based FCWS willraly provide a lower-cost alternative, or even
supplemental, solution to the scanning technologigsently implemented. This work thus offers an
immediate and substantial opportunity to save liwdsile the target application of the work
discussed here was for rear-end collisions as niiglgncountered in military convoy operations, the
solution could be adopted for the civilian commarcector via straightforward application of
existing technology.

As a quick note, much of the development and pielny in-field testing for this project was

jointly completed with a previous masters studarpBen Chavess]. His focus for this project was
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to identify the performance improvement gained bgirffg GPS and accelerometer measurements
using Kalman filtering methods. Some of the futwerk topics from his thesis are resolved in this
thesis. Throughout this thesis, several refereacesnade to specific sections of Stephen’s thesis t
provide more detailed information about certainiegep A review of Stephen’s work is highly

encouraged as advanced reading prior to studyiothasis.

1.1 Motivation
Historical data shows a major percentage of autcidaots are specifically rear-end

collisions. In 1993, the National Highway Transptidn Safety Administration (NHTSA) performed
a comprehensive survey of rear-end crashes bas&83ihpolice reported crash/accident data. The
survey identified 1.5 million rear-end crashes,ahhtonstituted 23 percent of all crashes for tleatry
[6]. A similar study was repeated using 1994 dataidentified 1.66 million police-reported rear-end
crashes, accounting for approximately 26 percemtlafrash types as indicated by Figure IAL [n
addition, a NTSB report published in 2001 identif@ver 6 million crashes on U.S highways in the
year 1999 §]. Almost one-third of this total was specificaltgar-end collisions. The same report
detailed a study of a two year period from 1992@061 where the NTSB investigated nine rear-end
collisions which resulted in 20 fatalities and lijuries (three of the accidents involved buses and
one accident involved 24 vehicles). The most reaeatysis of crash data from 2003 found rear-end
crashes accounting for 29% of all light-vehiclestras and 22% of all heavy-truck crashes which was

the highest category of crash types except for éDthas indicated by Figure 1-2][
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Although many factors can contribute to a vehiateident such as road surface qua
weather conditions, and sun glaring previous studidicate driver distraction as a major leac
factor. Table 1-shows the primary causal factors for -end crashes as classified by the NHT
and the distribution of 1994 vehicle crash data ieach categor[7]. The four factors relating 1
either driver inattention or driver distraction aaated for approximately 92 percent of end
crashesOf this subset, 27% was related to driver inatenttombined with follovng too closely.
With increasing use ccellular phones, navigation systems, and entertainmentrsgsie vehicle:

there is an obvious concern that these distracmayincrease crash statistic



Table 1-1: Predominant Rear-End Crash Factors

Crash Causal Factor Distribution (Percent)
Inattention 41
Inattention/following too close 27
External Distraction 14
Internal Distraction 10
Other 8
Total 100

Source: IVI Problem Areas Description:
Motor Vehicle Crashes - Data Analyses And IVl PeagrEmphasis?]

In most rear-end accidents involving inattentidre triver does not have enough reaction
time to either apply appropriate braking or takaseve action to avoid colliding with the preceding
vehicle. Providing an early warning notificationncéncrease the driver reaction time. Several
previous studies have evaluated the potential lieradfimplementing such technology. According to
a 1992 study by Daimler-Benz, a CWS can potentiadlye a significant impact on accident safety
statistics. The study found 60% of rear-end calfisi could be prevented if the driver was given a
warning 0.5 seconds ahead of the collision. In tamidi 90% could be prevented if a warning was
provided 1 second aheatl(]. Knipling attempted to model rear-end collisioouatermeasures to
evaluate system effectiveness in preventing cradtestify system functional requirements, and
identify major factors that influence system perfance 11]. One possible design system algorithm
evaluated for 100 samples points using Monte Caitoulation techniques yielded a system
effectiveness of 77 percent. For those simulatibasdid result in a crash even with countermeasure
warning given, the analysis identified a 42 perceduction in crash severity, inferred from a

reduction in vehicle velocity. Knipling goes onrnention that the importance of the results is het t
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exact percentages that are obtained but more ocotifedence that such technology has the potential

to prevent crashes and reduce the severity in thaseccur.

Rear-end collisions are also significantly occugrimithin the military sector, Figure 1-3. In
2004, Military.com posted a United Press Intermatiqpublished article that identified 833 crashes,
50 deaths, and 223 injuries in 2003 during the ireq [12]. These statistics were claimed as the
worst accident record in 10 years. Furthermorer-ead collisions are a leading cause of convoy
‘breakdowns’ in theaterl[]. Improving soldier safety is of top priority se a result the U.S. Army
TACOM provided funding for developing the GPS-basmidlision detection system to quickly
provide forward collision warning capability. Redkess of whether for civilian or military

application, the statistics previously discusseticate a clear and recognizable need for CWS to

reduce accidents and save lives.

Figure 1-3: Photograph of Rear-End Collision Accidat Involving Military Equipment



1.2 Thesis Outline
The remaining content of this thesis is organized follows. Chapter 2 reviews the

collaborative research work by Chavez highlightiey pieces of information from his thesis related
to the development of the prototype system. Chaptpresents a quick summary of the prototype
collision detection system including a descriptioihthe hardware components and the collision
detection algorithm. A framework for determiningetBystem confidence/uncertainty is presented in
Chapter 4 and includes a walkthrough example agipdic using actual prototype system test data to
estimate friction coefficient error. Since the ird errors associated with GPS technology is
obviously a concern, Chapter 5 describes the doalyprocess applied for evaluating the noise
parameters of the GPS and accelerometer hardwamg #Adlan Variance analysis. To address
concerns related to whether GPS is accurate en@lupter 6 compares the inter-vehicle distance
measurement error of the low-cost GPS sensor coemponsed in the prototype hardware
configuration against a highly accurate/high-coftSABNS, and then also against ground truth as
measured by a LIDAR distance scanning sensor. &bats of this section will show that although
the low-cost solution may exhibit larger overall &Errors, the inter-vehicle distance measurement
error remains small due to GPS error correlationragunits. Finally the conclusion and future work

chapter summarizes the overall results of thisisheasd provides recommendations for future efforts.



Chapter 2
COLLISION WARNING SYSTEMS OVERVIEW AND SURVEY

Since the early 1990s, collision detection has lmeegoal in the area of vehicle automation
and driver assist, motivated highly by the statsstf crashes in the commercial sector. The objecti
of any collision warning system is to scan for s, or objects, in the forward path of the eqeibp
vehicle and alert the driver of any potential @dih conditions. In this chapter a brief overviefv o
collision systems is provided. The first sectioegamts the fundamentals of collision detection as
established by previous researchers. The follovdagtions cover current research civilian and

military research initiatives and finally a briefuiew of currently available commercial systems.

2.1 Collision System Fundamentals
There has been significant prior research in deetpcollision detection systems. Doi, et al.

of Mazda R&D first identified four main technologlccomponents necessary for successful collision
detection and avoidance: 1) driving environmenteckbn, 2) path estimation algorithm, 3)
safe/danger decision algorithm, and 4) longitudiabmatic brake control.

The first component, driving environment detectisriraditionally accomplished by forward
scanning sensor systems. Previously developednsydt@ve used a variety of sensor technologies
including sonar, machine vision, video camerasaned, radar, and laser$4]. Kamiya, et al. of
Honda attempted to outline the minimum performaspecifications necessary for successful
collision detection incorporating forward-scannirglar systems and are shown in Table 2-1. The

specifications for range accuracy and refresh tireee considered more important.



Table 2-1: Minimum Driving Environment Detection Specifications.

Description Specification
Longitudinal detecting range =100 m
Horizontal detecting area > 350 mrad
Vertical detecting area > 50 mrad
Hornzontal resolution < 5 mrad
Range accuracy <lm
Refresh tume <0.1s

Source: Kamiya and et all

The second component is a path estimation algorittmich estimates the trajectory of the
vehicle during curves to better determine whethervehicle will collide with obstacles or vehicles
that lay in that path. There has been significaetiipus research in the area of estimating vehicle
trajectory producing simple and complex algorithmusons; however, the path estimation problem
is simplified for this work since vehicles are tting in a convoy and the preceding vehicle's
position can be relayed to following vehicles.

The third component, safe/danger decision algoritiatermines the collision probability
between two vehicles by logically considering tleeknatics of the vehicles. Overall the algorithm
compares the current spacing distance to thealrggacing distance needed for the vehicles teerri
at a safe stop condition without colliding. Chay@svides a thorough literature review of these
algorithms from previous researchers in Chaptdritsothesis. Modified versions of several formulas
developed by Seiler et al. were implemented agdiiesion algorithms for this GPS-based collision

system 16]. The original formulas are quickly reviewed hdreequation (2-1y is the host vehicle’s

velocity, Ve is the relative velocity between the host vehicie areceding vehiclea is the
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maximum deceleration of the vehicles (assuming ldetion is same for bothy,is the delay time,

anddgis the buffer distance between vehicles:

1(v? (v —vpe)?
dwarn =5\ "=

> + vt +d, (2-1)
The maximum deceleration, time delay, and distabafer are all considered tunable

parameters that are adjusted depending on thentutiging conditions and driver preference. Seiler

et al. also presents a critical braking distanceaggn (Equation 2.2), which represents the inter-

vehicle distance at which an active collision systeould intervene and apply braking. The variables

Tsysandrhym represent system and human delays respectively.

dprake = Vret(Tsys + Thum) + 0.5a(Tsys + Thum)2 (2-2)

The previous equations are used to determine thision system critical distances for
warning the driver and applying appropriate braki@ course, these distances must be compared to
the actual inter-vehicle distance to determinectiiision probability. To determine the probabilitf
collision, a warning parameter equation is preskimeEquation (2-3), also developed by Seiler et al
The warning parameter is a non-dimensional valaeithsimply calculated as the ratio of the current
inter-vehicle distance], minus the braking distancel,ake to the warning distancély,sm, minus the

braking distance.

d—d
w = ( brake) ( 2. 3)
(dwarn - dbrake)

If the value of the warning parameter is greatantbr equal to one, the current driving situati®n i
considered safe. Values between one and zero taesinsafe conditions and different warnings are
provided to the driver.

In context to the GPS-based collision system, tlethh component is considered as “warning
or intervention” which encompasses both classificet of collision systems as either active or

passive. An active collision system may take cdrfathe vehicle (braking or steering) to avoid
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collision. In contrast, passive systems may simplyvide a “warning” to the driver and requires
them to actively respond. Most COTS systems arecdlly designed to be passive. The solution
presented here is considered a passive systemisiiseally displays an alert to the driver. Alive
designed driver interface will properly alert thevdr without producing a high number of false
alarms; otherwise, the driver will develop low ddehce in the alert. The specific representation of
the alert has a role in how the alert is percelvedhe driver. Lee et al. published a study in \whic
two experiments were conducted to examine driveparse to warning representaticky][ The
study identified collision warning representatioraswvbetter received by drivers with a graded
representation proportional to the degree of thvesd provided instead of a binary on/off when a
certain threshold was exceeded. The graded wardidghowever produce more alerts but
interestingly, the drivers trusted the graded wagnnore than the single-stage and did not indicate
any annoyance from the extra alerts. A graded wgrid an example of a likelihood alarm display

(LAD) and previous studies have shown LADs can imprfocus of alerts among multiple tasks

[18].

2.1Existing Collision Detection Systems
There are several commercial-off-the-shelf (COT8lision detection systems that exist

today, most of which are used in the trucking anblip transportation industries. A variety of senso
technologies are used for vehicle detection bunharily rely on forward scanning sensors that must
infer the position and speed of the vehicle ahedulgusensor data.

The most well-known and successfully deployed corgiakcollision avoidance system is
the Bendix VORAD (Vehicle On-board RADar) systenedfically designed for the commercial
trucking industry and heavy military vehicles. Tlagest model, VORAD VS-400, features a 77GHz
radar with a detection range of 3 to 500 ft withpeeds of 0.5 to 120 mph9. The VORAD system

also detects vehicles/obstacles along the sideeoktjuipped vehicle through a side object detection
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system called BlindSpotter. The specifications aedign of the VORAD driver interface were
developed in collaboration with NHSTA and providegh auditory and visual alerts and exhibits a
form factor which allows for integration into a ¢fudash 20]. In addition to relaying frontal and side
collision alerts the visual display provides systatus information (e.g., component failure, syste

availability, display settings).Figure 2-1 providesoverview of the VS-400 system.

'- -

| VT

BlindSpotter™ Driver Interface Unit Forward Looking Radar

Source: Eaton Corporatio@1]
Figure 2-1: Overview of VORAD VS-400 (From Eaton Cgporation)

Another commercial system is the Mobileye AWS (Adsed Warning System) which is
strictly vision based and uses a single windshmetdinted camera for forward collision detection,
lane departure warning, and headway distance nrorgtoThe application for this system includes
commercial trucks as well as automotive sedanser@eautomotive sedan manufacturers, BMW,

Volvo, Buick, and Cadillac, have already deploybd Mobileye system in their model22]. The
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specifications for the latest system, Mobileye AV state a vehicle detection range of up to 70
meters with a sensor field of view of 40° x 30° (MJx The driver interface for this system is capable
of providing forward collision, lane departure, ahdading monitoring information on a single

interface as shown in Figure 2-2.

Forward Collision Warning
alars wp 0 2.7 saconds
bafone an aicipated
collsion with a vahicle
ahead.

Lane Departure Warmng
anbcipakes an umntantional
deniation from the driving
lane, and Issues

a directional alar

Headway Monitaring and
Warning assists the driver
in keeping & safe driving
digiance, &nd issues an
alrt upon arfarng

a dangerous headway.

Source: Mobileye AWS-400 Website
Figure 2-2: Mobileye AWS-400 Driver Interface

To date, there is still no readily available comera system that utilizes a cooperative
collision detection architecture where informatisrexchanged between vehicles, e.g. a Vehicle to

Vehicle interface (V2V), through wireless commutiica.

2.2Current Research Initiatives
The U.S. Department of Transportation has fundedtifanilitated most of the research and

development work of collision detection systemgsithe early 1990s in the interest of incorporating

the technology for vehicle automation and drivesistance systems. The latest Integrated Vehicle-
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Based Safety Systems (IVBSS) Initiative is a padhip between the government, auto
manufacturers and commercial vehicle industriedeeelop and field test systems that detect rear-
end, lane-change, and lane-departure collisionasaEnon light vehicles and heavy commercial
trucks R3]. Currently the IVBSS team is performing in-figkkt of developed prototype hardware on
16 Honda Accords vehicles. Some of the overall godlthe testing are to evaluate the generation
and quantity of false alarms, check system avditgbunderstand algorithm warning logic, and
assess alerts in perceived crash situatiads A detailed test plan is available online prowiglia
description of test procedures to specifically aaté the performance of forward collision warning
functionality [25]. This document was a useful reference for outiniome of the test plans for the

GPS-based collision detection system.
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Chapter 3
THE PROPOSED COLLISION WARNING SYSTEM

As mentioned before, the interest for a GPS-baséidion system was generated by the Army for

addressing rear-end collisions in military convogpecifically the sponsoring customer, Army

TACOM, was seeking a solution which could improaéesy during convoy training exercises at their

training centers. Overall, the solution neededaddw cost, have a small form factor, and be easy t

install without requiring any vehicle modificationBhe specific target application/scenario allows f

a set of assumptions that simplifies the designparfbrmance requirements of the prototype system.

The closed application assumptions are:

The vehicles of interest are part of the convoy #metefore each vehicle will contain the

necessary hardware. Vehicles or objects withouptiséotype hardware are considered external
and will not be detectable by the system.

Open-sky visibility is necessary for GPS receiverysacquire satellite lock-on and thus the
collision avoidance system will only be used in ms&y locations or where GPS signals are
readily available and not blocked.

All vehicles within the convoy are driving in simgtolumn formation and vehicles do not enter
or exit the formation, or change their orderinghia convoy, i.e. no passing

The system is only concerned with rear-end colisiand does not try to detect collisions on the
side of the vehicle.

Figure 3-1 provides a conceptual overview of theS@Rsed collision detection system for

military convoys. In order for proper collision detion between convoy vehicles, each vehicle in the

convoy is equipped with a prototype hardware systéhe vehicles then communicate with each

other to transmit vehicle specific position andoettly information to determine collision probabijlit



16

This type of collision detection architecture ideof referred as aooperative collision detection

system 26).

Figure 3-1: Concept of GPS-Based Collision AvoidamcSystem

3.1Hardware Components

Each hardware system is made up of two main commsnea sensor module containing
embedded hardware and a Dell Latitude 2100 Netlmmokputer. The primary component of the
embedded sensor module is the FV-M8 GPS receiviermenufactured by San Jose Navigation
Technologies. The FV-M8 module outputs GPS positidarmation at a rate of 5 Hz with a rated
position accuracy of 3.3m CEP and is intended fobexddded applications. Additional specifications
are provided in Appendix A. The sensor module alsatains the following embedded components:
an Arduino Mega microcontroller, a Wiznet Ethernetodule, and an ADXL-335 3-axis
accelerometer. The Arduino microcontroller readsakenessages produced by the FV-M8 GPS
module, which contain the GPS position, velocityd ame information, and voltage values from the

3-axis accelerometer and formats the data from &etisors into a new data message. This new data
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message is transferred, using TCP/IP communicatiotocol, through a wired Ethernet connection,
using the embedded Wiznet Ethernet module, to tek metbook computer. All the sensor stack
components are placed in a watertight protectice edfixed to a metal base with magnetic feet. The
magnetic base allows the sensor module or “sensdrtb be easily attachable to any vehicle roof. It
is also quickly mentioned that the watertight cases later retrofitted with an active cooling PC fan
to blow air across the electronics after identifymverheating of the components during some field
testing in the desert. As mentioned, the Dell netbcomputer acquires data from the local sensor
box but also exchanges it with remote computersoarth nearby convoy vehicles via wireless
TCP/IP communication. The wireless network is reprgative of a growing concept called Vehicle-
to-Vehicle (V2V) communication and is essential dopperative collision detection. The computer is
also responsible for processing the sensor dataughr a collision algorithm to determine the
probability of the local vehicle colliding with thgreceding vehicle. In this prototype version, the
built-in computer monitor serves as the driver Bigpand visually notifies the driver of collision
conditions in real-time. Table 3-1 provides a l$tall the components along with their cost and

vendor source. Additional information regarding tzedware can be found the Chaves’ thesjis |
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Table 3-1: Sensor Box Parts List

ltem Model Price Vendor
GPS Receiver FV-M8 $10D www.sparkfun.com
GPS Shield Kit - $20 www.adafruit.conp
Microcontroller Arduino Mega $6%5 www.sparkfun.cdm
Ethernet Module WIiZnet W5100 $245 www.sparkfun.cpm
Ethernet Shield - $15 www.adafruit.comp
3-Axis Accelerometer ADXL335 $25 www.sparkfun.cqm
GPS Connector - $2 www.sparkfun.cqm
PC Cooling Fan $10 RadioShack
Watertight Enclosure $2p Walmart
Computer Dell Latitude 21Q0 $350 Dell
Total $637

3.2 Software: Safe/Danger Decision Algorithm
As mentioned in Chapter 2 there are four primamponents of a collision detection system.

This section focuses on the third component, thée/danger decision algorithm, and its
implementation in the proposed collision detecsgstem. The safe/danger decision algorithm here is
based on an algorithm developed by Seiler, etral[lf]. Since the system proposed here is
considered a passive collisigvarning system, equation (3-1) is defined in terms ofi@altwarning
distance instead of a critical braking distanceictvlis necessary for an active collisiamoidance

system.

1/v? (v—v,)>
dwarn=§<7_Trel + vt +d, (3-1)

The warning parameter calculation shown in equai@-2) is the final output of the
safe/danger decision algorithm. This calculatiompares the calculated warning distance to the
current inter-vehicle distance between the vehidfethe value of the warning parameter is greater
than or equal to one, the current driving situati®rconsidered safe. As the inter-vehicle distance

decreases the warning parameter value falls belmy epresenting unsafe conditions. A warning
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parameter value exactly equal to zero represeatdlision. The visual design of the collision syste
driver display is directly linked to the warningrameter.

d

w =

(3-2)

dW(lTTl

Seiler also proposed the addition of scaling factorcompensate for road friction uncertainty

and individual driver behaviors. The frictiofi(i) ,and driving tuningg(driver), scaling factors

scale the critical warning distanak,m, as shown in the following equation.

dwarn,scated = Awarn * f (1) * g(driver) (3-3)

Seiler suggests the driver scaling is accomplishiada dashboard knob. For example, for
overly cautious drivers setting the driver tuniagtbr to 0.5 would warn the driver earlier of csithn
scenarios. Because this is a driver dependentblerithe driver tuning factor is set to one for the
analysis of the warning parameter uncertainty is thesis and its affects are ignored. However, the
friction scaling factor is a function of the curtemeal-time tire road coefficient, which can be
estimated.

Unlike currently available commercial systems tlaitectly measure the inter-vehicle
distance, the GPS-based collision system must leddcithis measurement using latitude and
longitude coordinates of each vehicle. The Haversormula, described by the following list of
equations, is used to calculate this distance sec@considers the spherical surface of the earth

yields the great-circle distance between two seligtitude and longitude coordinate].
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Alat = latitude, — latitude, (3-4)

Along = longitude, — longitude, (3-5)

a = sin? (#) + cos(latitude,) + cos(latitude,) + sin? (Almlg) (3-6)
c=2%* atanZ(\/E, \/E) (3-7)

distance = R * ¢ (3-8)

WhereR is the earth’s radius (6371 km) and latitude/lomdgt positions are expressed in
degrees.

Three prototype units were developed for the pwepmfsdemonstrating their feasibility. The
three units were mounted on three Army HEMTT groueldicles and the trucks were driven through
desert test courses at the U.S. Army Yuma proviogirgds. The trucks were driven in a convoy, or
single line, formation. In this pattern, the threalision detection systems then provided collision
coverage for the middle vehicle with respect to ldeder, and then also for the last vehicle with
respect to the middle vehicle. A variety of testurses were utilized and various procedures were
executed. Complete details on this testing are cehgmsively covered in Chapter 5 of Chaves thesis
[5]. The data collected during this feasibility tagtiwas used by Chaves to evaluate whether
application of Kalman filtering techniques to fude GPS velocity and local accelerometer data
could improve the collision detection performani€er this thesis, the velocity data from the testing
also served useful for analyzing the friction cmééit of the vehicles and its uncertainty. This is
covered in the next chapter which overall focusesanalyzing the uncertainty in the collision

detection warning parameter output.
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Chapter 4
SYSTEM UNCERTAINTY ANALYSIS FRAMEWORK

The proposed prototype system for GPS-based aullidetection has been presented in the
previous chapter. In short, GPS and accelerometesoss produce data as measurement inputs to a
collision detection algorithm. The algorithm retsiras output, collision probability in the form of a
warning parameter. A key goal of this thesis isiétermine the confidence in the warning parameter
output by examining the sensitivity of parametens the collision algorithm and identifying
appropriate error statistics.

A conceptual framework for this analysis is showirigure 4-1. First, the warning parameter
equation is examined for constituent signals/patarae Combining equations 3-1 and 3-2 from the
previous chapter, the overall warning parametesrédtgm reduces to:

d

. [% (ﬁ v va)? (4-1)
a

o ) v+ do] * W* Kariver
The parameters in equation (4-1) are identified lestdd in Table 4-1. A sensitivity analysis isthe

applied to equation (4-1) to determine which partanseinfluence and dominate the variance of the
warning parameter. In addition an error model isvee for each parameter as shown in the right
path of the diagram in Figure 4-1. Finally the ernaodels are combined with the percentage of
variance influence to determine the overall vaaatthe warning parameter. The next subsections

cover the remaining elements of this framework vgé#iticular focus on evaluating the propagation

of friction coefficient error in the warning parateeuncertainty.
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Figure 4-1: Analysis Framework for Estimating Confidence in Warning Parameter

Table 4-1: Warning Algorithm Parameters
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Parameter

Description

Time Delay,t, (second)

The delay in exchanging information
between vehicle across the network

Vehicle Velocity,Vv,(m/s)

The speed of the subject vehicle (followi
vehicle)

Relative Vehicle Velocitye|, (M/S)

The relative speed between the subjec

vehicle and the principal object vehicle
(preceding vehicle)

—

Inter-Vehicle Distanced,(m)

The distance between the vehicles

Buffer Distance(,, (m)

The distance between the subject vehig
and an imaginary “bumper” limit ahead

Friction Coefficient,

The tire-road surface interaction friction
coefficient

Driver AdjustmentK griver,

A tunable parameter that would be
adjusted by the driver to accommodatge
specific driving preferences

Maximum Decelerationg, (m/<)

The maximum deceleration capability g
the vehicle

e

=2




23

4.1 Sensitivity Analysis
Sensitivity analysis is a classical technique thetracterizes the performance of a system in

response to variations in parameters that affectsyistem 28]. Sensitivity analysis can be used to:
simplify/reduce complex models, investigate the usibess/stability of model outputs, and
investigate the interaction between parameterscifigly relevant to this work, sensitivity analys

is also useful in determining the confidence in thedel and its outputs by evaluating individual
parameter input uncertaintie29. Hamby published a paper reviewing techniquespfarameter

sensitivity analysis in environmental models andvjates a good overview of different sensitivity
analysis methods3)]. Of the techniques described, the differentialgsis approach, also known as
the direct method, is recommended if the modelinspke and described by explicit algebraic
equations from which the partial derivatives arsilgabtainable. In these cases the sensitivitthef

output, Y with respect to the varied parametersXxomputed by the partial derivative of Y with

respect to X times a normalization quotient X/€,,i.

Y /X,
P = 6_Xl<7> (4-2)

Where The calculated sensitivity coefficieqt,represents the ratio of change in output to chamge
parameter input while all other parameters remaimstant. This provides a measurement of how
“sensitive” Y is to X, i.e. the relative sensitiyit

Using this simplistic approach, the sensitivityeffizient for each parameter was evaluated
based on a test profile collision scenario. Fistificial time series dataX() for specific parameters
was generated based on a collision test profilgptdiofrom the Integrated Vehicle-Based Safety
System (IVBSS) Light Vehicle Test Plan documentblimihed by the U.S. Department of
Transportation 31]. This document provides specific procedures oo for validation testing of
vehicle safety systems as they are introduced ¢ontlarket in the future. Within this test plan

document, there are six procedures specificallyigded for testing forward collision warning
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functionality. Of these six, procedure RE-3 wasduf® the sensitivity analysis effort because it
represented a common, realistic collision scendmidhis scenario a subject vehicle (SV), travdls a
constant speed while approaching a preceding dbstabicle (POV) that is aggressively decreasing
its speed. Relevant test profile specificationsliated in Table 4-2.

Table 4-2: RE-3 Forward Collision Test Profile Used-or Sensitivity Analysis Simulations

Parameter, Unit Value
SV Starting Velocit 20.1m/s (45 mph
POV Starting Velocit 20.1Im/s (45 mph
POV Deceleratio 3.5 m/s™. (7.8mph
Initial Inter-Vehicle Distance, | 80m (263 ft,

Based on the test profile specifications, the iwtgricle distance, SV velocity, POV velocity and
relative velocity between vehicles were all caltedausing simple kinematic equations to produce
artificial input data for the collision warning algthm using MATLAB. Figure 4-2 shows the
generated inter-vehicle distance data in the tap, pthile the bottom plot shows the constant SV
velocity, the decreasing POV velocity, and the @éasing relative velocity between them. Atrtificial
data for the remaining algorithm parameters waeigdad as constants, as listed in Table 4-3. These
values were originally used during feasibility demstration testing of the prototype hardware which

is covered in detail in Chapter 5 of Chaves’ thesis
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Figure 4-2: Simulated RE-3 Test Profile Data
Table 4-3: Constant Parameters
Parameter Value
Time Delay,t, (second) 1.4
Buffer Distance(,, (m) 5
Driver AdjustmentK griver 1
Friction Coefficientp, 0.8
Maximum Decelerationy, (m/<) 8

The artificial data generated was then used inutatiog the warning parameter value)( via
equation (4-1), the respective partial derivati%)( and subsequently the respective sensitivity
13

coefficient (p;) for each corresponding data sample using equ#tie?). To calculate the partial
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derivate value it was necessary to derive thegatérivative equations of the warning parameter, W
to each of the parameters. The partial derivatiygagons were hand-derived and validated using

Mathematica software. The equations are listedlémfs

ow _ a (4-3)
od 1 3
I * Kariver (@ ¥ do + @ ¥ T+ V + Uy —7*177,61 )
ow — —a*d(a*T—Vpe) (4-9)
ov 1 5
u* Kdriver(a *(do+1+* v) + (TJ -3 * vrel) * Vpor)
ow — —a * A(V = Vpe) (4-5)
avrel

1
U * Kgpiver (@ x (do + Txv) + (V —a* 1]rel) * Vypgy)?

ow d (U - % * Urez) * Urel (4-6)
0 e Kgpiper (@ (dg + 7% 0) + (v = 5 % vyt ) * Vyer)?
aw _ —a?*dxv (4-7)
% s Rapiper (@ (do + 7+ 0) + (v = 5 % vyt ) * vre)?
a_w B —a?xd (4-8)
0o pw Kypper(a® (do + 7 0) + (v = 3% ey ) * vre)?
ow _ —axd (4-9)
O 2 s Kypipor(@ g + @ % T 0+ 0 % Uy =5 % Uyt
ow —axd (4-10)

. 1
aKdrwer u* Kdriverz(a * dO TAX¥T*V +V*Vpg — 7 * vrelz)

The results of applying equation (4-2) to the widlial algorithm parameters are displayed in
Figure 4-3 and it provides a first-look at how tleéative sensitivities of each parameter change ove
the test profile with respect to the warning pareneOf all the parameters, the inter-vehicle dista

parameter relative sensitivity remains constane Tdlative sensitivity appears to increase for the
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subject vehicle velocity as the vehicle approadwdiésion with the preceding vehicle. However, the
relative vehicle velocity sensitivity is parabodind increases to a certain bound and then decrasses
the vehicles become closer. The buffer distancetiamel delay parameters both appear to decrease
and reach horizontal asymptotes. The relative teitgiof the maximum deceleration parameter
increases, but also appears to reach a horizosyahmote. The relative sensitivities of both the
friction coefficient and driver tuning parameteisstf seem to appear to be zero. Figure 4-4 is a
zoomed perspective of Figure 4-3. This perspecth@ws the friction coefficient and driver tuning
relative sensitivity results are not actually zérg have some influence on the warning parameter
albeit significantly smaller as compared to theeotaforementioned parameters. The MATLAB m-
script developed to simulate the RE3 test profileglyze the relative sensitivities, and producsehe

figures is also provided in Appendix B.
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Figure 4-3: Relative Sensitivity of Parameters
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Figure 4-4: Relative Sensitivity of Friction Coefftient and Driver Tuning Parameters

4.2 Error Analysis of Friction Coefficient
As previously described with the framework shownFigure 4-1 the overall uncertainty

analysis also requires identification of the elyounds of each of the parameters. In this sectimmn e
bounds are identified for the friction coefficieat an example. This parameter was specifically
selected because the prototype hardware configardties not provide for direct friction coefficient
measurement. Instead a real-time assessment tbrrimust be inferred through other available
measurements such as GPS velocity and/or accelsroateeleration. Here a simple approach using
GPS velocity to estimate the friction coefficientasvadopted and so subsequently the errors
associated with this approach are investigated.

GPS velocity data collected from field testing o€ frototype hardware was used to estimate
the friction coefficient and its variance. The datas collected as part of an effort to test and

demonstrate the feasibility of the prototype callisdetection system and hardware to the Army at



29
the Arizona Yuma Proving Grounds. The prototypedivare was installed on three HEMTT type

vehicles. Several skid tests were performed fossgieific purpose of collecting data that woul@tat
be useful for estimating the friction coefficiefthe skid test procedure involved accelerating each
vehicle to a steady state speed of approximateiy@0, cruising at that steady state speed foredf bri
period of time, and then applying the brakes asesgively as possible to initiate wheel lock and
skidding. These tests were performed both on a 8mpaved road surface, specifically an airport
taxiway tarmac surface, and also on an off-roankdo dirt surface. The test procedure was performed
on two different surfaces to better characterizevéiriation in friction coefficient related to cluygs

in road surface smoothness. Of course, for smoogiasted, road surfaces, the friction coefficient is
expected to be higher since the contact area ehigetween the road and wheel.

During each skid event the vehicle velocity lingatecreased. This is visually confirmed in
the raw data shown in Figure 4-5. The stair stefepaevident in the raw data exists because the
update frequency of the GPS based velocity data)(Blds slower than the sampling rate of the data
acquisition software (50Hz). The specific relatioipsbetween velocity and friction coefficient cam b
identified through derivation of basic kinematidngiples. Starting with Newton’s Second Law of
Motion, the vehicle deceleration during skiddingegual to the opposite negatively affecting frintio
force as shown in equation (4-11). Whemnés vehicle massg is vehicle accelerationy is friction
coefficient, andy is gravity. By canceling the mass terms and théegiating this relationship, the
relationship between vehicle velocity and frictiooefficient is recognizable as shown in equation
(4-12). Relating this equation to a basic first esrdinear equation (y = m*x+b), the friction

coefficient and gravity represent the slope paramet, or the first order coefficient.
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Figure 4-5: Skid Event on Rough Road Surface Raw \ecity Data

The specific analysis procedure implemented with dataset was applied as follows. First
the velocity data was graphed against test timeamaantlially inspected for skid brake events as shown
previously in Figure 4-5. After identifying the térinterval during which the skid event occurs, the
velocity data for that interval range was extracteda data subset. Next, the subset data was
smoothed using a moving average filter. The smagthif the data eliminates the step change
decreases evident in the raw data and improvedirtber fit analysis subsequently applied. In the
linear fit analysis, a regression analysis wasiaggb derive a first order model of the data. s
step the MATLAB Curve Fitting toolbox was used. Thwput of the toolbox is a first-order linear
model with an estimate for the first order coeéiti including 95% statistical confidence bounds.
Since the first order friction coefficient valuepresents the combination of friction coefficiendan

gravity, this value must be normalized by 9.81m/®liminate gravity and arrive at an estimate for
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the friction coefficient. For comparison, the raata the smoothed data after applying moving
average filter, and the resulting first order line@del are shown in Figure 4-6 for vehicle 1 véaioc

data captured for the skid event shown previousFigure 4-5.

fof= o | |——RawData i
Smoothed |
— Linear Fit |

Velocity (m/s)

778 779 780 781 782 783
Test Time (seconds)

Figure 4-6: Comparison of Raw, Smoothed, and FirdDrder Model Data for Vehicle 1

The analysis was applied to the velocity data ctdié from each of the three vehicles for
four separate skid brake events providing a tatdl2ocharacterized events. The resulting estimated
friction coefficient values are listed in Table 4@verall, the results appear consistent; theidirict
estimates are higher for the smooth surface tharrdhgh surface, as expected. Interestingly, the
coefficient values also appear to increase inimrlab the order of the vehicles. This is perhaps d
to higher road surface temperature as a resuliepteceding vehicle braking. Using these results,
the statistical mean, standard deviation and vegiaf the estimated friction coefficient for smooth
road and rough road surfaces are listed in TaldeRbr a conservative collision avoidance parameter
estimate, the lowest value is recommended sinceriesponds to the lowest capability in vehicle

braking.
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Table 4-4: Estimated Friction Coefficient Resultsdr Select Smooth and Rough Surface Skid
Brake Events

Unit Road Surface Friction Coefficient | 95% Confidence Bounds
Event 1/Vehicle 1 |Smooth 0.453 (0.448, 0.459)
Event 1/Vehicle 2 |Smooth 0.484 (0.481, 0.486)
Event 1/Vehicle 3 {Smooth ___ _ I 051 _.._. _..{0.506,0514) |
Event 2/Vehicle 1 |Smooth 0.448 (0.442, 0.453)
Event 2/Vehicle 2 |Smooth 0.488 (0.487, 0.491)
Event 2/Vehicle 3 |Smooth____ _ _. .. 0528 _ . | ._.(0.521,0534)  _|
Event 3/Vehicle 1 |Rough 0.162 (0.160, 0.165)
Event 3/Vehicle 2 |Rough 0.2203 (0.2190, 0.2218)
Event 3/Vehicle 3 [Rough _ _ _ IO (0.4214,0.4429) _|
Event 4/Vehicle 1 |Rough 0.219 (0.218, 0.2201)
Event 4/Vehicle 2 |Rough 0.246 (0.244, 0.248)
Event 4/Vehicle 3 |Rough 0.283 (0.282, 0.285)

Table 4-5: Statistical Results for Friction Coeffitent Estimates

Road Surface Mean Standard Dev. Variance Lowest Vaé
Smooth Paved 0.4852 0.0312 0.009754 0.448
Rough 0.226 0.0442 0.00196 0.162

4.3 Uncertainty Modeling
In section 4.1, sensitivity analysis was appliedevaluate how the warning parameter is

affected by specific parameter changes. In theigusvsection, an error analysis was performed to
identify the error in the friction parameter catéged to smooth and rough road surfaces. In this
section, the results of the previous analyses@rdbmed together to evaluate the error in the wayni
parameter using experimental uncertainty analySigerimental uncertainty analysis is typically
used to evaluate how errors propagate from measguedtities to derived quantities within a
modeled relationship. The relationships can be ¢expo approximate solutions are often used
which can provide preliminary but useful result:ieOsuch linearized approximation approach is

obtained by application of the total differentidhis approach is useful in estimating the absolute
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error, Af, of a function, f , based on the errors of the measured varialtiesty, ... as illustrated by
the following conceptual equation.
Af = filbx + f,Ay + - (4-13)

Wheref, is the first derivative of with respect to the parameter Equation (4-13) provides the
sensitivity relationship between changexito changes if. The error in a quantity,£x 4y,...}, is
the specific magnitude of change evaluated anglslly given as the standard deviatieh (This is
evaluated for all specific parameters that comgogéne parameters are assumed independent, and
the sum of these components represents a uniqueiration of errors that is a conservative, worst-
case scenario. That is, if each of the measuredtitjea are represented by a statistical distrdmyti
then the total differential represents the unigasecwhere the extreme values of the distributioas a
simultaneously in effect. The probability of theseultaneous occurrences of “worst parameters”
actually occurring is nearly zero and so represamt®rst-case scenario. In reality, the mean efor
the derived quantity is expected to be smaller ttiemnoutput of this estimation. This worst-case
analysis is sometimes referred as the 1-norm aateschange.

To analyze the warning parameter uncertaintyAwy the algorithm parameters listed in
Table 4-1 represent the measured quantities, amdvétning parameter is considered the derived
guantity. The conceptual equation (4-13) of thaltdifferential then becomes equation (4-14).

=2 nd + 2 o+ 2 gy + 2
Y= 9d F I P

pa+ 200+ 2 pay + 2%
da "t T 9 Bt T gq, t M T g tH

(4-14)
ow

+ ——AKyy

P Kdriver driver
The previously developed MATLAB code that was usedenerate the test profile data and analyze
the relative sensitivity was used again here tduaa the uncertainty of the warning parameter. As

an initial inspection, a +/- one standard deviatida, on all the parameters was evaluated which

corresponds to a relative error of 68%. Equatieth4¥becomes the following equation.



34

aw =2 680 d+ 2% 4 68% « v+ 22 68 + 2 68%x a+ 22+ 68%
= — % * — % * * — % * — %
W= a0 LI P L P e P
(4-15)
ow ow ow
* T+ *68% * dg +——* 68% * U + ———* 68% * Kjpiper
adO 6# driver

The top graph in Figure 4-7 shows/. The bottom graph compares the calculated warning
parameter with the warning parameter uncertaintjutred,w +Aw, and withoutw, (ideal system).
The w +Aw response appears almost twice the amountwofThe dotted horizontal redline
corresponds to a warning parameter value of orgtygpresents the alert threshold between safe and
unsafe driving conditions. Ideally an alert is preted to the driver when the warning parameterevalu
becomes less than one and increases in severityapproaches zero. In Figure 4-7, the resulting
trend ofw +Aw crosses the alert threshold later in time comptoredtrend (approximately 2 seconds
after). This highlights the important fact that syomeasurement errors, which are inherent in d™rea
system, increase warning parameter uncertaintynagetively affect the warning parameter response
by delaying the collision alert to the driver.

Figure 4-8 compares the individual parameter srtoridentify which terms dominate as the
vehicles near collision. Based on this visual itipe, the dominant parameters appear to be the
inter-vehicle distanceg, subject vehicle velocityy, and time delayr. Vehicle decelerationy, and
relative vehicle velocityVel, increase slightly but never become greater theroparameters.
Finally the friction coefficientu, and driver tuningKqriver parameters appear to contribute relatively
very little error. One effect common to all paraemstis that the errors reduce as the distance batwe
vehicles decrease and a collision is about to occur

Thele error on all the parameters is a very conservatiemario and is nearly impossible of
existing in real conditions. An additional uncemtgi analysis was processed using more appropriate
absolute error values for the parameters, listeddhle 4-6, instead of the 1 sigma error values

previously discussed. These values were selectibihvwihe following assumptions. The inter-vehicle
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distance and system time delay delta magnitudeegakere adopted from Chaves’ theSis Chaves
previously conducted a similar uncertainty analgdithe warning parameter equation; however, his
analysis focused on only two variables affecting slystem: inter-vehicle distancd),(and system
time delay €). (The results of his analysis are provided irtieac8.2 of his thesis.) The error values
selected for velocity were adopted from a papetigubd by David Bevly stating that a GPS receiver
can provide three dimensional accuracy of veloeifiyhin an accuracy of 2-5 cm/s without
differential corrections32]. 5 cm/s was ultimately selected as it is the nuanatious value. The error
value for friction coefficient was selected as aute of the friction coefficient estimation analysi
explained in the previous section, and more spdifi the standard deviation for the rough road
surface was selected since it produced the largar.eThe absolute errors for the remaining
parameters were set to zero because they are nsideced measured quantities and either are
tunable system parameters or calculated and thierefxpected to have very minimal or at least
controllable errors.

Figure 4-9 compares the previols results between the two uncertainty analyses. Shee
individual parameter errors are smaller comparethéok deviation in the first analysiaw also
decreased as expected. The warning parameter aedtas added to the ideal error free warning
parameter and shown in Figure 4-10. The warningrpater with refined error8/+AW(AX), is
closer to the ideal case than compared to theesstghdard deviation resWi/+AW(Aoc). Table 4-7
summarizes the detection horizon achievable foh eaxperiment and the percentage increase
obtained over the worst case scenario which islshen all parameters simultaneously. Again, the
detection horizon is considerably better for tHinesl case compared to the worst case. Logicadly th
results also prove a system with a higher accumsegsurement sensor will provide a better detection

horizon (earlier driver alert) than one containpapr measurements.
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Figure 4-7: Sigma Uncertainty Analysis
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Warning Parameter
Delta

Table 4-6: “Realistic” Uncertainty Analysis

Parameter Delta Value
Time Delay,t, (second) 0.2
Vehicle Velocity,v,(m/s) 0.5
Relative Vehicle Velocity, Vrel, 0
(m/s)
Inter-Vehicle Distanceg,(m) 0.7
Buffer Distanced,, (m) 0
Friction Coefficientp, 0.0442
Driver AdjustmentK griver, 0
Maximum Decelerationg, (m/<) 0

Time (secs)

Figure 4-9: Warning Parameter Uncertainty Results
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Figure 4-10: Uncertainty Analysis Results Comparingffect of Error Magnitude

Table 4-7: Quantitative Detection Horizon Comparisao
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4.4 Summary
In this chapter a analytical framework for evalogtiuncertainty of the collision warning

algorithm was first presented. The framework ispténand incorporates the use of sensitivity
analysis to identify individual relative sensitieg of algorithm parameters to the output. The
framework also relies on identification of parametgors through appropriate methods. The relative
sensitivity and parameter error information are lbmvad in an uncertainty analysis to identify overal
uncertainty behavior of the warning parameter. Theults showed with measurement errors
included, the warning parameter response is delayedpared to the ideal warning parameter
response as illustrated in the top graph of Figthe. Although the uncertainty analysis was
performed using representative error values, theselts are based on simulation. In the following
chapters the errors of the inter-vehicle distaneasurement is investigated in greater detail tsf fir
identifying stochastic error types in the GPS laté and longitude measurements (Chapter 5) and
then comparing the inter-vehicle distance measunerdéectly to ground truth (Chapter 6). A
subsequent output of Chapter 6 is an estimatetef-irehicle measurement error which is used to re-

evaluate warning parameter uncertainty in Chapter 7
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Chapter 5
GPS DRIFT CHARACTERIZATION USING ALLAN VARIANCE
ANALYSIS

A GPS-based collision detection system relies o G&ta as a primary measurement. As the
previous chapter discussed, measurement error ipeisanalyzed in order to assess system
performance uncertainty. Chavez provides an ovenié GPS technology and functionality in
chapter 3 of his thesis, which also includes arifg#mn of common GPS measurement error sources
[5]. A summary is provided here. GPS measurementstypically fall into three categories: control
segment errors, signal propagation errors, andivesceneasurement errors. Errors in the control
segment are associated with errors in the satebiteh as offset in their position or onboard atomi
clock bias. Signal propagation errors include elbesources that affect the transmitted GPS signal
while in-flight from the satellites to the receiv@ihese primarily include atmospheric errors in the
ionosphere and troposphere, which affect the spééuk signal and cause a skewed estimate of the
range to the satellite.

The signal propagation, and control errors in paldir, can often be corrected, as they are
largely due to physical, deterministic processase ®olution to reduce control segment and signal
propagation errors is Differential GPS (DGPS), whiakes advantage of the fact that control
segment and signal propagation errors are hightelzded and similar among nearby GPS receivers
on the ground. Thus, a stationary GPS receivertddcat a calibrated position can calculate the
position error offset between the GPS inferred tposiand true position. This subsequently
determines the amount of “correction” necessarydoal conditions, which are then broadcasted to
nearby GPS receivers to improve their accuracyy @®S receivers with DGPS compatibility are
able to accept these corrections and correctly emsgite their measurements. Some high-end DGPS

compatible receivers can reduce position measureacenracy from 10 meters to sub-meter levels.
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The fact that control segment and signal propagaéioors are correlated spatially and
temporally provides an advantage for the GPS-bastidion system of this work. That is, the error
in relative distance between receivers is small pamed to the individual position error of each
receiver. In explanation, suppose there are two @&®ivers in a field, GPS A & GPS B,
approximately 50 meters apart from each other field and the true position of each receiver is
already known. If GPS A indicates a position 3mtimaf its true position, say due to ionosphere
error, then GPS B is also likely to indicate a 3ontim offset of its true position. This is because t
ionosphere error will influence each GPS receiver $ame amount. The ionosphere error could
produce an increase in position error to 10m batrag/ould affect both receivers the same amount.
In any case the calculated relative distance betle= receivers would remain the same even though
individual position errors vary. This correlatiohspatial error among receivers is well known bott n
clearly documented in regard to the noise modelsnfabile units that are correcting each other using
simple differencing methods. This chapter examimesition differences when nearby GPS receiver
units are used. The assumption is that the prireamyr in the distance measurement between each
receiver is largely independent of ionosphere sgvand is only primarily influenced by receiver
errors, which are the third classification of GR®es.

GPS receiver manufacturers often provide a positaiimg for their products in terms of
circular error probability (CEP). The Air Force Qational Test and Evaluation Center formally
defines CEP as a circle, centered about the mdamserboundary is expected to include 50% of the
population within it when tabulated for very lorigné intervals 83]. The specifications for the San
Jose embedded GPS modules used in this work spetifyizontal position accuracy of 3.3m CEP.
This means that, for a given GPS position, the aaarbe 50% confident that they are within a 3.3m
radius circle of that position. A smaller CEP valndicates a higher accuracy receiver. While CEP
provides a good overall indication of GPS receigecuracy, it does not provide any information

about measurement stability or it's degradatiorr éimee. For this, a more in-depth characterizatfon
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required that can identify the specific error typesluding random bias. Identification of specific
errors allows the development of appropriate naisedels for improving the Kalman Filter
implemented by Chaves for blending GPS and acaakter data. Han et, al. performed a similar
effort using Allan Variance (AVAR) analysis to deténe the calibration model for a Kalman Filter
fusing inertial sensors and GPS information, howefiey examined the stochastic errors of inertial
sensors only and excluded GPS receiv8d. [This chapter presents the work accomplishedafor

drift analysis of the San Jose GPS receivers andlABD5 accelerometers using AVAR analysis.

5.1Allan Variance A Review
To begin, an overview of Allen Variance (AVAR) aysik is first provided. Initially

introduced in 1966 by Dr. David Allan for analyziife noise characteristics of cesium beam
frequency fluctuations for atomic clocks, AVAR aysib has become widely used and accepted as a
preferred method for identifying stochastic noise p rocesses. The National Institute of Standards
and Technology (NIST) published a handbook for deecy stability analysis which includes a
description of how to use and apply original AVA& well as modified versions for improved
analysis B5. The handbook also includes example dataset®gb and verify modified AVAR
algorithms or other stochastic noise modeling aflgars. The IEEE standard 647 specification also
identifies AVAR as part of the standard test praredof Single-Axis Laser Gyros¢]. Although
originally developed to study the frequency stapitif oscillators and clocks, the AVAR method is
useful in general for characterizing the randoncesses of any data output and is selected here to
characterize the stability of the GPS and acceleterrsensors by identifying their specific dominant
noise types.

AVAR analysis focuses identification of primarilyoshastic, or random, types of errors.
Stochastic errors can be a mixture of several erimrt the five most common sources are:

guantization noise, white noise, random bias, remd@lk, and random ramp. Assuming the sources
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are statistically independent, the AVAR is essdigtilne sum of the squares of the variances of the
five common sources.
0'; (1) = 0'5 + o4n+ 03 + ok, + 03 (5-1)
In Equation (5—1)p-§,(r), is the AVAR, or total variance, result for a sifieaveraging timer, aé is
the variance contribution by quantizatiarf,,, is the variance contribution due to white noisg,is

the variance contribution due to biag,, is the variance contribution due to random walld af is
the variance contribution due to ramp noise.

An advantage of AVAR is that the computation islyasimple and can be directly applied to
time-series data collected from a stationary uritedcsensor. A stationary static measurement is
preferred so only random processes influence clgamgemeasurement. Given a sequence of
measurements sampled at a constant rate, thesdfitst idivided into clusters of a specific setesiz
related to the averaging time,For example, if data was collected at a rateOo&mples/second for
a total duration of 100s and the selectedias 0.1s then the size of each data cluster woel8
samples. Next, the average is calculated for eagdter of grouped data. Then the difference is
calculated between the calculated averages of ssizeeclusters. The differences are then each
squared, summed together, and finally multipliedabgcaling factor dependent on the number of

clusters used. The formula for the original AVARI&fined in Equation (5-2) as:

M-1

1
30 = 1= D, D~ 712 (5-2)

=1
Whereo-f (1) is the calculated AVAR for a specific averagingéi t; y; is the average value of the
clusteri; andM is the total number of clusters. The original AVAIRecifies the division of the
dataset into individual segments of lengthso that the segment are non-overlapping; thagash
data sample is only used once in the calculatiam. gfeater confidence, the NIST handbook for

frequency stability analysis recommends overlappthg clusters. Figure 5-1 illustrates this
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overlapping approach and compares it to the orighdAR analysis method. In the original
approach each cluster contains a unigue set oflegmonts and each subsequent cluster contains a
different set of samples. This is illustrated ie tbp of Figure 5-1. The overlapping approach makes
maximum use of the data by forming clusters whiebse samples across clusters. The reuse of
samples is dependent on the cluster size and tbergrof samples to shift by. In the bottom half of
Figure 5-1 the cluster size is 3 samples and tieistby 1 sample. Although the confidence of the

estimate increases with this approach, the conipotdttime also increases.

Averaging Factor, m =3 Non-Overapping Samples
1 2 3 =

|-( a2 o)

N AR

1 e L
2 | = @ e @ e @
3 = - ® @ ®
4 = e
H = =-| Cwverlapping Samples

Source: NIST SP 1063%]

Figure 5-1: Non-Overlapping versus Overlapping Samigs lllustration

The equation for the modified Overlapping Allan V&aice is defined as

M-2m+1Jj+m-1

1
O = G D ]Z Z] IRESAL. (5-3)

wherem is the averaging factor.

Once the calculation is performed for a specifieraging periods, it is repeated again for
additional longer periods. Once AVAR values areaotsid for several averaging periods, the square
root of the AVAR values are calculated producindaAl Deviation (ADEV) values and plotted
against the averaging periods. This produces a mlatasimilar to the sample diagram shown in

Figure 5-2. This type of plot is commonly referi@s Allan Deviation, or Sigma-Tau, plot. Generally
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the log sigma and log tau is plotted to show theedeence of measurement stability as a function of
averaging time.

The Allan Deviation plot is useful for identifyirthe five specific types of stochastic random
processes described before by examining the slbffee@urve. Provided the different noise sources

are reasonably separated, different error termgiaihinate different regions af

A
Q
AlZ ©
0 Ra“dom
Bias Walk
Y LT

Figure 5-2: Typical Allan Deviation plot for a sysem

Table 5-1 provides a listing of the five commonssosources, the parameters of interest,
their relation to the Allan Variance value and tiegion oft at which they appear on the Allan
Deviation plot. The magnitude of each noise parametay be approximated using the plot. For
example, to quantify the magnitude of quantizatioise, one must first find where the slope of the
Allan Deviation trend approximately equals -1. Thedends an imaginary line of the same slope
until it intersects an extended line at= V3. The y-value at this specific intersection then
approximately represents the deviation due to dgetiin. This procedure is repeated again for the
remaining noise types. This visual-fitting methawyides a simple and quick way to identify the

stochastic error sources but is limited in accuracy



Table 5-1: Relation of Allan Variance and Noise Saues [37]
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Moise types iﬁﬁ Root Allan vanance Slug :r‘if-nl;:?;gf 26
Quantization o Og = xf'ISQ T -1
White noise N Om =N J -1/2
Random bias B Oz = B/0.6648 0
Random walk K 0z, =K VT /3 +1/2
Ramp R &= RT 2 +1

The actual magnitude of each noise source can $® edtracted via linear regression

analysis. The goal of the linear regression analisito identify the coefficients for the following

polynomial model through a least squares approach.

oy = At 4+ 4,175 + AgT0 + 4,700 + At

(5-4)

The resulting coefficients (Athrough A) approximate the noise parameters of interest aed

calculated using the following equations

B = A; X 0.6648

K=A4X\/§

R=As%x2

(5-5)
(5-6)
(5-7)
(5-8)

(5-9)

By fitting a linear model to the root Allan Varieeresults, the coefficient results of the lineaded

are equal to the magnitude of the noise sourceis. rélgression approach was used to quantify the

noise source for the San Jose GPS receivers andLAT®»% accelerometers. Results for the GPS

receivers are presented first.
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5.2 Experiment Setup
To evaluate the error characteristics of the pypethardware, three prototype detection

sensor packages were tested in the experiment. difeein fact the same three prototypes that were
used in the Yuma feasibility testing that has be®viously mentioned. All three units were insige a
office building within approximately 3ft of a GP®peater device. A GPS repeater receives GPS
signals from the satellites at an antenna extgrmadiunted outside the building, and then direatly r
transmits the signals internally with some ampdifion. It is commonly used in tunnels to provide
GPS functionality since the satellite constellatiomot direct line of sight available. The unitere
placed inside nearby the GPS repeater station éoe mccurate comparison across hardware since the
GPS receivers would be commonly receiving the saigeal from the repeater station. Using the
GPS repeater should also omit any control or signgbagation errors. The GPS data from the San
Jose FV-M8 receiver and acceleration data fromAIDXL335 3-axis accelerometer was collected, at
a rate of 5 Hz, for approximately 24 hours to cepthe full motion of the GPS satellite constediati
from April 13, 2010 to April 14, 2010. The data legtion process on all three units was started
approximately at 4:00 pm. Two of the three systemexessfully collected data continuously for the
full duration of the experiment. In the followingsults discussion these two units are identified as
System 9366 and System 9584. The data collectiooeps for the third unit, identified as System
9365, first collected 11.4 hrs worth of data befshatting down due to a software error, but was re-
started to collect an additional 7.22 hrs wortldata.

Figure 5-3 and Figure 5-4 show the raw latitude Emgjitude measurements, respectively,
collected by all three systems. The figures idgritiE brief gap in the data for System 9365 rel&ted
the period at which the data collection processthi@ system was temporarily offline. Overall, the
plots indicate fairly good agreement of the raw spe@aments across the three systems, although there
is a brief period of non-correlation also identifien the figures. The cause of this measurement

disagreement is unclear and appears to be randammuiferical quantification of the agreement, the
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correlation between the datasets was calculatedy idtarson’s correlation formula. The results of

are provided in
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Table 5-2 and Table 5-3 respectively.
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Figure 5-3: Comparison of Raw Latitude Measurements&cross Systems
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Figure 5-4: Comparison of Raw Longitude Measuremerst across Systems



Table 5-2: Latitude Cross Correlation Results

System 9366 9584 9365
9366 1 0.972 0.965
9684 0.972 1 0.989
9365 0.965 0.989 1

Table 5-3: Longitude Cross Correlation Results

System 9366 9584 9365
9366 1 0.963 0.947
9684 0.963 1 0.986
9365 0.947 0.986 1
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The raw latitude and longitude measurements wearskated to the East-North-Up (ENU)
coordinate reference frame to better illustratedi@nge in position in units of meters. The positio
deviation from a mean position is shown in a scai@t (Figure 5-5) using the ENU reference frame.
The FV-M8 circular rated CEP specification of 3.8ralso shown in this figure. Although the CEP
represents 50% percentile for coordinate fixespithe data from the three receivers lies witlhia t
CEP circle, indicating much higher than expectecueacy. On average, the deviation in east and
north is 0.73m and 1.10m respectively. This higtusacy could be due to the use of a GPS repeater
station mitigating other GPS errors effects suchmagtipath. To determine if this is the reason a
similar experiment performed outside thereby elmtiimg the necessary use of the GPS repeater is

recommended for future work.
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Figure 5-5: Drift Data Deviation in East-North Refaence Frame

5.3 Allan Variance Analysis and Results
From visual inspection of the raw latitude and itundge trends in Figure 5-3 and Figure 5-4,

it appears that random walk is the dominant std@hasise source. AVAR analysis was applied to
confirm this hypothesis. The data was processetyUdATLAB and publicly available AVAR code
(allan.m) from the Mathworks websitgq]. This specific version (Version 3.0) includes dtionality

to calculate AVAR using the overlapping method. rAentioned before the overlapped version of
Allan Variance produces higher confidence resuiefore applying to the GPS datasets, the
“allan.m” code was tested and verified on data iged in the NIST published Handbook of
Frequency Stability Analysis. Additional code waveloped and added to the MATLAB starter code
to determine the noise parameter magnitudes usiegriregression analysis. This code is provided in

Appendix C.
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5.3.1San Jose FV-M8 GPS Allan Variance Analysis
The application of the Allan Variance analysis iistfdiscussed in detail for System 9366

GPS data. The raw latitude measurement is againrshoFigure 5-6 to better illustrate the random
drift in the data. The AVAR results for the latikicheasurement are shown in Figure 5-7 on an Allan
Deviation plot. The result of the linear regressamalysis is also shown with the additional model
produced curve shown in red. The correlation betwthe experimental data and model is 0.9995.
From visual inspection, the positive slope of btk AVAR results and fitted model curve suggest
that the dominant noise types are random walk amefap. Using the resulting coefficients from the
linear regression model and Equations (5-5) thrqbg®) above, the calculated magnitude of the five

noise variables are listed in Table 5-4.
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Figure 5-6: System 9366 Raw Latitude Measurement
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Figure 5-7: System 9366 Latitude Measurement Allabeviation Plot

Table 5-4: System 9366 Latitude Noise Parameter Magudes

Noise Type Magnitude
Quantizationdegs. sec) -2.749E-6
White Noise degs+/sec 3.916e-6

Bias degs) -6.838e-7

Random Walk degs/+/sec) 3.129e-7
Ramp @egs/secs) -8.89e-10

To better understand how each noise type indivigeaintributes to the overall deviation the
respective magnitudes from Table 5-4 were substituhto the appropriate noise equations 5-5
through 5-9 to calculate the noise coefficient t®rfg through A. These coefficients were then
substituted into the root Allan Variance equatidrn(®4), one at each time, and iterated thromgh
from 1 to 10000s to generate the result of noige'sy behavior as a function af Figure 5-8

compares the resulting trends of each noise typeidilons at small averaging times are of primary
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concern for the GPS-based collision system sinee system is not able to update with high
frequency. Closer inspection of the results atraerval of averaging times from 1 to 300 seconds
shows the deviation positively increasing due tamgization (blue) and random walk (cyan) while
negatively decreasing as a result of white noiseefy), and ramp (purple). The bias noise type (red)
steadily appears across all averaging times. Thgtseare in general agreement with the theory of
stochastic noise processes. Quantization and wbite tend to dominate at short averaging times
and decay as averaging time increases. In congmstyeraging time increases, the deviation due to
random walk and ramp noise increases. Since tha@sadise types have specific impact on position
fixes it would be particularly concerning if theseise types were large and began increasing at
shorter averaging times where they could not beected. To demonstrate the influence at longer
averaging times, the same results in Figure 5-&lapg/n in Figure 5-9 except plotted on logarithmic
scales. In this perspective the deviation contidioufrom the first three noise types is signifidgnt
diminished compared to random walk and ramp ngigest Although both random walk and ramp
exist, the increasing trend of random walk increadeviation as averaging time grows and therefore
corrupts the measurement. The decreasing trentheofamp noise type suggests that the longer
averages reduce the deviation thereby “correctihg'measurement. In reality this would mean that a
random stochastic noise process is improving thesomement which is not realistically possible. For
greater accuracy in the quantification of randonkwaise, the linear regression analysis was agplie
again but instead ignoring the modeling of all terexcept random walk. The resulting model fit
curve is shown in Figure 5-10 along with the catieh agreement between the experimental data
and model and magnitude of the random walk noisa.t&he influence of random walk noise is
significant at longet values, however for the GPS collision system thisrecould be corrected by
other measurements.

This analysis process was repeated for the ratudigtimeasurements of the two remaining

systems. Figure 5-11 compares the AVAR result fibrtteee systems, and the results are in
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agreement. System 9584 and System 9365 exhibitiysilopes suggesting random walk as the

dominant noise process. For both systems, fullremadels were first generated to confirm random
walk as the primary stochastic noise type. Thea,lithear regression analysis was applied again to
model only random walk for greater accuracy.

Table 5-5 compares the final random walk noise rpatar calculated using the simplified
single noise term model. For all three receiveesdbgree of correlation between the model fit curve
and experimental data is high. The random walkeskbtained are also very similar suggesting that
a single error model could be used to describ¢hetle receivers and perhaps any San Jose FV-M8

receiver.

% 107 System 9366 Noise Parameter Influence As Function of Averaging Time
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Figure 5-8: System 9366 Individual Noise Parametdnfluence
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System 9366 Noise Parameter Influence As Function of Averaging Time
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In similar fashion,he AVAR analysis was then appli¢al the longitude measurements fr
all three systemsand similar results were obtaineFigure 5-12compares the longitude AVA
results on the Allan Deviation plot. Ag;, from visual inspection, the deviation is large @ader
averaging times and continues to grow. Again fahdongitudemeasurement full error models we
first generated to characterize the influence of all figese terms. After confirming random walk
the major noise sourcthe single noise term linear regression analyss apgplied. The results of tl
regression analysis and calculation of the magat of the noise parameters is provide(Table 5-6
below. Again the correlation values are high arerésulting noise values are very similar acros:
three receivers.

Table 5-6: Summary of Random Walk Noise Parameters for Longitde Measuremen

System Correlation Random Walk (degs/sec)
936¢ 0.997: 1.82¢7
958¢ 0.982: 1.83¢7
936t 0.993:! 2.00¢7
Longitude
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Figure 5-12:Comparison of All Allan Variance Results for Longitude Measuremen
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Although the magnitudes of the previous resultseappery small, this is a result of the very
small changes in the raw measurements which isits of degrees. Specifically the changes in the
raw measurements were observed on the order of Te-€valuate the drift on a more realistic length
scale, the Allan Variance analysis was also appiethe converted east and north deviations to
obtain units of meters. The Allan Deviation plads the East and North changes are shown in Figure
5-13 and Figure 5-14 respectively. Again the domimeise type that appears from visual inspection
of the plots still demonstrates random walk. Os #gale the drift error is on the order of centamet

Table 5-7: Summary of Random Walk Noise Parameterfor East Deviation Estimate

Systen Correlation Random Walk (m/sec)
936¢ 0.979: 0.015¢
958¢ 0.983¢ 0.015¢
936¢ 0.993¢ 0.016¢

Table 5-8: Summary of Random Walk Noise Parameteror North Deviation Estimate

System Correlation Random Walk (m/sec)
936¢ 0.9937 0.021
958¢ 0.994¢ 0.020:

936~ 0.997: 0.019¢
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5.3.2ADXL-335 3-Axis Accelerometer Allan Variance Analyss

The AVAR analysis was also applied to the acceletemdata also collected during the 24
hour collection period. Figure 5-15 shows the ra@asurements collected by System 9366. Based on
visual inspection of the raw data it appears sh@mn averaging time noise processes, such as
guantization and white noise, are dominant. In @stitto the GPS data, there is no random walk

easily detectable in the raw data.
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Figure 5-15: System 9366 Raw Accelerometer Data

The AVAR algorithm was applied next using the sdim& averaging interval (10 to 10000
seconds) as used for the GPS data. The resultilag Bleviation plots and full error model for the
acceleration x direction is shown in Figure 5-1@mitar results were obtained for the y and z
directions. Unlike the GPS results, the Allan Dé&wia trend appears to exhibit all noise types.
However, the calculations of the noise parameters the coefficients of the linear regression model

suggest quantization and bias as the dominant reises. Table 5-9 lists the noise parameters
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magnitudes obtained for the x, y, and z directiostg system 9366 collected data. Negative
coefficients appear again for two of the noise sypehite noise and random walk. Obtaining negative
coefficients suggests the addition of that noige tseduces the overall variance of the sum of noise
contributions. Or, this indicates that there ardartying contributors to the noise (such as dynamic
of a filter) that are not being modeled. Or, it kchbindicate that the error in regression fittindasge
relative to the coefficient of a particular noisedsl, e.g. that the noise is so small that thefimberfit
may seem negative just due to fitting error. Thgatiee coefficients obtained are small and so it
most likely that this last effect is occurring. Bhthese noise components are ignored hereafteg alo

with the ramp noise term due to its small magnitude
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Figure 5-16: System 9366 Acceleration X Allan Devieon and Full Error Model Results
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Table 5-9: System 9366 Accelerometer Full Error Modl Noise Parameter Magnitudes

Noise Type X Y Z
Model Fit Correlation 0.9756 0.9967 0.9460
Quantization §2Volts. sec) 2.042 0.351 2.038
White Noise ;iVolts/sec -1.399 -0.044 -1.568
Bias (nVolts) 0.181 0.022 0.231
Ra”dom\/\’;’?al';wom/ -0.0053 -0.001 -0.006
Ramp (mVolts/secs) le-5 4e-6 le-5

To increase the accuracy of the quantization aad boise noise terms, the AVAR analysis
was re-applied but on the interval of 1 to 100 whérese terms are dominant. The previously
discussed “invalid” noise terms; quantization, whitoise, and ramp, were also omitted from the
subsequent linear regression analysis. Resultadf sensor are compared in Figure 5-17, Figure
5-18, and Figure 5-19 grouped by sensing direcfltre results from applying the linear regression
analysis and extracting the quantization and biésernterms are presented in Table 5-10, Table 5-11,
Table 5-12 for x, y, and z axes respectively. Tigarés indicate a noticeable “offset shift” althbug
the underlying shape of each curve appear simsjpe@ally in the range of less than 10 seconds Thi
is important to note as the GPS collision framewmpkrates in the range of less than a second. It is
therefore important to understand and determineethers for very short averaging periods. Also
because the underlying shape of each is similatladifference in results only appears to be f, shi
an appropriate noise model can still be developed a scalar term can be incorporated to
compensate for the shift.

The root cause of the shift was not investigated bet it is obviously related to some sort of
variance among the sensors or interfacing hardwaomuld possibly be due to errors or variances

encountered during building the prototype GPS ufite placement and orientation of the sensors
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was not precisely controlled and so there is liksgdyne deviations in sensor orientation. Or it could
be due to variances in the manufacturing tolerarafethe sensors themselves. Particularly the
breakout boards which interface the core senstingamicrocontroller contain a low pass filter, and
although the production of the core sensor may itjetly controlled the breakout boards and

subsequently the filter may not.
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Figure 5-17: Comparison of All Three Systems Accelation X Allan Variance Results



AccelY

3

10°

kS System 9365 |7
o System 9485 |
System 9366 [

T

Allan Deviation (mVolts)

10 10’ 10
Averaging Time (secs)

Figure 5-18 Comparison of All Three Systems Acceleration Y Allan Variance Restd

--- ]| - System 9365 [
- -] b System 9584 |
_____ ; .%. R RRREE R System 9366

LR Fem--- To-ommoToor-amAam A
' '

10°

Allan Deviation (mVolts)

10 10° 10
Averaging Time (secs)

Figure 5-19: Comparison of All Three Systems Acceleration Z Alla Variance Result:

65



Table 5-10: Identified Acceleration X Noise Coeffients for All Three Systems

System Correlation (?nu[?:;:fgzcn) (m?llslsts)
936¢ 0.98¢ 0.231 0.077¢
958¢ 0.98: 0.09¢ 0.030¢
936t 0.991] 0.26¢ 0.13¢

Table 5-11: Identified Acceleration

Y Noise Coeffients for All Three Systems

System Correlation (?nu[?:;:ri?gzcn) (m?llslsts)
936¢€ 0.9¢ 0.16¢ 0.021¢
958¢ 0.97 0.030¢ 0.077¢
936t 0.96¢ 0.097¢ 0.052:

Table 5-12: Identi

fied Acceleration

Z Noise Coeffients for All Three Systems

66

. Quantization Bias
System Correlation (mVolts. sec) (mVolts)
936¢ 0.988: 0.253¢ 0.102¢
958¢ 0.988t¢ 0.23: 0.070:
936t 0.981¢ 0.18¢ 0.074:
5.4 Summary

This chapter presented a method for characterizoige models of the GPS-based collision
hardware sensors. Specifically, Allan Variance gsialwas applied to GPS latitude/longitude and 3-
Axis accelerometer data to quantify the stochastise processes in these sensors. Based on visual
inspection of Allan Deviation plots and linear reggion analysis derived models, estimates of noise
magnitudes were produced. The GPS data clearlyigetiirandom walk as the primary noise type.
Since the measurements are the results of recbiviivin processing algorithms, the absence of
faster noise processes is understandable.

In contrast the accelerometer measurements digplgyantization and bias as the dominant

noise types. The magnitudes of these noise typkesati between the sensors and it could be possibly
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due to hardware differences encountered eithenduhie manufacturing process, the assembly of the
prototype systems, or the built-in low-pass filket none of these are certain causes. Although the
magnitudes differ the underlying noise charactedsappear similar especially at short averaging
time intervals. This is an important finding towamevelopment of fusion algorithm, such as Kalman
filters, which could benefit the collision algonith Since the underlying characteristics are theesam
and the results are only “shifted” one specificseamodel can be created but could be adjusted by a

scalar component to handle the shift offset.
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Chapter 6
EVALUATING INTER-VEHICLE DISTANCE MEASUREMENT

One of the more important input variables in thiision algorithm is the physical distance
between the vehicles from the leader’s rear burtpéhe follower’s front bumper (or inter-vehicle
distance). Current commercial collision systems suga this input directly using forward scanning
sensor technologies, such as RADAR or LIDAR. TheS@Rsed collision system infers the inter-
vehicle measurement by calculating the distanced®t two GPS coordinate current positions of the
vehicles as measured by the GPS receivers. Theeinthborizontal position uncertainty of a GPS
receiver raises the concern of whether the intaiele distance measurement can be accurate enough
for use in determining collision probability. Totdemine this, a comparison of GPS to ground truth
data of inter-vehicle distance is necessary. Thapter presents the experiment performed to collect
GPS based and LIDAR based inter-vehicle measuredagatand the subsequent analysis performed
to compare the accuracy of the two methods.

Previous studies have evaluated the performancelligion warning systems however, most
of this existing literature focuses on driver rasg® and algorithm performance. Lu et al. evaluated
the technical limitations of a developed frontallismn warning system for transit bused9]. Their
paper provides information regarding a test setugh procedure for evaluating the limitations of
LIDAR- and RADAR-based collision detection systermstheir study, they used a string pot position
transducer to measure inter-vehicle distance founpl truth. Instead, in this study, the LIDAR senso
itself collects inter-vehicle distance and this sweament is assumed ground truth. The test plan for
this analysis was also influenced by test methoolsdacted by Birdsong who evaluated the
performance of ultrasonic, laser range finder, @udr sensors through static and dynamic td€ls [
Kamiya et al. outlined specific requirements farodlision system suggesting that a range accurficy o
1m is necessanylf]. The following analysis discusses if the GPS-bHasallision system is capable

of meeting that requirement.



69

6.1 Test Setup and Procedures
Two vehicles were used in the experiment: a 19940Gikrra 2500 pickup truck and a 2005

Subaru Legacy sedan car. In all the test procedtiresedan followed behind the truck so the GPS-
based collision system calculated the inter-vehilidtance and the rear-end collision probability of

the sedan crashing into the truck. Figure 6-1 aaptall the hardware equipment used for this study.

Collision GPS "
High-Grade GPS L
Low-Cost NovAtel DL-4 Plus SICK LMS 291 Collision GPS
Embedded PR

LIDAR

SanJ FV-M8
an Jose rve

/

—=~" LIDAR
~ — _Detection Field

-

~

GMC Sierra 2500
Truck

| SubarulLegacy
. N Sedan
Inter-vehicle distance

Figure 6-1: Test Vehicles and Equipment

A SICK LMS 291 LIDAR sensor system was mounted nigar rear truck bumper with
sensor scanning direction facing rear-wards to oreabe distance (up-to 80 meters per sensor rated
specifications) of the sedan’s front bumper withirD-180 hemispherical area. The SICK LIDAR
sensor was configured to produce data at a raBY 6fHz at 0.5 degree resolution. The acquisition
and storage of the data from the sensor was hahgledMATLAB based GUI application, Figure
6-2, and the application was also designed to lateadGPS timestamp to the LIDAR data so
measurement samples could be correlated to the E@B& measurements. The GPS timestamp is
generated by a high-grade GPS receiver. The Nowitelplus GPS receiver is able to provide
precise GPS measurement with a rated position acgwf 1.5m CEP (Circular Error Probability) at

a collection frequency of up to 20 Hz.
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Figure 6-2: User Interface of LIDAR Data Acquisition Software

Two of the prototype hardware packages previousiscdbed in Chapter 3 were installed,
one on each vehicle. One unit was mounted on thek ttabin roof, approximately 3.0 m distance
from the LIDAR sensor. The other unit was mountpdraximately in the center of the roof of the
sedan. The distance of this unit from the sedantfbumper was approximately measured 2.36
meters.

The IEEE 1588 standard for precise time synchroioizaof multiple systems was
programmed and implemented for this experimenptor@lly synchronize the LIDAR, Novatel, and
Collision GPS hardware systems. The GPS timestaroduped by the Novatel equipment was
considered the master time and was shared wirgldesithe prototype GPS hardware units.

Implementing this time synchronization protocol\ydes easier alignment of data in post processing
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analysis and assures greater accuracy in makingaisons between the inter-vehicle distance
ground truth and estimates. See Appendix F for rdetailed information of this setup.

The test procedures were all performed at Pene’StBennsylvania Transportation Institute
test track. The test track features a 5042 ft lovaj shaped track ideal for safely conducting alose
course experiments. An aerial photograph of the %t track facility with specific test feature
highlight is shown in Figure 6-3. Performing th@gedures at a test track provided a safe, controlle
and reliable test environment free of other vekicmd obstacles. The collected data was post-
processed using MATLAB software. For specific dstaggarding the data analysis procedure see

Appendix H.

FiCie
Handling
A

Figure 6-3: PTI Test Track Aerial Photograph

6.2 Error Analysis
The accuracy of the GPS-based inter-vehicle distameasurement compared to LIDAR was

first evaluated. The GPS-based measurement wasatedl in two forms/estimates. The “hybrid”
estimate was calculated using GPS information bertwiiee high-grade Novatel GPS unit mounted on

the truck and the low-grade San Jose GPS recetivdéreosedan. In contrast, the “real-time” estimate
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only relies on the two low-grade GPS receivers fiooth vehicles and was the stored real-time
calculation. This real-time estimate therefore udels wireless communication effects such as
network latency. In addition to comparing GPS intehicle spacing against LIDAR, the real-time

estimate was compared to the hybrid spacing distaastimate to identify whether there are

significant advantages to using a higher-cost, drgitcuracy GPS system.

Figure 6-4 shows the measurements from two GPSdbirser-vehicle distance estimates
versus LIDAR collected while the sedan follows theck during a specific segment of the PTI test
track. The absolute difference, or error, betwdenliDAR and the two estimates is shown in Figure
6-5. From these two figures there are some notieeabtliers in the ground truth measurement.
Although the sedan was driven directly behind theter (as best as possible) of the truck and as
close as possible (approximately 20 meters) withislutng safety, these outliers are primarily dae t
LIDAR target confusion with other roadside obstac{gegetation, signs, buildings, etc) and also
rough road surfaces causing small deviations inLIBAR line of sight and subsequently causing
missed detection of the sedan’s front bumper. #isatest track includes a narrow bridge sectioh tha
contains cement barriers bordering the track whish produced significant target confusion near the
end of the lap. This degraded portion (errors ieduby cement barriers) of data is not shown in

Figure 6-4 or Figure 6-5 and was also omitted fthenanalysis.
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Figure 6-6 and Figure 6-7 presents updates of theiqus two figures with the LIDAR

measurements outliers removed by first statistiddientifying points outside of a 3 sigma deviation
then visually confirming the outliers by graphitigtdata, and finally manually removing those points
from the data. All of this was accomplished usingTLAB.

There is also a theoretical error threshold shownFigure 6-7 related to the CEP
specification for the San Jose GPS receiver. Aspecification, a single San Jose GPS receiveahas
CEP rating of 3.3m. As mentioned before, the CEHRi@Ty rating is a 50% probability statistic valid
for static measurements. This means that 50% dB®@ fixes will fall within a circular area witheth
radius equal to the specification. Logically a deraCEP value indicates higher accuracy. Since two
GPS receivers are used to estimate the inter-wehdidtance measurement, the, “worst case”,
threshold here assumes the errors combine in dypadgitive manner (CEP+ CER) and so
logically the threshold is drawn at 6.6m. It isrhexpected that 50% of the difference values in
Figure 6-7 would be equally distributed above aealb the thresholds. Instead, most of the samples
fall significantly below the worst case threshodgsuming the CEP specification for one receiver is
accurate; it is concluded that the errors betwdentwo GPS receivers are in fact not cumulative.
This increase irrelative positioning performance of the two GPS receiverpassibly due to a

correlation of GPS errors among the receivers,lainto how DGPS systems work.
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Histograms of the hybrid and real-time error datamesented next in Figure 6-8 and Figure
6-9 respectively. The figures also show probabititstribution results and inferred statistics. ®inc
the absolute difference was previously evaluatéd, half-normal probability distribution was
selected for application. The half normal distribntis related to the standard normal distribution
except is it is appropriate for datasets wheralath is positive, &0), or only the magnitude of the
data is recorded and sign is omitted, and the éegdeecalue is 0. The inferred statistical results
suggest the error distribution for both hybrid aedl-time methods is small. The statistical results
indicate both the hybrid and real-time errors anger than the CEP error specification for a single
receiver and the previously discussed worst casaasio where CEP errors are cumulative. The
variance statistic for both is also small showihg ©5% confidence metric even falls within the
single receiver CEP rating. It is mentioned that #nror distribution and statistics is only slightl
“worse” for the real-time dataset compared to tlgbrid dataset. The mean error for the hybrid
dataset is actually less than the 1m requiremerguggested by Kamiya. Recall that the hybrid
dataset was produced from using a high-end GPSwithita low-end GPS unit. The accuracy would
then be expected to be better if two high-end GRS were used. Although the mean error for the
real-time dataset, which uses both low-cost GP& uisiover the 1m suggested requirement it is only
over by 0.26m. The concern of whether GPS accunammyd be good enough for collision detection

are answered by these results which suggests theaay is quite applicable.
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6.3 Revised Uncertainty Analysis

A significant outcome of the previous results waat tthis research gives numerical values
for the estimated error associated with the GP®8dater-vehicle distance measurement. With this
error more accurately quantified using actual expental data; the uncertainty analysis first
presented in section 4.3 is revisited to get abettimate of warning parameter uncertainty.

Equation (4-14) and the delta values for each patantisted in Table 4-6 were again used to
calculate the warning parameter uncertaiaty, However, using the results of the previous inter-
vehicle distance measurement analysis, only thta dellue ford was changed to 1.198m. This
represents a 71% error increasel.ifror comparison, the result of this updated uady analysis is
shown in Figure 6-10 along with the two analysesvimusly presented in Chapter 4. Case 1 is the
second analysis in Chapter 4 which uses the emtires listed in Table 4-6. Case 4 is the first
analysis of Chapter 4 where an error efvlas applied on all parameters. Recall this isatbest case
scenario. Case 2 is the new uncertainty analysidtrausing 1.198 meters fdr Comparing Case 1
and Case 2, there is barely a noticeable differefloe results almost appear the same; howevee ther
is actually a difference between the two resultsclvlis shown in Figure 6-11. As highlighted in
Figure 6-11, the increase in error from 0.7m (CHs® 1.198m (Case 2) fafresulted in a decrease
in detection horizon of 0.02 seconds. This charlgesoriginal detection horizon of 2.03 seconds to
2.01s. This is a percentage decrease of only 1%v8p though the error increased by 71%, the
detection horizon only decreased by 1%. This suggémt the warning parameter is not highly
sensitive to changes in inter-vehicle distance omeasent errors.

To further support this claim, an additional unairy analysis (Case 3) was performed to
evaluate the effect of a significant larger errardocompared to the other variables. For the Case 3
analysis, the error values listed in Table 4-6 wagain used for all variables, excepEachd value
in the simulated data was changed by 68%, or gmasteviation. Even with the large errordyrihe

Case 3 result is better than the Case 4 worstreasét and Case 3 still provides an earlier degacti
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horizon. Case 3 crosses the warning parameterhtbicbst approximately 5.3 seconds and since

collision occurs at 6.5 seconds in the simulatezhaiio the detection horizon is approximately 1.2

seconds. Compared to Case 1 and Case 2, thieteetidn horizon decrease of 1.28 seconds. This is
a percentage change decrease of 48% althoughrtrerarrease is at least 68%. These results show
that, as spacing errors increase by a factor afia, the warning parameter error will not increbge

the same factor.
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Figure 6-10: Updated Uncertainty Analysis Results
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6.4 Measurement Linearity

The previous analysis results identified h@ad is distributed. It is also important to
understand the dynamics of this error and whethehianges as the actual distance between vehicles
increases and decreases, in other words the linedirihe error. Particularly as tiiedecreases it is
important to verify that the error does not sigrafitly increase or behave in nonlinear manner which
would be difficult to model and correct. This seatinvestigates that concern.

Instead of using the same dataset as before, vikiphoblematic because it is difficult to
ensure the fidelity of long-distance LIDAR readir(@sie to uncertainty where the LIDAR is striking
the vehicle), a different test procedure was pldrened executed to produce data specifically fa thi
analysis. In this procedure, the truck was parkesha end of the large space vehicle handling area,
identified in Figure 6-3, and the sedan was locatedctly behind within the LIDAR detection
window. The sedan was then driven in reverse away fthe truck thereby increasing the inter-
vehicle distance until before exiting the LIDAR eetion range (approximately 80m). After a brief
stationary pause the sedan was then driven forteavdrds the truck to decrease the inter-vehicle
distance. The goal was to simulate an impendintismm. The same procedure was repeated for
several iterations. This procedure provided dat thas significantly “cleaner” than the data
collected while driving around the track.

Figure 6-13 compares the collected data for thedstamates, hybrid and real-time, against
the LIDAR ground truth. Again, from this preliminavisual inspection, the estimates show generally
good correlation to the LIDAR ground truth. Thefelience between the estimates and the ground
truth was again calculated and the result for @ifipesubset period of the dataset is shown in fégu
6-14. It is noticeable that the error is larger whbhe sedan is transient, either towards or away,
compared to when it is stationary. This is expeetedhost GPS receivers improve position fix based
on previous data through some type of low-pasveraging filter. Thus, both a time lag and velocity

dependence is introduced through filtering. It lisoanoticeable that the error is generally positive
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during the approach maneuver and negative duriagrse. When the GPS estimates are plotted
against the LIDAR data as shown in Figure 6-15 #ffect appears as hysteresis. It is believed that
this hysteresis is due to a combination of the sedavel direction and an inherent “delay” of the
estimates in comparison to the LIDAR. This hystisreffect is further examined later.

Figure 6-15 also provides a preliminary visual extpon of the linear behavior of the error
for both GPS-based estimates as the sedan is iorméis the ground trutd increases or decreases,
it is expected that the hybrid and real-tichestimates change linearly as well. Figure 6-15 icasf

that they do follow an expected linear behavior.
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Figure 6-13: Estimates vs. Ground Truth, Forward/Reerse Procedure
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Since the estimates demonstrate a linear behawisrexpected that their errors would also
be linear as a function of distance. Again it isrenamportant to confirm that the error does not
consequently grow as the sedan approaches the Figtke 6-16 is similar to Figure 6-15 except that
it is a plot of the errors of the estimates (thauhes trended in Figure 6-14) versus LIDAR. Agdhe
hysteresis effect is observable but a generaltitygia also observed during the approach and szver
maneuvers. Figure 6-17 focuses only on the subfsatrar data during the approaches. To quantify
the linearity, the MATLAB curve fitting toolbox wassed to apply a linear fit to this data. The rssul
are also shown in Figure 6-17. Although there dightly positive slope in the error, it is beligve
that this is related to the hysteresis effect. Morportantly, the results clearly show that theefor
either estimate does not significantly grow or behaon-linearly as the gap decreases between the

vehicles.
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Figure 6-16: Estimate Errors vs. Ground Truth Inter-vehicle Distance
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Figure 6-17: Error Behavior during Vehicle Approach

6.5 Measurement Hysteresis
Figure 6-16 also visually confirms the hysteredfeat by showing the shift in the error

during approach and departure. From the figure hiisteresis spread is approximately 5.0m. Table
6-1 and Table 6-2 quantify the mean and varianceefzh of the “events” during the testing. The
hysteresis is also quantified by calculating thffedtnce between the mean of the forward and
reverse events. Although the exact cause of thetgsis was not determined, the spread is believed
to be due to several factors which are briefly dised here. First, the travel direction of the clehi
affects the sign of the error. The error resultswshin Figure 6-16 are calculated by subtractinggti
correlated samples of LIDAR basddrom GPS based. Since the LIDAR sampling rate is faster,
the LIDAR basedl changes ahead of the GPS estimates. Therefarexpected that the sign of the

error is positive when the sedan is closing in sigded negative during reverse.
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Table 6-1: Hysteresis Results for Hybrid System

Mean (m)| Variance

Stationary 2.05 0.4
Forward 4.8 0.73
Reverse 0.04 0.85

Hysteresis 4.76

Table 6-2: Hysteresis Results for Real-Time System

Mean (m)| Variance

Stationary 2.16 0.63
Forward 5.27 1
Reverse -0.44 1.12

Hyteresis 5.71

The magnitude of the spread is dependent on thensiedveling velocity and the sampling
characteristics of the sensors. As the relativeciyl between the vehicles increases the errohen t
inter-vehicle distance will increase proportiondlgcause the sensor sampling frequency is constant.
Subsequently a measurement “delay” will be intredlbecause the sensor will not be able to report
as quickly as the rate of changing position. THaydeffect is easier to confirm in Figure 6-18 whic
focuses on the lower left corner of the data fragufe 6-15 but only for the real-time estimate. As
the sedan approaches the truck and slowly decetetata stop; the data points stop changing along
the x-axis because the LIDAR measurement has ¢eBle the values continue to change along the y
because of the slower response of the GPS baseslima®nt. Upon departure, the LIDAR responds
first as evident by data points changing in x armain locked in y, which again demonstrates the

delay effect. Although not shown, this delay affelsio occurs at the opposite end of the test.
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Figure 6-18: Close Inspection of Delay Effect

The approximate error of the measurement delayeajuantified knowing vehicle traveling velocity
and sensor sampling rate. For example, the SanG®Sesensors are designed with an internal update
rate of 5 Hz and the average maximum velocity acdeduring the testing was 20 mph (8.9408 m/s)
while driving in the forward direction. Dividing ifhhmaximum speed by the GPS update rate returns
an approximate error of 1.8m. Similarly this erexists for the LIDAR measurement as well.
However, since the LIDAR system samples at a higatr (37.5Hz) the maximum velocity delay
error would be instead 0.24m using the same cdlonlaSince error is compared against the LIDAR
measurement in Figure 6-16, the two values coulddmbined resulting in an estimate of 2.0m for
measurement error strictly due to delay. Since 2hsn error would exist in both directions, the
hysteresis would appear as 4.0m in Figure 6-16tduthe delay error alone. Since the real-time
system relies on wireless communication to excharmjecle telemetry with surrounding vehicles
there is also likely delay due to wireless netwlalency and subsequently additionally increased
error. This may explain the larger hysteresis tesuthe real-time system when compared to the

hybrid system in Table 6-1 and Table 6-2. Fromdfiest results the GPS timestamp difference
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between receivers would nominally jump from 0.2csets to 0.4 seconds. This means on average
there was an additional 0.2 second delay introdwhesl to network latency. The additional 0.2
seconds of delay due to network latency would adddditional 3.6m of hysteresis spread to the
original 4.0m estimate. The predicted hysteregigrarould be in the worst case 7.6m. In summary
based on this rough analysis, the hysteresis eviddfigure 6-16 is within reasonable expectation.

is important to note that this hysteresis spreadeents the total combined error in both direstioh
travel. The large magnitude of approximately 5mas the expected error the GPS collision system

would experience.

6.6 Summary
In this chapter, the error of inter-vehicle distamseasurementl, was specifically analyzed.

Measured values were compared between the GPS hybrid systdmgh grade GPS system used in
conjunction with a low grade system), the real-tisystem (prototype low grade GPS collision
system), and a LIDAR sensor. Error was evaluateddoyparing the measureldsalues of the hybrid
and real-time system against the LIDAR. Analysiutes reported the error to be within 1.3 meters.
The effect of this error on the collision warningrameter was subsequently analyzed. Even with
largeAd the effect on the warning parameter is minimal parad to other parameter variations. The
results of this section should address concermghether GPS could be accurate enough compared to
the current forward scanning techniques. The lineaf Ad error was also investigated. Results
showed thatd and subsequently its error behave linearly throughincreasing and decreasing
spacing. Through a specific test procedure execttedather data for the linearity analysis, a
hysteresis in the error was identified. Although #xact cause for the hysteresis was not determined
several factors inherent to the data acquisitiones® and test procedure execution could be
contributing. Overall the results of this chapteow thatd as measured by GPS is stable and useable

for collision detection.
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Chapter 7 CONCLUSIONS

7.1 Summary
Previous surveys of accidents by the NHSTA identéfar-end collisions to be a major

percentage of overall vehicle accidents. Most ekéhaccidents are a result of driver inattentiah an
are due to a driver following the preceding vehide closely. Forward collision warning detection
systems are currently being developed to addrese thafety concerns. In most systems, the distance
between the vehicles is actively measured by admivwscanning sensor system such as Radar or
LIDAR. When this inter-vehicle distance measuremfalls below a certain threshold, an alert is
provided to the driver. However, these forward soag type sensor technologies have performance
limitations. They require direct line of sight amfer preceding vehicle velocity from changes in
inter-vehicle distance. Also in certain environngécwnditions the sensors can become covered with
particulate (sand, dust, water) that adverselycaffee measurement.

This thesis investigated alternative methods fforevard collision warning (FCW) system.

In particular, an alternative solution was investigl which utilizes GPS technology. For military
applications, GPS was an attractive option sinde iieadily available on most vehicles and is low-
cost to incorporate. A GPS-based collision detectgystem was designed, fabricated and
successfully demonstrated on three HEMTT vehictahe YUMA proving grounds. The details of
the prototype systems that were developed anditestee presented in Chapter 3.

The work of this thesis focused on developing ahogblogy to evaluate measurement
uncertainty in the system and how it affects therall output which is the alert to the driver. A
framework for evaluating this uncertainty was fipsésented in Chapter 4. The framework combines
the results of an error analysis applied to eacthefinput measurements and sensitivity analysis of
the overall system algorithm. The results of thesgwvity analysis identified how each of the input

parameters contributes to the warning parameter stsbject vehicle approaches a leading vehicle.
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Dominant parameters included the inter-vehicleatis¢, velocity, relative velocity, and system
timing parameters.

The analysis showed that parameters affectingilrerts warning each have a varying level
of influence on the warning parameter. Specificalige driver tuning parameter and friction
coefficient parameter exhibited minimal influenEer the error analysis, only the friction coeffitie
parameter was characterized using the velocity unreagent from the GPS sensor. Using the worst-
case friction coefficient values from this analyaisng with representative error values for theepth
parameters, the final uncertainty analysis wasiegpiThe key takeaway of this analysis was that,
when parameters of the warning algorithm are iorethe alert to the driver can have increasing
error. In a field application, a full understandiofjthe inherent measurement errors through this
analysis could be used to correct the warning petrantalculation so that it approximates an ideal
error-free calculation, thus providing a bettertale the driver.

The remaining chapters of the thesis focused on @#&®ion accuracy affects on inter-
vehicle distance measurement. First Chapter 5 tokloser examination of sensor noise by
evaluating the stochastic noises of the GPS seMeddentify these sensor errors, a technique known
as Allan Variance analysis was applied. Allan Viacia has been widely used and adopted by several
organizations for identifying stochastic noise mses of sensors. The dataset for this analysis
included a full period of 24 hours where the sesisegre undisturbed so that only noise would affect
the measurement. For the GPS sensors, random \ppkaeed to be the most significant noise
process. This was clearly evident in the raw timendin data. There was good agreement of this
specific noise type across all three GPS sensdystmthe latitude and longitude directions. A &mi
Allan Variance analysis was performed on the acaming accelerometer sensor.

In contrast to the GPS error, the correlation déaan the 3-axis accelerometers was not as
evident. From the time domain analysis, it appeé#natiquantization and possibly bias were the most

significant noise contributors. The result of thkaA variance analysis did not conclusively indécat
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specific noise model for accelerometers from onbicke to another, and there was no strong
agreement across the three sensors or even inhtke directions. This may be due to the
accelerometer orientation inconsistencies during time of assembly/fabrication, manufacturer
variation, differences in the electrical environmefieach sensor, etc. In addition, the resultarof
autocorrelation analysis did confirm that the ndisdéhe accelerometers was not random and that
there is some correlation between the successiwplea of data. This is possibly due to the low-pass
filter that is part of the breakout interface citdward used to interface the core accelerometes®

to the embedded microcontroller.

Finally, chapter 6 analyzed the inter-vehicle distameasurement accuracy by comparing
this measurement between the low-cost GPS solused in the prototypes, a mixture of a low-cost
unit and a high-end GPS unit, and then a rearweadring LIDAR sensor. The LIDAR sensor was
assumed as ground truth. The results of this casgrashowed the inherent lag or delay in the inter-
vehicle distance measurement when using GPS. (usitive note, the accuracy of the GPS-based
measurements closely matched the LIDAR measureridmt. low-cost GPS sensors have a CEP
position accuracy of 3.3m. And since two GPS urmite used to calculate the inter-vehicle
measurement, the worst case error was expectegl@®bin if the errors are combined. Instead, it was
shown that the error was generally less than thisticase estimate due to the correlation benafits
multiple sensors operating simultaneously, sintidadifferential GPS. In other words, inter-vehicle
distance measurement errors were reduced dueabdoor correlation.

In summary, a GPS-based alternative solution fowdod collision warning/detection was
introduced. The system was produced in the forra sinall number of prototypes, and their use as
was demonstrated through actual field testing invog-like situations. However, incorporating
additional technigues could greatly improve thefqremance of the system. In a separate but parallel

study, Stephen Chaves evaluated the use of Kalittariniy to fuse the velocity as measured by the
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GPS with velocity derived from the accelerometerttis thesis, a framework for analyzing system

error and uncertainty was investigated.

7.2 Future Work
The analytical framework used to determine expegtedsurement uncertainty is not specific

to the GPS-based collision detection system anttidmeialso applicable to traditional and currently
developing solutions. Regardless of the solutioteohnology used it is important to characterize th
measurement errors and evaluate their effect sartbertainty can be properly handled, especially if
a sensor deteriorates or becomes completely urausialbing operation. There are additional topics
that could be addressed as future work to gairtiaddl benefits.

Improved characterization of input measurement erras

The results of the error analysis applied to thaifm coefficient were only used in the uncertgint
analysis while estimates from previous literatuerevused for the remaining parameters. For better
uncertainty analysis, actual error values fortadl input parameters could be derived from apprtepria
test data. This would involve defining the propesttprocedures that includes the use of accurate
ground truth measurements. Ideally if a test proceedould be designed where the subject vehicle
virtually collides with the vehicle, or object imoht, the truest collision data could be gathered

including variations in normal driver response.
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Evaluate other collision scenarios

The collision scenario investigated in most of Wk in this thesis involved two vehicles traveling
at a constant cruising speed at some distancehemmdthe leading vehicle aggressively stops. This
scenario was selected as it closely representsalyponvoy driving missions. Future work should
involve investigating other scenarios. Examples bhoth vehicles are traveling at different speeds,
leading vehicle braking while following vehicle &celerating. Additional collision test cases for
consideration are also provided &9].

Evaluate other methods for friction coefficient esmation

The friction coefficient estimation analysis useerén simply involved interpretation of the slope
profile of the velocity data during skid brakingdditional methods to estimate friction coefficient
exist and should be investigated and their regukimors should be compared.

Verify stochastic noise models

The result of the Allan variance analysis providestochastic noise model. Although it was not
considered in this work, this model of noise vaoiatcould be used to corrupt a clean measurement
signal and then compared against an actual signadrify the validity of the noise model. A method
for this analysis and results has been reportegelath in a technical report produced for the Fadder
Highway Administration41][39].

Evaluate less conservative uncertainty analysis adgthms

The uncertainty analysis equation used here repi®$lee most conservative uncertainty estimator,
using the delta or sigma terms for each measureriiéig method is sometimes referred as the 1-
norm approach. For better results, a less con$esvalgorithm may be used for evaluation such as 2-
norm approach which involves the use of the vagarfche measurement. Other non-linear methods

also exist that should also be evaluated.
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Use better ground truth measurement for inter-vehite measurement comparison

In Chapter 6, the LIDAR sensor was used as grourtt but suffered from some target confusion.
For future similar testing, it is recommended atfustrial string-pot be used to get better grounthtr
measurement accuracy. The LIDAR or other forwardneing sensor technologies could be
compared to the ground truth as well as the GP& toue comparison. Further, using such a simple
analog potentiometer, one could confirm that thlaydeseen in comparing the GPS data to LIDAR
are solely due to GPS and not due to processiogsarr LIDAR.

Thorough survey of inter-vehicle networks

In the GPS-based FCWS approach, vehicle-to-velit2®) communication is absolutely necessary.
Otherwise, this alternative solution is not possibiHere V2V was established through wireless
communication and a simple commercial of the st@DTS) network architecture (802.11N). A
standard protocol (TCP/IP) was used in this devaknt phase. During testing, this configuration
presented limitations in range and stability andbssguently the test procedures were tailored
appropriately. For future work, other wireless matevarchitectures should be evaluated on the basis
of these criteria and to have additional secuNtgtwork security is critical for military applicatis.
Inter-vehicle communication, for example using DSR@ios, can provide significant benefits other
than just FCWS and is currently a popular areaestarch largely supported by the U.S DOT’s
Research and Innovative Technology AdministratiRiTA) as part of the Intelligent Vehicle-Based
Safety Systems (IVBSS) initiativel?] [40]. A number of studies have already been conduatet!
serve as a good starting point for this ta&3[§1], [44][42], [45][43)].

Outside Environment Drift Characterization

In the future it would be beneficial to perform imiar analysis of higher-end GPS receivers to
examine any changes in noise terms. Also, the G@&uanements in this experiment were collected
inside a building acquired from a GPS repeateriostatFuture work should also include the

characterization of GPS drift in an outside envinemt.
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Multi-sensor Fusion

In the proposed prototype system, GPS informasofused with a basic 3-axis accelerometer. Data
from the accelerometer could be used to improvevitsacle telemetry estimates, for example to
determine when the vehicle is experiencing rapicekeation changes to provide better input on
relative vehicle velocity, and friction. Additionaénsors were considered during the prototype desig
process including: vehicle odometer and speed, @naed map information. These sensors were
ignored due to core focus on GPS and design limitat(system must be vehicle non-intrusive, plug
and play compatible, etc). For future work, thesessrs should be still considered in improving the
robustness of the system. Additionally as concégtuelligent highway systems become reality,
real-time road condition information will also berteficial.

Real-Time Implementation

The analytical approach presented here was appffdthe to experimental and simulated datasets.
Real-time methods for identifying sensor error dobe developed. The uncertainty analysis could
also be implemented in an embedded environment tmosiding real-time assessment of
measurement uncertainty. If uncertainty changesrnegative manner, error correction models could
be called upon to provide temporary accuracy uthi issue is resolved. The real-time

implementation could also be used to identify whensors are degraded or failing.
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APPENDIX A
SAN JOSE FV-M8 GPS RECEIVER
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@: San Jose

GPS Engine Board
Model: FV-M8

E'!y_

FEmbedded Anternast

100=03mn

Specifications:

<1
8
o
8
g
@
g
3
2
Q
3
?‘T PHYSICAL CONSTRUCTION PERFORMANCE
=
) Built-in
2 | ||Dimension L30mm*W30mm*H8.6mm Highly-reliable ceramic patch
E" Antenna
3 Sensitivity  |[-158dBm
w
4
g , 1 channel (Support WAAS,
4 ||Weight 15 grams SBAS
g EGNOS, MSAS)
aF
3 DGPS RTCM Protocol
E3
= ||Receiving Receiver
2 1575.42MHZ; C/A code 32 parallel channels
‘é frequency architecture
8 Hot start "1 sec. typical
Bpin connector with 1.0mm
Connector itch Start-up time |[Warm start "35 sec. typical
pitc
Cold start 41sec. typical
Position Without aid 3.3 m CEP
Mounting Soldering
accuracy DGPS (RTCM) [[2.6 m

P==E | san Jose Technology, Inc. | 11F, No.2, Sec. 4, Jhongyang Rd., Tucheng City, Talpei County 236, Taiwan

Q
i

(R.O.C.) |Tel: 886-2-22694456 | Fax: B886-2-22694451 | sanav@sanav.com
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@ SANAV.

Construction

Full EMI Shielding

Velocity

accuracy

0.1 Knot RMS steady state

ENVIRONMENTAL CONDITIONS

Update Rate

1 ~ 5Hz

aul %Bojouas) 3sor ues gnozd@

0OoU INeLIIM 36UeLD 01 12lqns suoneayoads |y

Operating: -30 ~ +80 Power Supply [|3.3~5V +- 5%
Temperature
Storage: -40 ~ +85 C Acquisition ”63mA
Tracking S9MA (first 5 minutes)
COMMUNICATION Current
42mA (after 5 minutes)
Consumption
Protocol "NMEA V3.01 33mA (after 20minutes)
Signal level HUART @ 2.8V *2
INTERFACE CAPABILITY
4800 bps (default) &
Standard Default [|RMC, GGA, GSV*5,
Baud Rate 4800/9600/38400/57600/11520
Output VTG, GSA*5
P - 0 bps are adjustable
Sentences |loptional I GLL, ZDA
FGFESA NAV 11F, Mo.2, Sec. 4, Jhongyang Rd., Tucheng City, Taipei County 236, Taiwan (R.0.C.)

San Juse Technology, Inc.

Tel: 886-2-22694456 | Fax: 886-2-22694451 | sanav@sanav.com

wWww.sanav.com
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APPENDIX B
MATLAB CODE: SENSITIVITY ANALYSIS

% The following test procedures are taken from the IVBSS Light Vehicle
Test
% Plan published by the NHTSA

%% FCW RE-3

% Rear End Conflict with an Aggresively Slowing POV

% Vehicle)

% Parameters

% Subject Vehicle Velocity = 20.1 m/s (45 mph)

% Principal Vehicle Velocity = 20.1 m/s (45mph)

% Principal Vehicle Deceleration = 3.5 m/s”*2 (7.8mp h)
% Relative Velocity = 11.2 m/s

% Initial Intervehicle Distance = 80 m (263ft)

% Warning Distance = 5 m (11.5ft)

clear

% close all

xsv(1) = 0; %Subject Vehicle Starting Position (m)

xpv(1) = 80; %Principal Vehicle Starting Position (m)

vsv(1l) = 20.1; %Subject Vehicle Velocity (m/s)

vpv(1) = 20.1; %Principal Vehicle Velocity (m/s)

apv(l) =-3.5; %Principal Vehicle Deceleration

vrelative(1) = abs(vsv(1)-vpv(l)); %Relative Velocity (m/s)

d(1) = 80; %Starting intervehicle distance
%First calculate the Total Time of Experiment

dt=.5;
t=0;
i=2;
%C Create Distance Measurement For Given Set of Test Conditions
for i=2:15
% whilet< T
xsv(i) = vsv(1)*dt+xsv(i-1);
vpv(i) = vpv(i-1)+apv*dt; %Principal Vehicle Change in Velocity

vsv(i) = vsv(1);
xpv(i) = vpv(i)*dt+xpv(i-1);
d(i) = abs(xsv(i)-xpv(i));
vrelative(i) = abs(vpv(i)-vsv(1));
t = t+dt;
time(i) = t;
i=i+1;
end

%Create Figure of Test Profile
figure

subplot(211)

plot(time,d)



ylabel( 'Inter-Vehicle Distance (m)' );

xlabel(  'Time (secs)' );

grid

subplot(212)

plot(time,vsv,time,vpv,time,vrelative);

legend( '2nd Vehicle' , 'Lead Vehicle' , 'Relative Velocity' )
ylabel(  'Velocity (m/s)' );

xlabel(  'Time (secs)' );

grid

%Define parameters for algorithm
numpts = length(d);

interdistance = d; %intervehicle distance (d)

velocity = vsv(1)*ones(1,numpts); %velocity of subject vehicle (v)

% vrelative = vrel*ones(1,numpts); %calculated abov e

accel = 8*ones(1,numpts); %deceleration capability of subject vehicle (a)
timedelay = 1.4*ones(1,numpts); %system time delay (tau)
buffdistance = 5*ones(1,numpts); %buffer distance (do)

friction = 0.8*ones(1,numpts); %tire fricition coefficient (mu)
drivertune = ones(1,numpts); %driver tuning coefficent (Kdriver)

for i=l:numpts

d = interdistance(i);
v = velocity(i);

vrel = vrelative(i);

a = accel(i);

tau = timedelay(i);
do = buffdistance(i);
mu = friction(i);
dtune = drivertune(i);

%Calculate warning parameter
WP(i) = (d)/((0.5*(v"2/a - (v-vrel)*2/a)+v*tau+ do)*mu*dtune);

%Derived Partial Equations

%Distance
dd(i) = (a)/(dtune*mu*(a*do+a*tau*v+v*vrel-0.5* vrel"2));
Sdd2(i) = abs(dd(i)*d/WP(i));

%Velocity
dv(i) = (a*d*(-1*a*tau-vrel))/(dtune*mu*(a*(do+ tau*v)+(v-
0.5*vrel)*vrel)"2);
Sdv2(i) = abs(dv(i)*v/IWP(i));

%Relative Velocity
dvrel(i) = -(a*d*(v-vrel))/(dtune*mu*(a*(do+tau *V)+(v-
0.5*vrel)*vrel)"2);
Sdvrel2(i) = abs(dvrel(i)*vrel/WP(i));
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%Deceleration
da(i) = (d*vrel*(v-.5*vrel))/(dtune*mu*(a*(do+t
0.5*vrel)*vrel)"2);
Sda2(i) = abs(da(i)*a/WP(i));

%Delay Time
dtau(i) = -(@"2*(d)*v)/(dtune*mu*(a*(do+tau*v)+
Sdtau2(i) = abs(dtau(i)*tau/WP(i));

%Buffer Distance
ddo(i) = -(a"2*d)/(dtune*mu*(a*(do+tau*v)+(v-0.
Sddo2(i) = abs(ddo(i)*do/WP(i));

%Friction Coefficient
dmu(i) = -(a*d)/(dtune*mu”2*(a*(do+tau*v)+(v-0.
Sdmu2(i) = abs(dmu(i)*mu/WP(i));

%Driver Tuning Coefficient
ddtune(i) = -(a*d)/(dtune”2*mu*(a*(do+tau*v)+(v
Sddtune2(i) = abs(ddtune(i)*dtune/WP(i));

end

figure

TIME=time;
plot(TIME,Sdd2, TIME,Sdv2, TIME,Sdvrel2, TIME,Sda2,TIM
E,Sdmu2,TIME,Sddtune2)

title(  'Relative Sensitivity' );
ylabel( 'Magnitude' );

xlabel(  'Time (secs)’ );

grid

legend( 'd" ,'v' ,'v_{rel} , \alpha' ,'d_o" ,"\tau'

, \mu’
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5*vrel)*vrel)"2);
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APPENDIX C
MATLAB CODE: ALLAN VARIANCE ANALYSIS FOR GPS & ACCE LEROMETER

function  [AWLS] = allanVariance(data, dataRate, noiseModel,

%% Allan variance analysis
%

% Created by : Kshitij Jerath; Email: kjerath@ps
% Dated - 05 April 2010

% Edits by Sanket Amin, April 15 2010

%

% INPUTS

% data : Data on which Allan variance anal
[nx1]

% dataRate : Sampling frequency (e.g. 25 Hz)
% noiseModel : Array indicating noise sources to

% E.g. [1 00 0 0] corresponds to

% [0 1 0 0 O] corresponds to

% [0 01 0 0] corresponds to

% [0 00 1 O] corresponds to

% [0 0 0 0 1] corresponds to

% [0 00 1 1] corresponds to

% rate ramp in noise model, a

% tau : Tau vector, if empty will default
% internally

% debug . if value of one will produced plo

%

% NOTE : Empty inputs such as allanVariance([],[].[
% values of data and dataRate to default white nois
respectively

%

% OUTPUT
% AWLS : Weighted least squares estimate f
%

%% Code follows

tau, do_debug)

u.edu

ysis is to be performed

include in model
quantization error
angle random walk
bias instability

rate random walk
rate ramp

rate random walk and
nd so on;

to calculation

ts

1000 0]) sets the
e and 100Hz

or coefficients

disp( 'Processing...' );
if (isempty(do_debug))

do_debug =1; %Plotting allan variance and weight least squares f it
end

if (isempty(data))

warning( '‘No data entered - setting default data to white no

data = 10.*randn(100000,1);
end
if (isempty(dataRate))

warning( 'Data rate not entered - default data rate = 100 Hz

dataRate = 100;
end

ise' );



if (isempty(tau))
len = length(data);
ordermax = numel(num2str(fix(len/dataRate)))-2;
correlation time based on data length
order = fix(log10(1/dataRate));
taul=11,2,3,4,5,6,7,8,9];
tau2 =;

while (order < ordermax)
tau2 = [tau2, (10™order).*taul];
order = order + 0.5;
end
tau = sort(tau2);
RootAllanVar = zeros(1,length(tau));

%% Calculation Loop - varying tau
for (count = 1:1:length(tau))
t = round(tau(count)*dataRate);
numDivisions = floor(len/t);
Avg = zeros(1,numDivisions);
Diff = zeros(1, numDivisions-1);
for (index = 1:1:numbDivisions)
Avg(index) = (sum(data(t*(index-1)+1:t*
end
for (index = 1:1:numbDivisions-1)
Diff(index) = Avg(index+1) - Avg(index)
end
RootAllanVar(count) = sqrt(0.5*mean(Diff.*D
root allan variance
if (mod(count,15) == 0)

disp( '‘Processing...' );
elseif (mod(count,10) == 0)
disp( '‘Processing..’ )i
elseif (mod(count,5) == 0)
disp( '‘Processing.’ )i
end
end

end

%% Calculation Using allan.m (3.0)
% This section added by Sanket Amin
%Prep Data

Data.freq = data; %Raw Frequency Measurement

Data.rate = dataRate; %

% Allan Variance
Tau =tau;
[avar]=allan(Data, Tau);

% Plotting data and Allan variance
if (do_debug==1)

% Maximum possible

index)))/t;

;  %in degrees per sec

iff ));

% Calculating
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figure
subplot(311)
loglog(Tau,avar.sig, '0" , 'Markersize' ,3',  'Markerfacecolor'
title( 'Standard Deviation' );
ylabel( 'Sig );
h = xlabel( 'Tau Correlation Time (in seconds)' );
set(h, 'Fontsize' ,13Y;
h = ylabel( 'Root Variance (deg/sec)’' );
set(h, 'Fontsize' ,13Y;
grid on;
subplot(312)
loglog(Tau,avar.sig2, ‘0" , 'Markersize' 3", 'Markerfacecolor’
title( ‘Normal Allan Deviation’ );
ylabel( 'Sig );
h = xlabel( 'Tau Correlation Time (in seconds)' );
set(h, 'Fontsize' ,13Y;
h = ylabel( 'Root Allan Variance (deg/sec)' );
set(h, 'Fontsize' ,13Y;
grid on;
subplot(313)
loglog(Tau,avar.osig, '0' , 'Markersize' ,3',  'Markerfacecolor'
title( '‘Overlapped Allan Deviation' );
ylabel( 'Sigh ),
h = xlabel( '"Tau Correlation Time (in seconds)' );
set(h, 'Fontsize' ,13Y);
h = ylabel( 'Root Allan Variance (deg/sec)’' );
set(h, 'Fontsize' ,13Y;
grid on;
end

%% Data Fitting to obtain coefficients

[0.5,0.5,0.95]);

[0.5,0.5,0.95])

0.5,0.5,0.95])

RootAllanVar = avar.osig; %Using Normal Allan Deviation

weight = 1./RootAllanVar; % Needed for performing weighted least squares
% weight = (ones(length(RootAllanVar),1))";

TAU =];

TAU2 =];

if (noiseModel(1) ==1)

TAU = [TAU;tau.M(-1)];

TAU2 = [TAU2;weight.*tau.(-1)];
end
if (noiseModel(2) ==1)

TAU = [TAU;tau.”(-0.5)];

TAU2 = [TAU2;weight.*tau.”(-0.5)];
end
if (noiseModel(3) ==1)

TAU = [TAU;tau.N0)];

TAU2 = [TAU2;weight.*tau.”(0)];
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end
if (noiseModel(4) == 1)

TAU = [TAU;tau.”(0.5)];

TAU2 = [TAU2;weight.*tau.”(0.5)];
end
if (noiseModel(5) == 1)

TAU = [TAU;tau.M1)];

TAU2 = [TAU2;weight.*tau.(1)];
end

%invTAU = (inv(TAU2*TAU2"))*TAUZ;
%AVARwWt = weight.*RootAllanVar;
%AWLS = invTAU*AVARWL';

AVARwt = weight.*RootAllanVar;
AWLS = TAU2\AVARwWL';
% [estimates, model] = fitcurvedemo(tau,RootAllanVa

% [sse, FittedCurve] = model(estimates);

%% Plotting fitted curve
if (do_debug==1)

figure
loglog(tau,RootAllanVar, ‘0" , 'Markersize'
1);hold on;
h = xlabel( '‘Averaging Time (secs)' );
set(h, 'Fontsize' ,13);
h = ylabel( 'Allan Deviation (degs)' );
set(h, 'Fontsize' ,13);
h =gca;
set(h, 'Fontsize' ,13)

% legend('Processed data','Fitted curve);
grid on;

AVAR(it = AWLS*TAU;

plot(tau,AVAR(it, 't , 'Linewidth' ,3, 'Color'

corr([RootAllanVar',(AWLS*TAU))
legendl = \sigma_{FIT} =" ;
flag = 0;

if (noiseModel(1)==1)
legl = "A_{-2)Maun{-1}' ;
legendl = strcat(legendl,legl);
flag = 1;
end
if (noiseModel(2)==1)
leg2 = "A_{-1})taun{-0.5}" ;
if (flag ==0)
legendl = strcat(legendl,leg?2);
flag = 1;
else

r);

'‘Markerfacecolor'

[0.95,0.5,0.5]);

,[0.5,0.5,0.95
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legendl = strcat(legendl, '+ leg2);
end
end
if (noiseModel(3)==1)
leg3 = "A_{O\taur{O} ;
if (flag ==0)
legendl = strcat(legendl,leg3);
flag = 1;
else
legendl = strcat(legendl, '+ leg3);
end
end
if (noiseModel(4)==1)
leg4 = "A_{1}\tau™{0.5}" ;
if (flag==0)
legendl = strcat(legendl,leg4);
flag = 1;
else
legendl = strcat(legendl, '+ leg4);
end
end
if (noiseModel(5)==1)
leg5 = "A_{2)\tau™N{1}' ;
if (flag ==0)
legendl = strcat(legendl,leg5);
flag = 1;
else
legendl = strcat(legend1l, '+ legb);
end
end
legend2 = legend( 'Allan Deviation from data’
% legendl = legend('Root Allan Variance from data’,
A_{-2)\tau{-1} + A_{-1}\tau’{-0.5} + A_{O}\tau™{0}
20 tau{-1} + A_{-1}\tau™{-0.5} + A_{O}tau™{0}+
A_{1)\tau™0.5} \sigma_{FIT} = A_{-2})\tau{-1} +
A {O\taur{O}+ A {1})\tau™{0.5}+ A_{2}\tau™{1},'Fon

set(legend2, 'FontSize' ,9, 'FontName' , 'Calibri’

end

, legendl);
\sigma_{FIT} =
"“\sigma_ {FIT} = A {-

A {-1}tau-0.5} +
tsize',8);

);
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APPENDIX D
MATLAB CODE: ALLAN.M

function  [avar]=allan(data, tau)

% Compute various Allan deviations for a constant-r
% [AVAR]=allan(DATA, TAU)

%

% INPUTS:

% DATA should be a struct and has the following fie
% DATA.freq the time series measurements in arb
% DATA.rate constant rate of time series in (Hz

% (Differently from previous versions
% it is not possible to compute varia
% stamp data anymore.)

% TAU is an array of the tau values for computing A
%

% OUTPUTS:

% AVAR is a struct and has the following fields (fo
% AVAR.sig = standard deviation

% AVAR.sig2 = Allan deviation

% AVAR:.sig2err = standard error of Allan deviation
% AVAR.osig = Allan deviation with overlapping
% AVAR.osigerr = standard error of overlapping All
% AVAR.msig = modified Allan deviation

% AVAR.msigerr = standard error of modified Allan
% AVAR.tsig =timed Allan deviation

% AVAR:.tsigerr = standard error of timed Allan dev
% AVAR.taul = measurementintervalin (s)

% AVAR.tauerr = errors in tau that might occur be
% rounding

%

% NOTES:

% Calculations of modified and timed Allan deviatio
% series become very slow. It is advisable to uncom
% only after calculations of .sig*, .sig2* and .osi

% sufficiently fast.

%

% No pre-processing of the data is performed.

% For constant-rate time series, the deviations are
tau

% values greater than the minimum time between samp

% the total time.

%

% versionstr = 'allan v3.0';

% FCz OCT2009

% v3.0 faster and very plain code, no plotting; va
% can be calculated; script and sample data a
% www.nbi.dk/~czerwin/files/allan.zip

% (Normal, overlapping and modified Allan dev
in one function,

% in strong contrast to MAHs approach of spl
functions. This might be beneficial for individual
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%

% MAH 2009

% v2.0 and others
%

% FCz OCT2008

% v1.71 'lookfor' gives now useful comments; script

% availabie on www.nbi.dk/~czerwin/files/alla

% v1.7 Improve program performance by mainly prede
% of loops (avoiding memory allocation within

% manual
%
% early program core by Alaa MAKDISSI 2003

% (documentation might be found http://www.alamath.
% revision and modification by Fabian CZERWINSKI 20

%
% For more information, see:

% [1] Fabian Czerwinski, Andrew C. Richardson, and
% "Quantifying Noise in Optical Tweezers by Allan V

% Opt. Express 17, 13255-13269 (2009)
% http://dx.doi.org/10.1364/0OE.17.013255

n=length(data.freq);
ji=length(tau);
m=floor(tau*data.rate);

avar.sig = zeros(l, jj);
avar.sigerr = zeros(1, jj);
avar.sig2 = zeros(1, jj);
avar.sig2err = zeros(1, jj);
avar.osig = zeros(1, jj);
avar.osigerr = zeros(1, jj);

% avar.msig = zeros(1, jj);
% avar.msigerr = zeros(1, jj);
% avar.tsig = zeros(1, jj);
% avar.msigerr = zeros(1, jj);

tic;

for j=1ijj
% fprintf('.");

D=zeros(1,n-m(j)+1);
D(1)=sum(data.freq(1:m(j)))/m(j);
for i=2:n-m(j)+1
D(i)=D(i-1)+(data.freq(i+m(j)-1)-data.freq(
end

%standard deviation
avar.sig(j)=std(D(1:m(j):n-m(j)+1));
avar.sigerr(j)=avar.sig(j)/sqrt(n/m(j));

%normal Allan deviation
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avar.sig2(j)=sqrt(0.5*mean((diff(D(1:m(j):n-m(j
avar.sig2err(j)=avar.sig2(j)/sqrt(n/m(j));

%overlapping Allan deviation
z1=D(m(j)+1:n+1-m(j));
z2=D(1:n+1-2*m(j));
u=sum((z1-z2).”2);
avar.osig(j)=sqrt(u/(n+1-2*m(j))/2);
avar.osigerr(j)=avar.osig(j)/sqrt(n-m(j));

% %modified Allan deviation

%  u=zeros(1,n+2-3*m(j));

% z1=D(1:m(j));

%  z2=D(1+m(j):2*m(j));

%  for L=1:n+1-3*m(j)

% u(L)=(sum(z2-z1))"2;

% z1=z1-y(L)+y(L+m()));

% 22=z2-y(L+m(j))+y(L+2*m(}));

% end

% avar.msigerr(j)=avar.msig(j)/sqrt(n-m(j));
% uu=mean(u);

% avar.msig(j)=sqrt(uu/2)/m(j);

%

%  %timed Allan deviation

% avar.tsig(j)=tau(j)*avar.msig(j)/sart(3);
% avar.tsigerr(j)=avar.tsig(j)/sqrt(n-m(j));

% toc
end;

avar.taul=m/data.rate;
avar.tauerr=tau-avar.taul;

toc;
end

)+1)).%2)));
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APPENDIX E
MATLAB CODE: CALCULATE NOISE PARAMETERS

function  [NoiseVals] = CalculateNoiseParameters(ACoeffs)

Q = ACoeffs(1)/sqrt(3);
N = ACoeffs(2);

B = ACoeffs(3)*0.6648;
K = ACoeffs(4)*sqrt(3);
R = ACoeffs(5)*sqrt(2);

NoiseVals = [Q;N;B;K;R];
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APPENDIX F
IEEE 1588 TIME SYNCRONIZATION

The collection of data from multiple systems offgesents a challenge during post analysis
when each system functions off of separate timiagiivare. To prevent this, the systems should be
enabled with time synchronizing functionality tonsironize each of the independent clocks to a
master time clock so that timestamps associateld thiit data are completely aligned. A specific
standard, officially entitledSandard for a Precision Clock Synchronization Protocol for Networked
Measurement and Control Systems’, for this has been agreed upon and is maintainethdyEEE
society. Information for this standard, includirtg implementation, can be found at the following

website link:http://ieee1588.nist.govIn short summary, a high precision timing hardwiarselected

as a master clock on a system. This “master” sygeriodically communicates with other “slave”
systems, usually over Ethernet, sharing the madtmk value. Each slave system compares the
master clock value to its own local slave clockueabnd determines the offset value between the
clocks. Additionally each slave system sends a agesto the master system and awaits a response to
measure the delay in the communication infrastrectdaving measured the offset and delay a slave
system is capable of routinely fully synchronizitgyclock to the master clock.

In the LIDAR experiment procedure, the IEEE 155hdard was implemented across three
laptop computers each collecting GPS data fromethespective receivers. Although GPS is
universally aligned and usually serves as a méister while conducting previous experiments a drift
in GPS time difference was observed between theclmst San Jose GPS receivers, used in the
prototype hardware packages, versus the high-cogatdl GPS unit. The IEEE 1588 standard was
followed and implemented in Mathwork’s Simulink sefire to synchronize the data collected on the
laptop with the Novatel GPS unit attached to thdps collecting GPS and collision data with the

San Jose GPS receivers attached.
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Appendix Figure 3shows the Simulink diagram corcderd for the master system. The input
magter time value is provided as the GPS timestamp producethéyigh-end Novatel GPS unit.
This GPS timestamp value represents the numbezcoingls that have elapsed since the beginning of

the week and does not include leap second cornsctio

catef—C——|
{:I} snd state

M aster Time Stream

kA

&Il
Senrer

t|||| - err
sent

FPulse
Generator

L 4
kA

Sync Senrer
(topip:d 130,203,200, 16680030 sent

glate state 1

kA

snd o

&n zanti

Crelay Serer e
(tepip: 130,203 200, 166:3004
D Syne Time

Mmooy

Appendix Figure 3: Master System Simulink Diagram

Appendix Figure 4 shows the Simulink diagram bfglt the slave systems. Here the input
dave time is provided as the GPS timestamp produced bydivertcost San Jose GPS receivers.
This GPS timestamp represents the number of sedbatfave elapsed since the beginning of the
day at 0:00:00. To compensate in the differendb®fGPS timestamp formats the number of seconds
since the beginning of the week is added to theJdaa GPS timestamp before providing as input to
the slave block diagram. In this diagram the skawe, master time, measured offset, offset cortecte

time, and fully corrected time are all collectedi @aved in a data file for later analysis.



Slave Time1

O
slave time *
n
> time +
g [E— efise >
state = > time Subtract1 Offzat Corrected Time
state
: account for offset >
e ——bl I L
Stream N
Client err Ll
rey
Master Time Updates »
o [— » To et ace
» »
Syno Client new |
{topip 130 203 244 134:8005) -
Master Time

115

The code below analyzesthe delay
due to communication

state _,-blT‘

Stream el

t
e I [—|

B rear

t ol sent

Subtiactz Full Syne Time
Pulse v new _'——+
t Delay Client
n cpip:/7130.203 244, 184:8006 n
pip
Psyme time P int ut

— haold time stamp

account for delay
A

Data Store
Memory

Appendix Figure 4: Slave System Simulink Diagram

The Simulink diagrams shown above were designel plilg and play use in mind and are
available for use in other systems. They can béyeadopted into existing Simulink block diagram
code as subsystems. It should be mentioned thaRQus used to communicate the corrections via
wireless Ethernet. QuaRC is 4 party add-on for Simulink developed by Quansealtow real-time

processing of Simulink diagrams.
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APPENDIX G
CONTINUOUS PARALLEL PROCESS FOR ACCESING SIMULINK D ATA IN
MATLAB

Utilizing a timer function in a MATLAB script allos/the user to break away from the traditional top-
down execution of scripts and allows the user tmiporate parallel processes into their programm@®ige
particularly useful feature of utilizing this isehability to extract values from Simulink simulat® at set
intervals, allowing the user to have regularly updavariables from their simulation. The followipgovides a
step-by-step example of how to use MATLAB to samible value of a dynamic Simulink variable.. In this
example we will create a Simulink diagram contagnantimer and a sine function. Using a separatertim
MATLAB, the value of the Simulink blocks will be swled and plotted every .1 secondgpendix Figure 5
is given as a schematic of overall code execution.

NOTE: One caveat of this technique is its “jitteriness” while executing.

Main M-code Timer M-code Simulink Diagram
Sine
Topto
bottom
code Parallel :
execution Continuous Timer

Execution

Appendix Figure 5: Software Paradigm

1. First, a simple Simulink diagram is drawn usingraer and a sine function with two
display blocks. The values of the two display bkbake what will be imported and
plotted in MATLAB. The sine function block configaion is amplitude of 5 and a

frequency of .01 radians/sec. The diagram useseacdnd time step.
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Appendix Figure 6: Simulink Block Diagram for Timer Example
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2. Below is the main MATLAB code. It creates referenite the two display blocks in the

ocuments and Settings\Sanket\DesktopiGreg Stuffillow to link Simulink and McodeMiming.m

Simulink diagram. It then creates a timer whicHscalplotting function every .1 seconds.

File Edit Text Go Cell Tools Debug Deskiop ‘Window Help

B9 o @ = - | fh ff.-‘,‘ Bl - aﬁ@%@ﬁ B & Stack:. 35E

| =1 |x o o] @

[V, R Y= (R T S T

e N e o
L= T oS O = O - i T S SR S =

27

%icreates a timer function that links the timer and amplitude wvaluss in
#3the simulink diagram witch MATLAE
cl

set parami'FimulinkTimer', 'SimulationCommand', 'start']) %$starts the Simulink model

(takes the amplitude of the sine function

modelname = 'SimulinkTimer';

ohjectname = '/Simp';

rto = get_param([wodelnamwe objectname] , 'Runtimechiect');
Userlata.rta = rto:

ttakes the Simulink tiwer's current value

obhjectname = '/SimTime';

tim = get paraw|[wodelnawe objectnawe], 'Buntimedbisct');
Userlbata.tim = tim;

¥3ets up a timer that executes plotimp file every .1 sec

tZ = timer:

get (t2, ' ExecutionMode', 'fixedRate');

set(t2, ' Period', 0.1);

set (t2, ' TimerFon',@plotimp);

set (tZ,'3topFon', @stopdim); %issues a command to stop the sSimulation when timer is

tZ.UserData = UserData:

%set up plot srea

figure (1)

xlabel (' Time (3] ')

ylabel ('implitude'

title('Sine amplicude vs., Cime'
set (goa, 'nextplot', 'add')

grid on

axis ([0 60 -5 5]}

gtart (t2] %starts timer

$Promprs USer to Stop timer
disp('enter "stop(tZ)" into the command line to stop the simulation')

Appendix Figure 7: MATLAB M-Code for Main Script

sStopped
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3. The function plotAmp is called when the timer exesu It adds the current values of the

amplitude and time display blocks to a plot.

B C:\Documents and Settings\Sanket\Desktop\Greg StuffiHo
File Edit Text Go Cell Tools Debug Deskbop Window Help

DNEd #2399 @ = v e f

B -[o |+ | =[x || @
1 H%plot amwp ws. tCime

2

3 function plotiwp(ohi, event)

4

5 — Userlata = obh]j.Userlata;

5]

7= rto=UzerData.rto;

g — tim=UserData.tim;

9

10

Ll |= amp = rto.InputPort(l) .Data;

1z — simtim = tim.InputPorc (1) .Data;
13

14 — plot(siwtim, stop, 'r-%');

Appendix Fiéure 8: MATLAB M-Code for Timer Script

4. This is the plot that is created as plotAmp exexude the timer executes, a new point is

added to the plot. Note the beginning section efgraph where the points are scattered

These points were plotted while the program rat Wotver precedence and exemplify

the jittery nature of this technique.
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Appendix Figure 9: Captured Simulink Results
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5. When the user stops the timer by typing stop(t®&) the command line, the function

stopSim is executed and the Simulink programappstd.

B C:\Documents and Settings\Sanket\DesktoplGreg StuffiHow to link Simulink and Mco delstopSim.m

File Edit Text Go Cell Tools Debug Deskbop  Window Help
NoH $RRB20 | - Aaeaf  BR-SE-BRBE B | stk
EE| -[to [+ | £t % [EE @

lfunctian stop3imiob]), event)

[ S

- set_paratn (' SimulinkTimer', 'ZimulationCommand', 'stop'] sstops the SJimulink model

Appendix Figure 10: MATLAB M-Code for Stop Script

MATLAB References - topics found in the MATLAB help navigator

1. Timer Functions
a. Creating timer Objects
b. Timer Object Execution Modes
c. Working with Timer Object Properties
d. Starting a Timer
e. Deleting Timer Objects from Memory
2. Controlling Simulink Execution
a. set_param
b. Using the set_param Command
3. Real Time Objects
a. Simulink.RunTimeBlock
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APPENDIX H
LIDAR DATA ANALYSIS

The collected LIDAR and GPS data was post processiéty MATLAB. First specific
subsets of the data were extracted in relatiohd@specific test procedure executed. The subsets we
classified as “Slow LVS”, “Fast LVS”, “iLap LVM”, and “2" Lap LVM". In each of these subsets
of data, the LIDAR sensor data was first procegeeidfer inter-vehicle distance. Each scan of the
LIDAR sensor produces 361 values representing thasored distance to an obstacle within a vision
range of 0 to 180 degrees in ¥ degree incremeatghE data collected during the LVS procedure, a
few scans were first manually visually revieweddentify the region in the scan field occupied by
the sedan. In the explanation of the results Wi, when the sedan is stationary and near tae re
end of the truck, approximate distance 20 metelggy, this event is referred as “In”. Accordingly
when the sedan is distant from the truck, approténtistance of 60 meters or more, this event is
referred as “Out”Error! Reference source not found.andError! Reference source not found.
plot the scan data when the sedan was “In” and t@ert’ respectively. The flattened shape of the
obstacle, clearer visibility iirror! Reference source not found, represents the front bumper of the
sedan. As the sedan backs away from the truckplibtacle width decreases due to the decrease in
LIDAR scan angle resolution. Upon visual inspectitine sedan was consistently identified in an
interval between 84 and 94 degrees. In an autonzetakysis approach, the minimum of the distance

values in this sub-interval was observed as thargtdruth inter-vehicle distance measurement.
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Appendix Figure 11: Sampled LIDAR Scan Data While 8dan Is Near Rear-End of Truck
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Appendix Figure 12: Sample LIDAR Scan Data While Sgan is Distant to Rear-end of Truck



122

During testing, in real-time, the GPS-based inthigle distance estimate was calculated and
stored in the data file. Since this real-time eatamincludes the effect of wireless communication
between the two computers the inter-vehicle esémats again calculated off-line using the raw GPS
information from the prototype hardware units asadditional comparison. Additionally, the inter-
vehicle distance estimate was calculated usingatheGPS information but using the data collected
by the high-quality Novatel GPS/IMU hardware insted the prototype unit installed on the truck.
To compare against the ground truth, an offset ®hfeters is removed from the estimate versions to
compensate for the physical offset of the GPS siolii hardware packages from the LIDAR sensor

on the truck and from the front bumper on the sedan



