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ABSTRACT 

Automotive manufacturers are researching forward collision warning systems (FCWS) to 

reduce the occurrence of rear-end collision accidents between vehicles. Traditionally these 

systems use forward scanning sensor technology such as RADAR or LIDAR to measure the 

distance between the equipped vehicle and other vehicles/obstacles ahead. The U.S. Army is 

using such technology on their ground vehicles but has noticed its performance is sometimes 

compromised due to environmental effects (caking of debris on sensors). This thesis presents the 

work of developing a FCWS that instead uses Global Position Satellite (GPS) technology and the 

available information associated as an alternative approach for collision avoidance in convoy 

situations. This approach however requires a vehicle to vehicle (V2V) network infrastructure to 

share local GPS data among vehicles.  

Sponsorship from U.S. Army and Penn State’s own Applied Research Laboratory (ARL) 

led to the fabrication of three low-cost, embeddable prototype units that were fielded on three 

Army Heavy Expanded Mobility Tactical Trucks (HEMTTs) vehicles navigating through desert 

test courses in convoy formation. These experiments proved the feasibility of such an alternative 

collision detection system.  

The primary goal of this thesis is to evaluate how measurement errors/uncertainty affects 

performance of a GPS-based convoy collision avoidance system. A simple analytical framework 

is presented for merging system sensitivity analysis and measurement input error characterization 

results to determine the uncertainty in the output. The resulting metric is a dimensionless 

parameter corresponding to a range in the probability of collision. To test this approach, field data 

were analyzed and applied within the proposed framework.  

A secondary focus of this thesis is to address a specific concern regarding the feasibility 

of GPS-based collision avoidance approach due to concerns about GPS accuracy. This thesis 
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includes identification of dominant GPS stochastic error sources using Allan Variance analysis. 

The research experimentally compares inter-vehicle distance accuracy, which is a core 

measurement of the system, between the GPS proposed approach and the traditional LIDAR-

based approach in an attempt to address accuracy concerns. As vehicular communication systems 

such as vehicle to vehicle (V2V) emerge in the near future, a GPS-based FCWS will naturally 

provide a lower-cost alternative, or even supplemental, solution to the scanning technologies 

currently implemented. This work thus offers an immediate and substantial opportunity to save 

lives. While the target application of the work discussed here was for rear-end collisions such as 

might be encountered in military convoy operations, the solution could be adopted for the civilian 

commercial sector via straightforward application of existing technology. 
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Chapter 1  
INTRODUCTION 

 In February 2010, the National Transportation Safety Board (NTSB) updated and released a 

“most wanted” list for transportation safety system improvements for aviation, rail, marine, and 

highway sectors. Within the highway sector, one of the most wanted items is to “prevent collision by 

using enhanced vehicle safety technology” [1]. Specifically the objective for this goal states: “reduce 

rear-end collisions through the use of adaptive cruise control and collision warning systems”. The 

NTSB believes that such technology will substantially reduce accidents [2]. The U.S. DOT estimates 

intelligent vehicle system technologies could prevent over 48% of rear-end, run-off-road, and lane 

change crashes [3].  

Several aftermarket collision warning systems (CWS), or forward collision warning systems 

(FCWS), are already currently available for the commercial trucking industry. Auto manufacturers 

are even beginning to include such technology in newer luxury car models. The IIHS has identified 

19 vehicles in 2011 offering forward collision warning [4]. These current systems typically rely on 

forward scanning sensor technologies such as Radar or LIDAR to scan the area in front of a vehicle. 

The U.S. Army is said to be using said technology on some of their ground vehicles but feedback 

from users indicates its performance is sometimes compromised due to environmental effects, 

specifically caking of debris (sand) on sensors. As a result of this specific concern the U.S. Army 

funded the Penn State Applied Research Laboratory to investigate alternative approaches to forward 

collision warning systems.  

This Army-sponsored investigation seeks the development of a low-cost alternative solution 

to overcome performance limitations of the current technology by utilizing GPS technology already 

available on-most military ground vehicles. This alternative solution is different than typical CWS 

solutions because it requires information exchange between vehicles within a closed network, or 

vehicle-to-vehicle (V2V) infrastructure. The military is at the forefront of implementing such 
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communication capabilities with its research eventually paving the way for civilian and commercial 

vehicles. The Army-funded work led to the fabrication of three custom prototype hardware units that 

were actually demonstrated in three Army Heavy Expanded Mobility Tactical Truck (HEMTT) 

vehicles navigating through proving ground desert test courses in convoy formation to prove 

feasibility of such an alternative collision detection system.  

The primary goal of this thesis is to evaluate how measurement errors/uncertainty affects 

performance of a GPS-based convoy collision avoidance system. A simple analytical framework is 

presented for merging system sensitivity analysis and measurement input error characterization 

results to determine the uncertainty in the output. The resulting metric is a dimensionless parameter 

corresponding to a range in the probability of collision. To test this approach, field data were 

analyzed and applied within the proposed framework.  

A secondary focus of this thesis is to address a specific concern regarding the feasibility of 

GPS-based collision avoidance approach due to concerns about GPS accuracy. This thesis includes  

identification of dominant GPS stochastic error sources using Allan Variance analysis. The research 

experimentally compares inter-vehicle distance accuracy, which is a core measurement of the system, 

between the GPS proposed approach and the traditional LIDAR-based approach in an attempt to 

address accuracy concerns. As vehicular communication systems such as vehicle to vehicle (V2V) 

emerge in the near future, a GPS-based FCWS will naturally provide a lower-cost alternative, or even 

supplemental, solution to the scanning technologies currently implemented. This work thus offers an 

immediate and substantial opportunity to save lives. While the target application of the work 

discussed here was for rear-end collisions as might be encountered in military convoy operations, the 

solution could be adopted for the civilian commercial sector via straightforward application of 

existing technology. 

As a quick note, much of the development and preliminary in-field testing for this project was 

jointly completed with a previous masters student Stephen Chaves [5]. His focus for this project was 
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to identify the performance improvement gained by fusing GPS and accelerometer measurements 

using Kalman filtering methods. Some of the future work topics from his thesis are resolved in this 

thesis. Throughout this thesis, several references are made to specific sections of Stephen’s thesis to 

provide more detailed information about certain topics. A review of Stephen’s work is highly 

encouraged as advanced reading prior to study of this thesis. 

1.1 Motivation 

Historical data shows a major percentage of auto accidents are specifically rear-end 

collisions. In 1993, the National Highway Transportation Safety Administration (NHTSA) performed 

a comprehensive survey of rear-end crashes based on 1990 police reported crash/accident data. The 

survey identified 1.5 million rear-end crashes, which constituted 23 percent of all crashes for that year 

[6]. A similar study was repeated using 1994 data and identified 1.66 million police-reported rear-end 

crashes, accounting for approximately 26 percent of all crash types as indicated by Figure 1-1 [7]. In 

addition, a NTSB report published in 2001 identified over 6 million crashes on U.S highways in the 

year 1999 [8]. Almost one-third of this total was specifically rear-end collisions. The same report 

detailed a study of a two year period from 1999 to 2001 where the NTSB investigated nine rear-end 

collisions which resulted in 20 fatalities and 181 injuries (three of the accidents involved buses and 

one accident involved 24 vehicles). The most recent analysis of crash data from 2003 found rear-end 

crashes accounting for 29% of all light-vehicle crashes and 22% of all heavy-truck crashes which was 

the highest category of crash types except for “Other” as indicated by Figure 1-2 [9].  
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Of this subset, 27% was related to driver inattention combined with following too closely. 

phones, navigation systems, and entertainment systems in vehicles 

increase crash statistics.  
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Table 1-1: Predominant Rear-End Crash Factors  

Crash Causal Factor Distribution (Percent) 

Inattention 41 

Inattention/following too close 27 

External Distraction 14 

Internal Distraction 10 

Other 8 

Total 100 
Source: IVI Problem Areas Description:  

Motor Vehicle Crashes - Data Analyses And IVI Program Emphasis [7] 
 

In most rear-end accidents involving inattention, the driver does not have enough reaction 

time to either apply appropriate braking or take evasive action to avoid colliding with the preceding 

vehicle. Providing an early warning notification can increase the driver reaction time. Several 

previous studies have evaluated the potential benefits of implementing such technology. According to 

a 1992 study by Daimler-Benz, a CWS can potentially have a significant impact on accident safety 

statistics. The study found 60% of rear-end collisions could be prevented if the driver was given a 

warning 0.5 seconds ahead of the collision. In addition, 90% could be prevented if a warning was 

provided 1 second ahead [10]. Knipling attempted to model rear-end collision countermeasures to 

evaluate system effectiveness in preventing crashes, identify system functional requirements, and 

identify major factors that influence system performance [11]. One possible design system algorithm 

evaluated for 100 samples points using Monte Carlo simulation techniques yielded a system 

effectiveness of 77 percent. For those simulations that did result in a crash even with countermeasure 

warning given, the analysis identified a 42 percent reduction in crash severity, inferred from a 

reduction in vehicle velocity. Knipling goes on to mention that the importance of the results is not the 
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exact percentages that are obtained but more on the confidence that such technology has the potential 

to prevent crashes and reduce the severity in those that occur. 

Rear-end collisions are also significantly occurring within the military sector, Figure 1-3. In 

2004, Military.com posted a United Press International published article that identified 833 crashes, 

50 deaths, and 223 injuries in 2003 during the Iraq war [12]. These statistics were claimed as the 

worst accident record in 10 years. Furthermore, rear-end collisions are a leading cause of convoy 

‘breakdowns’ in theater [13]. Improving soldier safety is of top priority so as a result the U.S. Army 

TACOM provided funding for developing the GPS-based collision detection system to quickly 

provide forward collision warning capability.  Regardless of whether for civilian or military 

application, the statistics previously discussed indicate a clear and recognizable need for CWS to 

reduce accidents and save lives. 

 

Figure 1-3: Photograph of Rear-End Collision Accident Involving Military Equipment 
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1.2 Thesis Outline 

 The remaining content of this thesis is organized as follows. Chapter 2 reviews the 

collaborative research work by Chavez highlighting key pieces of information from his thesis related 

to the development of the prototype system. Chapter 3 presents a quick summary of the prototype 

collision detection system including a description of the hardware components and the collision 

detection algorithm. A framework for determining the system confidence/uncertainty is presented in 

Chapter 4 and includes a walkthrough example application using actual prototype system test data to 

estimate friction coefficient error. Since the inherent errors associated with GPS technology is 

obviously a concern, Chapter 5 describes the analytical process applied for evaluating the noise 

parameters of the GPS and accelerometer hardware using Allan Variance analysis. To address 

concerns related to whether GPS is accurate enough, Chapter 6 compares the  inter-vehicle distance 

measurement error of the low-cost GPS sensor component used in the prototype hardware 

configuration against a highly accurate/high-cost GPS/INS, and then also against ground truth as 

measured by a LIDAR distance scanning sensor. The results of this section will show that although 

the low-cost solution may exhibit larger overall GPS errors, the inter-vehicle distance measurement 

error remains small due to GPS error correlation among units. Finally the conclusion and future work 

chapter summarizes the overall results of this thesis and provides recommendations for future efforts. 
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Chapter 2  
COLLISION WARNING SYSTEMS OVERVIEW AND SURVEY 

Since the early 1990s, collision detection has been a goal in the area of vehicle automation 

and driver assist, motivated highly by the statistics of crashes in the commercial sector. The objective 

of any collision warning system is to scan for vehicles, or objects, in the forward path of the equipped 

vehicle and alert the driver of any potential collision conditions. In this chapter a brief overview of 

collision systems is provided. The first section presents the fundamentals of collision detection as 

established by previous researchers. The following sections cover current research civilian and 

military research initiatives and finally a brief review of currently available commercial systems.  

2.1 Collision System Fundamentals 

There has been significant prior research in developing collision detection systems. Doi, et al. 

of Mazda R&D first identified four main technological components necessary for successful collision 

detection and avoidance: 1) driving environment detection, 2) path estimation algorithm, 3) 

safe/danger decision algorithm, and 4) longitudinal automatic brake control.  

The first component, driving environment detection, is traditionally accomplished by forward 

scanning sensor systems. Previously developed systems have used a variety of sensor technologies 

including sonar, machine vision, video cameras, infrared, radar, and lasers [14]. Kamiya, et al. of 

Honda attempted to outline the minimum performance specifications necessary for successful 

collision detection incorporating forward-scanning radar systems and are shown in Table 2-1. The 

specifications for range accuracy and refresh time were considered more important.  
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Table 2-1: Minimum Driving Environment Detection Specifications.  

 

Source: Kamiya and et al. [15] 

The second component is a path estimation algorithm which estimates the trajectory of the 

vehicle during curves to better determine whether the vehicle will collide with obstacles or vehicles 

that lay in that path. There has been significant previous research in the area of estimating vehicle 

trajectory producing simple and complex algorithm solutions; however, the path estimation problem 

is simplified for this work since vehicles are traveling in a convoy and the preceding vehicle’s 

position can be relayed to following vehicles. 

The third component, safe/danger decision algorithm, determines the collision probability 

between two vehicles by logically considering the kinematics of the vehicles. Overall the algorithm 

compares the current spacing distance to the critical spacing distance needed for the vehicles to arrive 

at a safe stop condition without colliding. Chaves provides a thorough literature review of these 

algorithms from previous researchers in Chapter 2 of his thesis. Modified versions of several formulas 

developed by Seiler et al. were implemented as the collision algorithms for this GPS-based collision 

system [16]. The original formulas are quickly reviewed here. In equation (2-1) v is the host vehicle’s 

velocity, vrel is the relative velocity between the host vehicle and preceding vehicle, α is the 
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maximum deceleration of the vehicles (assuming deceleration is same for both), τ is the delay time, 

and d0 is the buffer distance between vehicles: 

����� = 1
2 	
�

� − �
 − 
�����
� � + 
� + �� (2-1) 

The maximum deceleration, time delay, and distance buffer are all considered tunable 

parameters that are adjusted depending on the current driving conditions and driver preference. Seiler 

et al. also presents a critical braking distance equation (Equation 2.2), which represents the inter-

vehicle distance at which an active collision system would intervene and apply braking. The variables 

τsys and τhum represent system and human delays respectively.  

������ =  
�������� + ����� + 0.5������ + ������
 (2-2) 

The previous equations are used to determine the collision system critical distances for 

warning the driver and applying appropriate braking. Of course, these distances must be compared to 

the actual inter-vehicle distance to determine the collision probability. To determine the probability of 

collision, a warning parameter equation is presented in Equation (2-3), also developed by Seiler et al. 

The warning parameter is a non-dimensional value that is simply calculated as the ratio of the current 

inter-vehicle distance, d, minus the braking distance, dbrake, to the warning distance, dwarn, minus the 

braking distance.  

# = �� − �������
������ − ������� (2-3) 

If the value of the warning parameter is greater than or equal to one, the current driving situation is 

considered safe. Values between one and zero constitute unsafe conditions and different warnings are 

provided to the driver.  

In context to the GPS-based collision system, the fourth component is considered as “warning 

or intervention” which encompasses both classifications of collision systems as either active or 

passive. An active collision system may take control of the vehicle (braking or steering) to avoid 
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collision. In contrast, passive systems may simply provide a “warning” to the driver and requires 

them to actively respond. Most COTS systems are typically designed to be passive. The solution 

presented here is considered a passive system since it visually displays an alert to the driver.  A well 

designed driver interface will properly alert the driver without producing a high number of false 

alarms; otherwise, the driver will develop low confidence in the alert. The specific representation of 

the alert has a role in how the alert is perceived by the driver. Lee et al. published a study in which 

two experiments were conducted to examine driver response to warning representation [17]. The 

study identified collision warning representation was better received by drivers with a graded 

representation proportional to the degree of threat was provided instead of a binary on/off when a 

certain threshold was exceeded. The graded warning did however produce more alerts but 

interestingly, the drivers trusted the graded warning more than the single-stage and did not indicate 

any annoyance from the extra alerts. A graded warning is an example of a likelihood alarm display 

(LAD) and previous studies have shown LADs can improve focus of alerts among multiple tasks 

[18].  

2.1 Existing Collision Detection Systems 

There are several commercial-off-the-shelf (COTS) collision detection systems that exist 

today, most of which are used in the trucking and public transportation industries. A variety of sensor 

technologies are used for vehicle detection but primarily rely on forward scanning sensors that must 

infer the position and speed of the vehicle ahead using sensor data.  

The most well-known and successfully deployed commercial collision avoidance system is 

the Bendix VORAD (Vehicle On-board RADar) system specifically designed for the commercial 

trucking industry and heavy military vehicles. The latest model, VORAD VS-400, features a 77GHz 

radar with a detection range of 3 to 500 ft within speeds of 0.5 to 120 mph [19]. The VORAD system 

also detects vehicles/obstacles along the side of the equipped vehicle through a side object detection 
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system called BlindSpotter. The specifications and design of the VORAD driver interface were 

developed in collaboration with NHSTA and provides both auditory and visual alerts and exhibits a 

form factor which allows for integration into a truck dash [20]. In addition to relaying frontal and side 

collision alerts the visual display provides system status information (e.g., component failure, system 

availability, display settings).Figure 2-1 provides an overview of the VS-400 system. 

 

Source: Eaton Corporation [21] 
Figure 2-1: Overview of VORAD VS-400 (From Eaton Corporation) 

Another commercial system is the Mobileye AWS (Advanced Warning System) which is 

strictly vision based and uses a single windshield-mounted camera for forward collision detection, 

lane departure warning, and headway distance monitoring. The application for this system includes 

commercial trucks as well as automotive sedans. Several automotive sedan manufacturers, BMW, 

Volvo, Buick, and Cadillac, have already deployed the Mobileye system in their models [22]. The 
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specifications for the latest system, Mobileye AWS-400 state a vehicle detection range of up to 70 

meters with a sensor field of view of 40° x 30° (WxH). The driver interface for this system is capable 

of providing forward collision, lane departure, and heading monitoring information on a single 

interface as shown in Figure 2-2. 

 

Source: Mobileye AWS-400 Website 
Figure 2-2: Mobileye AWS-400 Driver Interface 

 To date, there is still no readily available commercial system that utilizes a cooperative 

collision detection architecture where information is exchanged between vehicles, e.g. a Vehicle to 

Vehicle interface (V2V), through wireless communication.  

2.2 Current Research Initiatives 

The U.S. Department of Transportation has funded and facilitated most of the research and 

development work of collision detection systems since the early 1990s in the interest of incorporating 

the technology for vehicle automation and driver assistance systems. The latest Integrated Vehicle-
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Based Safety Systems (IVBSS) Initiative is a partnership between the government, auto 

manufacturers and commercial vehicle industries to develop and field test systems that detect rear-

end, lane-change, and lane-departure collision scenarios on light vehicles and heavy commercial 

trucks [23]. Currently the IVBSS team is performing in-field test of developed prototype hardware on 

16 Honda Accords vehicles. Some of the overall goals of the testing are to evaluate the generation 

and quantity of false alarms, check system availability, understand algorithm warning logic, and 

assess alerts in perceived crash situations [24]. A detailed test plan is available online providing a 

description of test procedures to specifically evaluate the performance of forward collision warning 

functionality [25]. This document was a useful reference for outlining some of the test plans for the 

GPS-based collision detection system. 
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Chapter 3  
THE PROPOSED COLLISION WARNING SYSTEM 

As mentioned before, the interest for a GPS-based collision system was generated by the Army for 

addressing rear-end collisions in military convoys. Specifically the sponsoring customer, Army 

TACOM, was seeking a solution which could improve safety during convoy training exercises at their 

training centers. Overall, the solution needed to be low cost, have a small form factor, and be easy to 

install without requiring any vehicle modifications. The specific target application/scenario allows for 

a set of assumptions that simplifies the design and performance requirements of the prototype system. 

The closed application assumptions are: 

• The vehicles of interest are part of the convoy and therefore each vehicle will contain the 

necessary hardware. Vehicles or objects without the prototype hardware are considered external 

and will not be detectable by the system. 

• Open-sky visibility is necessary for GPS receivers to acquire satellite lock-on and thus the 

collision avoidance system will only be used in open-sky locations or where GPS signals are 

readily available and not blocked.  

• All vehicles within the convoy are driving in single column formation and vehicles do not enter 

or exit the formation, or change their ordering in the convoy, i.e. no passing 

• The system is only concerned with rear-end collisions and does not try to detect collisions on the 

side of the vehicle. 

Figure 3-1 provides a conceptual overview of the GPS-based collision detection system for 

military convoys. In order for proper collision detection between convoy vehicles, each vehicle in the 

convoy is equipped with a prototype hardware system. The vehicles then communicate with each 

other to transmit vehicle specific position and velocity information to determine collision probability. 
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This type of collision detection architecture is often referred as a cooperative collision detection 

system [26].  

 

 

Figure 3-1: Concept of GPS-Based Collision Avoidance System 

3.1 Hardware Components 

Each hardware system is made up of two main components: a sensor module containing 

embedded hardware and a Dell Latitude 2100 Netbook computer. The primary component of the 

embedded sensor module is the FV-M8 GPS receiver unit manufactured by San Jose Navigation 

Technologies. The FV-M8 module outputs GPS position information at a rate of 5 Hz with a rated 

position accuracy of 3.3m CEP and is intended for embedded applications. Additional specifications 

are provided in Appendix A. The sensor module also contains the following embedded components: 

an Arduino Mega microcontroller, a Wiznet Ethernet module, and an ADXL-335 3-axis 

accelerometer. The Arduino microcontroller reads serial messages produced by the FV-M8 GPS 

module, which contain the GPS position, velocity, and time information, and voltage values from the 

3-axis accelerometer and formats the data from both sensors into a new data message. This new data 
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message is transferred, using TCP/IP communication protocol, through a wired Ethernet connection, 

using the embedded Wiznet Ethernet module, to the Dell netbook computer. All the sensor stack 

components are placed in a watertight protection case affixed to a metal base with magnetic feet. The 

magnetic base allows the sensor module or “sensor box” to be easily attachable to any vehicle roof. It 

is also quickly mentioned that the watertight case was later retrofitted with an active cooling PC fan 

to blow air across the electronics after identifying overheating of the components during some field 

testing in the desert. As mentioned, the Dell netbook computer acquires data from the local sensor 

box but also exchanges it with remote computers onboard nearby convoy vehicles via wireless 

TCP/IP communication. The wireless network is representative of a growing concept called Vehicle-

to-Vehicle (V2V) communication and is essential for cooperative collision detection. The computer is 

also responsible for processing the sensor data through a collision algorithm to determine the 

probability of the local vehicle colliding with the preceding vehicle. In this prototype version, the 

built-in computer monitor serves as the driver display and visually notifies the driver of collision 

conditions in real-time. Table 3-1 provides a list of all the components along with their cost and 

vendor source. Additional information regarding the hardware can be found the Chaves’ thesis [5].  
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Table 3-1: Sensor Box Parts List 

Item Model Price Vendor
GPS Receiver FV-M8 $100 www.sparkfun.com
GPS Shield Kit - $20 www.adafruit.com
Microcontroller Arduino Mega $65 www.sparkfun.com
Ethernet Module WIZnet W5100 $25 www.sparkfun.com
Ethernet Shield - $15 www.adafruit.com
3-Axis Accelerometer ADXL335 $25 www.sparkfun.com
GPS Connector - $2 www.sparkfun.com
PC Cooling Fan $10 RadioShack
Watertight Enclosure $25 Walmart
Computer Dell Latitude 2100 $350 Dell
Total $637  

3.2 Software: Safe/Danger Decision Algorithm  

As mentioned in Chapter 2 there are four primary components of a collision detection system. 

This section focuses on the third component, the safe/danger decision algorithm, and its 

implementation in the proposed collision detection system. The safe/danger decision algorithm here is 

based on an algorithm developed by Seiler, et al. in [16]. Since the system proposed here is 

considered a passive collision warning system, equation (3-1) is defined in terms of critical warning 

distance instead of a critical braking distance, which is necessary for an active collision avoidance 

system.  

����� = 1
2 	
�

� − �
 − 
�����
� � + 
� + �� (3-1) 

 The warning parameter calculation shown in equation (3-2) is the final output of the 

safe/danger decision algorithm. This calculation compares the calculated warning distance to the 

current inter-vehicle distance between the vehicles. If the value of the warning parameter is greater 

than or equal to one, the current driving situation is considered safe. As the inter-vehicle distance 

decreases the warning parameter value falls below one, representing unsafe conditions. A warning 
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parameter value exactly equal to zero represents a collision. The visual design of the collision system 

driver display is directly linked to the warning parameter.  

# =  �
����� (3-2) 

Seiler also proposed the addition of scaling factors to compensate for road friction uncertainty 

and individual driver behaviors. The friction, $�%� ,and driving tuning, &�'()*+(�, scaling factors 

scale the critical warning distance, dwarn, as shown in the following equation.  

�����,�-���. = ����� ∗ 0�1� ∗ 2��34
53� (3-3) 

Seiler suggests the driver scaling is accomplished via a dashboard knob. For example, for 

overly cautious drivers setting the driver tuning factor to 0.5 would warn the driver earlier of collision 

scenarios. Because this is a driver dependent variable, the driver tuning factor is set to one for the 

analysis of the warning parameter uncertainty in this thesis and its affects are ignored. However, the 

friction scaling factor is a function of the current, real-time tire road coefficient, which can be 

estimated.  

Unlike currently available commercial systems that directly measure the inter-vehicle 

distance, the GPS-based collision system must calculate this measurement using latitude and 

longitude coordinates of each vehicle. The Haversine formula, described by the following list of 

equations, is used to calculate this distance because it considers the spherical surface of the earth and 

yields the great-circle distance between two sets of latitude and longitude coordinates [27].  
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∆789 = 78949:�5; − 78949:�5� (3-4) 

∆7<=2 = 7<=249:�5; − 7<=249:�5� (3-5) 

8 = >4=� ?∆789
2 @ + cos�78949:�5;� + cos�78949:�5�� + >4=� ?∆7<=2

2 @ (3-6) 

D = 2 ∗ 898=2�√8, √1 − 8� (3-7) 

�4>98=D5 = F ∗ D (3-8) 

Where R is the earth’s radius (6371 km) and latitude/longitude positions are expressed in 

degrees. 

Three prototype units were developed for the purpose of demonstrating their feasibility. The 

three units were mounted on three Army HEMTT ground vehicles and the trucks were driven through 

desert test courses at the U.S. Army Yuma proving grounds. The trucks were driven in a convoy, or 

single line, formation. In this pattern, the three collision detection systems then provided collision 

coverage for the middle vehicle with respect to the leader, and then also for the last vehicle with 

respect to the middle vehicle. A variety of test courses were utilized and various procedures were 

executed. Complete details on this testing are comprehensively covered in Chapter 5 of Chaves thesis 

[5]. The data collected during this feasibility testing was used by Chaves to evaluate whether 

application of Kalman filtering techniques to fuse the GPS velocity and local accelerometer data 

could improve the collision detection performance. For this thesis, the velocity data from the testing 

also served useful for analyzing the friction coefficient of the vehicles and its uncertainty. This is 

covered in the next chapter which overall focuses on analyzing the uncertainty in the collision 

detection warning parameter output. 
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Chapter 4  
SYSTEM UNCERTAINTY ANALYSIS FRAMEWORK 

The proposed prototype system for GPS-based collision detection has been presented in the 

previous chapter. In short, GPS and accelerometer sensors produce data as measurement inputs to a 

collision detection algorithm. The algorithm returns as output, collision probability in the form of a 

warning parameter. A key goal of this thesis is to determine the confidence in the warning parameter 

output by examining the sensitivity of parameters in the collision algorithm and identifying 

appropriate error statistics.  

A conceptual framework for this analysis is shown in Figure 4-1. First, the warning parameter 

equation is examined for constituent signals/parameters. Combining equations 3-1 and 3-2 from the 

previous chapter, the overall warning parameter algorithm reduces to: 

# = �
G12 ?
�

� − �
 − 
�����
� @ + 
� + ��H ∗ μ ∗ J.�KL��

 
(4-1) 

The parameters in equation (4-1) are identified and listed in Table 4-1. A sensitivity analysis is then 

applied to equation (4-1) to determine which parameters influence and dominate the variance of the 

warning parameter. In addition an error model is derived for each parameter as shown in the right 

path of the diagram in Figure 4-1. Finally the error models are combined with the percentage of 

variance influence to determine the overall variance of the warning parameter. The next subsections 

cover the remaining elements of this framework with particular focus on evaluating the propagation 

of friction coefficient error in the warning parameter uncertainty.  
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Figure 4-1: Analysis Framework for Estimating Confidence in Warning Parameter 

Table 4-1: Warning Algorithm Parameters 

Parameter Description 

Time Delay, τ, (second) 
The delay in exchanging information 
between vehicle across the network 

Vehicle Velocity, v,(m/s) 
The speed of the subject vehicle (following 

vehicle) 

Relative Vehicle Velocity, vrel, (m/s) 
The relative speed between the subject 
vehicle and the principal object vehicle 

(preceding vehicle) 

Inter-Vehicle Distance, d,(m) The distance between the vehicles 

Buffer Distance, do, (m) 
The distance between the subject vehicle 
and an imaginary “bumper” limit ahead 

Friction Coefficient, µ,  
The tire-road surface interaction friction 

coefficient 

Driver Adjustment, K driver , 
A tunable parameter that would be 

adjusted by the driver to accommodate 
specific driving preferences 

Maximum Deceleration, α, (m/s2) 
The maximum deceleration capability of 

the vehicle 
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4.1 Sensitivity Analysis 

Sensitivity analysis is a classical technique that characterizes the performance of a system in 

response to variations in parameters that affect the system [28]. Sensitivity analysis can be used to: 

simplify/reduce complex models, investigate the robustness/stability of model outputs, and 

investigate the interaction between parameters. Specifically relevant to this work, sensitivity analysis 

is also useful in determining the confidence in the model and its outputs by evaluating individual 

parameter input uncertainties [29]. Hamby published a paper reviewing techniques for parameter 

sensitivity analysis in environmental models and provides a good overview of different sensitivity 

analysis methods [30]. Of the techniques described, the differential analysis approach, also known as 

the direct method, is recommended if the model is simple and described by explicit algebraic 

equations from which the partial derivatives are easily obtainable. In these cases the sensitivity of the 

output, Y with respect to the varied parameter, X is computed by the partial derivative of Y with 

respect to X times a normalization quotient X/Y, i.e., 

MK =  NO
NPK ?PKO @ (4-2) 

Where The calculated sensitivity coefficient, φi, represents the ratio of change in output to change in 

parameter input while all other parameters remain constant. This provides a measurement of how 

“sensitive” Y is to X, i.e. the relative sensitivity. 

 Using this simplistic approach, the sensitivity coefficient for each parameter was evaluated 

based on a test profile collision scenario. First, artificial time series data (Xi) for specific parameters 

was generated based on a collision test profile adopted from the Integrated Vehicle-Based Safety 

System (IVBSS) Light Vehicle Test Plan document, published by the U.S. Department of 

Transportation [31]. This document provides specific procedures to follow for validation testing of 

vehicle safety systems as they are introduced to the market in the future. Within this test plan 

document, there are six procedures specifically designed for testing forward collision warning 
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functionality. Of these six, procedure RE-3 was used for the sensitivity analysis effort because it 

represented a common, realistic collision scenario. In this scenario a subject vehicle (SV), travels at 

constant speed while approaching a preceding obstacle vehicle (POV) that is aggressively decreasing 

its speed. Relevant test profile specifications are listed in Table 4-2. 

Table 4-2: RE-3 Forward Collision Test Profile Used For Sensitivity Analysis Simulations 

Parameter, Unit Value 

SV Starting Velocity 20.1m/s (45 mph) 

POV Starting Velocity 20.1m/s (45 mph) 

POV Deceleration 3.5 m/s^2 (7.8mph) 

Initial Inter-Vehicle Distance, m 80 m (263 ft) 

Based on the test profile specifications, the inter-vehicle distance, SV velocity, POV velocity and 

relative velocity between vehicles were all calculated using simple kinematic equations to produce 

artificial input data for the collision warning algorithm using MATLAB. Figure 4-2 shows the 

generated inter-vehicle distance data in the top plot, while the bottom plot shows the constant SV 

velocity, the decreasing POV velocity, and the increasing relative velocity between them. Artificial 

data for the remaining algorithm parameters was generated as constants, as listed in Table 4-3. These 

values were originally used during feasibility demonstration testing of the prototype hardware which 

is covered in detail in Chapter 5 of Chaves’ thesis. 
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Figure 4-2: Simulated RE-3 Test Profile Data 

Table 4-3: Constant Parameters 

Parameter Value 

Time Delay, τ, (second) 1.4  

Buffer Distance, do, (m) 5 

Driver Adjustment, K driver , 1 

Friction Coefficient, µ,  0.8 

Maximum Deceleration, α, (m/s2) 8 

 

The artificial data generated was then used in calculating the warning parameter value (w), via 

equation (4-1), the respective partial derivative (
QR
QST), and subsequently the respective sensitivity 

coefficient (φi) for each corresponding data sample using equation (4-2).  To calculate the partial 
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derivate value it was necessary to derive the partial derivative equations of the warning parameter, W, 

to each of the parameters. The partial derivative equations were hand-derived and validated using 

Mathematica software. The equations are listed as follows 

 

 The results of applying equation (4-2) to the individual algorithm parameters are displayed in 

Figure 4-3 and it provides a first-look at how the relative sensitivities of each parameter change over 

the test profile with respect to the warning parameter. Of all the parameters, the inter-vehicle distance 

parameter relative sensitivity remains constant. The relative sensitivity appears to increase for the 

N#
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subject vehicle velocity as the vehicle approaches collision with the preceding vehicle. However, the 

relative vehicle velocity sensitivity is parabolic and increases to a certain bound and then decreases as 

the vehicles become closer. The buffer distance and time delay parameters both appear to decrease 

and reach horizontal asymptotes. The relative sensitivity of the maximum deceleration parameter 

increases, but also appears to reach a horizontal asymptote. The relative sensitivities of both the 

friction coefficient and driver tuning parameters first seem to appear to be zero. Figure 4-4 is a 

zoomed perspective of Figure 4-3. This perspective shows the friction coefficient and driver tuning 

relative sensitivity results are not actually zero but have some influence on the warning parameter 

albeit significantly smaller as compared to the other aforementioned parameters. The MATLAB m-

script developed to simulate the RE3 test profile, analyze the relative sensitivities, and produce these 

figures is also provided in Appendix B.  

 

Figure 4-3: Relative Sensitivity of Parameters 
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Figure 4-4: Relative Sensitivity of Friction Coefficient and Driver Tuning Parameters 

4.2 Error Analysis of Friction Coefficient 

As previously described with the framework shown in Figure 4-1 the overall uncertainty 

analysis also requires identification of the error bounds of each of the parameters. In this section error 

bounds are identified for the friction coefficient as an example. This parameter was specifically 

selected because the prototype hardware configuration does not provide for direct friction coefficient 

measurement. Instead a real-time assessment of friction must be inferred through other available 

measurements such as GPS velocity and/or accelerometer acceleration. Here a simple approach using 

GPS velocity to estimate the friction coefficient was adopted and so subsequently the errors 

associated with this approach are investigated.  

GPS velocity data collected from field testing of the prototype hardware was used to estimate 

the friction coefficient and its variance. The data was collected as part of an effort to test and 
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the Arizona Yuma Proving Grounds. The prototype hardware was installed on three HEMTT type 

vehicles. Several skid tests were performed for the specific purpose of collecting data that would later 

be useful for estimating the friction coefficient. The skid test procedure involved accelerating each 

vehicle to a steady state speed of approximately 30 mph, cruising at that steady state speed for a brief 

period of time, and then applying the brakes as aggressively as possible to initiate wheel lock and 

skidding. These tests were performed both on a smooth, paved road surface, specifically an airport 

taxiway tarmac surface, and also on an off-road, loose, dirt surface. The test procedure was performed 

on two different surfaces to better characterize the variation in friction coefficient related to changes 

in road surface smoothness. Of course, for smoother, paved, road surfaces, the friction coefficient is 

expected to be higher since the contact area is higher between the road and wheel.  

During each skid event the vehicle velocity linearly decreased. This is visually confirmed in 

the raw data shown in Figure 4-5. The stair step pattern evident in the raw data exists because the 

update frequency of the GPS based velocity data (5Hz) was slower than the sampling rate of the data 

acquisition software (50Hz). The specific relationship between velocity and friction coefficient can be 

identified through derivation of basic kinematic principles. Starting with Newton’s Second Law of 

Motion, the vehicle deceleration during skidding is equal to the opposite negatively affecting friction 

force as shown in equation (4-11). Where m is vehicle mass, α is vehicle acceleration, µ is friction 

coefficient, and g is gravity. By canceling the mass terms and then integrating this relationship, the 

relationship between vehicle velocity and friction coefficient is recognizable as shown in equation 

(4-12). Relating this equation to a basic first order linear equation (y = m*x+b), the friction 

coefficient and gravity represent the slope parameter, m, or the first order coefficient. 

 



30 

 

 

Figure 4-5: Skid Event on Rough Road Surface Raw Velocity Data 

 The specific analysis procedure implemented with the dataset was applied as follows. First 

the velocity data was graphed against test time and manually inspected for skid brake events as shown 

previously in Figure 4-5. After identifying the time interval during which the skid event occurs, the 

velocity data for that interval range was extracted as a data subset. Next, the subset data was 

smoothed using a moving average filter. The smoothing of the data eliminates the step change 

decreases evident in the raw data and improves the linear fit analysis subsequently applied. In the 

linear fit analysis, a regression analysis was applied to derive a first order model of the data. For this 

step the MATLAB Curve Fitting toolbox was used. The output of the toolbox is a first-order linear 

model with an estimate for the first order coefficient including 95% statistical confidence bounds. 

Since the first order friction coefficient value represents the combination of friction coefficient and 

gravity, this value must be normalized by 9.81m/s to eliminate gravity and arrive at an estimate for 

774 776 778 780 782 784 786 788 790

0

2

4

6

8

10

12

14

V
el

o
ci

ty
 (

m
/s

)

Test Time (secs)

 

 
Veh. 1
Veh. 2
Veh. 3

Qualifying 

Skid  Event

Vehicle 3

Vehicle 1

Vehicle 2

W ∗ 8 = − 1 ∗ 2 ∗ W (4-11) 

 


 =  −1 ∗ 2 ∗ 9 + 
� (4-12) 



31 

 

the friction coefficient. For comparison, the raw data, the smoothed data after applying moving 

average filter, and the resulting first order linear model are shown in Figure 4-6 for vehicle 1 velocity 

data captured for the skid event shown previously in Figure 4-5.  

 

Figure 4-6: Comparison of Raw, Smoothed, and First Order Model Data for Vehicle 1 

The analysis was applied to the velocity data collected from each of the three vehicles for 

four separate skid brake events providing a total of 12 characterized events. The resulting estimated 

friction coefficient values are listed in Table 4-4. Overall, the results appear consistent; the friction 

estimates are higher for the smooth surface than the rough surface, as expected. Interestingly, the 

coefficient values also appear to increase in relation to the order of the vehicles. This is perhaps due 

to higher road surface temperature as a result of the preceding vehicle braking. Using these results, 

the statistical mean, standard deviation and variance of the estimated friction coefficient for smooth 

road and rough road surfaces are listed in Table 4-5. For a conservative collision avoidance parameter 

estimate, the lowest value is recommended since it corresponds to the lowest capability in vehicle 

braking.  
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Table 4-4: Estimated Friction Coefficient Results for Select Smooth and Rough Surface Skid 
Brake Events  

Unit Road Surface Friction Coefficient 95% Confidence Bounds

Event 1/Vehicle 1 Smooth 0.453 (0.448, 0.459) 

Event 1/Vehicle 2 Smooth 0.484 (0.481, 0.486)

Event 1/Vehicle 3 Smooth 0.51 (0.506, 0.514)

Event 2/Vehicle 1 Smooth 0.448 (0.442, 0.453) 

Event 2/Vehicle 2 Smooth 0.488 (0.487, 0.491)

Event 2/Vehicle 3 Smooth 0.528 (0.521, 0.534)

Event 3/Vehicle 1 Rough 0.162 (0.160, 0.165)

Event 3/Vehicle 2 Rough 0.2203 (0.2190, 0.2218)

Event 3/Vehicle 3 Rough 0.4321 (0.4214, 0.4429)

Event 4/Vehicle 1 Rough 0.219 (0.218, 0.2201)

Event 4/Vehicle 2 Rough 0.246 (0.244, 0.248)

Event 4/Vehicle 3 Rough 0.283 (0.282, 0.285)  

Table 4-5: Statistical Results for Friction Coefficient Estimates 

Road Surface Mean Standard Dev. Variance Lowest Value 

Smooth Paved 0.4852 0.0312 0.009754 0.448 

Rough 0.226 0.0442 0.00196 0.162 

4.3 Uncertainty Modeling 

 In section 4.1, sensitivity analysis was applied to evaluate how the warning parameter is 

affected by specific parameter changes. In the previous section, an error analysis was performed to 

identify the error in the friction parameter categorized to smooth and rough road surfaces. In this 

section, the results of the previous analyses are combined together to evaluate the error in the warning 

parameter using experimental uncertainty analysis. Experimental uncertainty analysis is typically 

used to evaluate how errors propagate from measured quantities to derived quantities within a 

modeled relationship. The relationships can be complex so approximate solutions are often used 

which can provide preliminary but useful results. One such linearized approximation approach is 

obtained by application of the total differential. This approach is useful in estimating the absolute 
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error, ∆f, of a function,  f , based on the errors of the measured variables, ∆x, ∆y, … as illustrated by 

the following conceptual equation. 

∆0 = 0X∆Y + 0�∆Z + ⋯ (4-13) 

Where fx is the first derivative of f with respect to the parameter x. Equation (4-13) provides the 

sensitivity relationship between changes in x to changes in f. The error in a quantity, {∆x ∆y,…}, is 

the specific magnitude of change evaluated and is usually given as the standard deviation (σ). This is 

evaluated for all specific parameters that compose f. The parameters are assumed independent, and 

the sum of these components represents a unique combination of errors that is a conservative, worst-

case scenario. That is, if each of the measured quantities are represented by a statistical distribution, 

then the total differential represents the unique case where the extreme values of the distributions are 

simultaneously in effect. The probability of these simultaneous occurrences of “worst parameters” 

actually occurring is nearly zero and so represents a worst-case scenario. In reality, the mean error of 

the derived quantity is expected to be smaller than the output of this estimation. This worst-case 

analysis is sometimes referred as the 1-norm or absolute change.  

 To analyze the warning parameter uncertainty, or Δw, the algorithm parameters listed in 

Table 4-1 represent the measured quantities, and the warning parameter is considered the derived 

quantity. The conceptual equation (4-13) of the total differential then becomes equation (4-14).  

The previously developed MATLAB code that was used to generate the test profile data and analyze 

the relative sensitivity was used again here to evaluate the uncertainty of the warning parameter. As 

an initial inspection, a +/- one standard deviation, ∆σ, on all the parameters was evaluated which 

corresponds to a relative error of 68%. Equation (4-14) becomes the following equation. 

∆# =  N#
N� ∆� + N#

N
 ∆
 + N#
N
��� ∆
��� + N#

N� ∆� + N#
N� ∆� + N#

N�� ∆�� + N#
N1 ∆1

+ N#
NJ.�KL�� ∆J.�KL�� 

(4-14) 
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 The top graph in Figure 4-7 shows Δw. The bottom graph compares the calculated warning 

parameter with the warning parameter uncertainty included, w +Δw, and without, w, (ideal system). 

The w +Δw response appears almost twice the amount of w. The dotted horizontal redline 

corresponds to a warning parameter value of one, and represents the alert threshold between safe and 

unsafe driving conditions. Ideally an alert is presented to the driver when the warning parameter value 

becomes less than one and increases in severity as it approaches zero. In Figure 4-7, the resulting 

trend of w +Δw crosses the alert threshold later in time compared to w trend (approximately 2 seconds 

after). This highlights the important fact that noisy measurement errors, which are inherent in a “real” 

system, increase warning parameter uncertainty and negatively affect the warning parameter response 

by delaying the collision alert to the driver.  

 Figure 4-8 compares the individual parameter errors to identify which terms dominate as the 

vehicles near collision. Based on this visual inspection, the dominant parameters appear to be the 

inter-vehicle distance, d, subject vehicle velocity, v, and time delay, τ. Vehicle deceleration, α, and 

relative vehicle velocity, vrel, increase slightly but never become greater than other parameters. 

Finally the friction coefficient, µ, and driver tuning, Kdriver parameters appear to contribute relatively 

very little error. One effect common to all parameters is that the errors reduce as the distance between 

vehicles decrease and a collision is about to occur.  

 The 1σ error on all the parameters is a very conservative scenario and is nearly impossible of 

existing in real conditions. An additional uncertainty analysis was processed using more appropriate 

absolute error values for the parameters, listed in Table 4-6, instead of the 1 sigma error values 

previously discussed. These values were selected within the following assumptions. The inter-vehicle 

∆# =  N#
N� ∗ 68% ∗ � + N#

N
 ∗ 68% ∗ 
 + N#
N
��� 68% ∗ 
��� + N#

N� ∗ 68% ∗ � + N#
N� ∗ 68%

∗ � + N#
N�� ∗ 68% ∗ �� + N#

N1 ∗ 68% ∗ 1 + N#
NJ.�KL�� ∗ 68% ∗ J.�KL�� 

(4-15) 
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distance and system time delay delta magnitude values were adopted from Chaves’ thesis [5]. Chaves 

previously conducted a similar uncertainty analysis of the warning parameter equation; however, his 

analysis focused on only two variables affecting the system: inter-vehicle distance (d), and system 

time delay (τ). (The results of his analysis are provided in section 8.2 of his thesis.) The error values 

selected for velocity were adopted from a paper published by David Bevly stating that a GPS receiver 

can provide three dimensional accuracy of velocity within an accuracy of 2-5 cm/s without 

differential corrections [32]. 5 cm/s was ultimately selected as it is the more cautious value. The error 

value for friction coefficient was selected as a result of the friction coefficient estimation analysis 

explained in the previous section, and more specifically the standard deviation for the rough road 

surface was selected since it produced the larger error. The absolute errors for the remaining 

parameters were set to zero because they are not considered measured quantities and either are 

tunable system parameters or calculated and therefore expected to have very minimal or at least 

controllable errors.  

 Figure 4-9 compares the previous Δw results between the two uncertainty analyses. Since the 

individual parameter errors are smaller compared to the 1σ deviation in the first analysis, Δw also 

decreased as expected. The warning parameter deltas were added to the ideal error free warning 

parameter and shown in Figure 4-10. The warning parameter with refined errors, W+∆W(∆X), is 

closer to the ideal case than compared to the single standard deviation result, W+∆W(∆σ). Table 4-7 

summarizes the detection horizon achievable for each experiment and the percentage increase 

obtained over the worst case scenario which is the 1σ on all parameters simultaneously. Again, the 

detection horizon is considerably better for the refined case compared to the worst case. Logically the 

results also prove a system with a higher accuracy measurement sensor will provide a better detection 

horizon (earlier driver alert) than one containing poor measurements.   
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Figure 4-7: Sigma Uncertainty Analysis 
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Table 4-6: “Realistic” Uncertainty Analysis  

Parameter Delta Value 

Time Delay, τ, (second) 0.2 

Vehicle Velocity, v,(m/s) 0.5 

Relative Vehicle Velocity, vrel, 
(m/s) 

0 

Inter-Vehicle Distance, d,(m) 0.7 

Buffer Distance, do, (m) 0 

Friction Coefficient, µ,  0.0442 

Driver Adjustment, K driver , 0 

Maximum Deceleration, α, (m/s2) 0 

 

Figure 4-9: Warning Parameter Uncertainty Results  
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Figure 4-10: Uncertainty Analysis Results Comparing Effect of Error Magnitude  

Table 4-7: Quantitative Detection Horizon Comparison  

Experiment Detection 
Horizon 

Percent 
Increase 

W 2.28 s 280% 

W+∆W(∆x) 2.03 s 238% 

W+∆W(∆σ) (worst case) 0.6 s N/A 
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4.4 Summary 

In this chapter a analytical framework for evaluating uncertainty of the collision warning 

algorithm was first presented. The framework is simple and incorporates the use of sensitivity 

analysis to identify individual relative sensitivities of algorithm parameters to the output. The 

framework also relies on identification of parameter errors through appropriate methods. The relative 

sensitivity and parameter error information are combined in an uncertainty analysis to identify overall 

uncertainty behavior of the warning parameter. The results showed with measurement errors 

included, the warning parameter response is delayed compared to the ideal warning parameter 

response as illustrated in the top graph of Figure 4-7. Although the uncertainty analysis was 

performed using representative error values, these results are based on simulation. In the following 

chapters the errors of the inter-vehicle distance measurement is investigated in greater detail by first 

identifying stochastic error types in the GPS latitude and longitude measurements (Chapter 5) and 

then comparing the inter-vehicle distance measurement directly to ground truth (Chapter 6). A 

subsequent output of Chapter 6 is an estimate of inter-vehicle measurement error which is used to re-

evaluate warning parameter uncertainty in Chapter 7.  
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Chapter 5  
GPS DRIFT CHARACTERIZATION USING ALLAN VARIANCE 

ANALYSIS 

A GPS-based collision detection system relies on GPS data as a primary measurement. As the 

previous chapter discussed, measurement error must be analyzed in order to assess system 

performance uncertainty. Chavez provides an overview of GPS technology and functionality in 

chapter 3 of his thesis, which also includes a description of common GPS measurement error sources 

[5]. A summary is provided here. GPS measurement errors typically fall into three categories: control 

segment errors, signal propagation errors, and receiver measurement errors. Errors in the control 

segment are associated with errors in the satellites such as offset in their position or onboard atomic 

clock bias. Signal propagation errors include all error sources that affect the transmitted GPS signal 

while in-flight from the satellites to the receiver. These primarily include atmospheric errors in the 

ionosphere and troposphere, which affect the speed of the signal and cause a skewed estimate of the 

range to the satellite. 

The signal propagation, and control errors in particular, can often be corrected, as they are 

largely due to physical, deterministic processes. One solution to reduce control segment and signal 

propagation errors is Differential GPS (DGPS), which takes advantage of the fact that control 

segment and signal propagation errors are highly correlated and similar among nearby GPS receivers 

on the ground. Thus, a stationary GPS receiver located at a calibrated position can calculate the 

position error offset between the GPS inferred position and true position. This subsequently 

determines the amount of “correction” necessary for local conditions, which are then broadcasted to 

nearby GPS receivers to improve their accuracy. Only GPS receivers with DGPS compatibility are 

able to accept these corrections and correctly compensate their measurements. Some high-end DGPS 

compatible receivers can reduce position measurement accuracy from 10 meters to sub-meter levels.  
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The fact that control segment and signal propagation errors are correlated spatially and 

temporally provides an advantage for the GPS-based collision system of this work. That is, the error 

in relative distance between receivers is small compared to the individual position error of each 

receiver. In explanation, suppose there are two GPS receivers in a field, GPS A & GPS B, 

approximately 50 meters apart from each other in a field and the true position of each receiver is 

already known. If GPS A indicates a position 3m north of its true position, say due to ionosphere 

error, then GPS B is also likely to indicate a 3m north offset of its true position. This is because the 

ionosphere error will influence each GPS receiver the same amount. The ionosphere error could 

produce an increase in position error to 10m but again would affect both receivers the same amount. 

In any case the calculated relative distance between the receivers would remain the same even though 

individual position errors vary. This correlation of spatial error among receivers is well known but not 

clearly documented in regard to the noise models for mobile units that are correcting each other using 

simple differencing methods. This chapter examines position differences when nearby GPS receiver 

units are used. The assumption is that the primary error in the distance measurement between each 

receiver is largely independent of ionosphere severity and is only primarily influenced by receiver 

errors, which are the third classification of GPS errors.  

GPS receiver manufacturers often provide a position rating for their products in terms of 

circular error probability (CEP). The Air Force Operational Test and Evaluation Center formally 

defines CEP as a circle, centered about the mean, whose boundary is expected to include 50% of the 

population within it when tabulated for very long time intervals [33]. The specifications for the San 

Jose embedded GPS modules used in this work specify a horizontal position accuracy of 3.3m CEP. 

This means that, for a given GPS position, the user can be 50% confident that they are within a 3.3m 

radius circle of that position. A smaller CEP value indicates a higher accuracy receiver. While CEP 

provides a good overall indication of GPS receiver accuracy, it does not provide any information 

about measurement stability or it’s degradation over time. For this, a more in-depth characterization is 
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required that can identify the specific error types including random bias. Identification of specific 

errors allows the development of appropriate noise models for improving the Kalman Filter 

implemented by Chaves for blending GPS and accelerometer data. Han et, al. performed a similar 

effort using Allan Variance (AVAR) analysis to determine the calibration model for a Kalman Filter 

fusing inertial sensors and GPS information, however they examined the stochastic errors of inertial 

sensors only and excluded GPS receivers [34]. This chapter presents the work accomplished for a 

drift analysis of the San Jose GPS receivers and ADXL 305 accelerometers using AVAR analysis.  

5.1 Allan Variance A Review 

To begin, an overview of Allen Variance (AVAR) analysis is first provided. Initially 

introduced in 1966 by Dr. David Allan for analyzing the noise characteristics of cesium beam 

frequency fluctuations for atomic clocks, AVAR analysis has become widely used and accepted as a 

preferred method for identifying stochastic noise p rocesses. The National Institute of Standards 

and Technology (NIST) published a handbook for frequency stability analysis which includes a 

description of how to use and apply original AVAR, as well as modified versions for improved 

analysis [35]. The handbook also includes example datasets to test and verify modified AVAR 

algorithms or other stochastic noise modeling algorithms. The IEEE standard 647 specification also 

identifies AVAR as part of the standard test procedure of Single-Axis Laser Gyros [36]. Although 

originally developed to study the frequency stability of oscillators and clocks, the AVAR method is 

useful in general for characterizing the random processes of any data output and is selected here to 

characterize the stability of the GPS and accelerometer sensors by identifying their specific dominant 

noise types.  

AVAR analysis focuses identification of primarily stochastic, or random, types of errors. 

Stochastic errors can be a mixture of several errors but the five most common sources are: 

quantization noise, white noise, random bias, random walk, and random ramp. Assuming the sources 
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are statistically independent, the AVAR is essentially the sum of the squares of the variances of the 

five common sources. 

_����� =  _�̀ + _R�� + _a� + _b�� + _b� (5-1) 

In Equation (5-1), cde�f�, is the AVAR, or total variance, result for a specific averaging time, ττττ, che  is 

the variance contribution by quantization, cije  is the variance contribution due to white noise, cke  is 

the variance contribution due to bias, clme  is the variance contribution due to random walk, and cle  is 

the variance contribution due to ramp noise.  

 An advantage of AVAR is that the computation is fairly simple and can be directly applied to 

time-series data collected from a stationary un-excited sensor. A stationary static measurement is 

preferred so only random processes influence changes in measurement. Given a sequence of 

measurements sampled at a constant rate, the data is first divided into clusters of a specific set size 

related to the averaging time, τ. For example, if data was collected at a rate of 50 Samples/second for 

a total duration of 100s and the selected τ was 0.1s then the size of each data cluster would be 5 

samples. Next, the average is calculated for each cluster of grouped data. Then the difference is 

calculated between the calculated averages of successive clusters. The differences are then each 

squared, summed together, and finally multiplied by a scaling factor dependent on the number of 

clusters used. The formula for the original AVAR is defined in Equation (5-2) as: 

_����� =  1
2�n − 1� o pZKq; − ZKr^2

tu;

Kv;
 (5-2) 

Where _����� is the calculated AVAR for a specific averaging time, τ; yi is the average value of the 

cluster i; and M is the total number of clusters. The original AVAR specifies the division of the 

dataset into individual segments of length τ, so that the segment are non-overlapping; that is, each 

data sample is only used once in the calculation. For greater confidence, the NIST handbook for 

frequency stability analysis recommends overlapping the clusters. Figure 5-1 illustrates this 
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overlapping approach and compares it to the original AVAR analysis method. In the original 

approach each cluster contains a unique set of sample points and each subsequent cluster contains a 

different set of samples. This is illustrated in the top of Figure 5-1. The overlapping approach makes 

maximum use of the data by forming clusters which reuse samples across clusters. The reuse of 

samples is dependent on the cluster size and the amount of samples to shift by. In the bottom half of 

Figure 5-1 the cluster size is 3 samples and the shift is by 1 sample. Although the confidence of the 

estimate increases with this approach, the computational time also increases.  

 

Source: NIST SP 1065 [35] 

Figure 5-1: Non-Overlapping versus Overlapping Samples Illustration 

The equation for the modified Overlapping Allan Variance is defined as 

_����� =  1
2W��n − 2W + 1� o o pZKq; − ZKr^2

wq�u;

Kvw

tu��q;

wv;
 (5-3) 

where m is the averaging factor.  

Once the calculation is performed for a specific averaging period, τ, it is repeated again for 

additional longer periods. Once AVAR values are obtained for several averaging periods, the square 

root of the AVAR values are calculated producing Allan Deviation (ADEV) values and plotted 

against the averaging periods. This produces a data plot similar to the sample diagram shown in 

Figure 5-2. This type of plot is commonly referred as Allan Deviation, or Sigma-Tau, plot. Generally 
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the log sigma and log tau is plotted to show the dependence of measurement stability as a function of 

averaging time.  

The Allan Deviation plot is useful for identifying the five specific types of stochastic random 

processes described before by examining the slope of the curve. Provided the different noise sources 

are reasonably separated, different error terms will dominate different regions of τ.  

 

Figure 5-2: Typical Allan Deviation plot for a system  

Table 5-1 provides a listing of the five common noise sources, the parameters of interest, 

their relation to the Allan Variance value and the region of τ at which they appear on the Allan 

Deviation plot. The magnitude of each noise parameter may be approximated using the plot. For 

example, to quantify the magnitude of quantization noise, one must first find where the slope of the 

Allan Deviation trend approximately equals -1. Then extends an imaginary line of the same slope 

until it intersects an extended line at � =  √3. The y-value at this specific intersection then 

approximately represents the deviation due to quantization. This procedure is repeated again for the 

remaining noise types. This visual-fitting method provides a simple and quick way to identify the 

stochastic error sources but is limited in accuracy.  
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Table 5-1: Relation of Allan Variance and Noise Sources [37] 

 

The actual magnitude of each noise source can be also extracted via linear regression 

analysis. The goal of the linear regression analysis is to identify the coefficients for the following 

polynomial model through a least squares approach. 

_� = y;�u; + y��u�.z + y{�� + y|��.z + yz�; (5-4) 

The resulting coefficients (A1 through A5) approximate the noise parameters of interest and are 

calculated using the following equations 

} = y;
√3 (5-5) 

~ = y� (5-6) 

� = y{ × 0.6648 (5-7) 

J = y| × √3 (5-8) 

F = yz × √2 (5-9) 

 By fitting a linear model to the root Allan Variance results, the coefficient results of the linear model 

are equal to the magnitude of the noise sources. This regression approach was used to quantify the 

noise source for the San Jose GPS receivers and ADXL 355 accelerometers. Results for the GPS 

receivers are presented first. 
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5.2 Experiment Setup 

To evaluate the error characteristics of the prototype hardware, three prototype detection 

sensor packages were tested in the experiment. They are in fact the same three prototypes that were 

used in the Yuma feasibility testing that has been previously mentioned. All three units were inside an 

office building within approximately 3ft of a GPS repeater device. A GPS repeater receives GPS 

signals from the satellites at an antenna externally mounted outside the building, and then directly re-

transmits the signals internally with some amplification. It is commonly used in tunnels to provide 

GPS functionality since the satellite constellation is not direct line of sight available.  The units were 

placed inside nearby the GPS repeater station for more accurate comparison across hardware since the 

GPS receivers would be commonly receiving the same signal from the repeater station. Using the 

GPS repeater should also omit any control or signal propagation errors. The GPS data from the San 

Jose FV-M8 receiver and acceleration data from the ADXL335 3-axis accelerometer was collected, at 

a rate of 5 Hz, for approximately 24 hours to capture the full motion of the GPS satellite constellation 

from April 13, 2010 to April 14, 2010. The data collection process on all three units was started 

approximately at 4:00 pm. Two of the three systems successfully collected data continuously for the 

full duration of the experiment. In the following results discussion these two units are identified as 

System 9366 and System 9584. The data collection process for the third unit, identified as System 

9365, first collected 11.4 hrs worth of data before shutting down due to a software error, but was re-

started to collect an additional 7.22 hrs worth of data.  

Figure 5-3 and Figure 5-4 show the raw latitude and longitude measurements, respectively, 

collected by all three systems. The figures identify the brief gap in the data for System 9365 related to 

the period at which the data collection process for this system was temporarily offline. Overall, the 

plots indicate fairly good agreement of the raw measurements across the three systems, although there 

is a brief period of non-correlation also identified in the figures. The cause of this measurement 

disagreement is unclear and appears to be random. For numerical quantification of the agreement, the 
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correlation between the datasets was calculated using Pearson’s correlation formula. The results of 

are provided in  
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Table 5-2 and Table 5-3 respectively. 

 

Figure 5-3: Comparison of Raw Latitude Measurements across Systems 

 

Figure 5-4: Comparison of Raw Longitude Measurements across Systems  
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Table 5-2: Latitude Cross Correlation Results  

System 9366 9584 9365

9366 1 0.972 0.965

9684 0.972 1 0.989

9365 0.965 0.989 1  

Table 5-3: Longitude Cross Correlation Results 

System 9366 9584 9365

9366 1 0.963 0.947

9684 0.963 1 0.986

9365 0.947 0.986 1  

The raw latitude and longitude measurements were translated to the East-North-Up (ENU) 

coordinate reference frame to better illustrate the change in position in units of meters. The position 

deviation from a mean position is shown in a scatter plot (Figure 5-5) using the ENU reference frame.  

The FV-M8 circular rated CEP specification of 3.3m is also shown in this figure. Although the CEP 

represents 50% percentile for coordinate fixes, all of the data from the three receivers lies within the 

CEP circle, indicating much higher than expected accuracy. On average, the deviation in east and 

north is 0.73m and 1.10m respectively. This high accuracy could be due to the use of a GPS repeater 

station mitigating other GPS errors effects such as multipath. To determine if this is the reason a 

similar experiment performed outside thereby eliminating the necessary use of the GPS repeater is 

recommended for future work.  
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Figure 5-5: Drift Data Deviation in East-North Reference Frame  

5.3 Allan Variance Analysis and Results 

From visual inspection of the raw latitude and longitude trends in Figure 5-3 and Figure 5-4, 

it appears that random walk is the dominant stochastic noise source. AVAR analysis was applied to 

confirm this hypothesis. The data was processed using MATLAB and publicly available AVAR code 

(allan.m) from the Mathworks website [38]. This specific version (Version 3.0) includes functionality 

to calculate AVAR using the overlapping method. As mentioned before the overlapped version of 

Allan Variance produces higher confidence results. Before applying to the GPS datasets, the 

“allan.m” code was tested and verified on data provided in the NIST published Handbook of 

Frequency Stability Analysis. Additional code was developed and added to the MATLAB starter code 

to determine the noise parameter magnitudes using linear regression analysis. This code is provided in 

Appendix C. 
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5.3.1 San Jose FV-M8 GPS Allan Variance Analysis 

The application of the Allan Variance analysis is first discussed in detail for System 9366 

GPS data. The raw latitude measurement is again shown in Figure 5-6 to better illustrate the random 

drift in the data. The AVAR results for the latitude measurement are shown in Figure 5-7 on an Allan 

Deviation plot. The result of the linear regression analysis is also shown with the additional model 

produced curve shown in red. The correlation between the experimental data and model is 0.9995. 

From visual inspection, the positive slope of both the AVAR results and fitted model curve suggest 

that the dominant noise types are random walk and/or ramp. Using the resulting coefficients from the 

linear regression model and Equations (5-5) through (5-9) above, the calculated magnitude of the five 

noise variables are listed in Table 5-4.  

 

Figure 5-6: System 9366 Raw Latitude Measurement 
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Figure 5-7: System 9366 Latitude Measurement Allan Deviation Plot 

Table 5-4: System 9366 Latitude Noise Parameter Magnitudes  

Noise Type Magnitude 

Quantization (�52>. >5D) -2.749E-6 

White Noise (�52>√>5D 3.916e-6 

Bias (�52>� -6.838e-7 

Random Walk (�52>/√>5D� 3.129e-7 

Ramp (�52>/>5D>) -8.89e-10 

 

To better understand how each noise type individually contributes to the overall deviation the 

respective magnitudes from Table 5-4 were substituted into the appropriate noise equations 5-5 

through 5-9 to calculate the noise coefficient terms A1 through A5. These coefficients were then 

substituted into the root Allan Variance equation of (5-4), one at each time, and iterated through τ 

from 1 to 10000s to generate the result of noise type’s behavior as a function of τ. Figure 5-8 

compares the resulting trends of each noise type. Deviations at small averaging times are of primary 
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concern for the GPS-based collision system since the system is not able to update with high 

frequency. Closer inspection of the results at an interval of averaging times from 1 to 300 seconds 

shows the deviation positively increasing due to quantization (blue) and random walk (cyan) while 

negatively decreasing as a result of white noise (green), and ramp (purple). The bias noise type (red) 

steadily appears across all averaging times. The results are in general agreement with the theory of 

stochastic noise processes. Quantization and white noise tend to dominate at short averaging times 

and decay as averaging time increases. In contrast, as averaging time increases, the deviation due to 

random walk and ramp noise increases. Since these two noise types have specific impact on position 

fixes it would be particularly concerning if these noise types were large and began increasing at 

shorter averaging times where they could not be corrected. To demonstrate the influence at longer 

averaging times, the same results in Figure 5-8 are shown in Figure 5-9 except plotted on logarithmic 

scales. In this perspective the deviation contribution from the first three noise types is significantly 

diminished compared to random walk and ramp noise types. Although both random walk and ramp 

exist, the increasing trend of random walk increases deviation as averaging time grows and therefore 

corrupts the measurement. The decreasing trend of the ramp noise type suggests that the longer 

averages reduce the deviation thereby “correcting” the measurement. In reality this would mean that a 

random stochastic noise process is improving the measurement which is not realistically possible. For 

greater accuracy in the quantification of random walk noise, the linear regression analysis was applied 

again but instead ignoring the modeling of all terms except random walk. The resulting model fit 

curve is shown in Figure 5-10 along with the correlation agreement between the experimental data 

and model and magnitude of the random walk noise term. The influence of random walk noise is 

significant at longer τ values, however for the GPS collision system this error could be corrected by 

other measurements.  

This analysis process was repeated for the raw latitude measurements of the two remaining 

systems. Figure 5-11 compares the AVAR result for all three systems, and the results are in 
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agreement. System 9584 and System 9365 exhibit positive slopes suggesting random walk as the 

dominant noise process. For both systems, full error models were first generated to confirm random 

walk as the primary stochastic noise type. Then, the linear regression analysis was applied again to 

model only random walk for greater accuracy.   

Table 5-5 compares the final random walk noise parameter calculated using the simplified 

single noise term model. For all three receivers the degree of correlation between the model fit curve 

and experimental data is high. The random walk values obtained are also very similar suggesting that 

a single error model could be used to describe all three receivers and perhaps any San Jose FV-M8 

receiver. 

 

Figure 5-8: System 9366 Individual Noise Parameter Influence 
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Figure 5-9: Dominant Noise Types at Longer Averaging Times  

Table 5-5: Summary of Random Walk Noise Parameter for Latitude Measurement 

System Correlation 
Random Walk �'+&�/�+�� 

9366 0.9926 1.893e-7 

9584 0.994 1.834e-7 

9365 0.997 1.760e-7 

 

10
1

10
2

10
3

10
4

10
-8

10
-7

10
-6

10
-5

10
-4

Tau (seconds)

D
ev

ia
tio

n 
(d

eg
)

System 9366 Noise Parameter Influence As Function of Averaging Time

 

 

Q

N

B
K

R



 

Figure 5-11: Comparison of All 

Figure 5-10: Random Walk Model 

: Comparison of All Allan Variance Results for Latitude 

57 

 

 

Results for Latitude Measurement 



 

In similar fashion, t

all three systems, and similar results were obtained. 

results on the Allan Deviation plot. Again

averaging times and continues to grow. Again for each 

first generated to characterize the influence of all five noise terms. After confirming random walk as 

the major noise source, the single noise term linear regression analysis was applied. The results of the 

regression analysis and calculation of the magnitudes

below. Again the correlation values are high and the resulting noise values are very similar across the 

three receivers.  

Table 5-6: Summary of Random Walk Noise Parameters for Longitude Measurement

System 

9366 

9584 

9365 

Figure 5-12: Comparison of All Allan Variance Results for Longitude Measurement

In similar fashion, the AVAR analysis was then applied to the longitude measurements from 

, and similar results were obtained. Figure 5-12 compares the longitude AVAR 

results on the Allan Deviation plot. Again, from visual inspection, the deviation is large at longer 

averaging times and continues to grow. Again for each longitude measurement full error models were 

generated to characterize the influence of all five noise terms. After confirming random walk as 

the single noise term linear regression analysis was applied. The results of the 

regression analysis and calculation of the magnitudes of the noise parameters is provided in 

below. Again the correlation values are high and the resulting noise values are very similar across the 
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the single noise term linear regression analysis was applied. The results of the 

of the noise parameters is provided in Table 5-6 

below. Again the correlation values are high and the resulting noise values are very similar across the 
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Although the magnitudes of the previous results appear very small, this is a result of the very 

small changes in the raw measurements which is in units of degrees. Specifically the changes in the 

raw measurements were observed on the order of 1e-6. To evaluate the drift on a more realistic length 

scale, the Allan Variance analysis was also applied to the converted east and north deviations to 

obtain units of meters. The Allan Deviation plots for the East and North changes are shown in Figure 

5-13 and Figure 5-14 respectively. Again the dominant noise type that appears from visual inspection 

of the plots still demonstrates random walk. On this scale the drift error is on the order of centimeters.  

Table 5-7: Summary of Random Walk Noise Parameters for East Deviation Estimate 

System Correlation Random Walk (�/�+�� 

9366 0.9791 0.0155 

9584 0.9838 0.0156 

9365 0.9939 0.0169 

 

Table 5-8: Summary of Random Walk Noise Parameters for North Deviation Estimate 

System Correlation Random Walk ��/�+�� 

9366 0.9937 0.021 

9584 0.9949 0.0203 

9365 0.9972 0.0196 
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Figure 5-13: System 9584 East Deviation Allan Deviation Plot 

 

Figure 5-14: System 9584 North Deviation Allan Deviation Plot 
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5.3.2 ADXL-335 3-Axis Accelerometer Allan Variance Analysis 

The AVAR analysis was also applied to the accelerometer data also collected during the 24 

hour collection period. Figure 5-15 shows the raw measurements collected by System 9366. Based on 

visual inspection of the raw data it appears short term averaging time noise processes, such as 

quantization and white noise, are dominant. In contrast to the GPS data, there is no random walk 

easily detectable in the raw data.  

 

Figure 5-15: System 9366 Raw Accelerometer Data 
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magnitudes obtained for the x, y, and z directions using system 9366 collected data. Negative 

coefficients appear again for two of the noise types, white noise and random walk. Obtaining negative 

coefficients suggests the addition of that noise type reduces the overall variance of the sum of noise 

contributions. Or, this indicates that there are underlying contributors to the noise (such as dynamics 

of a filter) that are not being modeled. Or, it could indicate that the error in regression fitting is large 

relative to the coefficient of a particular noise model, e.g. that the noise is so small that the coefficient 

may seem negative just due to fitting error. The negative coefficients obtained are small and so it 

most likely that this last effect is occurring. Thus, these noise components are ignored hereafter along 

with the ramp noise term due to its small magnitude. 

 

Figure 5-16: System 9366 Acceleration X Allan Deviation and Full Error Model Results 
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Table 5-9: System 9366 Accelerometer Full Error Model Noise Parameter Magnitudes 

Noise Type X Y Z 

Model Fit Correlation 0.9756 0.9967 0.9460 

Quantization (W�<79>. >5D) 2.042 0.351 2.038 

White Noise (W�<79>√>5D -1.399 -0.044 -1.568 

Bias (W�<79>) 0.181 0.022 0.231 

Random Walk (W�<79>/
√>5D� -0.0053 -0.001 -0.006 

Ramp (W�<79>/>5D>) 1e-5 4e-6 1e-5 

 

To increase the accuracy of the quantization and bias noise noise terms, the AVAR analysis 

was re-applied but on the interval of 1 to 100 where these terms are dominant. The previously 

discussed “invalid” noise terms; quantization, white noise, and ramp, were also omitted from the 

subsequent linear regression analysis. Results of each sensor are compared in Figure 5-17, Figure 

5-18, and Figure 5-19 grouped by sensing direction. The results from applying the linear regression 

analysis and extracting the quantization and bias noise terms are presented in Table 5-10, Table 5-11, 

Table 5-12 for x, y, and z axes respectively. The figures indicate a noticeable “offset shift” although 

the underlying shape of each curve appear similar especially in the range of less than 10 seconds. This 

is important to note as the GPS collision framework operates in the range of less than a second. It is 

therefore important to understand and determine the errors for very short averaging periods. Also 

because the underlying shape of each is similar and the difference in results only appears to be a shift, 

an appropriate noise model can still be developed and a scalar term can be incorporated to 

compensate for the shift.  

The root cause of the shift was not investigated here but it is obviously related to some sort of 

variance among the sensors or interfacing hardware. It could possibly be due to errors or variances 

encountered during building the prototype GPS units. The placement and orientation of the sensors 
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was not precisely controlled and so there is likely some deviations in sensor orientation. Or it could 

be due to variances in the manufacturing tolerances of the sensors themselves. Particularly the 

breakout boards which interface the core sensor to the microcontroller contain a low pass filter, and 

although the production of the core sensor may be tightly controlled the breakout boards and 

subsequently the filter may not.  

 

Figure 5-17: Comparison of All Three Systems Acceleration X Allan Variance Results 



 

Figure 5-18: Comparison of Al

Figure 5-19: Comparison of All Three Systems Acceleration Z Allan Variance Results
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l Three Systems Acceleration Y Allan Variance Results 

 

Comparison of All Three Systems Acceleration Z Allan Variance Results 
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Table 5-10: Identified Acceleration X Noise Coefficients for All Three Systems 

System Correlation 
Quantization 
(������. �+�� 

Bias 
(������� 

9366 0.989 0.231 0.0775 

9584 0.982 0.099 0.0308 

9365 0.991 0.268 0.136 

Table 5-11: Identified Acceleration Y Noise Coefficients for All Three Systems 

System Correlation 
Quantization 
(������. �+�� 

Bias 
(������� 

9366 0.96 0.165 0.0219 

9584 0.97 0.0309 0.0775 

9365 0.969 0.0976 0.0523 

Table 5-12: Identified Acceleration Z Noise Coefficients for All Three Systems 

System Correlation 
Quantization 
(������. �+�� 

Bias 
(������� 

9366 0.9883 0.2538 0.1024 

9584 0.9886 0.233 0.0703 

9365 0.9819 0.185 0.0743 

5.4 Summary 

This chapter presented a method for characterizing noise models of the GPS-based collision 

hardware sensors. Specifically, Allan Variance analysis was applied to GPS latitude/longitude and 3-

Axis accelerometer data to quantify the stochastic noise processes in these sensors. Based on visual 

inspection of Allan Deviation plots and linear regression analysis derived models, estimates of noise 

magnitudes were produced. The GPS data clearly exhibited random walk as the primary noise type. 

Since the measurements are the results of receiver built-in processing algorithms, the absence of 

faster noise processes is understandable.  

In contrast the accelerometer measurements displayed quantization and bias as the dominant 

noise types. The magnitudes of these noise types differed between the sensors and it could be possibly 
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due to hardware differences encountered either during the manufacturing process, the assembly of the 

prototype systems, or the built-in low-pass filter but none of these are certain causes. Although the 

magnitudes differ the underlying noise characteristics appear similar especially at short averaging 

time intervals. This is an important finding towards development of fusion algorithm, such as Kalman 

filters, which could benefit the collision algorithm. Since the underlying characteristics are the same 

and the results are only “shifted” one specific noise model can be created but could be adjusted by a 

scalar component to handle the shift offset.  
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Chapter 6  
EVALUATING INTER-VEHICLE DISTANCE MEASUREMENT 

One of the more important input variables in the collision algorithm is the physical distance 

between the vehicles from the leader’s rear bumper to the follower’s front bumper (or inter-vehicle 

distance). Current commercial collision systems measure this input directly using forward scanning 

sensor technologies, such as RADAR or LIDAR. The GPS-based collision system infers the inter-

vehicle measurement by calculating the distance between two GPS coordinate current positions of the 

vehicles as measured by the GPS receivers. The inherent horizontal position uncertainty of a GPS 

receiver raises the concern of whether the inter-vehicle distance measurement can be accurate enough 

for use in determining collision probability. To determine this, a comparison of GPS to ground truth 

data of inter-vehicle distance is necessary. This chapter presents the experiment performed to collect 

GPS based and LIDAR based inter-vehicle measurement data and the subsequent analysis performed 

to compare the accuracy of the two methods.    

Previous studies have evaluated the performance of collision warning systems however, most 

of this existing literature focuses on driver response and algorithm performance. Lu et al. evaluated 

the technical limitations of a developed frontal collision warning system for transit buses [39]. Their 

paper provides information regarding a test setup and procedure for evaluating the limitations of 

LIDAR- and RADAR-based collision detection systems. In their study, they used a string pot position 

transducer to measure inter-vehicle distance for ground truth. Instead, in this study, the LIDAR sensor 

itself collects inter-vehicle distance and this measurement is assumed ground truth. The test plan for 

this analysis was also influenced by test methods conducted by Birdsong who evaluated the 

performance of ultrasonic, laser range finder, and radar sensors through static and dynamic tests [40]. 

Kamiya et al. outlined specific requirements for a collision system suggesting that a range accuracy of 

1m is necessary [15]. The following analysis discusses if the GPS-based collision system is capable 

of meeting that requirement. 
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6.1 Test Setup and Procedures 

Two vehicles were used in the experiment: a 1994 GMC Sierra 2500 pickup truck and a 2005 

Subaru Legacy sedan car. In all the test procedures, the sedan followed behind the truck so the GPS-

based collision system calculated the inter-vehicle distance and the rear-end collision probability of 

the sedan crashing into the truck. Figure 6-1 captures all the hardware equipment used for this study.  

 

 

Figure 6-1: Test Vehicles and Equipment 

A SICK LMS 291 LIDAR sensor system was mounted near the rear truck bumper with 

sensor scanning direction facing rear-wards to measure the distance (up-to 80 meters per sensor rated 

specifications) of the sedan’s front bumper within a 0-180 hemispherical area. The SICK LIDAR 

sensor was configured to produce data at a rate of 37.5 Hz at 0.5 degree resolution. The acquisition 

and storage of the data from the sensor was handled by a MATLAB based GUI application, Figure 

6-2, and the application was also designed to attach a GPS timestamp to the LIDAR data so 

measurement samples could be correlated to the GPS based measurements. The GPS timestamp is 

generated by a high-grade GPS receiver. The Novatel DL-4plus GPS receiver is able to provide 

precise GPS measurement with a rated position accuracy of 1.5m CEP (Circular Error Probability) at 

a collection frequency of up to 20 Hz.  
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Figure 6-2: User Interface of LIDAR Data Acquisition Software  

Two of the prototype hardware packages previously described in Chapter 3 were installed, 

one on each vehicle. One unit was mounted on the truck cabin roof, approximately 3.0 m distance 

from the LIDAR sensor. The other unit was mounted approximately in the center of the roof of the 

sedan.  The distance of this unit from the sedan front bumper was approximately measured 2.36 

meters.  

The IEEE 1588 standard for precise time synchronization of multiple systems was 

programmed and implemented for this experiment to optimally synchronize the LIDAR, Novatel, and 

Collision GPS hardware systems. The GPS timestamp produced by the Novatel equipment was 

considered the master time and was shared wirelessly to the prototype GPS hardware units. 

Implementing this time synchronization protocol provides easier alignment of data in post processing 
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analysis and assures greater accuracy in making comparisons between the inter-vehicle distance 

ground truth and estimates. See Appendix F for more detailed information of this setup. 

The test procedures were all performed at Penn State’s Pennsylvania Transportation Institute 

test track. The test track features a 5042 ft long oval shaped track ideal for safely conducting closed 

course experiments. An aerial photograph of the PTI test track facility with specific test feature 

highlight is shown in Figure 6-3. Performing the procedures at a test track provided a safe, controlled 

and reliable test environment free of other vehicles and obstacles. The collected data was post-

processed using MATLAB software. For specific details regarding the data analysis procedure see 

Appendix H. 

 

Figure 6-3: PTI Test Track Aerial Photograph 

6.2 Error Analysis 

The accuracy of the GPS-based inter-vehicle distance measurement compared to LIDAR was 

first evaluated. The GPS-based measurement was evaluated in two forms/estimates. The “hybrid” 

estimate was calculated using GPS information between the high-grade Novatel GPS unit mounted on 

the truck and the low-grade San Jose GPS receiver on the sedan. In contrast, the “real-time” estimate 
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only relies on the two low-grade GPS receivers from both vehicles and was the stored real-time 

calculation. This real-time estimate therefore includes wireless communication effects such as 

network latency. In addition to comparing GPS inter-vehicle spacing against LIDAR, the real-time 

estimate was compared to the hybrid spacing distance estimate to identify whether there are 

significant advantages to using a higher-cost, higher accuracy GPS system.  

Figure 6-4 shows the measurements from two GPS-based inter-vehicle distance estimates 

versus LIDAR collected while the sedan follows the truck during a specific segment of the PTI test 

track. The absolute difference, or error, between the LIDAR and the two estimates is shown in Figure 

6-5. From these two figures there are some noticeable outliers in the ground truth measurement. 

Although the sedan was driven directly behind the center (as best as possible) of the truck and as 

close as possible (approximately 20 meters) without risking safety, these outliers are primarily due to 

LIDAR target confusion with other roadside obstacles (vegetation, signs, buildings, etc) and also 

rough road surfaces causing small deviations in the LIDAR line of sight and subsequently causing 

missed detection of the sedan’s front bumper. Also the test track includes a narrow bridge section that 

contains cement barriers bordering the track which also produced significant target confusion near the 

end of the lap. This degraded portion (errors induced by cement barriers) of data is not shown in 

Figure 6-4 or Figure 6-5 and was also omitted from the analysis.  
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Figure 6-4: Estimates vs. Ground Truth, Lap Procedure 

 

Figure 6-5: Absolute Error between Ground Truth and Estimates 
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Figure 6-6 and Figure 6-7 presents updates of the previous two figures with the LIDAR 

measurements outliers removed by first statistically identifying points outside of a 3 sigma deviation, 

then visually confirming the outliers by graphing the data, and finally manually removing those points 

from the data. All of this was accomplished using MATLAB.     

There is also a theoretical error threshold shown in Figure 6-7 related to the CEP 

specification for the San Jose GPS receiver. As per specification, a single San Jose GPS receiver has a 

CEP rating of 3.3m. As mentioned before, the CEP accuracy rating is a 50% probability statistic valid 

for static measurements. This means that 50% of the GPS fixes will fall within a circular area with the 

radius equal to the specification. Logically a smaller CEP value indicates higher accuracy. Since two 

GPS receivers are used to estimate the inter-vehicle distance measurement, the, “worst case”, 

threshold here assumes the errors combine in a purely additive manner (CEP1 + CEP2) and so 

logically the threshold is drawn at 6.6m. It is then expected that 50% of the difference values in 

Figure 6-7 would be equally distributed above and below the thresholds. Instead, most of the samples 

fall significantly below the worst case threshold. Assuming the CEP specification for one receiver is 

accurate; it is concluded that the errors between the two GPS receivers are in fact not cumulative. 

This increase in relative positioning performance of the two GPS receivers is possibly due to a 

correlation of GPS errors among the receivers, similar to how DGPS systems work.  
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Figure 6-6: Estimates Vs. Ground Truth with Outliers Removed 

  

Figure 6-7: Absolute Error with Outliers Removed 
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Histograms of the hybrid and real-time error data are presented next in Figure 6-8 and Figure 

6-9 respectively. The figures also show probability distribution results and inferred statistics. Since 

the absolute difference was previously evaluated, the half-normal probability distribution was 

selected for application. The half normal distribution is related to the standard normal distribution 

except is it is appropriate for datasets where all data is positive, (x≥0), or only the magnitude of the 

data is recorded and sign is omitted, and the expected value is 0. The inferred statistical results 

suggest the error distribution for both hybrid and real-time methods is small. The statistical results 

indicate both the hybrid and real-time errors are lower than the CEP error specification for a single 

receiver and the previously discussed worst case scenario where CEP errors are cumulative. The 

variance statistic for both is also small showing the 95% confidence metric even falls within the 

single receiver CEP rating. It is mentioned that the error distribution and statistics is only slightly 

“worse” for the real-time dataset compared to the hybrid dataset. The mean error for the hybrid 

dataset is actually less than the 1m requirement as suggested by Kamiya. Recall that the hybrid 

dataset was produced from using a high-end GPS unit with a low-end GPS unit. The accuracy would 

then be expected to be better if two high-end GPS units were used. Although the mean error for the 

real-time dataset, which uses both low-cost GPS units, is over the 1m suggested requirement it is only 

over by 0.26m. The concern of whether GPS accuracy would be good enough for collision detection 

are answered by these results which suggests the accuracy is quite applicable.  
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Figure 6-8: Hybrid Error Distribution and Statistic s 

 

Figure 6-9: Real-Time Error Distribution and Statistics 
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6.3 Revised Uncertainty Analysis 

A significant outcome of the previous results was that this research gives numerical values 

for the estimated error associated with the GPS based inter-vehicle distance measurement. With this 

error more accurately quantified using actual experimental data; the uncertainty analysis first 

presented in section 4.3 is revisited to get a better estimate of warning parameter uncertainty.  

Equation (4-14) and the delta values for each parameter listed in Table 4-6 were again used to 

calculate the warning parameter uncertainty, Δw. However, using the results of the previous inter-

vehicle distance measurement analysis, only the delta value for d was changed to 1.198m. This 

represents a 71% error increase in d. For comparison, the result of this updated uncertainty analysis is 

shown in Figure 6-10 along with the two analyses previously presented in Chapter 4. Case 1 is the 

second analysis in Chapter 4 which uses the error values listed in Table 4-6. Case 4 is the first 

analysis of Chapter 4 where an error of 1σ was applied on all parameters. Recall this is the worst case 

scenario. Case 2 is the new uncertainty analysis result, using 1.198 meters for d. Comparing Case 1 

and Case 2, there is barely a noticeable difference. The results almost appear the same; however, there 

is actually a difference between the two results which is shown in Figure 6-11. As highlighted in 

Figure 6-11, the increase in error from 0.7m (Case 1) to 1.198m (Case 2) for d resulted in a decrease 

in detection horizon of 0.02 seconds. This changes the original detection horizon of 2.03 seconds to 

2.01s. This is a percentage decrease of only 1%. So even though the d error increased by 71%, the 

detection horizon only decreased by 1%. This suggests that the warning parameter is not highly 

sensitive to changes in inter-vehicle distance measurement errors.   

To further support this claim, an additional uncertainty analysis (Case 3) was performed to 

evaluate the effect of a significant larger error on d compared to the other variables. For the Case 3 

analysis, the error values listed in Table 4-6 were again used for all variables, except d. Each d value 

in the simulated data was changed by 68%, or one sigma deviation. Even with the large error on d, the 

Case 3 result is better than the Case 4 worst case result and Case 3 still provides an earlier detection 
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horizon. Case 3 crosses the warning parameter threshold at approximately 5.3 seconds and since 

collision occurs at 6.5 seconds in the simulated scenario the detection horizon is approximately 1.2 

seconds. Compared to Case 1 and Case 2, this is a detection horizon decrease of 1.28 seconds. This is 

a percentage change decrease of 48% although the error increase is at least 68%. These results show 

that, as spacing errors increase by a factor of X, that the warning parameter error will not increase by 

the same factor. 

  

Figure 6-10: Updated Uncertainty Analysis Results 
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Figure 6-11: Comparison of Case 1 and Case 2 Uncertainty Analysis Results 

 

Figure 6-12: Evaluation of Case 3 Uncertainty Analysis Results 
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6.4 Measurement Linearity 

The previous analysis results identified how Δd is distributed. It is also important to 

understand the dynamics of this error and whether it changes as the actual distance between vehicles 

increases and decreases, in other words the linearity of the error. Particularly as the d decreases it is 

important to verify that the error does not significantly increase or behave in nonlinear manner which 

would be difficult to model and correct. This section investigates that concern. 

Instead of using the same dataset as before, which is problematic because it is difficult to 

ensure the fidelity of long-distance LIDAR readings (due to uncertainty where the LIDAR is striking 

the vehicle), a different test procedure was planned and executed to produce data specifically for this 

analysis. In this procedure, the truck was parked at one end of the large space vehicle handling area, 

identified in Figure 6-3, and the sedan was located directly behind within the LIDAR detection 

window. The sedan was then driven in reverse away from the truck thereby increasing the inter-

vehicle distance until before exiting the LIDAR detection range (approximately 80m).  After a brief 

stationary pause the sedan was then driven forward towards the truck to decrease the inter-vehicle 

distance. The goal was to simulate an impending collision. The same procedure was repeated for 

several iterations. This procedure provided data that was significantly “cleaner” than the data 

collected while driving around the track.  

Figure 6-13 compares the collected data for the two estimates, hybrid and real-time, against 

the LIDAR ground truth. Again, from this preliminary visual inspection, the estimates show generally 

good correlation to the LIDAR ground truth. The difference between the estimates and the ground 

truth was again calculated and the result for a specific subset period of the dataset is shown in Figure 

6-14. It is noticeable that the error is larger when the sedan is transient, either towards or away, 

compared to when it is stationary. This is expected as most GPS receivers improve position fix based 

on previous data through some type of low-pass or averaging filter. Thus, both a time lag and velocity 

dependence is introduced through filtering. It is also noticeable that the error is generally positive 
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during the approach maneuver and negative during reverse. When the GPS estimates are plotted 

against the LIDAR data as shown in Figure 6-15, this effect appears as hysteresis. It is believed that 

this hysteresis is due to a combination of the sedan travel direction and an inherent “delay” of the 

estimates in comparison to the LIDAR. This hysteresis effect is further examined later.  

Figure 6-15 also provides a preliminary visual inspection of the linear behavior of the error 

for both GPS-based estimates as the sedan is in motion. As the ground truth d increases or decreases, 

it is expected that the hybrid and real-time d estimates change linearly as well. Figure 6-15 confirms 

that they do follow an expected linear behavior.  

 

Figure 6-13: Estimates vs. Ground Truth, Forward/Reverse Procedure 
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Figure 6-14: Estimate Errors, Subset of Forward/Reverse Dataset 

  

Figure 6-15: Estimates vs. Ground Truth 
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Since the estimates demonstrate a linear behavior, it is expected that their errors would also 

be linear as a function of distance. Again it is more important to confirm that the error does not 

consequently grow as the sedan approaches the truck. Figure 6-16 is similar to Figure 6-15 except that 

it is a plot of the errors of the estimates (the results trended in Figure 6-14) versus LIDAR. Again, the 

hysteresis effect is observable but a general linearity is also observed during the approach and reverse 

maneuvers. Figure 6-17 focuses only on the subset of error data during the approaches. To quantify 

the linearity, the MATLAB curve fitting toolbox was used to apply a linear fit to this data. The results 

are also shown in Figure 6-17. Although there is a slightly positive slope in the error, it is believed 

that this is related to the hysteresis effect. More importantly, the results clearly show that the error for 

either estimate does not significantly grow or behave non-linearly as the gap decreases between the 

vehicles. 

 

Figure 6-16: Estimate Errors vs. Ground Truth Inter-vehicle Distance 
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Figure 6-17: Error Behavior during Vehicle Approach 

6.5 Measurement Hysteresis  
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during approach and departure. From the figure, the hysteresis spread is approximately 5.0m. Table 

6-1 and Table 6-2 quantify the mean and variance for each of the “events” during the testing. The 

hysteresis is also quantified by calculating the difference between the mean of the forward and 

reverse events.  Although the exact cause of the hysteresis was not determined, the spread is believed 

to be due to several factors which are briefly discussed here. First, the travel direction of the vehicle 

affects the sign of the error. The error results shown in Figure 6-16 are calculated by subtracting time 

correlated samples of LIDAR based d from GPS based d. Since the LIDAR sampling rate is faster, 

the LIDAR based d changes ahead of the GPS estimates. Therefore it is expected that the sign of the 

error is positive when the sedan is closing in and signed negative during reverse.  
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Table 6-1: Hysteresis Results for Hybrid System 

 

Table 6-2: Hysteresis Results for Real-Time System 

 

The magnitude of the spread is dependent on the sedan traveling velocity and the sampling 

characteristics of the sensors. As the relative velocity between the vehicles increases the error in the 

inter-vehicle distance will increase proportionally because the sensor sampling frequency is constant. 

Subsequently a measurement “delay” will be introduced because the sensor will not be able to report 

as quickly as the rate of changing position. The delay effect is easier to confirm in Figure 6-18 which 

focuses on the lower left corner of the data from Figure 6-15 but only for the real-time estimate. As 

the sedan approaches the truck and slowly decelerates to a stop; the data points stop changing along 

the x-axis because the LIDAR measurement has settled. But the values continue to change along the y 

because of the slower response of the GPS based measurement. Upon departure, the LIDAR responds 

first as evident by data points changing in x but remain locked in y, which again demonstrates the 

delay effect. Although not shown, this delay affect also occurs at the opposite end of the test. 

Mean (m) Variance

Stationary 2.05 0.4

Forward 4.8 0.73

Reverse 0.04 0.85

Hysteresis 4.76

Mean (m) Variance

Stationary 2.16 0.63

Forward 5.27 1

Reverse -0.44 1.12

Hyteresis 5.71
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Figure 6-18: Close Inspection of Delay Effect 

The approximate error of the measurement delay can be quantified knowing vehicle traveling velocity 

and sensor sampling rate. For example, the San Jose GPS sensors are designed with an internal update 

rate of 5 Hz and the average maximum velocity achieved during the testing was 20 mph (8.9408 m/s) 

while driving in the forward direction. Dividing this maximum speed by the GPS update rate returns 

an approximate error of 1.8m. Similarly this error exists for the LIDAR measurement as well. 

However, since the LIDAR system samples at a higher rate (37.5Hz) the maximum velocity delay 

error would be instead 0.24m using the same calculation. Since error is compared against the LIDAR 

measurement in Figure 6-16, the two values could be combined resulting in an estimate of 2.0m for 

measurement error strictly due to delay. Since this 2.0m error would exist in both directions, the 

hysteresis would appear as 4.0m in Figure 6-16 due to the delay error alone. Since the real-time 

system relies on wireless communication to exchange vehicle telemetry with surrounding vehicles 

there is also likely delay due to wireless network latency and subsequently additionally increased 

error. This may explain the larger hysteresis result in the real-time system when compared to the 

hybrid system in Table 6-1 and Table 6-2. From field test results the GPS timestamp difference 
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between receivers would nominally jump from 0.2 seconds to 0.4 seconds. This means on average 

there was an additional 0.2 second delay introduced due to network latency. The additional 0.2 

seconds of delay due to network latency would add an additional 3.6m of hysteresis spread to the 

original 4.0m estimate. The predicted hysteresis error could be in the worst case 7.6m. In summary 

based on this rough analysis, the hysteresis evident in Figure 6-16 is within reasonable expectation. It 

is important to note that this hysteresis spread represents the total combined error in both directions of 

travel. The large magnitude of approximately 5m is not the expected error the GPS collision system 

would experience.  

6.6 Summary 

In this chapter, the error of inter-vehicle distance measurement, d, was specifically analyzed. 

Measured d values were compared between the GPS hybrid system (a high grade GPS system used in 

conjunction with a low grade system), the real-time system (prototype low grade GPS collision 

system), and a LIDAR sensor. Error was evaluated by comparing the measured d values of the hybrid 

and real-time system against the LIDAR. Analysis results reported the error to be within 1.3 meters. 

The effect of this error on the collision warning parameter was subsequently analyzed. Even with 

large Δd the effect on the warning parameter is minimal compared to other parameter variations. The 

results of this section should address concerns of whether GPS could be accurate enough compared to 

the current forward scanning techniques. The linearity of Δd error was also investigated. Results 

showed that d and subsequently its error behave linearly throughout increasing and decreasing 

spacing. Through a specific test procedure executed to gather data for the linearity analysis, a 

hysteresis in the error was identified. Although the exact cause for the hysteresis was not determined 

several factors inherent to the data acquisition scheme and test procedure execution could be 

contributing. Overall the results of this chapter show that d as measured by GPS is stable and useable 

for collision detection.   
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Chapter 7 CONCLUSIONS  

7.1 Summary 

Previous surveys of accidents by the NHSTA identify rear-end collisions to be a major 

percentage of overall vehicle accidents. Most of these accidents are a result of driver inattention and 

are due to a driver following the preceding vehicle too closely. Forward collision warning detection 

systems are currently being developed to address these safety concerns. In most systems, the distance 

between the vehicles is actively measured by a forward scanning sensor system such as Radar or 

LIDAR. When this inter-vehicle distance measurement falls below a certain threshold, an alert is 

provided to the driver. However, these forward scanning type sensor technologies have performance 

limitations. They require direct line of sight and infer preceding vehicle velocity from changes in 

inter-vehicle distance. Also in certain environments/conditions the sensors can become covered with 

particulate (sand, dust, water) that adversely affect the measurement.  

This thesis investigated alternative methods for a forward collision warning (FCW) system. 

In particular, an alternative solution was investigated which utilizes GPS technology. For military 

applications, GPS was an attractive option since it is readily available on most vehicles and is low-

cost to incorporate. A GPS-based collision detection system was designed, fabricated and 

successfully demonstrated on three HEMTT vehicles at the YUMA proving grounds. The details of 

the prototype systems that were developed and tested were presented in Chapter 3. 

The work of this thesis focused on developing a methodology to evaluate measurement 

uncertainty in the system and how it affects the overall output which is the alert to the driver. A 

framework for evaluating this uncertainty was first presented in Chapter 4. The framework combines 

the results of an error analysis applied to each of the input measurements and sensitivity analysis of 

the overall system algorithm. The results of the sensitivity analysis identified how each of the input 

parameters contributes to the warning parameter as a subject vehicle approaches a leading vehicle. 
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Dominant parameters included the inter-vehicle distance, velocity, relative velocity, and system 

timing parameters.  

The analysis showed that parameters affecting the driver’s warning each have a varying level 

of influence on the warning parameter. Specifically, the driver tuning parameter and friction 

coefficient parameter exhibited minimal influence. For the error analysis, only the friction coefficient 

parameter was characterized using the velocity measurement from the GPS sensor. Using the worst-

case friction coefficient values from this analysis along with representative error values for the other 

parameters, the final uncertainty analysis was applied. The key takeaway of this analysis was that, 

when parameters of the warning algorithm are in error, the alert to the driver can have increasing 

error. In a field application, a full understanding of the inherent measurement errors through this 

analysis could be used to correct the warning parameter calculation so that it approximates an ideal 

error-free calculation, thus providing a better alert to the driver. 

The remaining chapters of the thesis focused on GPS position accuracy affects on inter-

vehicle distance measurement. First Chapter 5 took a closer examination of sensor noise by 

evaluating the stochastic noises of the GPS sensor. To identify these sensor errors, a technique known 

as Allan Variance analysis was applied. Allan Variance has been widely used and adopted by several 

organizations for identifying stochastic noise processes of sensors. The dataset for this analysis 

included a full period of 24 hours where the sensors were undisturbed so that only noise would affect 

the measurement. For the GPS sensors, random walk appeared to be the most significant noise 

process. This was clearly evident in the raw time domain data. There was good agreement of this 

specific noise type across all three GPS sensors in both the latitude and longitude directions. A similar 

Allan Variance analysis was performed on the accompanying accelerometer sensor.  

In contrast to the GPS error, the correlation of noise in the 3-axis accelerometers was not as 

evident. From the time domain analysis, it appeared that quantization and possibly bias were the most 

significant noise contributors. The result of the Allan variance analysis did not conclusively indicate a 
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specific noise model for accelerometers from one vehicle to another, and there was no strong 

agreement across the three sensors or even in the three directions. This may be due to the 

accelerometer orientation inconsistencies during the time of assembly/fabrication, manufacturer 

variation, differences in the electrical environment of each sensor, etc. In addition, the results of an 

autocorrelation analysis did confirm that the noise in the accelerometers was not random and that 

there is some correlation between the successive samples of data. This is possibly due to the low-pass 

filter that is part of the breakout interface circuit board used to interface the core accelerometer sensor 

to the embedded microcontroller.     

Finally, chapter 6 analyzed the inter-vehicle distance measurement accuracy by comparing 

this measurement between the low-cost GPS solution used in the prototypes, a mixture of a low-cost 

unit and a high-end GPS unit, and then a rearward scanning LIDAR sensor. The LIDAR sensor was 

assumed as ground truth. The results of this comparison showed the inherent lag or delay in the inter-

vehicle distance measurement when using GPS. On a positive note, the accuracy of the GPS-based 

measurements closely matched the LIDAR measurement. The low-cost GPS sensors have a CEP 

position accuracy of 3.3m. And since two GPS units are used to calculate the inter-vehicle 

measurement, the worst case error was expected to be 6.6m if the errors are combined. Instead, it was 

shown that the error was generally less than this worst case estimate due to the correlation benefits of 

multiple sensors operating simultaneously, similar to differential GPS. In other words, inter-vehicle 

distance measurement errors were reduced due to local error correlation. 

In summary, a GPS-based alternative solution for forward collision warning/detection was 

introduced. The system was produced in the form of a small number of prototypes, and their use as 

was demonstrated through actual field testing in convoy-like situations. However, incorporating 

additional techniques could greatly improve the performance of the system. In a separate but parallel 

study, Stephen Chaves evaluated the use of Kalman filtering to fuse the velocity as measured by the 
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GPS with velocity derived from the accelerometer. In this thesis, a framework for analyzing system 

error and uncertainty was investigated.  

7.2 Future Work 

The analytical framework used to determine expected measurement uncertainty is not specific 

to the GPS-based collision detection system and could be also applicable to traditional and currently 

developing solutions. Regardless of the solution or technology used it is important to characterize the 

measurement errors and evaluate their effect so the uncertainty can be properly handled, especially if 

a sensor deteriorates or becomes completely unusable during operation. There are additional topics 

that could be addressed as future work to gain additional benefits.  

Improved characterization of input measurement errors 

The results of the error analysis applied to the friction coefficient were only used in the uncertainty 

analysis while estimates from previous literature were used for the remaining parameters. For better 

uncertainty analysis, actual error values for all the input parameters could be derived from appropriate 

test data. This would involve defining the proper test procedures that includes the use of accurate 

ground truth measurements. Ideally if a test procedure could be designed where the subject vehicle 

virtually collides with the vehicle, or object in front, the truest collision data could be gathered 

including variations in normal driver response.  
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Evaluate other collision scenarios 

The collision scenario investigated in most of the work in this thesis involved two vehicles traveling 

at a constant cruising speed at some distance and then the leading vehicle aggressively stops. This 

scenario was selected as it closely represents typical convoy driving missions. Future work should 

involve investigating other scenarios. Examples are: both vehicles are traveling at different speeds, 

leading vehicle braking while following vehicle is accelerating. Additional collision test cases for 

consideration are also provided in [25].  

Evaluate other methods for friction coefficient estimation 

The friction coefficient estimation analysis used here simply involved interpretation of the slope 

profile of the velocity data during skid braking. Additional methods to estimate friction coefficient 

exist and should be investigated and their resulting errors should be compared.  

Verify stochastic noise models 

The result of the Allan variance analysis provides a stochastic noise model. Although it was not 

considered in this work, this model of noise variation could be used to corrupt a clean measurement 

signal and then compared against an actual signal to verify the validity of the noise model. A method 

for this analysis and results has been reported by Jerath in a technical report produced for the Federal 

Highway Administration [41][39]. 

Evaluate less conservative uncertainty analysis algorithms 

The uncertainty analysis equation used here represents the most conservative uncertainty estimator, 

using the delta or sigma terms for each measurement. This method is sometimes referred as the 1-

norm approach. For better results, a less conservative algorithm may be used for evaluation such as 2- 

norm approach which involves the use of the variance of the measurement. Other non-linear methods 

also exist that should also be evaluated. 
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Use better ground truth measurement for inter-vehicle measurement comparison 

In Chapter 6, the LIDAR sensor was used as ground truth but suffered from some target confusion. 

For future similar testing, it is recommended an industrial string-pot be used to get better ground truth 

measurement accuracy. The LIDAR or other forward scanning sensor technologies could be 

compared to the ground truth as well as the GPS for a true comparison. Further, using such a simple 

analog potentiometer, one could confirm that the delays seen in comparing the GPS data to LIDAR 

are solely due to GPS and not due to processing errors in LIDAR. 

Thorough survey of inter-vehicle networks 

In the GPS-based FCWS approach, vehicle-to-vehicle (V2V) communication is absolutely necessary. 

Otherwise, this alternative solution is not possible. Here V2V was established through wireless 

communication and a simple commercial of the shelf (COTS) network architecture (802.11N). A 

standard protocol (TCP/IP) was used in this development phase. During testing, this configuration 

presented limitations in range and stability and subsequently the test procedures were tailored 

appropriately. For future work, other wireless network architectures should be evaluated on the basis 

of these criteria and to have additional security. Network security is critical for military applications. 

Inter-vehicle communication, for example using DSRC radios, can provide significant benefits other 

than just FCWS and is currently a popular area of research largely supported by the U.S DOT’s 

Research and Innovative Technology Administration (RITA) as part of the Intelligent Vehicle-Based 

Safety Systems (IVBSS) initiative [42] [40]. A number of studies have already been conducted and 

serve as a good starting point for this task [43][41], [44][42], [45][43].    

Outside Environment Drift Characterization 

In the future it would be beneficial to perform a similar analysis of higher-end GPS receivers to 

examine any changes in noise terms. Also, the GPS measurements in this experiment were collected 

inside a building acquired from a GPS repeater station. Future work should also include the 

characterization of GPS drift in an outside environment.  
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Multi-sensor Fusion 

In the proposed prototype system, GPS information is fused with a basic 3-axis accelerometer. Data 

from the accelerometer could be used to improve the vehicle telemetry estimates, for example to 

determine when the vehicle is experiencing rapid acceleration changes to provide better input on 

relative vehicle velocity, and friction. Additional sensors were considered during the prototype design 

process including: vehicle odometer and speed, camera, and map information. These sensors were 

ignored due to core focus on GPS and design limitations (system must be vehicle non-intrusive, plug 

and play compatible, etc). For future work, these sensors should be still considered in improving the 

robustness of the system. Additionally as conceptual intelligent highway systems become reality, 

real-time road condition information will also be beneficial.  

Real-Time Implementation  

The analytical approach presented here was applied off-line to experimental and simulated datasets. 

Real-time methods for identifying sensor error could be developed. The uncertainty analysis could 

also be implemented in an embedded environment thus providing real-time assessment of 

measurement uncertainty. If uncertainty changes in a negative manner, error correction models could 

be called upon to provide temporary accuracy until the issue is resolved. The real-time 

implementation could also be used to identify when sensors are degraded or failing.   
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APPENDIX A   

SAN JOSE FV-M8 GPS RECEIVER 

 

Appendix Figure 1: GPS Specification Page 1 
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Appendix Figure 2: GPS Specification Page 2 
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APPENDIX B  
MATLAB CODE: SENSITIVITY ANALYSIS 

% The following test procedures are taken from the IVBSS Light Vehicle 
Test  
% Plan published by the NHTSA  
  
%% FCW RE-3 
% Rear End Conflict with an Aggresively Slowing POV  
% Vehicle)  
% Parameters  
% Subject Vehicle Velocity = 20.1 m/s (45 mph)  
% Principal Vehicle Velocity = 20.1 m/s (45mph)  
% Principal Vehicle Deceleration = 3.5 m/s^2 (7.8mp h)  
% Relative Velocity = 11.2 m/s  
% Initial Intervehicle Distance = 80 m (263ft)  
% Warning Distance = 5 m (11.5ft)  
clear  
% close all  
  
  
xsv(1) = 0; %Subject Vehicle Starting Position (m)  
xpv(1) = 80; %Principal Vehicle Starting Position (m)  
vsv(1) = 20.1; %Subject Vehicle Velocity (m/s)  
vpv(1) = 20.1; %Principal Vehicle Velocity (m/s)  
apv(1) = -3.5; %Principal Vehicle Deceleration  
  
vrelative(1) = abs(vsv(1)-vpv(1)); %Relative Velocity (m/s)  
d(1) = 80; %Starting intervehicle distance  
%First calculate the Total Time of Experiment  
  
dt = .5;  
t = 0;  
i = 2;  
%Create Distance Measurement For Given Set of Test Conditions  
for  i = 2:15  
    % while t < T  
    xsv(i) = vsv(1)*dt+xsv(i-1);  
    vpv(i) = vpv(i-1)+apv*dt; %Principal Vehicle Change in Velocity  
    vsv(i) = vsv(1);  
    xpv(i) = vpv(i)*dt+xpv(i-1);  
    d(i) = abs(xsv(i)-xpv(i));  
    vrelative(i) = abs(vpv(i)-vsv(1));  
    t = t+dt;  
    time(i) = t;  
    i = i+1;  
end  
  
%Create Figure of Test Profile  
figure  
subplot(211)  
plot(time,d)  
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ylabel( 'Inter-Vehicle Distance (m)' );  
xlabel( 'Time (secs)' );  
grid  
subplot(212)  
plot(time,vsv,time,vpv,time,vrelative);  
legend( '2nd Vehicle' , 'Lead Vehicle' , 'Relative Velocity' )  
ylabel( 'Velocity (m/s)' );  
xlabel( 'Time (secs)' );  
grid  
  
  
%Define parameters for algorithm  
numpts = length(d);  
interdistance = d; %intervehicle distance (d)  
velocity = vsv(1)*ones(1,numpts); %velocity of subject vehicle (v)  
% vrelative = vrel*ones(1,numpts); %calculated abov e 
accel = 8*ones(1,numpts); %deceleration capability of subject vehicle (a)  
timedelay = 1.4*ones(1,numpts); %system time delay (tau)  
buffdistance = 5*ones(1,numpts); %buffer distance (do)  
friction = 0.8*ones(1,numpts); %tire fricition coefficient (mu)  
drivertune = ones(1,numpts); %driver tuning coefficent (Kdriver)  
  
  
  
for  i = 1:numpts  
    d = interdistance(i);  
    v = velocity(i);  
    vrel = vrelative(i);  
    a = accel(i);  
    tau = timedelay(i);  
    do = buffdistance(i);  
    mu = friction(i);  
    dtune = drivertune(i);  
  
  
    %Calculate warning parameter  
    WP(i) = (d)/((0.5*(v^2/a - (v-vrel)^2/a)+v*tau+ do)*mu*dtune);  
  
    %Derived Partial Equations  
    %Distance  
    dd(i) = (a)/(dtune*mu*(a*do+a*tau*v+v*vrel-0.5* vrel^2));  
    Sdd2(i) = abs(dd(i)*d/WP(i));  
  
    %Velocity  
    dv(i) = (a*d*(-1*a*tau-vrel))/(dtune*mu*(a*(do+ tau*v)+(v-
0.5*vrel)*vrel)^2);  
    Sdv2(i) = abs(dv(i)*v/WP(i));  
  
    %Relative Velocity  
    dvrel(i) = -(a*d*(v-vrel))/(dtune*mu*(a*(do+tau *v)+(v-
0.5*vrel)*vrel)^2);  
    Sdvrel2(i) = abs(dvrel(i)*vrel/WP(i));  
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    %Deceleration  
    da(i) = (d*vrel*(v-.5*vrel))/(dtune*mu*(a*(do+t au*v)+(v-
0.5*vrel)*vrel)^2);  
    Sda2(i) = abs(da(i)*a/WP(i));  
  
    %Delay Time  
    dtau(i) = -(a^2*(d)*v)/(dtune*mu*(a*(do+tau*v)+ (v-0.5*vrel)*vrel)^2);  
    Sdtau2(i) = abs(dtau(i)*tau/WP(i));  
  
    %Buffer Distance  
    ddo(i) = -(a^2*d)/(dtune*mu*(a*(do+tau*v)+(v-0. 5*vrel)*vrel)^2);  
    Sddo2(i) = abs(ddo(i)*do/WP(i));  
  
    %Friction Coefficient  
    dmu(i) = -(a*d)/(dtune*mu^2*(a*(do+tau*v)+(v-0. 5*vrel)*vrel)^2);  
    Sdmu2(i) = abs(dmu(i)*mu/WP(i));  
  
    %Driver Tuning Coefficient  
    ddtune(i) = -(a*d)/(dtune^2*mu*(a*(do+tau*v)+(v -0.5*vrel)*vrel)^2);  
    Sddtune2(i) = abs(ddtune(i)*dtune/WP(i));  
  
end  
  
figure  
TIME=time;  
plot(TIME,Sdd2,TIME,Sdv2,TIME,Sdvrel2,TIME,Sda2,TIM E,Sddo2,TIME,Sdtau2,TIM
E,Sdmu2,TIME,Sddtune2)  
title( 'Relative Sensitivity' );  
ylabel( 'Magnitude' );  
xlabel( 'Time (secs)' );  
grid  
legend( 'd' , 'v' , 'v_{rel}' , '\alpha' , 'd_o' , '\tau' , '\mu' , 'K_{driver}' );  
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APPENDIX C  
MATLAB CODE: ALLAN VARIANCE ANALYSIS FOR GPS & ACCE LEROMETER  

function  [AWLS] = allanVariance(data, dataRate, noiseModel, tau, do_debug)  
%% Allan variance analysis  
%-------------------------------------------------- -----------------------
-  
%  Created by   : Kshitij Jerath; Email: kjerath@ps u.edu  
%  Dated        : 05 April 2010  
%  Edits by Sanket Amin, April 15 2010  
%-------------------------------------------------- -----------------------
-  
% INPUTS 
%   data        : Data on which Allan variance anal ysis is to be performed 
[nx1]  
%   dataRate    : Sampling frequency (e.g. 25 Hz)  
%   noiseModel  : Array indicating noise sources to  include in model  
%                 E.g.  [1 0 0 0 0] corresponds to quantization error  
%                       [0 1 0 0 0] corresponds to angle random walk  
%                       [0 0 1 0 0] corresponds to bias instability  
%                       [0 0 0 1 0] corresponds to rate random walk  
%                       [0 0 0 0 1] corresponds to rate ramp  
%                       [0 0 0 1 1] corresponds to rate random walk and  
%                       rate ramp in noise model, a nd so on;  
%   tau         : Tau vector, if empty will default  to calculation  
%                   internally  
%   debug       : if value of one will produced plo ts  
% 
% NOTE : Empty inputs such as allanVariance([],[],[ 1 0 0 0 0]) sets the  
% values of data and dataRate to default white nois e and 100Hz 
respectively  
%-------------------------------------------------- -----------------------
-  
% OUTPUT 
%   AWLS        : Weighted least squares estimate f or coefficients  
%-------------------------------------------------- -----------------------
-  
  
%% Code follows  
  
disp( 'Processing...' );  
if (isempty(do_debug))  
    do_debug = 1;   %Plotting allan variance and weight least squares f it  
end  
  
if (isempty(data))  
    warning( 'No data entered - setting default data to white no ise' );  
    data = 10.*randn(100000,1);  
end  
if (isempty(dataRate))  
    warning( 'Data rate not entered - default data rate = 100 Hz ' );  
    dataRate = 100;  
end  
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if  (isempty(tau))  
    len = length(data);  
    ordermax = numel(num2str(fix(len/dataRate)))-2;  % Maximum possible 
correlation time based on data length  
    order = fix(log10(1/dataRate));  
    tau1 = [1, 2, 3, 4, 5, 6, 7, 8, 9];  
    tau2 = [];  
  
    while (order < ordermax)  
        tau2 = [tau2, (10^order).*tau1];  
        order = order + 0.5;  
    end  
    tau = sort(tau2);  
    RootAllanVar = zeros(1,length(tau));  
  
    %% Calculation Loop - varying tau  
    for (count = 1:1:length(tau))  
        t = round(tau(count)*dataRate);  
        numDivisions = floor(len/t);  
        Avg = zeros(1,numDivisions);  
        Diff = zeros(1, numDivisions-1);  
        for (index = 1:1:numDivisions)  
            Avg(index) = (sum(data(t*(index-1)+1:t* index)))/t;  
        end  
        for (index = 1:1:numDivisions-1)  
            Diff(index) = Avg(index+1) - Avg(index) ;  %in degrees per sec  
        end  
        RootAllanVar(count) = sqrt(0.5*mean(Diff.*D iff ));  % Calculating 
root allan variance  
        if (mod(count,15) == 0)  
            disp( 'Processing...' );  
        elseif (mod(count,10) == 0)  
            disp( 'Processing..' );  
        elseif (mod(count,5) == 0)  
            disp( 'Processing.' );  
        end  
    end  
end  
  
%% Calculation Using allan.m (3.0)  
% This section added by Sanket Amin  
%Prep Data  
Data.freq = data; %Raw Frequency Measurement  
Data.rate = dataRate; % 
  
% Allan Variance  
Tau = tau;  
[avar]=allan(Data, Tau);  
  
% Plotting data and Allan variance  
if (do_debug == 1)  
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    figure  
    subplot(311)  
    
loglog(Tau,avar.sig, 'o' , 'Markersize' ,3', 'Markerfacecolor' ,[0.5,0.5,0.95]);  
    title( 'Standard Deviation' );  
    ylabel( 'Sig' );  
    h = xlabel( 'Tau Correlation Time (in seconds)' );  
    set(h, 'Fontsize' ,13');  
    h = ylabel( 'Root Variance (deg/sec)' );  
    set(h, 'Fontsize' ,13');  
    grid on;  
    subplot(312)  
    
loglog(Tau,avar.sig2, 'o' , 'Markersize' ,3', 'Markerfacecolor' ,[0.5,0.5,0.95])
;  
    title( 'Normal Allan Deviation' );  
    ylabel( 'Sig' );  
    h = xlabel( 'Tau Correlation Time (in seconds)' );  
    set(h, 'Fontsize' ,13');  
    h = ylabel( 'Root Allan Variance (deg/sec)' );  
    set(h, 'Fontsize' ,13');  
    grid on;  
    subplot(313)  
    
loglog(Tau,avar.osig, 'o' , 'Markersize' ,3', 'Markerfacecolor' ,[0.5,0.5,0.95])
;  
    title( 'Overlapped Allan Deviation' );  
    ylabel( 'Sig' );  
    h = xlabel( 'Tau Correlation Time (in seconds)' );  
    set(h, 'Fontsize' ,13');  
    h = ylabel( 'Root Allan Variance (deg/sec)' );  
    set(h, 'Fontsize' ,13');  
    grid on;  
  
end  
  
%% Data Fitting to obtain coefficients  
RootAllanVar = avar.osig; %Using Normal Allan Deviation  
weight = 1./RootAllanVar;  % Needed for performing weighted least squares  
% weight = (ones(length(RootAllanVar),1))';  
TAU = [];  
TAU2 = [];  
  
if (noiseModel(1) == 1)  
    TAU = [TAU;tau.^(-1)];  
    TAU2 = [TAU2;weight.*tau.^(-1)];  
end  
if (noiseModel(2) == 1)  
    TAU = [TAU;tau.^(-0.5)];  
    TAU2 = [TAU2;weight.*tau.^(-0.5)];  
end  
if (noiseModel(3) == 1)  
    TAU = [TAU;tau.^(0)];  
    TAU2 = [TAU2;weight.*tau.^(0)];  



107 

 

end  
if (noiseModel(4) == 1)  
    TAU = [TAU;tau.^(0.5)];  
    TAU2 = [TAU2;weight.*tau.^(0.5)];  
end  
if (noiseModel(5) == 1)  
    TAU = [TAU;tau.^(1)];  
    TAU2 = [TAU2;weight.*tau.^(1)];  
end  
  
%invTAU = (inv(TAU2*TAU2'))*TAU2;  
%AVARwt = weight.*RootAllanVar;  
%AWLS = invTAU*AVARwt';  
  
AVARwt = weight.*RootAllanVar;  
AWLS = TAU2'\AVARwt';  
  
  
% [estimates, model] = fitcurvedemo(tau,RootAllanVa r);  
% [sse, FittedCurve] = model(estimates);  
  
%% Plotting fitted curve  
if (do_debug == 1)  
    figure  
    
loglog(tau,RootAllanVar, 'o' , 'Markersize' ,3, 'Markerfacecolor' ,[0.5,0.5,0.95
]);hold on;  
    h = xlabel( 'Averaging Time (secs)' );  
    set(h, 'Fontsize' ,13);  
    h = ylabel( 'Allan Deviation (degs)' );  
    set(h, 'Fontsize' ,13);  
    h = gca;  
    set(h, 'Fontsize' ,13)  
    %     legend('Processed data','Fitted curve');  
    grid on;  
  
    AVARfit = AWLS'*TAU;  
    plot(tau,AVARfit, 'r' , 'Linewidth' ,3, 'Color' ,[0.95,0.5,0.5]);  
    corr([RootAllanVar',(AWLS'*TAU)'])  
    legend1 = '\sigma_{FIT} = ' ;  
    flag = 0;  
  
    if (noiseModel(1)==1)  
        leg1 = ' A_{-2}\tau^{-1} ' ;  
        legend1 = strcat(legend1,leg1);  
        flag = 1;  
    end  
    if (noiseModel(2)==1)  
        leg2 = ' A_{-1}\tau^{-0.5} ' ;  
        if (flag == 0)  
            legend1 = strcat(legend1,leg2);  
            flag = 1;  
        else  
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            legend1 = strcat(legend1, '+' ,leg2);  
        end  
    end  
    if (noiseModel(3)==1)  
        leg3 = ' A_{0}\tau^{0} ' ;  
        if (flag == 0)  
            legend1 = strcat(legend1,leg3);  
            flag = 1;  
        else  
            legend1 = strcat(legend1, '+' ,leg3);  
        end  
    end  
    if (noiseModel(4)==1)  
        leg4 = ' A_{1}\tau^{0.5} ' ;  
        if (flag == 0)  
            legend1 = strcat(legend1,leg4);  
            flag = 1;  
        else  
            legend1 = strcat(legend1, '+' ,leg4);  
        end  
    end  
    if (noiseModel(5)==1)  
        leg5 = ' A_{2}\tau^{1} ' ;  
        if (flag == 0)  
            legend1 = strcat(legend1,leg5);  
            flag = 1;  
        else  
            legend1 = strcat(legend1, '+' ,leg5);  
        end  
    end  
    legend2 = legend( 'Allan Deviation from data' , legend1);  
    % legend1 = legend('Root Allan Variance from data',  '\sigma_{FIT} = 
A_{-2}\tau^{-1} + A_{-1}\tau^{-0.5} + A_{0}\tau^{0} ','\sigma_{FIT} = A_{-
2}\tau^{-1} + A_{-1}\tau^{-0.5} + A_{0}\tau^{0}+ 
A_{1}\tau^{0.5}','\sigma_{FIT} = A_{-2}\tau^{-1} + A_{-1}\tau^{-0.5} + 
A_{0}\tau^{0}+ A_{1}\tau^{0.5}+ A_{2}\tau^{1}','Fon tsize',8);  
    set(legend2, 'FontSize' ,9, 'FontName' , 'Calibri' );  
end  
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APPENDIX D  
MATLAB CODE: ALLAN.M 

function  [avar]=allan(data, tau)  
  
% Compute various Allan deviations for a constant-r ate time series  
% [AVAR]=allan(DATA, TAU)  
% 
% INPUTS:  
% DATA should be a struct and has the following fie lds:  
%  DATA.freq    the time series measurements in arb . units  
%  DATA.rate    constant rate of time series in (Hz )  
%               (Differently from previous versions  of allan.m,  
%               it is not possible to compute varia nces for time-  
%               stamp data anymore.)  
% TAU is an array of the tau values for computing A llan deviations  
% 
% OUTPUTS:  
% AVAR is a struct and has the following fields (fo r values of tau):  
%  AVAR.sig     = standard deviation  
%  AVAR.sig2    = Allan deviation  
%  AVAR.sig2err = standard error of Allan deviation  
%  AVAR.osig    = Allan deviation with overlapping estimate  
%  AVAR.osigerr = standard error of overlapping All an deviation  
%  AVAR.msig    = modified Allan deviation  
%  AVAR.msigerr = standard error of modified Allan deviation  
%  AVAR.tsig    = timed Allan deviation  
%  AVAR.tsigerr = standard error of timed Allan dev iation  
%  AVAR.tau1    = measurement interval in (s)  
%  AVAR.tauerr  = errors in tau that might occur be cause of initial  
%  rounding  
% 
% NOTES: 
% Calculations of modified and timed Allan deviatio ns for very long time  
% series become very slow. It is advisable to uncom ment .msig* and .tsig*  
% only after calculations of .sig*, .sig2* and .osi g* have been proven  
% sufficiently fast.  
% 
% No pre-processing of the data is performed.  
% For constant-rate time series, the deviations are  only calculated for 
tau  
% values greater than the minimum time between samp les and less than half  
% the total time.  
% 
% versionstr = 'allan v3.0';  
% FCz OCT2009  
% v3.0  faster and very plain code, no plotting; va rious Allan deviations  
%       can be calculated; script and sample data a re availabie on  
%       www.nbi.dk/~czerwin/files/allan.zip  
%       (Normal, overlapping and modified Allan dev iations are calculated 
in one function,  
%        in strong contrast to MAHs approach of spl itting up among various 
functions. This might be beneficial for individual cases though.)  
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%  
% MAH 2009  
% v2.0 and others  
% 
% FCz OCT2008  
% v1.71 'lookfor' gives now useful comments; script  and sample data are  
%       availabie on www.nbi.dk/~czerwin/files/alla n.zip  
% v1.7  Improve program performance by mainly prede fining matrices outside  
%       of loops (avoiding memory allocation within  loops); no changes to  
%       manual  
% 
% early program core by Alaa MAKDISSI 2003  
% (documentation might be found http://www.alamath. com/)  
% revision and modification by Fabian CZERWINSKI 20 09 
% 
% For more information, see:  
% [1] Fabian Czerwinski, Andrew C. Richardson, and Lene B. Oddershede,  
% "Quantifying Noise in Optical Tweezers by Allan V ariance,"  
% Opt. Express 17, 13255-13269 (2009)  
% http://dx.doi.org/10.1364/OE.17.013255  
  
  
n=length(data.freq);  
jj=length(tau);  
m=floor(tau*data.rate);  
  
avar.sig     = zeros(1, jj);  
avar.sigerr  = zeros(1, jj);  
avar.sig2    = zeros(1, jj);  
avar.sig2err = zeros(1, jj);  
avar.osig    = zeros(1, jj);  
avar.osigerr = zeros(1, jj);  
% avar.msig    = zeros(1, jj);  
% avar.msigerr = zeros(1, jj);  
% avar.tsig    = zeros(1, jj);  
% avar.msigerr = zeros(1, jj);  
  
tic;  
  
for  j=1:jj  
    % fprintf('.');  
         
    D=zeros(1,n-m(j)+1);  
    D(1)=sum(data.freq(1:m(j)))/m(j);  
    for  i=2:n-m(j)+1  
        D(i)=D(i-1)+(data.freq(i+m(j)-1)-data.freq( i-1))/m(j);  
    end  
     
    %standard deviation  
    avar.sig(j)=std(D(1:m(j):n-m(j)+1));  
    avar.sigerr(j)=avar.sig(j)/sqrt(n/m(j));  
     
    %normal Allan deviation  
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    avar.sig2(j)=sqrt(0.5*mean((diff(D(1:m(j):n-m(j )+1)).^2)));  
    avar.sig2err(j)=avar.sig2(j)/sqrt(n/m(j));  
     
    %overlapping Allan deviation  
    z1=D(m(j)+1:n+1-m(j));  
    z2=D(1:n+1-2*m(j));  
    u=sum((z1-z2).^2);  
    avar.osig(j)=sqrt(u/(n+1-2*m(j))/2);  
    avar.osigerr(j)=avar.osig(j)/sqrt(n-m(j));  
     
%     %modified Allan deviation  
%     u=zeros(1,n+2-3*m(j));  
%     z1=D(1:m(j));  
%     z2=D(1+m(j):2*m(j));  
%     for L=1:n+1-3*m(j)  
%         u(L)=(sum(z2-z1))^2;  
%         z1=z1-y(L)+y(L+m(j));  
%         z2=z2-y(L+m(j))+y(L+2*m(j));  
%     end  
%     avar.msigerr(j)=avar.msig(j)/sqrt(n-m(j));  
%     uu=mean(u);  
%     avar.msig(j)=sqrt(uu/2)/m(j);  
%      
%     %timed Allan deviation  
%     avar.tsig(j)=tau(j)*avar.msig(j)/sqrt(3);  
%     avar.tsigerr(j)=avar.tsig(j)/sqrt(n-m(j));  
  
    % toc  
     
end ;  
  
avar.tau1=m/data.rate;  
avar.tauerr=tau-avar.tau1;  
  
toc;  
end  
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APPENDIX E  
MATLAB CODE: CALCULATE NOISE PARAMETERS 

function  [NoiseVals] = CalculateNoiseParameters(ACoeffs)  
  
Q = ACoeffs(1)/sqrt(3);  
N = ACoeffs(2);  
B = ACoeffs(3)*0.6648;  
K = ACoeffs(4)*sqrt(3);  
R = ACoeffs(5)*sqrt(2);  
  
NoiseVals = [Q;N;B;K;R];  
 
  



113 

 

APPENDIX F   
IEEE 1588 TIME SYNCRONIZATION 

The collection of data from multiple systems often presents a challenge during post analysis 

when each system functions off of separate timing hardware. To prevent this, the systems should be 

enabled with time synchronizing functionality to synchronize each of the independent clocks to a 

master time clock so that timestamps associated with the data are completely aligned. A specific 

standard, officially entitled “Standard for a Precision Clock Synchronization Protocol for Networked 

Measurement and Control Systems”,  for this has been agreed upon and is maintained by the IEEE 

society. Information for this standard, including its implementation, can be found at the following 

website link: http://ieee1588.nist.gov/. In short summary, a high precision timing hardware is selected 

as a master clock on a system. This “master” system periodically communicates with other “slave” 

systems, usually over Ethernet, sharing the master clock value. Each slave system compares the 

master clock value to its own local slave clock value and determines the offset value between the 

clocks. Additionally each slave system sends a message to the master system and awaits a response to 

measure the delay in the communication infrastructure. Having measured the offset and delay a slave 

system is capable of routinely fully synchronizing its clock to the master clock.  

In the LIDAR experiment procedure, the IEEE 1558 standard was implemented across three 

laptop computers each collecting GPS data from three respective receivers. Although GPS is 

universally aligned and usually serves as a master time, while conducting previous experiments a drift 

in GPS time difference was observed between the low-cost San Jose GPS receivers, used in the 

prototype hardware packages, versus the high-cost Novatel GPS unit. The IEEE 1588 standard was 

followed and implemented in Mathwork’s Simulink software to synchronize the data collected on the 

laptop with the Novatel GPS unit attached to the laptops collecting GPS and collision data with the 

San Jose GPS receivers attached.   
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Appendix Figure 3shows the Simulink diagram constructed for the master system. The input 

master time value is provided as the GPS timestamp produced by the high-end Novatel GPS unit. 

This GPS timestamp value represents the number of seconds that have elapsed since the beginning of 

the week and does not include leap second corrections.  

 

Appendix Figure 3: Master System Simulink Diagram 

Appendix Figure 4 shows the Simulink diagram built for the slave systems. Here the input 

slave time is provided as the GPS timestamp produced by the lower-cost San Jose GPS receivers. 

This GPS timestamp represents the number of seconds that have elapsed since the beginning of the 

day at 0:00:00. To compensate in the difference of the GPS timestamp formats the number of seconds 

since the beginning of the week is added to the San Jose GPS timestamp before providing as input to 

the slave block diagram. In this diagram the slave time, master time, measured offset, offset corrected 

time, and fully corrected time are all collected and saved in a data file for later analysis. 
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Appendix Figure 4: Slave System Simulink Diagram 

The Simulink diagrams shown above were designed with plug and play use in mind and are 

available for use in other systems. They can be easily adopted into existing Simulink block diagram 

code as subsystems. It should be mentioned that QuaRC is used to communicate the corrections via 

wireless Ethernet. QuaRC is a 3rd party add-on for Simulink developed by Quanser to allow real-time 

processing of Simulink diagrams. 
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APPENDIX G  
CONTINUOUS PARALLEL PROCESS FOR ACCESING SIMULINK D ATA IN 

MATLAB 

Utilizing a timer function in a MATLAB script allows the user to break away from the traditional top-

down execution of scripts and allows the user to incorporate parallel processes into their programming. One 

particularly useful feature of utilizing this is the ability to extract values from Simulink simulations at set 

intervals, allowing the user to have regularly updated variables from their simulation. The following provides a 

step-by-step example of how to use MATLAB to sample the value of a dynamic Simulink variable.. In this 

example we will create a Simulink diagram containing a timer and a sine function. Using a separate timer in 

MATLAB, the value of the Simulink blocks will be sampled and plotted every .1 seconds. Appendix Figure 5 

is given as a schematic of overall code execution.  

NOTE: One caveat of this technique is its “jitteriness” while executing.  

 

Appendix Figure 5: Software Paradigm 

1. First, a simple Simulink diagram is drawn using a timer and a sine function with two 

display blocks. The values of the two display blocks are what will be imported and 

plotted in MATLAB. The sine function block configuration is amplitude of 5 and a 

frequency of .01 radians/sec. The diagram uses a .1 second time step.  
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Appendix Figure 6: Simulink Block Diagram for Timer  Example 

2. Below is the main MATLAB code. It creates references to the two display blocks in the 

Simulink diagram. It then creates a timer which calls a plotting function every .1 seconds.  

 

Appendix Figure 7: MATLAB M-Code for Main Script  
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3. The function plotAmp is called when the timer executes. It adds the current values of the 

amplitude and time display blocks to a plot. 

 

Appendix Figure 8: MATLAB M-Code for Timer Script 

 
4. This is the plot that is created as plotAmp executes. As the timer executes, a new point is 

added to the plot. Note the beginning section of the graph where the points are scattered. 

These points were plotted while the program ran with lower precedence and exemplify 

the jittery nature of this technique. 

 

Appendix Figure 9: Captured Simulink Results 
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5. When the user stops the timer by typing stop(t2) into the command line, the function 

stopSim  is executed and the Simulink program is stopped.  

 

Appendix Figure 10: MATLAB M-Code for Stop Script 

MATLAB References - topics found in the MATLAB help navigator 

1. Timer Functions 
a. Creating timer Objects 
b. Timer Object Execution Modes 
c. Working with Timer Object Properties 
d. Starting a Timer 
e. Deleting Timer Objects from Memory 

2. Controlling Simulink Execution 
a. set_param 
b. Using the set_param Command 

3. Real Time Objects 
a. Simulink.RunTimeBlock 

  



120 

 

APPENDIX H   
LIDAR DATA ANALYSIS 

The collected LIDAR and GPS data was post processed using MATLAB. First specific 

subsets of the data were extracted in relation to the specific test procedure executed. The subsets were 

classified as “Slow LVS”, “Fast LVS”, “1st Lap LVM”, and “2nd Lap LVM”. In each of these subsets 

of data, the LIDAR sensor data was first processed to infer inter-vehicle distance. Each scan of the 

LIDAR sensor produces 361 values representing the measured distance to an obstacle within a vision 

range of 0 to 180 degrees in ½ degree increments. For the data collected during the LVS procedure, a 

few scans were first manually visually reviewed to identify the region in the scan field occupied by 

the sedan. In the explanation of the results that follow, when the sedan is stationary and near the rear-

end of the truck, approximate distance 20 meters or less, this event is referred as “In”. Accordingly 

when the sedan is distant from the truck, approximate distance of 60 meters or more, this event is 

referred as “Out”. Error! Reference source not found. and Error! Reference source not found. 

plot the scan data when the sedan was “In” and then “Out” respectively. The flattened shape of the 

obstacle, clearer visibility in Error! Reference source not found., represents the front bumper of the 

sedan. As the sedan backs away from the truck, the obstacle width decreases due to the decrease in 

LIDAR scan angle resolution. Upon visual inspection, the sedan was consistently identified in an 

interval between 84 and 94 degrees. In an automated analysis approach, the minimum of the distance 

values in this sub-interval was observed as the ground truth inter-vehicle distance measurement.  
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Appendix Figure 11: Sampled LIDAR Scan Data While Sedan Is Near Rear-End of Truck 

 

Appendix Figure 12: Sample LIDAR Scan Data While Sedan is Distant to Rear-end of Truck 

Sedan

Front

Bumper

Sedan

Front

Bumper
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During testing, in real-time, the GPS-based inter-vehicle distance estimate was calculated and 

stored in the data file. Since this real-time estimate includes the effect of wireless communication 

between the two computers the inter-vehicle estimate was again calculated off-line using the raw GPS 

information from the prototype hardware units as an additional comparison. Additionally, the inter-

vehicle distance estimate was calculated using the raw GPS information but using the data collected 

by the high-quality Novatel GPS/IMU hardware instead of the prototype unit installed on the truck. 

To compare against the ground truth, an offset of 5.3 meters is removed from the estimate versions to 

compensate for the physical offset of the GPS collision hardware packages from the LIDAR sensor 

on the truck and from the front bumper on the sedan.  

 


